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Abstract

In this paper, we propose new algorithms for approxi-
mate updating of the singular value decomposition (SVD)
of an exponentially weighted data matrix after appending a
new row. The algorithms are obtained in two steps: noise
subspace sphericalization is first used to deflate the prob-
lem, the right singular vectors and the singular values are
then efficiently updated by means of a recently proposed
constrained perturbation approach. The latter is based on
Givens rotations and thus preserves the orthonormality of
the updated singular vectors. The new algorithms have
complexity ranging from O(Nr) to O(Nr?), where N andr
respectively denote the data vector and signal-subspace di-
mensions. Their convergence behavior in subspace tracking
applications is investigated by means of the ODE method
and the results are supported by computer experiments.

1. Introduction

Subspace-based signal analysis methods have proven to
be of great utility in a wide variety of detection and parame-
ter estimation problems. The distinguishing feature of these
methods is the use of the eigenvalue decomposition (EVD)
of the data covariance matrix to extract the desired informa-
tion about the signal and noise. In practice, the EVD estima-
tion is often realized by computing the singular values (sv)
and right singular vectors (rsv) of a data matrix, whose rows
are made up of successive data vectors.

In the application of subspace methods to non-stationary
data, it is highly desirable to udpate the sv and rsv of the
data matrix as new rows are added. Several numerical tech-
niques do exist for the computation of the sv and rsv of an
arbitrary matrix. However, direct application of these tech-
niques from scratch to the updated data matrix at each iter-
ation is usually not practical due to the excessive computa-
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tional load involved. In recent years, new algorithms have
thus been proposed for carrying out this update more effi-
ciently based on approximations of various kinds (see for
example [1-3]). Referred to as subspace trackers, these algo-
rithms differ in their structure and complexity, the underly-
ing principles on which they are based and the type of SVD
information they compute.

In this paper, we present new algorithms for approximate
updating of the sv and rsv of an exponentially weighted data
matrix after appending a new row. Based on a new kind of
constrained perturbation approach recently proposed in [4],
these algorithms make use of sequences of Givens rotations
to update the rsv so that the latter remain orthonormal at all
time. The new algorithms have complexity ranging from
O(Nr) to O(N1?), where N and r respectively denote the
data vector and signal-subspace dimensions. Their conver-
gence behavior in subspace tracking applications is investi-
gated by means of the ODE method and the results are sup-
ported by computer experiments.

2. The new SVD-updating algorithms
2.1. Problem definition

Let x; € CV, where k € {1,2,...} is the discrete-time
index, represent a random sequence of complex data vectors
upon which some processing needs to be performed. Let
X} denote the exponentially weighted data matrix defined
by the data vectors via the recursion

X
Xk:l:a/@xkkHl]

where 0 < o < 1 controls the memory of the exponential
weighting and 0 < 8 < 1 is a normalization constant such
that a2 + 3% = 1. Initialization of (1) requires the specifica-
tion of Xp. This can be obtained from a previous sequence
of observations or from a priori knowledge. To simplify the
presentation, we assume that the size of Xg is V x V.

(1



Let the singular value decomposition (SVD) of the data
matrix X be expressed in the form

Xy = Wi U @)

In (2), Wy is a matrix of size (N + k) x N whose
columns, called the left singular vectors, are orthonormal,
ie. WkH Wy = I, where I denotes an identity matrix of
appropriate size; Uy is a square matrix of size N whose
columns, called the right singular vectors (rsv), are also or-
thonormal, i.e. U,f Ui = I, so that Uy, is actually a unitary
matrix; and 3y is an N x N diagonal matrix whose entries,
called the singular values (sv), are real and non-negative.
We shall denote the ith column of Uy by u; &, and the ith
diagonal entry of ¥ by o; . Without loss of generality, we
shall assume that o, > 041 k-

The SVD (2) plays a fundamental role in the application
of subspace-based signal analysis methods. Indeed, the lat-
ter requires the estimation of all (or a part) of the eigen-
value decomposition (EVD) of the data covariance matrix
R¢ = E[xzx}]. Such knowledge is directly provided by
the sv and rsv of the data matrix Xj,. To see this, simply note
from (1) that the matrix Ry, = X ,‘;{ X}, is the well-known ex-
ponentially weighted sample covariance matrix, while from
(2), its EVD is given by Uy Z2UH.

