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Abstract

We present an improved adaptive rank detection algorithm
Jor on-line estimation and tracking of the signal subspace
dimension in applications of spherical subspace trackers.
The proposed algorithm uses different adaptive thresholds
for the rank increase (up) and decrease (down) tests as well
as a special set of fast tracking eigenvalue estimates in the
rank decrease test, which can be obtained at little extra cost.
It is based on an original investigation of the detection per-
formance for the up and down tests that takes into account
the exponential nature of the eigenvalue update in spherical
subspace trackers. Through computer experiments in multi-
user detection, it is shown that with the proposed algorithm,
the time reguired to detect a rank decrease is significantly
less than with existing methods.

Keywords: Rank estimation; Subspace tracking; Multi-user
detection.

1. INTRODUCTION

Subspace methods rely on the decomposition of the obser-
vation space (dimension N), into the orthogonal sum of a
signal subspace (dimension r < N} and a noise subspace.
In theory, a basis of the signal subspace is provided by the
rth dominant eigenvectors of the data covariance matrix. In
practice, the relevant subspace information can be obtained
via eigenvalue decomposition (EVD) of a sample covari-
ance matrix.

In applications of subspace methods to dyramic signal
environments, it is necessary to update the subspace infor-
mation as new data become available. To avoid the compu-
tational bottleneck of the EVD or SVD computation, on the
order of O(N?) operations per iteration, several fast sub-
space Iracking algorithms have been developed. Most of
these algorithms are based on the assumption of a spherical
noise subspace, i.e. the noise subspace eigenvalues are all
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identical [3], As a result, they can achieve computational
complexity as low as O(Nr) operations per time iteration,
and yet maintain a level of performance comparable to exact
EVD or SVD computations (see e.g. [1]}. The operation of
spherical subspace trackers critically depends on the avail-
ability of effective algorithms that can estimate and track
in realtime, also called adaptive rank estimators.

In [4], Kavcic and Yang present a general purpose adap-
tive rank estimator for use with spherical subspace track-
ers, referred to here as the KY methed. In essence, it com-
pares the eigenvalue estimates at each iteration to an adap-
tively set threshold in order to detect either a rank increase
of decrease. The choice of the adaptive threshold in (4]
is based on a simplified analysis of the probability of false
alarm and miss for the test which uses probability distribu-
tions derived for batch EVD computations (i.e. long rect-
angular window). Despite its simplicity, the KY method
typically outperforms classical information theoretic crite-
ria. Its main limitation is the relatively long time interval
(i.e. dclay) necded to detect a rank decrease.

In this paper, we present an improved adaptive rank de-
tection algorithm for use with generic spherical subspace
trackers. The new algorithm uses different adaptive thresh-
olds for the rank increase (up) and decrease (down) tests
along with fast tracking eigenvalue estimates in the rank
decrease test. This approach is based on a more accurate
analysis of the detection performance for the tests that takes
into account the exponential windowing nature of typical
cigenvalue updates. The new algorithm leads to a signifi-
cant reduction of the detection time of a rank decrease under
a constraint of a fixed false alarm probability. This is sup-
ported by computer experiments in multi-user detection.

2. PROBLEM FORMULATION

2.1 System Model

Consider the linear model

x(k) = A(k)s(k) + n(k) (n
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where x(k) € CV*! denotes the data vector observed
at discrete-time k& € Z, s(k) € C"*! is a zero-mean,
random signal vector with 7 < N, A(k) € CV¥*" is
a deterministic but unknown signal transformation matrix,
and n{k} € CV is a zero-mean background noise vec-
tor. The processes {s(k)} and {n{k)} arc assumecd 10 be
uncorrelated, with respective covariance mairices at time
k given by Ry(k) = Els(k)s(k}] > 0 and R,(k) =
E[n(k)n(k)¥] = o(k)2I, where o(k)? is the noise vari-
ance.

Under the above assumptions, the covariance matrix of
the data vector x(k) takes form

Ry (k) = A(R)R (K)A(K)™ + a(k)*1 @)
The EVD of R (k) is expressed as
Ry (k) = U(K)A(K)U (k)" 3}

where A(k) = diag(A(k), ..., An(k)) contains the eigen-
values of i, (k) in non-increasing order, i.c.

Mk) 2 2 A (k) > A (R) = .. = A (k) = o(k)?

