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ABSTRACT

The array output for a distributed source can
be approximated by the superposition of the
array response to a large number of closely
spaced point sources. In the limit, a distributed
source corresponds to an infinite number of
point sources. In this approximation, the num-
ber of free parameters increases with the num-
ber of point sources. In this paper, we show
that if the point sources (approximation of a
distributed source) are related through some
parametric constraints, then for any observa-
tion at the array output, almost surely, there is
a unique solution for the localization problem,
provided that the dimensionality of the param-
eter space satisfies a certain bound. We show
this for both coherently and incoherently dis-
tributed sources.

1 Introduction

Recent literature in array processing shows a
growing interest in detection and localization of
distributed sources [4] [7] [5] [2]. Distributed
source modeling is invoked in many practical
situations. For instance, the lateral variation
of sound speed in water may cause energy dis-
tribution over an angular volume. In an un-
dersea echo beam sounder, the scattered signal
from the lower layers is modeled as a distributed
source [4]. Other examples are acoustic sources
in a reverberant room, tropospheric or iono-
spheric propagation of radio waves, reflection
of low radio link signal from ground, and so on.
A distributed source can be approximated by a
large number of closely spaced point sources [4].

The approximation error decreases by increas-
ing the number of point sources and decreas-
ing their spacing. In the limit, a distributed
source corresponds to an infinite number of
point sources. In this approximation, the num-
ber of free parameters increases with increas-
ing the number of point sources. If a classical
point source localization method, such as MU-
SIC, is applied to localize the point sources, a
unique solution may not be obtained due to a
limited number of sensors. In fact, for a unique
solution, the number of point sources must be
smaller than the number of sensors [9]. This is
an inherent ambiguity of the distributed source
modeling. Moreover, determining spatial exten-
sion using the point source location estimate is
not clear.

In [7], we present a parametric method for
localization of distributed sources in which
the source subspace, the signal subspace, and
the noise subspace are generalized and a two-
dimensional MUSIC-type spatial spectrum is
defined. The parameters of the sources are esti-
mated by locating the prominant peaks of this
spectrum. There, we assume that the number of
parameters is known. However, we do not dis-
cuss when the solution to the localization prob-
lem is unique. We simply assume that the num-
ber of parameters is small enough so that the
estimator provides a unique solution.

In the present work, we derive the sufficient
conditions for a unique localization of spatially
distributed sources. In [7], we propose that a
MUSIC-type algorithm might be used for dis-

tributed source localization if the angular kernel



of the distributed source belongs to a paramet-
ric class of functions. Here, we derive bounds on
the number of parameters required to represent
a distributed source. This bound can be used to
select a proper class for the angular density of
a distributed source. We use the concept of the
topological dimension of a set which is defined
as the number of free (real) parameters required
to describe all the elements of that set [3].

2 Problem Formulation

Consider an array of p sensors exposed to ¢ spa-
tially distributed sources. The output of ¢th
sensor is given by

2; = Z:/___ ai(0)s(0,4,)d0 +ni (1)

where ;() is the response of the ith sensor to
a unit energy source at direction 6, s(8,1;) is
the angular density of the jth source, v; is the
jth source location parameter vector, and n; is
the additive zero-mean noise at the ¢th sensor.
For uncorrelated sources the array covariance
matrix is
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where

p(0,0'345) 2 T{s(0,05)s(0,45)} (3)

is the angular cross correlation of source m.
A source is called coherently distributed (CD), if
5(0,1;) is a random multiple of a deterministic

function g(8, ;) [7], i.e.
3(07¢j) = 79(07¢j) (4)

where 7 is a random variable and ¢(6,;) is
called the deterministic angular signal density.
Equation (4) indicates that the components of
received signal from a CD source at different an-
gles are the delayed and scaled replicas of each
other.

If different rays of signal which arrive at the ar-
ray are uncorrelated with each other, the source

is called an incoherently distributed (ID) source.
For an ID source, we have

E{s(0,4;)s™(0 b)) = p(0,4;)8(0 — 0)  (5)

where p(6,1;) is the angular power density of
the source.

We will discuss the uniqueness problem sepa-
rately for the CD and ID source models. For
each case, a legitimate set is found which con-
tains all the signals that are chosen from the
paramteric class of the angular correlation ker-
nels. Every element in the legitimate set can be
a candidate for the localization problem. The
ambiguity set is a subset of the legitimate set
that contains all the signals that can generate
nonunique solutions to the localization problem.
The objective here is to find the conditions un-
der which the ambiguity set has a smaller di-
mension than the legitimate set. The approach
is similar to the one proposed in [6].

2.1 CD sources

Let the interval [—7, 7] be quantized into a grid
of ¢ points. It is assumed that a distributed
source with the angular signal density ¢(6;),
where v is an m-dimensional parameter vector,
is discretized so that it can take values on the
quantized grid. Initially, we consider a single
source scenario.

