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ABSTRACT

In this paper, we first propose a new family of Bayesian estima-

tors for speech enhancement where the cost function includes both a

power law and a weighting factor. Secondly, we set the parameters of

the estimator based on perceptual considerations by taking into ac-

count the masking properties of the ear and the perceived loudness

of sound. Our results show that the new estimator achieves better

overall performance than existing Bayesian estimators both in terms

of objective and subjective measures. Specifically, it shows a seg-

mental SNR improvement of up to 0.65 dB while it obtains the best

scores in a MUSHRA test for both white and aircraft cockpit noises.

Index Terms— Speech enhancement, minimum mean

square error methods

1. INTRODUCTION

The main objective of speech enhancement techniques is to remove

a certain amount of noise from a noisy speech signal while keeping

the speech component as undistorted as possible. In the Bayesian

approach for speech enhancement, an estimate of the clean speech

is derived by minimizing the statistical expectation of an appropri-

ate cost function. A well-known Bayesian estimator is the minimum

mean square error (MMSE) estimator of the short-time spectral am-

plitude (STSA) where the chosen cost function involves the squared

difference between the estimated and actual clean speech STSA [1].

The MMSE STSA cost function was recently generalized in two dif-

ferent ways by You et al. in [2] and Loizou in [3]. In the β-Order

STSA MMSE estimator [2] (which we will denote as β-SA for con-

venience) a power law (i.e. an exponent β) was applied to the esti-

mated and real clean speech STSA in the squared difference of the

cost function. In [3], the squared difference in the MMSE STSA

cost function was weighted by the STSA of the clean speech raised

to an exponent p; the resulting estimator was termed the Weighted

Euclidien (WE) estimator.

Building on the work by You et al. [2] and Loizou [3], we first

propose a new family of estimators where the cost function includes

both a power law and a weighting factor which we call the Weighted

β-SA estimator (Wβ-SA). Secondly, we choose the parameter val-

ues defining the Wβ-SA estimator (i.e. β and p) based on perceptual

considerations by, first, taking into account the masking properties

of the ear and, second, considering the perceived loudness of sound
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instead of its intensity. We find through both objective and subjec-

tive experimental measures that the new Wβ-SA estimator, with the

values of p and β chosen according to the proposed perceptual ap-

proach, shows improvements over the other Bayesian STSA estima-

tors compared (i.e. [1, 3, 4]).

The paper is organized as follows. Section 2 reviews existing

Bayesian STSA estimators while Section 3 derives the new Wβ-SA

estimator. In section 4, we propose some perceptually relevant val-

ues for the parameters of the Wβ-SA estimator (i.e. β and p). Sec-

tion 5 presents experimental results and related discussions. A brief

conclusion follows in Section 6.

2. BAYESIAN STSA ESTIMATORS

Let the observed noisy speech be

y(t) = x(t) + n(t), 0 ≤ t ≤ T (1)

where x(t) is the clean speech, n(t) is the additive noise and [0, T ]
is the observation interval. Let Yk, Xk and Nk denote the kth com-

plex spectral components of the noisy speech, clean speech and noise

respectively.

In Bayesian STSA estimation for speech enhancement, the goal

is to obtain the estimator X̂k of Xk � |Xk| which minimizes

E{C(Xk, X̂k)} where C(Xk, X̂k) is a chosen cost function and E
denotes statistical expectation. This estimator is then combined with

the phase of the noisy speech, �Yk, to yield the estimator of the

complex spectral component of the clean speech X̂k = X̂kej�Yk .

In the original MMSE STSA approach [1], the cost function is

chosen as C(Xk, X̂k) = (Xk − X̂k)2. Recently, the MMSE-STSA

estimator was generalized [2] by modifying the cost function as:

C(Xk, X̂k) = (X β
k − X̂ β

k )2 (2)

where the exponent β is a real parameter whose purpose is to control

the associated estimator gain function and, consequently, the trade-

off between speech distortion and noise reduction. The case β >
0 was analyzed in [2] while the analysis was extended to the case

−2 < β < 0 in [5]. We will refer to this estimator as the β-SA

estimator.

In [3], the following weighted form of the MMSE STSA cost

function was proposed:

C(Xk, X̂k) =

(
Xk − X̂k

X p
k

)2

(3)
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where p < 1 is a real parameter1. This estimator is termed the WE

estimator and was motivated by the masking properties of the ear. In

fact, for p > 0, it forces a better clean speech estimation in regions

where the STSA is smaller, and therefore less likely to mask noise

remaining in the clean speech estimation. As for β in the β-SA

estimator, p was also found to control the trade-off between speech

distortion and noise reduction.