4)
and U(k) = |[wi(k),...,un(k)] contains the correspond-
ing eigenvectors in orthonormal form. Introducing U, (k) =
[ui(k),...,u.(k)] and Up(k) = lu,rpq(k),...,un(k)],
we have that A(k)HU, (k) = 0, x(N—r)» OF equivalently,
span{A(k)} = span{U,{k)}, where span{.} denotes the
column span of its matrix argument. We refer to the orthog-
onal subspaces span(Us{k}) and span(U,(k)) as the signal
and noise subspaces, respectively. Subspace methods rest
on the above formulation of R (k).

2.2 Sphericat EVD Tracking

In the application of subspace methods to dynamic sig-
nal environments, it is necessary to recompute the desired
EVD estimates as new data become available. This can be
achicved ¢.g. by first updating the sample covariance ma-
trix and then recomputing its EVD. The following recursive
estimate of R;(k) is often used:

Ro(k) = aRy(k —1) + 1 — o)x(k)x(k)? (3

where 0 < a <« 1 is a forgetting factor introduced to
deemphasize past data. Several well-proven numerical al-
gorithms are then available for computing the EVD of Her-
mitian matrix R (k) [2]. However, recomputing this EVD
ab initio at each time step k using such algorithms entails a
very high computational cost of O(N?) operations per lime
iteration,

Several fast subspace tracking algorithms have been de-
veloped that can update the desired EVD information at a
much reduced cost. Of particalar interest here is a class

of so-called spherical subspace trackers (SST), which en-
force an equality constraint on the estimated noise sub-
space eigenvalues (i.e. shperical noise subspace) so as to
reduce the dimensionality of the EVD updating probiem
(e.g. [3, 17). As a result, SST can achieve computational
complexity as low as O(N), yet maintain a level of perfor-
mance comparable to an exact EVD computation.

Given the signal subspace dimension r, SST algerithms
typically track » + 1 EVD components, namely: the sig-

nal subspace eigenvalues, say {;(k) (¢ = 1,...,r); asingle,
average noise subspace eigenvalue, say [y (k); the signal
subspace eigenvectors, say vy(k) (¢ = 1,...,r), also rep-

resenied by the matrix Vg(k} = [vi(k),...,v,(k)]; and
an additional noise subspace eigenvector, say v (k). The
following steps are common to several SST algorithms:
Data projection:

ys(k) = Vs(k—1)"x(k) (6)
xn(k) = x(k)—Vs(k—Lys(k) (7
yr+1(k) =[x~ (R ®)
vn(k—1} = xn(k)/yri1(k) &)

Eigenvector updating:
[Vs(k), va (k)] = T{[Vs(k—1),vn (k- 1]}  (10)

where the explicit form of the transformation 7 depends on
the specific SST algorithm being considered.

Eigenvalue updating: Most SST use exponential window-
ing to update the cigenvalue estimates:

(k) = oli(k — 1) + (1 — &)y (k)[? (11)

where y;(k) denotes the ith entry of vector yg(k). A
slightly different update is used for the noise eigenvalue:

e 2 (k)|2
T

In(k) =aln(k—1)+(1 —a) N

(12)
where the factor 1/(N —r) reflects the presence of the noise
averaging operation,

2.3 Adaptive Rank Estimation (KY method)

The operation of SST critically depends on the availabil-
ity of effective algorithms for estimation and tracking of r,
also called adaptive rank estimators. In [4], Kavcic and
Yang present an adaptive rank estimator that is specially
designed for use with SST. This estimator, referred to here
as the KY method, makes advantageous use of the average
noise subspace eigenvalue available with SST to adaptively
set a threshold in a basic rank detection test. Compared to
traditicnal information theoretic criteria, KY method offers
several advantages, including: reduced complexity, ease of

- 2030 -



integration with popular SST algorithmns and in many cases,
superior detection performance.

The basic idea behind KY method is to keep track of the
rank r and then, after a simple threshold comparison, allow
the rank to change by either +1 or 0 at each time step. To
overcome the smoothing effects of spherical averaging on
the noise subspace eigenvalues in the case of a sudden rank
increase, it is proposed in [4] to track an additional noise
cigenvalue and eigenvector. This is achieved by running the
SST algorithm with r + 1 instead of r and slightly modify-
ing the updating equation for {5 (k). The basic test in KY
method can be formulated as follows:

if [.(k) <~y(k) then "rank deflation"
incorporate [..i1(k) into in(k)
delete v,..i1(k) from Vg(k)
re—r—1

elseif l,y1(k) > (k) then "rank inflation"
set l,q.z(k) = lN(]C)
set v,a(k) =vy(k)
re—r+1

else "rank unchanged"

Yk +1) = ¢y (k)

where (k) is the adaptive threshold and ¢ is the so-called
thresholding factor. The reader is referred to {4] for addi-
tiona! details.