In many applications involving signals in noise, the sv
configuration is such that oy > ... > 0pp > Ory1p =

. & OnN,k, for some positive integer r < N. The rsv
corresponding to the r largest (dominant) sv are then said
to span the signal subspace, while the rsv corresponding to
the smallest (subdominant) sv are said to span the noise sub-
space. The two sets of rsv are represented here by

Us,k = [ul,k; “"ur,k]a Un,k = [u1'+1,ka ---,uN,k]- (3)

In this case, one is often interested in computing only the
largest (or dominant) sv and corresponding rsv.

Our aim here is to develop computationally efficient al-
gorithms for recursively updating the » dominant sv and rsv
of the data matrix X as a new row is added. We point out
that, since the SVD information is ultimately used to esti-
mate the corresponding EVD information of the covariance
matrix R, approximation errors in the SVD computation
are acceptable, provided they are masked by the inherent sta-
tistical fluctuations in the data.

2.2. Noise subspace sphericalization

The derivation of the new SVD updating algorithms
begins with the application of the so-called noise sub-
space sphericalization,whose underlying principles can be
exposed as follows [5]. Assume that attime k—1,the N —r
smallest (subdominant) sv are identical, i.e.

Ordi,k=1 = oo = ONk—1, 4
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so that any orthonormal basis of the noise subspace can be
used to form the SVD of X_;. If, in particular, we rotate
the basis vectors Uy, 1 so that Urf #—1X& has only one non-
zero component, then the dimension of the SVD updating
problem can be reduced from N to r + 1. This technique is
of considerable practical interest since in many applications,
onehasr < N.

Starting from (1) and expressing X3 in terms of its
SVD, ie. Xg_1 = Wi-1Ze_1UE |, we obtain:

aXig_1
ByH

aXp—
= W [ ﬂ;le } DHUI{{—D Yo = DHYa (6)

X, = Wa[ ]U{{l, Yo =UfLix,  (5)

where W,, Wp, etc., denote matrices of appropriate sizes
with orthonormal columns and D is a diagonal matrix with
entries Yo ;/|Ya,i|, so that the components of y; are real.
From (4), it follows that for any matrix H =
diag(I,, H,), where H,, is a real orthogonal matrix of
dimension (N — r), (6) can be expressed in the form

aXp_
Xy =W, [ 5y ] HT'DHUE,, y.=HTy:. ()
Ye
If we choose for H,, an Householder matrix such that
HYypn = 1ys,nl2(1,0,...,07, ®)
where Y5, = [Yb,r+1, -+, Ub,N]" » then we obtain
aS 0
Xpe=We| 0 aond |[U,ulpg,..uy]? 9
ByT 0
where S = diag(o1,k—1, ..., Or41,k—1)> On = Opq1,k—1 and
U; = Us,k—lea Ys = U‘;kaa (10)
Xn =X — UQYs, Yr41 = Hxnny (11)
y' =y, yrs1], Wy =Xa/yri1. (12)

Now, define §' = diag(o},...,00,;) and V =
V1, .y Vpt1], where o] and v; denote the sv (in non-
increasing order) and corresponding rsv of the matrix

Then, from (9) and (13), we obtain

SI 0 VH 0

0 aanl] [ 0 I } Vs gy, uiy ]
(14)

Xk:Wd[

which is the desired SVD expression.

In summary, the original N-dimensional problem con-
sisting in finding the sv and rsv of X, (1) has been deflated to
one of dimension r + 1, namely: finding the svandrsvof Y
(13). From (14), we note that [Us x, Ury1 k] = (U, up 4]V,
so that it is not necessary to compute u, FICPRR uly.



