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Abstract

In this paper, we are interested in the use of sub-
space tracking techniques for image analysis. More
spectfically, we present a new model which enables the
parametric extraction of lines and curves of any shape.
The lines and curves paramelers, i.e. angle and off-
set, are tracked as the image is scanned from the top to
the bottom by a sliding window. Based on this model,
we propose a new Subspace-based Adaptive Line Ez-
traction algorithm (SALE). SALE, an adaptive extent
of the SLIDE algorithm, takes advantage of the latest
developments in subspace tracking algorithms. SALE
outputs a parametric description of detected lines and
curves, by tracking their offset and angle throughout
the image; its reduced complezity is directly related to
the number of extracted features.

1 Introduction

Image analysis/understanding is used in various ar-
eas of research such as biomedical, robotics and as-
tronomy imaging; its main goal is the extraction of a
desired information from a set of noisy observations.

Depending on the type of application, specific mod-
els are used to extract the desired information. In
astronomy for instance, the atmosphere blurs the im-
ages by spreading each pixel over a limited surround-
ing area and the deblurring problem is then treated
as a deconvolution issue. In computer vision appli-
cations, one is mainly interested in the extraction of
features such as lines and contours, or shape recogni-
tion. In image restoration, the main task consists in
reducing the noise level from the image.
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One notices a common point to all the above ap-
plications: the information one seeks is often local-
ized, i.e. the information contained in a single pixel
is usually related to the value of a limited number
of surrounding pixels only; in other words, a pixel is
correlated with its near surrounding only. Therefore,
most image analysis/understanding techniques could
be formulated so as to extract the desired information
by performing several local analysis within the image.

Such a “localized” analysis supposes a sliding win-
dow to be moved over the image so as to extract the
features locally. An accurate model is also required
to link all extracted local features for a good analy-
sis/understanding of the whole image. Fish’s deblur-
ring algorithm [1] is a perfect example of such an image
analysis procedure; it uses the singular value decom-
position (SVD) locally so as to independently deblur
small regions of the image, by scanning the whole im-
age with a square sliding window.

Generally, an SVD model fits well to problems in

which a parameter has to be estimated through the

observation of a series of data. Even though the SVD
is known to be an elegant way to process separately
the noise and signal components of a data series, its
use in image processing applications is still limited,
mostly because of its heavy computational load. In
fact, the computation of the SVD of numerous small
blocks of an image, e.g. as in Fish’s algorithm, is still
a much complex task.

Assuming a SVD-based model which enables the

- extraction of local features, the main idea we are go-

ing to develop in this paper is the following: under
specific conditions which shall be stated later, the
features of a small image region can be obtained by
slightly updating the SVD-based representation of a
near adjacent region. In other words, one may not
have to re-compute the SVD of each image block, if
it can be obtained by slightly updating the SVD of
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Figure 1: Traitement spatial d’une image par transla-
tion d’une fenétre d’observation.

a previous near block. This technique which we call
a “SVD-based sliding window” procedure has a lower
complexity.

Intuitively, the above “sliding window” assumption
along with the need to track the local features as they
are extracted from different regions of an image, has
a strong analogy with subspace tracking techniques.
The core of subspace tracking algorithms generally
consists in the updating of an orthogonal decompo-
sition, i.e. the eigenvalue decomposition (EVD) of a
correlation matrix or the SVD of a data matrix, as new
data become available. For instance, subspace track-
ing algorithms are used to estimate and track the di-
rection of arrival (DOA) of plane waves using antenna
arrays. Therefore, they fit perfectly to image analysis
applications which require a scan-like processing,.

Let us assume that an image of size N has to be
processed by computing the SVD of several overlap-
ping M-sized blocks, as shown in Fig. 1. On one hand,
the exact computation of the SVD of each block from
scratch requires O(M?2) operations; on the other hand,
by using subspace tracking techniques, the SVD of
any block can be obtained by slightly updating the
one from the preceeding block in O(M?) operations
or less. Thus, the SVD of all blocks can be obtained
with fewer operations! Note that in several applica-
tions, one does not compute directly the SVD of the
image pixel values, but rather the SVD of an inter-
mediate representation, as will be shown in Sections 2
and 3. However, the advantage of the above principle
remains the same.