3. WEIGHTED β-SA ESTIMATOR

In this work, we seek to combine the β-SA and WE cost functions

into a single cost function to take advantage of both perceptual inter-

pretations that can be given to the parameters β and p (which will be

further discussed in the next section). The proposed cost function is

therefore:

C(Xk, X̂k) =

(
X β

k − X̂ β
k

X p
k

)2

(4)

where β and p are real parameters.

To obtain the Bayesian estimator corresponding to the cost func-

tion in (4), we need to minimize its expectation with respect to X̂k.

By doing so, we obtain:

X̂k =

⎛
⎝E

{
X β−2p

k

∣∣Yk

}
E
{X−2p

k

∣∣Yk

}
⎞
⎠

1

β

. (5)

Using the Gaussian statistical model in [1] where the complex

spectrums (i.e. the Fourier expansion coefficients) of the clean speech

and noise were considered to be independent, identically distributed

Gaussian random variables with zero mean and variances σ2
x =

E{X 2
k } and σ2

n = E{|Nk|2}, respectively, we know (see [4] and

Appendix A in [3]) that:

E
{Xm

k

∣∣Yk

}
= λ

m/2
k Γ

(m

2
+ 1
)

M
(
−m

2
, 1;−υk

)
(6)

where Γ(x) is the gamma function, M(a, b; z) is the confluent hy-

pergeometric function and m > −2. Moreover,

1

λk
=

1

E{|Nk|2}
+

1

E{Xk
2}

and

υk =
ξk

1 + ξk
γk, ξk =

E{Xk
2}

E{|Nk|2}
, γk =

|Yk|2
E{|Nk|2}

,

where ξk acts as a long term estimator of the SNR and is called the

a priori SNR while γk − 1 can be interpreted as the instantaneous

SNR.

Using (6) in (5) with the appropriate values of the parameter

m (i.e. m = β − 2p for the numerator and m = −2p for the

denominator) , we can show that:

X̂k = Gk|Yk|
where

Gk =

√
υk

γk

(
Γ
(

β−2p
2

+ 1
)
M
(−β−2p

2
, 1;−υk

)
Γ (−p + 1) M (p, 1;−υk)

)1/β

(7)

1In [3], the equivalent cost function was proposed as C(Xk, X̂k) =

X
p
k (Xk − X̂k)2, but the form (3) was found more convenient here.

and β > 2(p − 1), p < 1. We will denote this estimator as the

Weighted β-SA estimator (Wβ-SA).

The Wβ-SA estimator gain, Gk, depends on the parameters of

the cost function (i.e. β and p) as well as on γk and ξk. Figure 1

presents gain curves as a function of the instantaneous SNR, γk − 1,

for a fixed ξk = 0 dB and several β and p values. As can be observed,

the estimator’s gain decreases when p increases and increases when

β increases. It is worth noting that a decrease in the gain will result

in more noise reduction but will invariably introduce more speech

distortion. Also, since the proposed estimator generalizes both the
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Fig. 1. Estimator gain (20 log(Gk)) versus instantaneous SNR (γk−
1) for several β and p values (ξk = 0 dB).

β-SA and WE estimators, the gains of the later can be obtained by

setting p = 0 (for β-SA) and β = 1 (for WE).

It was shown in [3] that the WE estimator tends to a Wiener es-

timator as the instantaneous SNR tends to infinity. In fact, the more

general Wβ-SA estimator also tends to a Wiener filter: we know

from (13.1.5) in [6] that as γk − 1 → ∞, the confluent hypergeo-

metric function M(−m
2

, 1;−υk) can be written as:

M(−m

2
, 1;−υk) =

υ
m/2
k

Γ(m
2

+ 1)
. (8)

Using (8) in (7) with the appropriate values of the parameter m, we

have:

Gk =
ξk

1 + ξk
(9)

which is a Wiener filter gain.

4. PERCEPTUALLY RELEVANT β AND p VALUES

In this section, we will consider the choice of β and p values in the

Wβ-SA estimator according to perceptual considerations.

Let us first consider the choice of the β value. Power laws have

been used in the past to model the nonlinear relation between the

intensity of sound and its perceived loudness [7]. Since loudness is

more perceptually relevant than the sound’s intensity, a cost func-

tion which would consider the difference in terms of the perceived

loudness would be preferable to cost functions which consider the
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difference in terms of the sound intensity. An exponent of 1/3 (i.e.

cubic root) has been proposed in [8] and used in [7] to perform the

nonlinear transformation between intensity and perceived loudness,

we therefore propose to set β = 1/3.

