
SINGLE-CHANNEL ENHANCEMENT OF CONVOLUTIVE NOISY SPEECH BASED ON A 
DISCRIMINATIVE NMF ALGORITHM 

Hanwook Chungl, Eric Plourde2 and Benoit Champagne 1 

IDept. of Electrical and Computer Engineering, McGill University, Montreal, Quebec, Canada 
2Dept. of Electrical and Computer Engineering, Sherbrooke University, Sherbrooke, Quebec, Canada 
e-mail:hanwook.chung@mail.mcgill.ca.eric.plourde@usherbrooke.ca.benoit.champagne@mcgill.ca 

ABSTRACT 

In this paper, we introduce a discriminative training algorithm of the 
non-negative matrix factorization (NMF) model for single-channel 
enhancement of convolutive noisy speech. The basis vectors for 
the clean speech and noises are estimated simultaneously during the 
training stage by incorporating the concept of classification from ma­
chine learning. Specifically, we employ the probabilistic generative 
model (PGM) of classification, specified by an inverse Gaussian dis­
tribution, as a priori structure for the basis vectors. Both the NMF 
and classification parameters are obtained by using the expectation­
maximization (EM) algorithm, which guarantees convergence to a 
stationary point. Experimental results show that the proposed algo­
rithm provides better enhancement performance than the benchmark 
algorithms. 

Index Terms- Single-channel speech enhancement, non­
negative matrix factorization, discriminative training, probabilistic 
generative model, classification 

1. INTRODUCTION 

Numerous algorithms for single-channel speech enhancement, aim­
ing at removing the background noise from a noisy speech, have 
been proposed in the past: such as spectral subtraction [1], minimum 
mean-square error (MMSE) estimator [2] or subspace decomposi­
tion [3]. These classical methods, however, tend to provide limited 
performance in adverse noisy environments, e.g., low input signal­
to-noise ratio (SNR) or non-stationary noise conditions. Recently, 
non-negative matrix factorization (NMF) methods have been suc­
cessfully applied to diverse problems including source separation [4] 
and speech enhancement [5]. In general, NMF is a dimensionality 
reduction tool that decomposes a given matrix into basis and activa­
tion matrices with non-negative elements constraint [6] . In audio and 
speech applications, the magnitude or power spectrum is interpreted 
as a linear combination of the basis vectors, which can be obtained 
a priori using training data. 

Most existing single-channel source separation or speech en­
hancement algorithms consider an instantaneous mixture, i.e. , the 
noisy speech is obtained by simply adding the anechoic background 
noise to the clean speech. An extension of the conventional NMF 
model, known as convolutive NMF (CNMF) [7] has been proposed 
to effectively capture the time-varying characteristics of the audio 
or speech signals, and has been applied to speech separation [7] and 
speech enhancement [8, 9] problems. However, the term convolutive 
in CNMF indicates that the given spectrum is modeled as a shifted 
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sum of time-varying basis matrix and hence, these algorithms do not 
consider the explicit convolutive mixing process specified by a mix­
ing filter such as room impulse response (RIR). 

Another problem of the NMF-based framework is that the ba­
sis vectors of the different sources may share similar characteristics. 
For example, the basis vectors of speech spectrum can represent the 
noise spectrum and hence, the enhanced speech may contain noise 
components that have similar features to the clean speech. Recently, 
several discriminative training algorithms of the NMF model with 
application to source separation or speech enhancement for instanta­
neous mixtures have been proposed to solve this problem, in which 
the goal is to train the basis vectors of each source in a way that 
prevents them from representing each other (see [10] and references 
therein). However, such training criteria have not been yet employed 
for convolutive noisy speech. 