In summary, the ability of the SVD to be used to
track parameters, the low-complexity associated to lo-
cal SVDs compared to global SVD, and the fact that a
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pixel is generally correlated with its near surrounding
only, justify the need to adapt subspace tracking meth-
ods to image analysis/understanding applications.

In this paper, we address the issue of using sub-
space updating techniques for the detection of lines
and curves in an image. We start our argument by
modifying a model initially proposed by Aghajan [2];
in this model, straight lines are processed as “plane
waves”, and array processing techniques are used to
compute their angle and offset. We propose an adap-
tive model in which the image is analyzed by sliding
a rectangular window from the top to the bottom. As
the image is scanned, the local SVDs are continuously
updated and the curves parameters can be tracked.
Based on this model, we propose a new Subspace-
based Adaptive Line Extraction algorithm (S.A.L.E),
which detects lines of any shape, i.e. curves. More-
over, this model enables the parametric extraction of
curves, i.e. their angle and offset versus each row num-
ber. Therefore, SALE might be suitable to a class of
manufacturing and military applications.

The paper is organized as follows: In Section 2,
we review Aghajan’s model and introduce an adaptive
model for curve extraction. In section 3, we present
the SALE algorithm. Section 4 presents experimen-
tal results obtained from synthetic and real satellite
images. Concluding remarks are provided in Section
5.

2 Model for parametric line and curve
extraction

The extraction of lines and curves fron an image is a
well-known issue for which, there already exist a wide
variety of solutions; the list of related applications is
a long one which shall not be stated here. However,
we would like to mention that in this paper, we are
interested in the parametric extraction of lines and
curves, i.e. their exact location on the 2-D plane of
the image. Thus, we would like to develop a method
which does not output a processed image containing
the extracted features, but a parametric description
of those curves and lines. For instance, in the case
of a straight line, its parametric extraction consists in
the estimation of its offset and its angle only. Such a
method is performed by the SLIDE algorithm which
is biefly explained below.

2.1 Straight lines extraction: the SLIDE
algorithm

SLIDE stands for Subspace-based LIne DEtection
[2]. It is an alternative solution to the Radon Trans-
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form (3] which enables the parametric extraction of

straight lines. Proposed by Aghajan et. al, it is based
on techniques used in the area of array processing.
The underlying model of SLIDE is illustrated on Fig.
2.

z(1)

z(?)

MAAL A

Z(N)

Figure 2: Model for straight line parameters estima-
tion using the SLIDE algorithm.

Let us assume that hypothetical sensors are located
along the left-side of the image. If the I*# row of the
image contains r non-zero pixels located at columns
¢, i=1---r, the “signal” z(l) of the I** sensor is

2(l) = i e~ ina (1)
i=1

where p is a constant parameter. If the r black pixels
are due to r straight lines, each with an offset zo; and
an angle 6;, the I** sensor’s output is

r

)= a()si+n() 1=1,---,N (2

i=1

where a;(§;) = e/#(-1tanbi apq g, = e~#%oi  This
scenario is effectively encoding the line angles as fre-
quencies of cisoidals components in the measurements
[2(1),--,z(N)]; thus, 8; can be estimated using har-
monic retrieval techniques based on the covariance
matrix estimation.

SLIDE estimates the angles 8; in four steps:

- perform a spatial smoothing on the data by defin-

ing a series of “measurement vectors”, i.e. con-
sider a series of overlapping vectors

2(l) = [2(1), -+, 20+ M = )T ®3)
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- compute the EVD of the associated sample co-
variance matrix

1 N-M+1 o M "

= N_"MTi ; z(D)z(l) =j§/\,-vjvj ;
4)

- from the eigenvalue spectrum {);}, estimate the

number r of straight lines with the minimum de-
scription length (MDL) criterium [4];

R!B

- extract the angles §; with the ESPRIT algorithm
[5], using the signal eigenvectors, i.e. the signal
subspace basis Vg = [vy,: -, v,].

The offsets zp; are later extracted by dechirping the
original sequence {z(l)} into a new sequence {w(l)}
which this time encodes the offsets as frequencies of
cisoids (see [2] for details). The above four steps are
then repeated to estimate the offsets.