2.3. Constrained perturbation

To determine the sv and rsv of the deflated matrix Y (13),
we use a new kind of constrained perturbation approach that
has been recently proposed in [4] for the solution of the rank-
one EVD modification problem. To this end, we first recast
the deflated SVD update problem into an equivalent rank-
one EVD update. From (13) and the definitions of V' and
S’, we immediately obtain

VST =YTY = o?S% + fyy” (15)
The determination of the sv and rsv of Y is thus equivalent to
finding the eigenvalues and eigenvectors of a diagonal ma-
trix modified by a rank-one perturbation.

We note that in most SVD-tracking applications, the pa-
rameter 32 < 1, so that the rank-one perturbation term in
(15) is relatively small. In [6], this motivated the use of a
first-order perturbation analysis to derive approximate solu-
tions to (15); the validity of this approach for subspace track-
ing was further demonstrated by means of computer exper-
iments and a simplified convergence study. The main lim-
itation of a conventional perturbation analysis is its inabil-
ity to produce perfectly orthonormal eigenvectors. In SVD-
tracking applications, this means that even though the sub-
space information may be very accurate, the orthonormality
error of the rsv will saturate at some non-zero level after a
large number of iterations, which is questionable. In [4], an
improved constrained perturbation approach was proposed
to overcome this limitation. One of its main features is the
use of sequences of Givens rotations to update the eigen-
vectors, so that orthonormality is preserved exactly. In the
present SVD application, its use translates into perfectly or-
thonormal rsv after each update.

The main steps in the application of constrained pertur-
bation analysis to (15) can be summarized as follows. The
diagonal matrix S’? and the orthogonal matrix V' are first ex-
pressed in terms of small, unconstrained parameters. In the
case of S'2, we write:

S?=8%+A, A=diag(d,..,0r41). (16)

Clearly, it is the parametrization of V' that requires more
thoughts. To this end, we first note that for V to be orthog-
onal, we need det V' = 1. Without loss of generality, we
assume that det V' = 1. With this additional restriction, V'
now belongs to the special orthogonal group SO(r+1), also
known as proper rotations. The desired parametrization is
obtained by noting that any member of SO(r + 1) can be
expressed in the form

[S]

V=e"= a7

Z:‘;O OF /k!

where © = [6;;] is a real skew-symmetric matrix of dimen-
sionr + 1 (i.e., 0T = —0).
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Using the above parametrizations of .S’ 2 and V, a con-
ventional first-order perturbation analysis of the EVD prob-
lem (15) is then carried out in terms of the unconstrained pa-
rameters &; and 8;;. Thus, substituting (16)-(17) in (15) and
performing the necessary manipulations, the following ex-
pressions are obtained:

6 =By — 07k 1) (18)

0ij = BPyiyi/ (051 —0lpr)s i<i (19
Note that since V isrelated to the §;; through (17), it remains
orthogonal throughout the approximation process leading to
(18)-(19). Although 03 ;—1 > ... > Opy1,k—1 is implicitly
assumed in (19), this is not strictly necessary; repeated sv
can be dealt with easily with deflation.

In [4], various approximations in terms of Givens rota-
tions are proposed for the efficient computation of the expo-
nential matrix V' (16), when the entries of © have the form
(19). A first approximation is given by

Vi=]L.,Gi), (20)
where G;;(f) denotes a Givens rotation in the (7, j)-
coordinate plane with rotation angle 8. Thus, for 3 suffi-
ciently small, V' can be expressed as the product of r(r +
1)/2 Givens rotations with rotation angles 6;; (19).

A second approximation is obtained by further assum-
ing that the sv are well separated, ie. 0%, ; > .. >
o2 11 k—1- Major simplifications then result, leading to an
expression involving only 2r — 1 Givens rotations:

Vo = B,...ByB1 AT .. AT

Ai =Gii41(0a,), Bi=Gii+1(0B,)

where the rotation angles 6 4 ; and 8 ; can be computed ex-
plicitly (see also Table 3).

e2))

(22)

2.4. Description of the new algorithms

The new SVD-updating algorithms are obtained by com-
bining the results of Sections 2.2 and 2.3. The main algo-
rithm structure is presented in Table 1; it can be used with
either one of the rsv update procedures in Table 2 or 3.