In this paper, we introduce a discriminative training algorithm 
of NMF model for single-channel enhancement of convolutive noisy 
speech, which is an extension of our previous work in [10] , where 
the main idea was to estimate the basis matrices during the train­
ing stage by constraining them to belong to one of several classes. 
To this end, we considered a traditional Gaussian-distributed prob­
abilistic generative model (PGM) of classification [11] along with 
the NMF model [12, 13]. In this paper, we explicitly formulate and 
exploit the convolutive signal model motivated by [12], and instead 
employ an inverse Gaussian distribution as the PGM for classifica­
tion to bring more coherence into the NMF model. The update rules 
of the NMF model and the PGM parameters for classification are 
jointly estimated via the expectation-maximization (EM) algorithm. 
Experimental results show that the proposed algorithm provides bet­
ter enhancement performance than the benchmark algorithms. 

2. SIGNAL MODEL 

The convolutive noisy speech can be expressed in the short-time 
Fourier transform (STFf) domain as [12] 

(I) 

where Ykl is the complex-valued STFf of the convolutive noisy 
speech, Xkl = [Ski Nkd T E (:2X 1 is a point source vector consisting 
of the clean speech and noise, Ski and N kl , Ak = [A~ A£"l E (:1 x2 

is a vector of the mixing filters (e.g. , RIRs which model the paths 
from the clean speech and noise to the microphone), Bkl is a residual 
error (independent of Xk l ), and k = {l, ... , K} and I = {l , .. . , L} 
are the frequency and time frame indices. The residual error, which 
is shown to prevent the EM algorithm from potential numerical in­
stabilities and slow convergence [12], can be modeled by a stationary 
Gaussian random process with zero-mean and variance (J"~ [12, 14]. 
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The goal is to recover the clean speech in either the form of the point 
source Ski or the so-called image source Z~l = A~ Ski [12, 14]. In 
this paper, we consider the latter case to evaluate the enhancement 
performance. In the following, we introduce two underlying PGMs 
which will be employed in the proposed framework: NMF and clas­
sification models. 

2.1. NMF model 

For a given matrix V E IR~ XL , NMF finds a local optimal decompo­

sition of V ~ WH, where W = [wkml E IR~ XM is a basis matrix, 

H = [hmzl E IR~ X L is an activation matrix, IR+ denotes the set of 
non-negative real numbers, and M is the number of basis vectors. 
The factorization is obtained by minimizing a suitable cost func­
tion, such as Kullback-Leibler (KL) [6] or Itakura-Saito (IS) [13] 
divergence. In this paper, we consider the IS-divergence since it is 
known to provide a desirable statistical interpretation of the audio 
and speech signals [12, 13]. Moreover, we can explicitly employ the 
complex-valued spectrum which is necessary to handle the convolu­
tive signal model given by (1). 

Within a statistical framework, the complex-valued observation 
Xkl is assumed to be a sum of M latent variables, Ck/ , as 

M 

X kl = L Ck/, (2) 
m= l 

where N c(j.t , (72) is a complex Gaussian distribution with mean j.t 
and variance (72. Assuming that the latent variables are mutually 
independent, it has been shown that maximizing the log-likelihood 
function (LLF) based on the model (2) with respect to Wkm and hml 
is equivalent to minimizing the IS divergence [13]. 

2.2. Classification model 

In the classification problem, the input vector w = [wkl E IRK under 
test is assigned to one of I classes. The goal is to find a partition 
of the observation space into decision regions that will minimize the 
classification error, by using training data and their corresponding 
class labels. Among various approaches to solve the classification 
problem (e.g, PGM and discriminative modeling [11]), we consider 
the PGM since it can provide the necessary a priori distributions to 
be used in the proposed framework l . 

By ignoring possible correlations between different entries in w, 
the class-conditional density based on the inverse-Gaussian distribu­
tion can be expressed as p(wldi = 1) = rr:=1 IN(j.tk, Ak) where 
di E {a, I} is a target class label for the class i E {a, ... , I - I} and 

IN(j.t , A) = (27r~3 ) 1/2 exp [ - A~:2~j.t?] (3) 

is the inverse-Gaussian distribution defined for a positive value (w > 
0) with mean j.t and shape parameter A. 