2.2 A new model for curve extraction

The SLIDE algorithm certainly lies on an innova-
tive concept. However, it suffers from a number of
difficulties which are mainly due to the model it is
based on. For instance, it cannot deal with the cur-
vature of a line. Also, it is not formulated to localize
small extent lines.

We now propose a new model in which the curva-
ture of a line can be tracked and updated, as the sen-
sors are iteratively taken into account, from the top to
the bottom of the image. To do this, one needs only
to gather a sufficient number of measurements, i.e. a
sufficient number of vectors, say M, which encode the
line parameters for a specific region of the image.

Let us suppose a N x N image with a single curve
which crosses the image, as shown in Fig. 3. In the
case of curves, the parameters (angle and offset) are
expected to vary with respect to the row index I. A
quick look at the measurement vector z(l) in (3) shows
that it corresponds to a M x N rectangular slice of
the image, as shown in Fig. 3. There is here a strong
analogy between the space-series of the image mea-
surement vectors z(l) and the time-series used in the
tracking of frequencies drifts of noisy sinusoids. Thus,
assuming a sliding window which scans the image from
the top to the bottom, one can use parameter track-
ing techniques based on time series measurements to
track the variations of 6; and zo;, i.e. estimate 6;(l)
and zo;{(l) fori=1---N.

Note that a single measurement vector z(l) cannot
be used to estimate 6;(l), even though it covers an
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Figure 3: Adaptive model for curve extraction.

area corresponding to M rows (or sensors). This is
due to the fact that subspace-based methods require
the computation of either a data matrix (in which
successive measurements are gathered) or a covari-
ance matrix (which is generally approximated by a
sample covariance matrix, still based on a sufficient
number of successive measurements). Even though an
eigenstructure-based estimation might be a little com-
plex, it has however the advantage to enable the track-
ing of parameters as new measurements are added to
the set of available measurements.

By analogy with adaptive array processing tech-
niques, we propose the following model. Let us define
the data matrix

20 = | VP28 s ®)

it is an exponential windowing of the data in which
the measurements are added one after another, and
in which the impact of new measurements. is affected
by the forgetting factor # < 1. Compute the SVD
of Z(l), i.e. find U(l), T(!) and V(I) such that
Z) =UMEQVHH. V() = i), -+, vm()] is a
M x M unitary matrix, U(l) is a I x M matrix with or-
thonormal columns, and X(l) = diag(o1(l),--+,om(1))
with 01(1) 2 02(1) > --- 2 oM (D).

Once the SVD of Z(l) is computed, one may use the
MDL criterium or any other technique to determine
the number of curves r(I) which cross the I** row; r(l)
is equal to the effective rank of X(I). Also, the signal
subspace basis vectors Vs(l) = [vi(l), -+, v, ) (l)] are
used by a projection technique such as ESPRIT [5]
or root-MUSIC (7] to extract the angles 6;(l). Note
that the angles 8;(l) are estimated at the I** row only.
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Regarding the offsets, each measurement vector z(l)
is dechirped into w(l) which is inserted into an expo-
nentially weighted “offset” data matrix W (l), defined
recursively as Z(l) in (5). The offsets zo;(l) can then
be extracted similarly to the angles.

3 S.A.L.E : A Subspace-based Adap-
tive Line Extraction algorithm

3.1 Algorithm description

Based on the model described is Section 2, we pro-
pose a new algorithm for the parametric extraction of
lines and curves.

SALE tracks the curves’ angle and offset by scan-
ning the image from the top to the bottom. For each
row index I, the SVD of the data matrix Z(l) is not
recomputed, but updated using the latest subspace
updating techniques. For this purpose, SALE uses
our recent Noise-Average Cross-terms SVD algorithm
(NA-CSVD). NA-CSVD tracks the signal subspace
only, i.e. Vs(l) = [vi(l), -, v,y (r()].

Regarding the tracking of the number of curves r(l)
at each row [, SALE uses NA-CSVD along with a rank
estimator for spherical subspace trackers (RSST), in-
troduced by Kavcic et. al [6]. The performance of
the couple NA-CSVD/RSST has already been demon-
strated [8].