The main drawback of the KY algorithm is the relatively
long time delay needed for the detection of a sudden rank
decrease, as compared to the detection of a rank increase
(see Section V).

3. DETECTION PERFORMANCE WITH
EXPONENTIAL WINDOW

In [4], the performance of the above threshold compari-
son test is analyzed with the aim of determining an opti-
mal value for parameter . The estimated eigenvalues are
treated as random variables from which the probability of
underestimation/overestimation of r are computed. This
analysis is based on the following assumptioas:
a) process x(k) in (1)-(2) is wide sense stationary, where
the value of r is assumed fixed;
b) a rectangular window of length N (instead of an expo-
nential one) is used in the computation of R, (k).
As a consequence of a), the dynamic properties of the de-
tection variables under a true rank increase/decrease cannot
be investigated. In particular, ne information is provided
by the theory about the average detection time, so that no
plausible explanations can be obtained for the above noted
difference between rank increase and rank decrease. As a
consequence of b), the role of the forgetting factor o can
not be directly tied in to the optimal value of ¢.

In the following, we relax the above assumptions and an-
alyze the detection performance of basic tests for the rank
increase and rank decrease situations. In both cases, we
attempt to determine the value of « that minimizes the de-
tection time under a constraint of a fixed probability of false
alarm.

3.1 Dynamic Signal Model

We consider a simplified dynamic model of the data vector
x(k)} in which the signal subspace dimension r may or not
change by +1 at time & = 0. Specifically, we model x(k)
in terms of a Karhunen Loeve expansion

N
x(k) = > a(k) (13)
=1

where u; = w; (k) are constant, orthonormalized eigenvec-
tors, and ¢;(k) are uncorrelated random coefficients, mod-
elled as zero-mean, complex circular Gaussian random vari-
ables with variances

Elle(®)*] = Mik) (14)

We assume that all the eigenvalue parameters A;(k) are
constant over time (ie. &y = MN(k)), except for A.(k)
and A (k) which will be allowed to change only at time
k = 0. The exact nature of the change depends on specific
hypotheses, to be presented below,

We also assume an idealized SST model in which the
eigenvector estimates are error free, that is:

Vs(k) = Us, va(k) = ey (15)
This is motivated by experimental observations suggesting
that the rank detection performance is not very sensitive to
small errors in the eigenvector estimates.

3.2 Exponentially Weighted x>

To simplify the analysis of the detection performance of the
rank increase/decrease tests, we find it convenient to first in-
troduce an exponentially weighted chi-square distributjon,
as follows.

Let z;; be a sequence of i.i.d. chi-square random variables
with n degrees of freedom, ie. zx ~ x?(n). Let the se-
quence 17 be defined recursively through

(1-«a)

T = ang—1 + zx (16)
We refer to z;, as an exponentially weighted chi-square ran-
dom variable with parameters o and n. It is possible to
derive expressions for the moments of 1, by making use of
(16). For instance, we note that E(n) = 1.
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We define the cumulative distribution function {CDF) of
. a8

F(z;c,n) £ Prob(n, <z), z€R an

Apparently, a close form expression for the above CDF does
not exist, although various schemes are available to device
analytical approximations. In this work, we resort to Monte
Carlo simulation of the defining recursion (16) to evaluate
the CDF F(z; ¢, n) for different values of the parameters c
and n.

3.3 Detection of a Rank Increase

A rank increase is modelied by the following behavior of
the process eigenvalues: forallk, A\ > ... > A, > 0% + §
and Arya = ... = Ay = a% fork < 0, Ap1(k) = o?
while for k£ > 0, two possibilities:

HY @ Appa(k) =0
HY @ XAalk)=o0%2+85

where IT§ corresponds to no change in the rank r, H}* cor-
responds to a rank increase by 1, and S > 0 represents the
additional power in mode r + 1 under H}.
In the context of SST, a basic rank increase test is pro-
vided by
Hy
In(k) 2 ¢o® (18)
Ho
where ¢* > 1 is a user selected mulliplicative threshold
factor. We first derive an cxpression for the probability of
rejecting Hy when it is indeed in force. This probability,

simply called the probability of false alarm {FA), can be
defined as

Pea— L @z (19)

where fi,, (xy(z) denotes the probability density function
(PDF) of [ 5 (k) under Hy.