Suppose we have a training set W = [WI , "', wM l and D = 
[d 1 , . .. ,dMl , wheredm = [diml with dim E {a, I} isan Ix 1 target 
class label vector such that ~i dim = 1. Assuming that the columns 
W m are independently drawn, the likelihood function is given by 

M I - I 

peW, D; ee) = II II [p(wml di = l)Pil dim (4) 
m= l i=O 

1 The term discriminative training used in this paper differs from train­
ing discriminative model, where the latter aims at maximizing the posterior 
distribution. Although some authors consider both terms equivalently (e.g., 
[15, 16]), we refer to the former as a training method aiming at estimating 
arbitrary parameters to be distinct (e.g. , [l7, 18]). 

where ee = {{pi, {j.tk} }{~~ , {Ad} is a PGM parameter set for 
classification and Pi £ p( di = 1) is the prior class probability. The 
set ee can be estimated via the maximum likelihood (ML) criterion. 

3. PROPOSED ALGORITHM 

In this section, we first explicitly address the prior structures for the 
PGM in (1) , which will be used in the proposed framework. Subse­
quently, we explain the proposed training and enhancement stages. 

3.1. Prior structures 

We denote by Mi the number basis vectors in class i (such that M = 

~i Md, and by Li the number of time frames in class i. For the 
basis vectors, the log-likelihood in (4) can be simply rearranged as 

I - I Mi 
p(W; ee ) = II II [p(w~ldi = l)Pi ]. (5) 

i=O m= l 

where p(w~l di = 1) is given in (4), and we omit the dependence 
on D in peW, D; ee ) hereafter for convenience. 

For the activations, we employ sparse NMF regularization, 
which can be implemented by modeling the entries of H with an 
exponential distribution within a statistical framework [19]. Assum­
ing that the entries are independent and identically distributed, the 
prior of H can be written as 

p(H; rJ) = Va rJMiLi exp [- rJ fl t h~l ] (6) 

where the parameter rJ controls the degree of sparsity. 

3.2. Training stage 

In the proposed framework , we use the class index i = ° for the 
clean speech and i = 1, ... , I - 1 for the different noise types. Let 
us denote by Zi = [Zkil and Xi = [XLl the i -th image and point 
source spectra, respectively. For given training data sets of the clean 
speech and noise image spectra Z = {Zi}, our goal is to estimate 
e = {{Ak },{Wkm },{h~z}} and ee jointly. The complete-data 
LLF can be expressed as 

Inp(Z, C, W, H; ee, rJ) 

= Inp(Z Ic) + Inp(QW, H) + Inp(W; ee ) + Inp(H; rJ) 
I - I K L i 

~ - L L L [In((7k) 2 + IZkl - AkX kI1 2((7k) - 2] 
i=O k= 1 1= 1 

where C = {C~,i } is the set of latent variables defined in (2), and ~ 
indicates equality up to a constant term. 

Application of the EM algorithm to (7) consists of two stages: i) 
expectation step (E-step), computing the posterior distribution of the 
latent variable given the observation and the expectation of the suffi­
cient statistics accordingly, and ii) maximization step (M-step), esti­
mating the parameters by maximi zing the conditional expectation of 
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the complete-data LLF with respect to the posterior distribution (i.e., 
.cc(OIO') = J Inp(Z, qO)p(qz, O')dC, where 0' is the parame­
ter estimated in the previous EM iteration). Defining u;;t £ Ic;;tI 2 , 

the E-step is found to be [12] : 

u;;t = I C~ ,iI 2 + (1 - G~, kl)Wkmh~1 (8) 
L.-

R~x, k = 1 t Zkl(Xk1)* (9) 
, 1=1 

L 

R~x, k = 1 t [IXL I2 + (1 - G~' kl Ak)vL] (10) 
, 1=1 

where * refers to a conjugate operation, Vkl = ~;;;~ l wkmh~l and 

X k1 = G~,klZL , G~, kl = vL(Ak)*(~;, kl) - l (11) 

C~ , i = G~ , k l Zkl ' G~,k l = (Wklh~I)(Ak )*(~~,kl) - 1(12) 

