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ABSTRACT

Although many state-of-the-art approaches for improving the accu-
racy of Voice Activity Detection (VAD) have been proposed, their
performance under adverse noise conditions with low Signal-to-
Noise Ratio (SNR) remains limited. In this paper, we introduce
a novel attention model-based deep neural network (DNN) archi-
tecture for VAD which takes advantage of complex Ideal Ratio
Mask (cIRM). The proposed model, named AM-cIRM, consists
of three sequential modules: extraction of cIRM features from the
noisy speech using a DNN-based architecture; combination of cIRM
with log-Mel spectrogram features along with temporal contextual
extension; and VAD using an attention model that exploits the
spectro-temporal information in the transformed features. Experi-
mental results show that the proposed AM-cIRM achieves improved
VAD performance when compared to state-of-the-art methods under
different noise conditions.

Index Terms— Voice activity detection, deep neural network,
attention mechanisms, complex Ideal Ratio Mask.

1. INTRODUCTION

Voice Activity Detection (VAD) refers to a family of methods
that classify frames of audio signals into speech and non-speech. It
serves as an important preprocessor for many speech-related applica-
tions including speaker identification, automatic speech recognition,
and hearing aids [1, 2]. Early VAD methods were mainly based on
average magnitude and power calculations in the time domain [3,4],
under the assumption that the power of speech is greater than the
noise power. Other methods were subsequently developed that rely
on the use of various features of speech signals, such as zero crossing
rate [5], spectral or cepstral features [6, 7], higher order statistics [8]
and pitch detection [9]. Several VAD methods have been developed
based on the Likelihood Ratio Test (LRT) [10], assuming a priori
knowledge of the speech signal and noise statistical distributions.

In recent years, Machine Learning (ML) techniques have
demonstrated good classification results on VAD tasks. For in-
stance, linear discriminant analysis [11], Support Vector Machines
(SVM) [12], sparse coding [13], and especially Deep Neural Net-
works (DNNs) have shown superior performance over traditional
(i.e., non ML-based) approaches. In particular, many studies re-
veal that the choice of acoustic feature plays an important role in
DNN-based VAD. Inspired by [14], where auxiliary features (e.g.,
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phoneme information) are used to improve speech enhancement per-
formance, [15] shows that the performance of DNN-based VAD can
be notably improved by using output features from two types of aux-
iliary speech models. Ref. [16] proposes a boosted DNN (bDNN)
architecture by combining Multi-Resolution Stacking (MRS) and
Multi-Resolution CochleaGram (MRCG) features. A combined
VAD system is introduced in [17] which utilizes Wavenet-based net-
work [18] for acoustic feature extraction and a deep residual network
for video feature extraction. There is currently growing interest in
the use of attention mechanisms for VAD. The Adaptive Context
Attention Model (ACAM) [19] adopts an attention mechanism to
exploit temporal information. However, its reinforcement loss func-
tion is sensitive to hyperparameters and subject to instability during
training. By contrast, the Spectro-Temporal Attention-based Model
(STAM) for VAD [20] improves performance by applying attention
mechanisms to both contextual and spectral information.

To further improve the robustness of VAD in noisy environ-
ments, we propose a novel attention model-based DNN architecture
which takes advantage of the complex Ideal Ratio Mask (cIRM).
The proposed method, called AM-cIRM, consists of three sequential
modules performing the following tasks: extraction of cIRM features
from the noisy speech signal; combination of the cIRM with log-Mel
spectrogram features, along with temporal contextual extension; and
finally, VAD using a STAM-based model that exploits the spectro-
temporal information contained in the transformed features. Exper-
imental results in terms of the F1-score and detection cost function
show that the proposed AM-cIRM method achieves improved VAD
performance compared to the state-of-the-art methods under differ-
ent noise types and SNR conditions.

2. BACKGROUND

In this section, we briefly describe the acoustic features used in our
work and review the STAM approach [20].

2.1. Acoustic Features

The input noisy speech signal is modeled as x[n] = s[n] + w[n],
where x[n], s[n] and w[n] denote the noisy speech, clean speech,
and noise signals, respectively, while n ∈ Z is the discrete-time
index. The Short-Time-Fourier-Transform (STFT) of x[n] is repre-
sented by matrix XFT ∈ CF×T , where T is the number of frames
and F is the number of frequency bins. The log-Mel spectrogram
of x[n] is represented by XMC ∈ RT×D , where D is the number
of Mel coefficients. It is obtained by applying a bank of Mel-scaled
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triangular energy filters to each column of |XFT| and taking the log-
arithm of each filter output [21].

2.2. Spectro-Temporal Attention Model

The STAM [20] includes 4 modules, i.e.: spectral attention, pipe-net,
temporal attention and post-net, as shown Fig. 1.