To evaluate Pr 4, in {19), we first notc that under the as-
sumed dynamic model and hypothesis HY, random variable
|#r+1(k)|% in (12) can be expressed as o2zp(k)/2 where
zo{k) is chi-square with 2(NV ) degrees of freedom. From
there, it can be verified that

Ppa=1-F(¢% 0, 2(N — 1)) 20)
Next, we investigate the detection time under H{. Due
to the rank increase at time k = 0, the power associated to

the (v + 1)th eigenvector is now greater than the noise level.
Specifically, for k > 0

B = S0+ SNRYR(R) +209] @D

where z1(k) ~ x*(2) and zg(k) ~ x2(2(N —r — 1)) and
where we introduce the signal-to-noise ratio

SNR — J—'S; (22)

In this work, a suitable measure of the detection time under
H?* is defined as the time required by the expected vatue of
In (k) in (12) to raisc from &2 at lime k = —1 (prior 10 rank
increase) to the threshold level ¢%o? of the rank increase
test, Let

un (k) = Elln (k)] (23)

Combining (21) and (12), the following recursion may he

obtained for k£ > 0
SNR
(k) =ap (k1) + 7200 - ) (1+ 5 ) 29
with initial condition gy (—1) = o2, Provided ¢* <« 1 +
SNR/(N —r), un (k) will reach the threshold level ¢¥o?

at time (N—r) (8" 1)
—_r £ Y1
L ol - )

= 1 (25)
Inex

One possible approach to optimize the performance of
the rank increase test is to select the value of the forgetting
factor « that minimizes the detection time 7™ under a con-
straint of a fixed probability of false alarm Pr 4. Note that
for given values of N —r and SNR, the detecticon time T is
a function of & and ¢*. Also nole that under 2 constraint of
a fixed Pp 4 in (19), ¢* becomes a function of the o, Thus,
we define

W, = argmin T (e, ¢%) st Pra=cte (26)
s 3
A typical plot of T}, versus SNR for N —r = 5, and

Pr,4 = 0.01 is shown in Fig. 1. Plots of T (25} versus
SNR for fixed values of « is also included.,

3.4 Detection of a Rank Decrease

A rank decrease is modelled by the following behavior of
the process eigenvalues: forallk, \; > ... > Ap_y 2 02+
Sand Ary1 = ... = Ay =% Tork <O, A (k) =02+ 8
while for k > 0, two possibilities:

HE : M(k)=a24+8
HY : (k)=

where H¢ corresponds to no change in the rank 7, H{ cor-
responds to a rank decrease by 1.
We consider the following test for rank decrease:

L (k) % ¢%(S + o?) )
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Fig. 1 Optimum detection time versus SNR for rank increase
test.

where ¢¢ < 1 is a sclected multiplicative threshold factor.
We define the probability of a false alarm (i.e. false rank
change detection) as the probability of rejecting HZ when
it is indeed in force. This probability can be defined as

$*{S+a?)
Pra = / Sroipy(z)dz (28)
where f_)() denotes the PDF of [,(k} under H§. Pro-
ceeding as in the previous subsection, it can be shown that

Piy=F(¢%0,2) (29)

where the function F() is defined in (17).

Due 1o the rank decrease at time k& = 0 under HE, the av-
erage power of the {r)th signal component is now reduced
to the noise floor. Specifically, for k > 0

2
[y ()2 = Z-25 (k) (30)

where z3(k) ~ x?(2). We define the detection time under
H? as the time required by the expected value of [.{k) to
decay from S + o2 attime k = —1 (prior to rank decrease)
to the threshold level ¢4(S + o2} of the rank decreasc test.

Proceeding as in Section 3.4, the following formula may
be obtained for the detection time:

_ In(¢a(1 + gix) — m=x)

J
T Ina

—1 3D

As in (26}, we consider the minimization of the detection
time 7¥ with respect to ¢ under a constraint of fixed Pg 4.
Specifically, we define

Thin =argmin T, ¢%) st Pra=cle (32
A typical plot of T, versus SNR for Pr 4 = 0.01 is illus-

trated in Fig. 2. The Figure also includes plots of 7¢ (31)
versus SNR for fixed values of c.