~~, kl = IAkl2vL + (0'k)2. (l3) 

The M-step is as follows. The mixing filter is found to be 

(14) 

The basis elements are found by setting the partial derivative of 
.cc( 010') with respect to wkm to zero, which leads to solving the 
following second-order polynomial equation: 

( i )2+ (2 +3Li )(J.lk? i _ ( i)2(1+2 ~U~'i) = O (15) 
Wkm ),. Wkm J.lk ),. L h ' . 

k k 1=1 ml 
~, , 

~ q'~ l 
~ q'~2 

Hence, the resulting update rule of Wkm is found to be 

(16) 

Following a similar approach as for the basis estimation, the update 
rule of h;"l is obtained as 

hi _ 2qh2 
ml - K + VK2 + 4r/Q~2 

(17) 

where qh2 £ ~:=l(U~ ,i/Wkm)' The residual noise variance, 
(0'k)2, also can be estimated by maximizing .cc(OIO'). However, 
we instead follow a strategy called simulated annealing with noise 
injection method introduced in [12], since it is shown to provide 
faster convergence of the EM iteration . Specifically, the residual 
noise variance is initialized with an average channel empirical vari­
ance divided by 100 (i.e., (17k) 2 = ~IIZkI 1 2 / (100Li »),andisgrad­
ually decreased through iterations to a small value, e.g., le-lO. A 
random noise is added to Zi at each EM iteration, accordingly. 

The hyper-parameter set Oc is estimated by maximizing the 
marginal likelihood p(ZIH ; Oc) = J p(Z , W IH; OC )dW. Assum­
ing that W is well-determined, maximizing the marginal likelihood 
becomes equivalent to maximizing (7) [10, 11]. Consequently, the 
set Oc is simply found by applying the ML criterion to (5), where 
the resulting estimate in a closed form is interleaved with the EM 
update, as 

M· 
Ai 1 ~ i 
J.lk = Mi LWkm, 

m = l 

and Pi = M;/M. 

(18) 

To prevent scale indeterminacies, we add a normalization step 
by adopting the strategies in [12] and [20]. That is, after comput­
ing (14) and (16), we normalize Ak by its magnitude IAk l and scale 
wkm accordingly, and then compute (17). As for initialization, we 
generate random complex numbers for AI" . For the basis and activa­
tions, we apply the standard multiplicative update (MU) rules based 
on KL-divergence [6] to the magnitude-square of the image source 
spectra as in [12] for 10 iterations. 

3.3. Enhancement stage 

During the enhancement stage, by concatenating and fixing the basis 
matrices of the clean speech and noise obtained during the train­
ing stage as W = [W s W N], we estimate the mixing filters , Ak , 

and activation matrix, H = [H~ H~]T , from the convolutive noisy 
speech Y. The parameter estimation via the EM algorithm can be 
derived similarly as in the training stage. Based on the signal model 
in (1), the necessary sufficient statistics corresponding to (9)-(10) 
and the mixing filter in (14) take either a vector or matrix form. A 
detailed expression for the paramter estimation can be found in [12] , 
where the activation matrix H is estimated by (17) in the proposed 
framework. Once the parameters are obtained, we estimate the im­
age spectrum of the clean speech using (11), (13) and Z:l = A~Skl ' 
where we ignore the small value of the residual noise variance O'~. 
Moreover, since the mixing filter is normalized, the estimated image 
spectrum of the clean speech can be written as 

AS P~l 
Zkl = AS + AN Yk l 

Pkl Pkl 
(19) 

where P~l and P~l respectively denote the estimated power spectral 
densities (PSD) of the clean speech and noise. The latter are obtained 
via temporal smoothing of the NMF-based periodograms as [10,21] 

Ms 

AS AS (1 ) ""' S h S Pkl = TSPk ,l- l + - TS L Wkm ml (20) 
m = l 

MN 

pf:t = TNp;:'l- l + (1 - TN) L wf:mh;:"l (21) 
m = l 

where TS and TN are the smoothing factors for the clean speech and 
noise, respectively. Finally, the enhanced image speech signal in the 
time-domain is reconstructed by applying the inverse STFT followed 
by the overlap-add method. Note that the set Oc can be used for the 
noise classification using a Bayes' rule in advance to the enhance­
ment [10]. In this case, the additional noise basis vector w needed 
for the classification can be obtained through [W s w] by applying 
the standard MU rule to V = [I YkI 1

2 ] . In this paper, however, we 
simply assume that the noise type is known a priori. 