Fig. 1. Model architecture of STAM.

• Spectral Attention: This module includes several blocks, each
one comprising a pair of convolutional layers, with one of them fol-
lowed by a sigmoid activation function. An additional 1-D max pool-
ing layer is applied along the frequency axis after the convolutional
layers in each block.

• Pipe-Net: The pipe-net contains two Fully Connected Networks
(FCN)s with hidden dimensionNp. Its output is represented by G ∈
RNp×L, where L is the contextual dimension.

• Temporal Attention: STAM adopts multi-headed self-attention,
allowing the model to simultaneously attend to information at dif-
ferent positions. The query q = σ (Wqg) ∈ RNd , key K =
σ (WKG) ∈ RNd×L, and value V = σ (WVG) ∈ RNd×L

are obtained using the pipe-net output G, where σ is an activation
function, g ∈ RNp is obtained by averaging G along the frame di-
mension, and Wq,WK,WV ∈ RNd×Np are affine transformation
matrices with hidden dimensionNd. The multi-headed attention op-
eration is employed, i.e.:

MultiHead (q,K,V) = Concat (head1, . . . , headH) (1)

headh = Attention (qh,Kh,Vh) (2)

where H is the number of parallel attention layers, or heads, qh,
Kh and Vh are the hth slice of q, K and V, respectively, and
h ∈ {1, ..., H} is the head index. The attention function can be
calculated as follows:

Attention (q,K,V) = Softmax
(
1qTK/

√
Nd
)
·V (3)

where · is the element-wise product, 1 = {1, 1, ..., 1}T .

• Post-Net: The post-net includes two FCNs followed by a sigmoid
activation function to make the VAD predictions.

3. PROPOSED METHOD

The proposed AM-cIRM model, whose block diagram is shown in
Fig. 2, consists of three modules: cIRM extractor, feature transfor-
mation, and attention-based VAD. The cIRM extractor estimates the
complex spectrogram of the clean speech (which conveys both mag-
nitude and phase information), and outputs the cIRM. In addition
to combining the cIRM with the log-Mel spectrogram, the feature
transformation module acts as a preprocessor for the VAD module
by incorporating contextual information from neighboring frames.
Finally, the VAD module outputs speech/non-speech predictions by
applying attention mechanisms to the spectro-temporal information
contained in the transformed features.

Fig. 2. Block diagram of the proposed model.

3.1. cIRM Feature Extractor

Similar to VAD, Speech Enhancement (SE) has been widely used as
a prepossessing step in speech applications where one of the goals is
to remove background noise from a noisy signal. Besides the classi-
cal SE methods based on statistical modeling, e.g. [22], many recent
studies have focused on DNN-based SE methods. Among the later,
the Deep Complex-valued U-net (DCUnet) [23] has been proposed
and shown superior SE performance compared to the earlier Ideal
Binary Mask (IBM) and Ideal Ratio Mask (IRM)-based [24] meth-
ods. In effect, DCUnet employs the U-Net-based architecture [25]
to estimate the magnitude and phase of clean speech simultaneously.
Inspired by the effectiveness of the DCUnet in extracting important
speech information from noisy signals, it is chosen as the cIRM ex-
tractor for the proposed AM-cIRM model.

Fig. 3. Illustration of DCUnet-based cIRM extractor

The block diagram of the DCUnet-based cIRM feature extractor
is shown in Fig. 3, where each encoder block consists of a com-
plex convolutional layer, complex batch normalization layer, and
leaky rectified linear unit (Leaky ReLU). In the decoding phase,
skip connections are implemented by concatenating the outputs from
the last decoder and corresponding encoder. The decoder is sim-
ilar to the encoder except that the complex convolutional layer is
replaced by a complex transposed convolutional layer. Finally, mask
processing is implemented to bound the magnitude of the estimated
cIRM as proposed in [23]. The input features of the cIRM extrac-
tor are the STFT coefficients of the noisy speech signal x[n], rep-
resented by XFT ∈ CF×T . The main output of the extractor is
the corresponding set of estimated cIRM coefficients, represented
by M̂FT ∈ CF×T . We note that the enhanced speech signal sam-
ples, {ŝ[n]}, are needed to train the DCUnet. These are obtained in
two steps as follows: calculation of the enhanced speech STFT ma-
trix ŜFT ∈ CF×T by multiplication of the noisy speech STFT with
the cIRM, i.e.,

ŜFT = M̂FT ·XFT ∈ CF×T (4)

followed by application of the Inverse Short-Time-Fourier-Transform
(ISTFT) with overlap-add technique.
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3.2. Feature Transformation

As shown in Fig. 4, the feature transformation module involves three
steps. First, the estimated cIRM M̂FT ∈ CF×T is aggregated by ap-
plying a 1-D convolutional layer to compress its information content.
The resulting output is denoted by M̄ ∈ RT×D , where D is the fea-
ture dimension. Secondly, the aggregated mask M̄ is concatenated
with the log-Mel spectrogram features XMC ∈ RT×D , to form a
new feature matrix χ′ ∈ RT×2D . Finally, the combined features are
contextually expanded by considering L = b2((R − 1)/U) + 3c
neighboring frames indexed by set T = {−R,−R + U,−R +
2U, ...,−1, 0, 1, ..., R − 2U,R − U,R}, where integers R and U
are user-defined parameters described in [19].