Regarding the offsets zg;(l), they require a parallel
tracking procedure, since their computation is based
on a different measurement series. Indeed, once the
angles 6;(1) have been computed at I*} row, the cor-
responding measurement vector z(l) is dechirped ac-
cording to each of the angles 8;(l); this leads to r(l)
dechirped series of vectors w;(l), each encoding only
one offset zg;(I). Once again, SALE uses the NA-
CSVD algorithm to track these offsets separately.

The total scan of the image consists then in N up-
dates, one for each row of the image. To track the
angles 6;(1), NA-CSVD has the advantage to update
Vs from | — 1 to I with only O(Mr(l)) operations. In
the case of the offsets, a rank tracking technique is
not required, since each series w;(l) represents only a
single offset; therefore, the complexity of the updating
of the r(l) offsets is also O(Mr(l)). Thus, if the im-
age is crossed by 7 curves from the top to the bottom,
i.e. assuming that r(l) = 7 for all [, the complexity of
the SVD of the whole N x N image is not O(N?) but
reduced to O(2FM N). One notices that the complex-
ity of SALE is directly related to not only the image
size N, but also to the number of curves r(l) to be
extracted at each row.
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Figure 4: Road network parametric extraction using SALE algorithm

Let us define the complerity reduction indicator
7sALE of SALE as the ratio of its complexity over
the complexity of an algorithm which would re-
compute the SVD of each M x N rectangular slice,
i.e. O(NM3); we have

2F
TSALE = 373 (6)

TsALE express also the limit of # over which SALE
might be more complex. For instance, with a sliding
window of M = 10 sensors wide, there must be at
least ¥ = 50 detected curves to get 7sarg > 1.

3.2 Further remarks on SALE

As for array processing algorithms, several imple-
mentation issues must be addressed so as to guarantee
the good performance of SALE.

Initialization: the initial subspaces Vg(0) and X(0)
are obtained by computing the exact SVD of the M x
N upper-slice of the image.

Angles and offsets matching: each offset data se-
ries w;(l) is obtained after the measurement z(l) is
dechirped using the appropriate angle 8;(l); since the
subspaces are not “signed”, we ensure this match to
be done by continuously sorting the offsets and angles
in separate tables.

scan direction: scanning the image from the top
to the bottom provides a good estimates of vertical
line, while scanning from left to-right provides a good
description of horizontal ines. Thus, depending on the
image to process, SALE can be performed twice in two
orthogonal directions. Note that additional software
is required to combine the two results.

pre and post-processing: One may optionally pre-
process the image by thresholding the pixels to re-
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move the background, or by enhancing the curves us-
ing a gradient mask. By providing a list of parameters
(0:(1), o4(1)) instead of an output image, SALE makes
post-processing tasks such as outliers removal easier,
since they are performed on a 1-D list of data and
require no 2-D search algorithms.

4 Experimental results

In this Section, we test the SALE algorithm in var-
ious simulations and experiments. Fig. 4 illustrates a
parametrized road extraction from a very noisy satel-
lite image containing a single distorted line; its angle
(around 20°) and offset (around 40 pixels) are tracked
as the line crosses the image from the top to the bot-
tom. The parameters provided by SALE are then
used to reconstruct the detected road. In Fig. 5,
the SALE algorithm is compared to SLIDE and the
Radon Transform. SLIDE cannot provide any infor-
mation regarding the extent of the detected lines, as
well as the Radon transform whose peaks indicates
only the angles and offsets, but not the extent of the
detected lines. One notices that SALE has the advan-
tage to provide a more precise parametric description
of small extent lines.

5 Conclusion

In this paper, we have proposed a new model for
the tracking of curve parameters in an image. By
encoding the angle and offset of the curves, we use
well-known subspace tracking techniques for the pa-
rameters tracking. Based on this model, we have
proposed a parametric line and curve extraction al-
gorithm, SALE, which extracts the curve parameters
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Figure 5: Lines extraction from a noisy image, using SALE, SLIDE and the Radon transform

adaptively for each row of the image. SALE outputs
only the necessary curves description, i.e. their angles
and offsets. SALE is a less complex solution which has
the advantage to provide the parametric localization
of small extent curves.
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