4. EXPERIMENTS 

We conducted experiments by considering a rectangular room with 
dimensions of 4 x 5 x 3 m (x x y x z) as illustrated in Fig. 1. A mi­
crophone and three point sources (PI, P2 and P3 ) were placed at the 
elevation of z = 1.3 m. The RIRs with respect to different source 
positions were obtained by using the simulator in [22], where we 
considered the reverberation time of no = 50 and 200 ms. We used 
clean speech from the TSP database [23] and noise from the NOI­
SEX database [24] , where the sampling rate of all signals was set to 
16 kHz. For the clean speech (i = 0),20 speakers (10 males and 
10 females) were chosen, whereas the Factory 1 (i = 1), Buccaneer 
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Fig. 1. Room geometry (length in meters, angle in degrees). 

1 (i = 2), HF-Channel (i = 3) and Destroyerops (i = 4) were se­
lected2 The corresponding speech and noise files were divided into 
two disjoint groups: i) training data, used for estimating the basis 
matrix for each class i during the training stage, and ii) test data, 
used during the enhancement stage to evaluate the enhancement per­
formance. We considered a speaker-independent (SI) application, 
where one universal basis matrix covering all speakers is estimated. 
To this end, we constructed the training data of the clean speech by 
selecting 3 sentences per speaker and concatenating them, for a to­
tal of 60 sentences (2 minutes long signal), whereas a 2 minutes long 
signal was used for each type of noise. All training data were located 
at PI and then convolved with the corresponding RIR to obtain the 
image source signals. 

The convolutive noisy speech signals were generated from the 
test data by summing the image signals of the clean speech and 
noise. Specifically, we selected three sentences (8 seconds long sig­
nal) per speaker for the clean speech, whereas we selected 10 sec­
onds long segments for each noise type. The point sources of the 
clean speech and noise were located at P3 and P2 , respectively (see 
Fig. 1). The image signals of the clean speech and noise were ob­
tained by convloving the point source signals with their correspond­
ing RIRs. Subsequently, the image noise signal was added to the 
image speech signal to have input SNR of 0 and 5 dB. Regarding 
the implementation, the STFT of each signal was obtained by us­
ing a Hanning window of 512 samples with 75% overlap. We used 
Mi = 60 basis vectors for all i. Sparsity and temporal smoothing 
factors were selected as rJ = 5 and (TS, TN) = (0.4,0.9). 

We considered the perceptual evaluation of speech quality 
(PESQ) [25] and signal-to-distortion ratio (SDR) [26] as the objec­
tive measures, where a higher value indicates a better result. To 
compare the proposed method, we implemented the standard NMF 
method in [6] (see [10] for its application to supervised speech en­
hancement), CNMF method [7] where we used the maximum shift 
length of 3 for the convolution process of the basis and activation 
matrices. In addition, we implemented the discriminative training 
algorithm of the NMF model based on class probabilities in [10], 
which will be referred to as DCP. Basic settings such as the STFT 
analysis and synthesis process, the number of basis vectors and tem­
poral smoothing factors were kept identical for fair comparison. The 
average results over all speakers for T60 = 50 and 200 ms are re-

2 Although the considered noise types are more likely to originate outside 
the room, we assume that they are generated from a point source inside the 
room for a practical simulation. 

Table 1 Average results for T60 - 50 ms -

Input 
Eval. Noisy 

NMF CNMF DCP 
Prop. 