Optimal Time:

SNR dB

Fig. 2 Optimum detection time versus SNR for rank decrease
test.

4. THE NEW ALGORITHM

Above theory points to a fundamental limitation of the KY
algorithm. Indeed, the latler uses the same combination of
threshold v and forgetting factor o for both the rank in-
crease and decrcase tests. However, according to the the-
ory in Section 3, different combinations of forgetting factors
and thresholds are needed to achieve the optimum detection
time in the rank increase and decrease tests. Thus, KY al-
gorithm dces not have the intrinsical ability to optimize the
performance of both tests simultaneously. In fact, the sit-
uation gets worst at high SNR since the gap between the
optimal values of the thresholds can be shown to increase
with SNR.

To overcome this limitation, we need to modify the basic
rank detection algorithm of KY to allow the use of differ-
ent combinations of forgetting factors and thresholds for the
rank increase and decrease tests. This can be achieved by
using a combination of the tests in (18) and (27). Ideally,
one would like to implement these tests using the optimal
values of (o, ¢*) and (o, ¢%) prescribed by (26) and (32).
However, this is not practically feasible since these optimal
values depend on the SNR parameter in (22). Also, the ex-
act relationships between the thresholds parameters ¢*, ¢%
and ¢ in practice differ from those derived in Section 3 on
the basis of the simplified signal model (13)-(15).

The results in Fig. 1 suggest that the detection time for the
rank increase test is not particularly sensitive to the value of
«. Accordingly, for this test, we propose the use of a fixed
value of o in (11)-(12), independent of the SNR. parameter.
This value of v is the same as that used by the underlying
SST algorithm; typically, it will be close to 1. The value of
¢* is then adjusted to maintain the Pr 4 below a satisfactory
level.
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For the rank decrease test, it can be secn from Fig. 2 that
the situation is different. Indeed, the detection time is more
sensitive to the value of the forgetling factor ¢, and the use
of a large (conslant) value of ¢ is not sufficient to get a
detection lime curve that is closc to the optimal one. To
this end, and particularly at high SNR, we need 10 usc a
much smaller value of . For the rank decrease iest, we
therefore propose to use an additional eigenvalue estimates
Il(k), computed via exponential averaging as in (11), but
using a smaller forgetting factor, say £ < a:

(k) = Bli(k — 1) + (1 - B)lw: (k) (33)

As in the rank increase test, the value of ¢y is adjusted 10
maintain Pr 4 below a satisfactory level.
We can now formulate the proposcd algorithm:

if U (k) < 7a(k) then "rank deflation”
incorporate l.(k) into In(k)
delete v.(k) from Vg(k)
rr—1

elgeif In(k) > v,(k) then "rank inflation®
set Lo1(k) =In(k)
set vrpi(k) = vy{k)
r—r+1

else "rank unchanged"

valk +1) = ¢34, (k — tq)

Yulk +1) = ¢*In(k — tu)

where t,, and ¢4 are typical values of the detection time for
rank increase and decrcase. We note that with the above ap-
proach, it is not necessary to track an additional eigenvector
as in the KY method. Only cxtra eigenvalues need to be
computed.

5. EXPERIMENTS

Computer simulations have been conducted to perform the
rank estimation for the subspace multiuser detection al-
gorithm in the synchronous CDMA systems [5]. In syn-
chronous CDMA systems, the rank of the signal subspace
is equal to the number of active users. We set the processing
gain N = 20, which is equal to the dimension of the corre-
lation matrix of the received signal, SNR=20dB, « = 0.95,
and 5 = 0.5. We change the number of active users in the
system, both up and down, and apply both the KY and the
proposed rank estimation algorithm to detect the change of
the rank. The simulation results in Fig. 3 show that the pro-
posed algorithm requires much less time iterations than K'Y
to detect a rank decrease.

6. CONCLUSION

We have presented an improved adaptive rank detection al-
gorithm for on-line estimation and tracking of the signal

ask o e P . - . 4

. ' . N .
100 200 300 400 500 600 o
time ieralion

Fig.3 Adaptive rank estimation for multi-user detection in syn-
chronous CDMA system.

subspace dimension in applications of spherical subspace
trackers. The proposed algorithm uses different adaptive
thresholds for the rank increase and decrease tests as well
as a special set of fast tracking cigenvalue estimales in the
rank decrease test. Computer experiments in multi-user de-
tection shown that with the proposed algorithm, the time
required 1o detect a rank decrease is significantly reduced.
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