Referring to Table 1, step 1 corresponds to initialization.
In the absence of a priori knowledge, one can select Uy o and
{0i0}iF] arbitrarily, subject to the constraints U, Us,0 = I
and 6,9 > 0i41,0. Itis also possible to initialize the algo-
rithms by computing (only once) the exact SVD of an initial
data matrix Xy obtained from past observations.

Step 2 refers to the main loop over the time index k. The
noise subspace sphericalization is implemented in step 2-a.
Updating of the rsv matrix U based on constrained perturba-
tion is performed in step 2-b. In essence, this amounts to the



transformation U < UV, where V contains the rsv of the
deflated matrix Y (13). We recall that two different approxi-
mations of V' were given in Section 2.3, namely V; (20) and
V2 (21). Accordingly, two different procedures for updating
U are proposed: the first one, based on V7, is presented in
Table 2 and corresponds to our first SVD-updating algorithm
(SVD1); the second one, based on V5, is presented in Table 3
and corresponds to our second algorithm (SVD2). Updating
of the sv o; is performed in step 2-c. Note that after the sv
have been updated according to (16) and (18), the N —r sub-
dominant sv are no longer equal (i.e. 0,11 > 0y,) and must
be re-averaged in preparation for the next iteration. Finally,
in step 2-d, the sv are compared and, if necessary, rearranged
in decreasing order; a corresponding permutation is applied
to the rsv.

Algorithms SVD1 and SVD2 can be used to track the
r dominant sv and rsv and the average value of the sub-
dominant sv of the data matrix X}, (1). These algorithms
maintain a true SVD structure at all time: the sv 0; 5 remain
non-negative and the orthonormality of the rsv u; ; is pre-
served due to the use of Givens rotations.We point out that
even though the derivation of V; is based on the assumption
o > o2, the corresponding algorithm SVD?2 is robust
and generally converges even with closely spaced sv.

For complex data, SVD1 requires 0.75Nr% + O(Nr)
complex operations (cops) per iteration, where one cop is
defined as four real multiplications and four real additions;
SVD2 requires only 5.75Nr + O(N) cops per iteration but
its implementation is slightly more elaborate. In terms of
convergence performance, the algorithms have comparable
behaviors, although SVD1 is slightly more robust in certain
difficult situations.

3. Convergence analysis

In this section, we use the so-called method of ordi-
nary differential equation (ODE) to investigate the conver-
gence behavior of the new SVD-updating algorithms SVD1
and SVD?2 derived in the previous section. This method is
now commonly used for the convergence analysis of vari-
ous stochastic recursive algorithms and is described in many
advanced textbooks; here, we follow[7].

3.1. Overview of the ODE method

The ODE method is a systematic tool for studying the
convergence properties of a wide class of recursive algo-
rithms in a probabilistic sense. The basic principle of this
method consists in mapping the algorithm under study into a
continuous-time deterministic ODE which describes the ex-
pected convergence dynamics of the algorithm. That is, un-
der appropriate conditions, the expected trajectories of the
sequence of estimates produced by the recursive algorithm
follow the trajectories (i.e. the solutions) of the ODE.
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| Step | Operation

1 Initialization:
a + exponential window parameter
B+ +1-a?
Us < Uspy, Nxr
0; &< 050, 1=1,..,71+1
2 | Main loop over discrete-time index k:
fork=1,2,..
(a) Noise subspace sphericalization:
ys + UFEx;
D, « diag(yi/|ys;i =1,...,7)
ys < ny.s
U, + U Dy
X, ¢ x—Usys
Yr+1 + |I%nll2
Urt1 ¢ Xn/Yri1
U + [Us,ur41]
yT By, yria]
) Update rsv via constrained perturbation:
select desired algorithm from Table 2 or 3
(©) Update sv via constrained perturbation:
On — Q0ry1
0; + aoi/1+ (yi/ao))?, i=1,..,7r+1
Ore = [or41 + (N =7 = Vo] /(N = )
(d) Rearrange sv (and rsv) in decreasing order
end

Table 1. New SVD-updating algorithms for
tracking » dominant sv and rsv (use with ei-
ther one of rsv updates in Tables 2 or 3).