As can be observed from Figure 1, using β = 1/3 (as opposed to

keeping β = 1) will imply a lower gain Gk which should therefore

produce more noise reduction but will, however, also introduce more

speech distortion.

We now look at the choice of the p value. The motivation for

deriving the WE estimator was to favor a more accurate estimation

of smaller STSA since they are less likely to mask noise remain-

ing in the clean speech estimation. This was done by increasing the

weight of smaller STSA in the cost function. Since the first for-

mants, which contain most of the speech energy, are located at lower

frequencies, higher frequencies should contain mainly small STSA.

Therefore, it would be relevant to further increase the weights of the

smaller STSA in the cost function for higher frequencies. This can

be done by increasing p for higher frequencies. We therefore pro-

pose to modify the values of p as a function of frequency, i.e. pk,

increasing its value for higher frequencies.

We need to choose appropriately the values of pk for each fre-

quencies. In [3], the value of p = 0.5 has been suggested as a good

compromise between the desired noise reduction performed by the

estimator and the speech distortion introduced. This value can there-

fore be also regarded as being a good compromise between increas-

ing the weight of smaller STSA while keeping an appropriate es-

timation error for higher STSA. Since the main part of the speech

energy, which will contain most of the higher STSA, is approxi-

mately located below 2000 Hz (which includes most of the first two

formants), we will keep this value up to 2000 Hz. For higher fre-

quencies, we want to further increase the weights of smaller STSA.

Since the total speech energy decreases as frequency increases, we

therefore propose to linearly increase the value of p as a function of

the frequency. Since the Wβ-SA estimator restricts p to p < 1, we

will choose the highest value, i.e. p = 0.9, for the highest frequency.

Therefore pk will be given by:

pk =

{
plow if fk ≤ 2000Hz
(fk−2000)(phigh−plow)

Fs/2−2000
+ plow else

(10)

where plow = 0.5, phigh = 0.9, fk is the frequency in Hz corre-

sponding to spectral component k and Fs is the sampling frequency

set to 16 kHz.

5. RESULTS

In this section, we compare the proposed estimator to the MMSE

STSA, the MMSE log-STSA (LSA) [4] (where the cost function

takes the form C(Xk, X̂k) = (logXk − log X̂k)2) and the WE es-

timator (with p = 0.5 as suggested in [3]). Noisy speech signals

were created according to ITU-T standard P.56 [9]. We present re-

sults using white noise and aircraft cockpit (buccaneer-1) noise [10].

All speech signals were sampled at 16 kHz and a raised-cosine win-

dow was used (512 samples, 32ms). A 75% overlap was used in

the overlap-add synthesis method. All estimators used the decision-

directed approach for the estimation of ξk [1] and a voice activity

detector proposed in [11] was used to evaluate the noise spectral am-

plitude variance.

5.1. Objective results

We present objective results using the segmental SNR

(SNRseg) measure [12] over 30 Harvard sentences [13] (3 males, 3

females, 5 sentences each). To evaluate the relevance of the proposed

values for β and p, i.e. β = 1/3 and p = pk (10), we present re-

sults using the Wβ-SA estimators for values of (β = 1/3, p = 0.5),

(β = 1, p = pk) and (β = 1/3, p = pk). Note that the WE estima-

tor corresponds to values of β = 1 and p = 0.5.

Table 1 shows the SNRseg results for SNRs of 0, 5 and 10 dB

for white noise while Table 2 presents results for the aircraft cockpit

noise.

Table 1. SNRseg values for MMSE STSA, LSA, WE and Wβ-SA

estimators with white noise.

0 dB 5 dB 10 dB

MMSE STSA [1] 0.47 3.92 7.14
LSA [4] 2.06 5.12 7.92

WE (p = 0.5) [3] 2.97 5.75 8.29

Wβ-SA

β = 1/3, p = 0.5 3.28 5.96 8.38
β = 1, p = pk 3.35 6.02 8.46

β = 1/3, p = pk 3.62 6.21 8.52

Table 2. SNRseg values for MMSE STSA, LSA, WE and Wβ-SA

estimators with aircraft cockpit noise.

0 dB 5 dB 10 dB

MMSE STSA [1] −0.57 2.71 5.55
LSA [4] 0.35 3.41 5.93

WE (p = 0.5) [3] 0.79 3.63 5.99

Wβ-SA

β = 1/3, p = 0.5 0.90 3.67 5.94
β = 1, p = pk 0.83 3.65 5.99

β = 1/3, p = pk 0.94 3.68 5.93

As can be observed, setting β = 1/3 produces better results in

terms of SNRseg than β = 1. Furthermore, modifying the value

of p as a function of the frequency also produces better results than

keeping it constant at p = 0.5 for all frequencies. The best results are

therefore obtained by setting β = 1/3 and p = pk. One exception

to those observations is the aircraft cockpit noise at 10 dB where the

best performance is obtained equally by the Wβ-SA (β = 1, p =
pk) and the WE estimators.