The output of an array of p sensors in a noise-
free environment for NV snapshots can be repre-
sented by

X = AS(v) (6)

where A is the px ¢ location matrix of the array,
S(v) is the ¢ x N source signal matrix, and X is
the px N observation matrix. The signal matrix
can be expressed as S(¢0) = [s1(¢) S2(¢))] where
s1(¢0) is a ¢ x 1 vector and Sy(¢0) isa ¢ x (N —
1) matrix. Similar to [8], we can show that it
suffices to solve the uniqueness problem only for

x1 = Asi(¢). (7)

The source signal matrix s;(¢) can be repre-
sented by

s1(¢) = 1Y) (8)



where g(1) is a ¢ x 1 vector with the ith com-
ponent equal to the value of ¢(6;¢) computed
at the location of the ¢th quantized DOA, and
~1 is the square root of the power. The vectors
that satisfy (8) for all ¢, generate a set which
is called the legitimate set and is denoted by G.
Since it is assumed that there is a one-to-one
relationship between g(¢) and ¢, we will need
m+2 real parameters to determine s; (). Thus,
the dimensionality of G is equal to m + 2.

A nonunique solution for the localization prob-
lem can be found if

x; = Asi(¥) = As'(y) (9)

or
Alng(¥) —1ig(W)] = 0. (10)
The legitimate vectors that satisfy this equality
for any ¢ and ', form the ambiguity set which
is represented by D. To represent each vector
in the form of (y1g(v)) — v1g(¥')), we need to
determine 2(m + 2) real parameters. However,
(10) shows that for the vectors in the ambigu-
ity set 2p constraints should be applied to their
parameters. Thus, the total number of parame-
ters that can be freely set to satisfy (10) is equal
to 2(m + 2) — 2p. This is the dimensionality of
D.
Since s1(?) is a random vector, a unqiue solu-
tion for the localization problem can be found,
almost surely, if

dim{D} < dim{G} (11)

where dim{.} is the dimension operator. This
criterion is equal to

m < 2p—2. (12)

Note that (12) is independent of ¢ the number of
quantized sources. Thus, an infinite number of
point sources (a distributed source) are localiz-
able if they are related through some parametric
constraints.

A multi-source case can be treated similarly
with an angular signal density equal to the ad-
dition of the angular signal density of the single
sources. For a multi-source scenario, the dimen-
sionalities of G and D are equal to ¢(m + 2)

and 2¢(m + 2) — 2p, respectively, where ¢ is the
number of CD sources. Thus, the uniqueness
constraint implies that

2p
m+2

q< (13)
Note that for the point source case, m = 1 and
we have ¢ < 2p/3, which is the well known suffi-
cient condition for unique localization of coher-
ent point sources [9].

2.2 1ID sources

The true correlation matrix is the limit of the
sample correlation matrix when the observa-
tion time tends to infinity. The sample correla-
tion matrix is a Hermitian random matrix with
jointly Wishart distributed elements [1]. In the
sequel, we find the dimensionality of the true
correlation matrix, keeping in mind that it is
the limit of a random matrix. The error be-
tween the true and the sample correlation ma-
trices can be arbitrarily reduced by increasing
the observation time. We consider a subset of
the sample correlation matrices which generate
ambiguous solutions for the localization prob-
lem. Then, we show that this set converges into
a set that has a smaller dimension than the set
of all possible correlation matrices.

Such as for the CD case, assume that the in-
terval [—7, 7] is uniformly sampled into a grid
of ¢ points. A distributed source with the an-
gular correlation kernel p(6,60';4), where ¢ is
an m-dimensional parameter vector, takes its
values on this grid in a noise-free environment.
Again, initially we assume a single source in a
noise-free environment. The correlation matrix

of the array output is shown as
R, = AR,A" (14)

where A is the px ¢ dimensional location matrix
of the array and R is the ¢ x ¢ correlation ma-
trix of the point sources. Since the point sources
are the samples of the distributed source, their
cross-correlation matrix satisfies

R, =P(v) Ypew  (15)

for some



where WU is the parameter set and the com-
ponents of P(1) are the values of the angu-
lar correlation kernel of the distributed source,
p(0,0";), computed on the grid. All the cor-
relation matrices R, that satisfy (14) with the
constraint (15) form the legitimate set G. Since
P(¢) is a function of m + 1 free (real) parame-
ters, the topological dimension of the legitimate
set 1s m + 1.

Let us define

F = AP(Y)A” — AP(¢)A"  (16)

for some ¢ and ¢'. The set of all matrices which
can be represenetd by (16) has dimensionality
2(m 4+ 1). A nonunique solution for the DOA
estimation problem can be found if

F = 0. (17)

Note that for ID sources, P(¢) is a diogonal
matrix. Thus, (17) provides p* complex con-
straints with only p of them being independent.
The number of parameters that can be chosen
freely to satisfy (17) is equal to 2(m + 1) — p.
Define the ambiguity set as

D= {R,|AP(¢)A” = AP(#)A").  (18)

The elements of D produce nonunique solutions
for the DOA estimator. The topological dimen-
sion of D is equal to 2(m + 1) — p. A unique
solution can be, almost surely, found for the lo-
calization problem if

2lm+1)—p<m+1 or m<p-—1 (19)

This suggests that distributed sources are unqi-
uely resolvable if they are chosen from a para-
metric class of angular correlation kernels with
the dimension of the parameter vector smaller
than the number of sensors.

A multi-source case can be treated similarly
with an angular correlation kernel equal to the
addition of the angular correlation kernels of the
single sources. In a multi-source case with ¢ un-
correlated sources, the dimensionality of G and
D are equal to g(m + 1) and 2¢(m + 1) — p,
respectively. The uniqueness criterion is then
given by

g(m+1) < p. (20)
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