The study of the convergence then amounts to a classi-
cal analysis of the algorithm’s ODE. Since we are interested
here in the asymptotic behavior of algorithms SVD1 and
SVD2 as k — o0, the main focus of the analysis is the study
of the ODE’s attractors and associated attraction domains.
In particular, convergence will be guaranteed, in a sense pre-
scribed by the theory, if we can show that the ODE has a
single stable attractor corresponding to the desired solution.
Here, Lyapunov stability theory is used to carry out this in-
vestigation.

3.2. Signal model

The first step in the application of the ODE method is
the formulation of an adequate probalistic model for the se-
quence of input data driving the recursive algorithm under
study. In the case of the algorithms SVD1 and SVD2, this is
the sequence of data vectors xx, k= 1,2, ....

For the purpose of this paper, we shall model the se-
quence {x;} as a stationary, temporally white, vector ran-



| Operation ’
fori=1:r
forj=i+1:7+1
0 < yiy;/ (03 — o)
U+ UG”(Q)
end
end

Table 2. Rsv updating based on V1.

| Operation |
Zr < Yr41
fori=r:-1:2
¢; + — arctan(z;/y;)
0 « —yizi/a?
Zie1 — Y2 + 22
U« UGi,it1(¢:i +6)
end
g« —ylzl/crf
U « UGLQ(O)
fori=2:r
U« UGij:i-}-l (¢4)
end

Table 3. Rsv updating based on V2.

dom process with zero-mean and true covariance matrix

R° = E[x;x1]. (23)
This is not the most general model for which the conclusions
of this study remain valid, but it has the advantage of simpli-
fying the discussion while preserving the essential aspects of
the analysis (a more general model can be found in [7]).

We shall denote by A{ the eigenvalues of R° and by u?
the corresponding orthonormal eigenvectors, so that

R° = U°A°U°H (24)

where U° = [ui,...,u%], with U°HU° = I, and A°
diag(A{, ..., A%). To simplify the presentation, we shall as-
sume that Ay > ... > A2, ; = ... = A%,. However, some

generalizations are possible.
3.3. Generic form of the algorithms

While the precise mathematical description of the algo-
rithms SVD1 and SVD2 given in Table 1-3 is useful (and
necessary) for their practical implementation, it is not the
most appropriate one for the application of the ODE method.
Indeed, the derivation of the ODE associated to a recur-
sive algorithm generally assumes that the latter has been ex-
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pressed in the following generic form:

Or = dk—1 + WH (dp-1,%k) + O(17)

where ¢, represents the sequence of parameter estimates re-
cursively produced by the algorithm; 7y is a sequence of
small scalar gains; H{¢_1, X ) is a function which defines,
up to first order terms in 7y, how the parameter ¢5_; is up-
dated by the algorithms; and O(2_,) represents the resid-
ual second and higher-order terms.

Here, the parameter estimates produced by the algo-
rithms at each iteration are the dominant sv oy g, ..., Or.ks
the noise subspace singular value 0,41, and the matrix
of dominant 1sv Uy ;. In the following developments, it is
more convenient to work with the eigenvalue estimates, i.e.
Aik = 07, than with the sv estimates. Thus, we finally set

¢k = [Us,k; Al,ka .- (26)

In the same way, an arbitrary point in the parameter space is
represented by ¢ = [Us, A1, ..., Apy1].
The gain parameter -y, is defined as

(25)

y A’l‘-l-l,k]‘

=P =1-a (27)

where 3y and a, represent time-varying versions of the
fixed parameters 3 and o appearing in (1). We note that in
practice, 3 is a small parameter, so that the interpretation of
& as a sequence of small gain is practically justified.