These expanded frames are used to form a super feature tensor
χ ∈ R(T−2R)×L×2D for the VAD module. The expanded data set
can also be represented as {χt,ytruth

t }T−2R
t=1 with:

χt = {χ′t+l}l∈T ∈ RL×2D, ytruth
t = {ytrutht+l }l∈T ∈ RL (5)

where χ′t+l ∈ R2D contains the (t + l)th row of χ′, and ytrutht+l ∈
{0, 1} is the ground truth label for (t+ l)th frame.

Fig. 4. Block diagram of the feature transformation module.

3.3. VAD Module

Considering the effectiveness of STAM [20], it is chosen as the VAD
module in the proposed AM-cIRM. Referring to the STAM architec-
ture in Fig. 1, since the dimension of the acoustic feature matrix
χt ∈ RL×2D is doubled in this work (due to concatenation of the
log-Mel spectrogram XMC and transformed mask M̄), the number
of input channels of the first pair of convolution filters in the spec-
tral attention module is also doubled, while the number of output
channels remains the same. The remaining parts of the STAM-based
VAD module use the same parameter settings as the original STAM.

Let the output of the VAD module for the tth frame be denoted
as yt = {yt+l}l∈T ∈ RL, where yt+l is the soft prediction for the
(t + l)th neighboring frame. The predicted tth frame label, ŷt, is
computed by averaging all the soft predictions relative to the current
frame t across l, i.e., ŷt = 1

L

∑
l∈T yt+l. The final decision label ȳt

is obtained by comparing ŷt with a positive threshold θVAD:

ȳt =

{
1, if ŷt ≥ θVAD

0, otherwise
(6)

3.4. Loss Functions

To prevent vanishing gradients and accelerate convergence, two dif-
ferent loss functions are implemented, one being calculated from
the cIRM extractor and the other one from the VAD module. Let
x = {x[n]}, s = {s[n]} and ŝ[n] = {ŝ[n]} denote the vectors
of time-domain samples of the noisy speech, clean speech and en-
hanced speech signals, respectively. The vectors of time-domain
samples of the true noise and estimated noise samples can be ob-
tained as w = x− s and ŵ = x− ŝ, respectively. For the cIRM ex-
tractor, the weighted-Source-to-Distortion Ratio loss (wSDR) in [24]

is calculated as follows:

LwSDR(x, s, ŝ) = αLSDR(s, ŝ) + (1− α)LSDR(w, ŵ) (7)

LSDR(s, ŝ) = − 〈s, ŝ〉‖s‖‖ŝ‖ , LSDR(w, ŵ) = − 〈w, ŵ〉‖w‖‖ŵ‖ (8)

where α = ‖s‖2
‖s‖2+‖w‖2 is an energy ratio, 〈·, ·〉 is the inner product

operator, and ‖·‖ is the norm operator.
For the VAD module, the cross-entropy loss is calculated for

each one of the pipe-net, temporal attention, and post-net modules
in Fig. 1, as proposed in [20]:

Lη = −
T−R−1∑
t=R

∑
l∈T

(
ytrutht+l log yηt+l+(1−ytrutht+l ) log(1− yηt+l)

)
(9)

where yηt+l is the (t + l)th component of the soft prediction vector
yt ∈ RL at the output of the corresponding module, as indicated by
symbol η ∈ {pipe, att, post}. Then the total loss for the proposed
AM-cIRM model is defined as:

Ltotal = λ1LwSDR + λ2Lpipe + λ3Latt + λ4Lpost (10)

where parameters λ1, λ2, λ3 and λ4 are the weights given to the loss
functions of the different modules.

4. RESULTS

We first briefly describe our experimental setup, and then compare
and discuss the performance of different methods.