SNR [6] [7] [10] 

OdB 
PESQ 1.40 1.66 1.70 1.75 1.85 - SDR 0.04 3.95 4.50 6.21 5.95 

t) 

~ 5 dB 
PESQ 1.76 2.07 2.11 2.10 2.29 
SDR 5.03 8.84 9.34 9.96 10.23 

- OdB 
PESQ l.25 l.69 1.73 l.88 2.06 

oj SDR 0.03 4.39 5.10 7.17 7.53 
u PESQ l.59 2.07 2.11 2.11 2.43 " 5 dB o:l SDR 5.02 9.23 9.68 10.53 10.98 

,: 
OdB 

PESQ 1.20 1.69 1.69 1.95 2.06 
0; 

SDR 0.04 5.38 6.15 8.27 8.82 .c 
U PESQ 1.48 2.04 2.07 2.10 2.39 
~ 5 dB 

SDR 5.02 9.95 10.57 1l.39 11.95 

en OdB 
PESQ l.59 l.89 2.00 l.95 2.14 

Q. 
SDR 0.03 4.15 6.34 6.43 7.19 3 

en PESQ l.99 2.29 2.39 2.29 2.50 <l) 5 dB Cl SDR 5.02 9.04 10.58 9.64 11.07 

Table 2 Average results for T60 = 200 ms 
Input 

Eval. Noisy 
NMF CNMF DCP 

Prop. 
SNR [6] [7] [l0] 

OdB 
PESQ 1.42 1.67 1.66 1.74 1.81 - SDR 0.06 3.32 3.18 4.97 

t) 
4.63 

~ 5 dB 
PESQ l.81 2.08 2.07 2.12 Z.Zj 
SDR 5.04 8.12 8.13 9.05 9.27 

- OdB 
PESQ 1.35 1.73 1.75 l.89 2.01 

oj SDR 0.04 4.54 5.00 6.79 7.Z9 
u PESQ 1.71 2.12 2.14 2.22 2.40 " 5 dB o:l SDR 5.03 9.20 9.78 10.27 11.U4 

,: 
OdB 

PESQ 1.22 1.68 1.59 1.84 1.93 
0; 

SDR 0.04 5.20 5.12 6.71 7.71 .c 
U PESQ l.50 2.03 l.95 2.15 l.lb 

~ 5 dB 
SDR 5.03 9.72 9.85 9.76 11.zU 

en OdB 
PESQ 1.65 1.92 1.95 1.98 2.05 

Q. 
SDR 0.05 4.00 4.18 5.47 5.51 0 

..; 
en PESQ 2.07 2.32 2.34 2.35 2.44 <l) 5 dB Cl SDR 5.03 8.67 8.96 9.05 9.S4 

spectively shown in Table 1 and 2. We can see that the proposed 
method provided better results than the benchmark algorithms under 
considered input SNRs, except in specific case, e.g., SDR value for 
the Factory 1 noise at 0 dB input SNR. It also can be seen that the 
performance for T60 = 200 ms has been degraded compared to the 
50ms. The main reason is that the signal model in (1) is appropriate 
when the RIR is much shorter than the STFT analysis window length 
[12, 14]. In order to improve the enhancement performance even for 
a highly reverberant environment, it would be necessary to consider 
an extended signal model, e.g., the latent variable cIJ in (2) modeled 
by an auto-regressive process [27], which will be considered in our 
future work. 

S. CONCLUSION 

We introduced a discriminative training algorithm of NMF model for 
single-channel enhancement of convolutive noisy speech. The con­
volutive signal model has been explicitly formulated and employed 
in the proposed framework. Moreover, the basis vectors for the clean 
speech and noises were estimated simultaneously during the training 
stage by employing the PGM of classification, specified by an in­
verse Gaussian distribution, as a priori structure. Both the NMF and 
classification parameters were obtained via the EM algorithm. Ex­
perimental results under different reverberant conditions showed that 
the proposed algorithm provides better enhancement performance 
than the benchmark algorithms. 
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