5.2. Subjective results

As a subjective measure, we used the MUSHRA (MUlti Stimulus

test with Hidden Reference and Anchor) method (ITU-R Recom-

mendation BS.1534-1 [14]) as implemented in [15]. In MUSHRA,

the subjects are provided with the test utterances plus one reference

and one hidden anchor and are asked to rate the different signals on

a scale of 0 to 100, 100 being the best score. As the hidden anchor,

we used a signal having an SNR of 5 dB less than the noisy signal to

be enhanced. The listeners were allowed to listen to each sentence

several times and always had access to the clean signal reference.

A total of 8 listeners (7 males, 1 female aged in the mid 20’s

to low 30’s) participated in the test. A subset of two sentences (one

male speaker, one female speaker) were chosen randomly from the

thirty sentences used previously for the objective evaluation (the two

4195

Authorized licensed use limited to: McGill University. Downloaded on June 18, 2009 at 13:28 from IEEE Xplore.  Restrictions apply.



same sentences for all subjects). Tests were performed in an isolated

acoustic room using beyerdynamic DT880 headphones. In order to

limit the length of the listening test, only the 0 dB case was consid-

ered. The average duration of a test was approximately 30 minutes

per subject.

Table 3 presents the MUSHRA comparative results for the

MMSE STSA, LSA and WE estimators along with those of the Wβ-

SA estimator with the proposed values of β = 1/3 and p = pk. As

can be observed, the sentences enhanced using the Wβ-SA estima-

tor were rated higher than those enhanced by the other estimators for

both white and cockpit noises. Two-tailed paired t-tests revealed the

advantage of the Wβ-SA estimator (i.e. the differences between the

scores in Table 3) to be statistically significant within a 95% confi-

dence interval.

Table 3. MUSHRA values for MMSE STSA, LSA, WE and Wβ-SA

estimators with white and aircraft cockpit noise at 0 dB.

White (0 dB) Cockpit (0 dB)

MMSE STSA [1] 22.3 27.3
LSA [4] 33.8 37.1
WE [3] 42.4 47.6

Wβ-SA (β = 1/3, p = pk) 56.8 55.3

5.3. Discussion

We can observe from Figure 1 that decreasing β as well as increas-

ing p in the Wβ-SA estimator both result in a decrease in the cor-

responding gain Gk. Therefore, the gain of the Wβ-SA estimator

with the proposed β = 1/3 and p = pk values is smaller than the

gain of the WE estimator with p = 0.5 (which corresponds to the

Wβ-SA with β = 1 and p = 0.5). The proposed estimator therefore

produces more noise reduction than the WE estimator (p = 0.5) but

also generates more speech distortion. Since the main speech en-

ergy is concentrated at lower frequencies, the frequency dependence

of p allows to limit the speech distortion at lower frequencies and

increase the noise reduction at higher frequencies.

On the one hand, due to the increased noise reduction at high fre-

quencies, the proposed estimator should be more advantageous when

the noise has more high frequency components. In fact, the proposed

estimator showed more improvements both in terms of SNRseg and

MUSHRA for the white noise than for the aircraft cockpit noise

which has less high frequency components than white noise. On

the other hand, by decreasing the gain for the higher frequencies,

the high frequency components of speech, such as fricatives, will be

distorted. This distortion will be hardly noticeable when the SNR of

the noisy sentence is low and therefore the enhancement performed

by the proposed estimator will be perceived as an improvement over

that of the other tested estimators, however, the speech distortion

could become noticeable when the SNR of the noisy sentence in-

creases. In fact, the proposed estimator yielded more improvements

over the other tested estimators in terms of SNRseg at lower SNRs

than at higher SNRs.

6. CONCLUSION

In summary we proposed a new family of estimators for speech en-

hancement, the Wβ-SA. We showed that improvements could be

achieved with respect to existing Bayesian estimators such as the

MMSE STSA, LSA and WE estimators when choosing the param-

eter values of the Wβ-SA estimator (i.e. β and p) to account for

the perceived loudness of sound and take advantage of the mask-

ing properties of the ear. In fact, the proposed Wβ-SA estimator

showed better overall performances both in terms of SNRseg results

and MUSHRA scores when considering white and aircraft cockpit

noises.
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