According to (25), the function H (¢, x) can be obtained
from a linearization of the algorithms in Table 1-3 with re-
spect to the gain parameter ;. In this respect, some com-
ments related to the use of the matrix D are necessary. Re-
call that the latter was introduced to make the components
of y (12) real so as to further simplify the deflated problem.
However, the matrix D has no effect on the information con-
tents of the recursive SVD estimates and may actually be
omitted if appropriate modifications are made to the algo-
rithms (so as to allow the components of y and the rotations
parameters 6;; (19) to be complex valued).

Due to lack of space, we omit the details of the lin-
earization step and present only the main results. Observ-
ing first from (25) that H (¢, x) belongs to the same space
as ¢y and is thus structured as in (26), we let H(.)
[Hu,(.),Hx, (), ..., Hx,,, (.)]. With this notation, the re-
sults of the linearization can be stated as this:

Hy, (¢,xx) = el UExixHUe; - Ni, i=1,..,r, (28)

1
H 2 (6%6) = =% (I = UsU)x{l = Arpy, (29)

Hy,(¢,xx) =Us© — (I - U, UM)x,xHBU,L7!

In these expressions: e; is the ith unit vector, L
diag(ly ;4+1, - lrr41), and © is a complex r x r skew-
Hermitian matrix (i.e., ©7 = —0©) with entries

TrrH
€; Us

(s

(30)

H .
kak Usej/lij, 1
1

b

0;; = <]: 3D
=17



The algorithm dependent parameters [;; are given by

A — ), forSVDI,
L —{_31,, “ for (32)

- for SVD2.
3.4. The continuous-time ODE

Once a recursive algorithm has been expressed in the
generic form (25), the continuous-time ODE describing its
expected dynamics can be obtained as

o(1) = h(g(r)) (33)

where 7 is the fictitious continuous-time variable, ¢(7) is
a differentiable function of 7 representing the expected tra-
jectory of the stochastic recursive algorithm, the dot opera-
tor denotes time-derivative and here, h(¢) = E[H (¢, x)].
The connection between the discrete-time & and the ficti-
tious time 7 is achieved via the relation 7, = Zle .

In the present application of the ODE method, we let
(1) = [Us(1), A1 (1), ..., Ar11(7)], so that the ODE can be
expressed as the coupled system

Ai(7) = ha (8(7)),

Us(r) = hy, ($(1)). (35)

Specification of the ODE associated to the algorithms SVDI1
and SVD2 then amounts to a computation of the expected
values of the components of the function H (¢, X ), as given
in (28)-(30). The results can be summarized as follows:

i=1,...

7+ 1, 34)

hx(¢) = eTUERUe; — Ny, i=1,..,r, (36)

1
P () = 881 = UU)R) = Aryr, - 37)

-7
hu,(¢) = U ¥ — (I - U, UBRU, L™ (38)

where ¥ = E[0] = [¢;;]. From (31), we obtain ( < j)
’([)ij = e;rUsHRoUsej/lij.

3.5. Attractors and domains of attraction

We begin by identifying some basic stationary points of
the ODE system (34)-(35):

Theorem 1: Let 7; denote an arbitrary permutation of
the numbers i = 1,...,N. Letw;,¢ = 1,...,r, be an or-
thonormal basis of eigenvectors of R° with corresponding
eigenvalues \; = A7, and let Ary1 = (xlpy )AL
Then ¢ = [uy,...,up; A1, ..., Ap41] is a stationary point of
the ODE system (34)-(35), i.e.. h(¢) = 0.

Any attractor ¢ of the ODE system (34)-(35) must be a
stationary point of this system, so that Theorem 1 merely
provides some candidate attractors. Among these candi-
dates, those corresponding to the trivial permutation m; = ¢
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actually represent the desired limit set of the sequence of es-
timates ¢y, produced by the algorithms SVD1 and SVD2.
We shall denote the set of all stationary points corresponding
to this trivial permutation by D.,.

To prove convergence of the algorithms SVDI1 and
SVD2, we shall show that D, is the unique stable attractor
of the ODE system (34)-(35), provided some restrictions are
imposed on the initial condition ¢(0), as suggested by the
following theorem:

Theorem 2: Consider the following manifold of the pa-
rameter space: M = {¢ : UFU, = I}. Let ¢(7) be a
solution of the ODE system (34)-(35). If ¢(0) € M, then
¢(r) € Mforall 7 > 0.

In other words, if a trajectory of (34)-(35) originates on
M, then it stays on M at all time. Since the initial condi-
tions for the algorithms SVD1 and SVD2 belong to M and
since the desired solution set D, is also included in M, we
may thus assume that ¢(7) € M forall 7 > 0in our demon-
stration that D, is a unique stable attractor. Limiting our
considerations to trajectories in M yields the useful identity
UHU, + URU, = 0.

Next, we introduce the following Lyapunov function:

V(¢) = |R(¢) - R°|I% (39)

R($) = UAUE + Mpi (I = UUE)  (40)

where A; = diag(Ay, ..., Ar). One can verify that V(¢) = 0
for any ¢ € D,. Therefore:

Theorem 3: Any point ¢ in the desired solution set D,
is a global minimum of V'(g).

To complete the analysis, we must study the time-
derivative of the Lyapunov function V (7) = V(¢(7)) along
an arbitrary trajectory ¢(7) of the ODE, subject to the re-
striction that ¢(7) € M. A lengthy derivation yields:

Theorem 4: In the case of SVD1, V(T) <OQforall T >
0; for SVD2, the same conclusion holds provided \; (7) >
e > Apyg1(7) forall 7 > 0.

In the case of SVD1, the theorem implies that all trajecto-
ries originating in M converge to the global minimum D,,
which is then the unique stable attractor of the ODE (34)-
(35). Inthe case of SVD2, we must further require that the sv
remain in decreasing order on the trajectory ¢{(7). In prac-
tice, this does not pose a real difficulty since the sv can be
rearranged after each update (see step 2-d in Table 1).

4. Illustrative Examples

The performance of the new algorithms SVD1 and SVD2
in subspace tracking applications is investigated via com-
puter experiments. To this end, a conventional model of the
type X = Asy + ny is used, where sy, is an r-dimensional
source vector process, A is a transmission matrix and ny is
a noise process. The components of the vectors s; and ny



are generated as independent random variables with com-
plex circular Gaussian pdf. The performance of the algo-
rithms is evaluated in terms of the following measures: the
rsv error, defined as the distance between the true (i.e. based
on R’ (24)) and estimated signal subspaces; a normalized sv
error, and when appropriate, the root-MUSIC frequency es-
timates or their average squared errors. In all cases, exact
SVD (SVDe) of the data matrix X, (1) is used as a bench-
mark for comparison; IV is set to 10.

Typical results for the initial convergence of the algo-
rithms SVD1 and SVD2 are shown in Fig. 1 (r = 4, true
frequencies w € {0,0.25,1.0,1.25}, SNR = 15dB, 32 =
.025, 40 run average). The performance of both SVDI and
SVD?2 is comparable to SVDe. Here, the true sv are not par-
ticularly well separated (25.46, 21.70, 10.63, 6.16 and 1),
which confirms the robustness of SVD2. The effect of a sud-
den 90° subspace rotation after convergence is illustrated
in Fig. 2 (r = 2, 82 = .1, 10 run average; see [1] for
more details). Finally, the ability of the new algorithms to
track narrow-band plane wave sources is illustrated in Fig.
3, which shows the true frequencies and the corresponding
root-MUSIC estimates for SVDe, SVD1 and SVD2 (r = 4,
SNR =dB, 3? = .025, single run).
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Figure 1. Initial convergence.
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Figure 3. Tracking demonstration.