4.1. Experimental Methodology

Dataset: The TIMIT corpus [26] is used to train the proposed and
baseline models. In our experiments, 95% of speech utterances from
the training dataset are used for training and 5% are used for model
validation. A 1-second silence segment is added before and after
each utterance to alleviate the class imbalance problem [20]. The
training and validation sets are augmented by adding eight types of
noises (babble, F16, destroyer, M109, Volvo, white, and two types
of factory noises) from the NOISEX-92 dataset [27] with SNR levels
at -10, -5, 0, 5, 10 dB. In the test phase, the TIMIT test dataset and
the subset ‘clean test’ from LibriSpeech test dataset [28] are used.
All 8 types of unseen noises from the AURORA noise dataset [29]
are used to corrupt the clean signals. The SNRs are set to -5, 0,
5 and 10 dB. The TIMIT dataset has ground truth labels, but the
LibriSpeech dataset does not have, thus rVAD [9] is applied to the
clean utterances to generate pseudo ground truth labels.

Parameter Setting: All training and test utterances are sampled
at 16 kHz and framed by applying a 25 ms Hanning window with
10 ms window shifts, followed by a STFT with 1024 points. The
log-Mel filter banks with feature dimension D = 80 and cIRM of
the same dimension are processed by the VAD module. R, U and
L are set to 19, 9 and 7, respectively, to form expanded feature vec-
tors. The parameter settings of the cIRM extractor and VAD module
follow the original architecture of DCUnet-10 in [23] and STAM
in [20], except for the first convolution pair in the spectral attention
module of the VAD module as discussed in Section 3.3. The 1-D
convolution in the feature transformation module uses a stride of 1,
kernel size 2 and output channels 80.
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For training, the mini-batch approach with batch size of T =
550 is applied. The Adam optimizer is employed, with learning rate
starting from 10−3 and exponentially decaying with rate 0.8 until
reaching 10−5. Parameters λ1, λ2, λ3, λ4 in Eq. (10) and θVAD in
Eq. (6) are set to 0.5, 1, 0.2, 1 and 0.5, respectively. The dropout
rate is set to 0.5.

Baseline Methods: The proposed method is compared with the
following baseline approaches:

• rVAD [9]: Traditional VAD method exploiting pitch information
via a posteriori SNR weighted energy difference.

• DCU-10 [23]: DNN-based SE model including 10 complex lay-
ers, extended to predict VAD labels. The cIRM M̂FT is averaged
along the frequency axis and the magnitude of the resulting average
is compared with a threshold.

• ACAM [19]: DNN-based attention model for VAD exploiting
only temporal attention.

• STAM [20]: DNN-based attention model for VAD exploiting
both spectral and temporal attention.

The default parameter setting provided with the original source code
is applied to rVAD, while the DNN-based models, i.e. DCU-10,
ACAM, and STAM, are trained using the same approach as proposed
in the above references.

Evaluation Metrics: The F1-score and detection cost function
(DCF) [9] are used as metrics for comparison. The F1-score, which
takes both accuracy and recall metrics into account, is commonly
used as evaluation index of binary classification problems. It is cal-
culated as F1 = 2 TP /(2 TP + FP + FN), where TP, FP, FN rep-
resent the number of true positive, false positive, and false negative
cases, respectively. The DCF, which reflects the wrong performance
of the model, is defined as DCF = (1 − β) PFN +β PFP, where
PFP is the rate of FP, PFN is the rate of FN, and β is weight herein
set to 0.25 in order to penalize missed speech frames more heav-
ily. Higher/lower values of the F1-score/DCF metrics indicate better
performance.

4.2. Results and Discussion

Table 1 presents the comparative results of F1-score and DCF (both
in percent), averaged over different SNRs and noise types. Clearly,
all attention-based methods (ACAM, STAM and AM-cIRM) achieve
better results than the non-attention-based ones (rVAD and DCU-
10). For the TIMIT test dataset, STAM greatly improves the perfor-
mance compared to ACAM by exploiting both spectral and temporal
attention. The proposed AM-cIRM model, which exploits both the
magnitude and phase information through the cIRM features, fur-
ther improves the performance compared to STAM, i.e.: increase of
0.5% in F1-score and reduction of 0.7% in DCF. For the Librispeech
test dataset, similar trends are observed but the improvements with
AM-cIRM are even more significant.

Table 2 shows the detailed results of F1-score and DCF on
TIMIT dataset with different SNR levels ranging from −5 dB to
10 dB. It can be observed that AM-cIRM outperforms all baseline
methods across all SNR levels. It is also noteworthy that DCU-10
and ACAM achieve similar F1-score at low SNRs, which supports
our presupposition that the cIRM contains useful information for the
VAD task.

Table 3 demonstrates the influence of neighboring frames on the
performance of the proposed AM-cIRM. Specifically, it shows the

Table 1. Comparison of Averaged F1-Score and DCF (in per-
cent)
Dataset Metric rVAD DCU-10 ACAM STAM AM-cIRM

TIMIT F1 87.3 90.7 91.2 98.1 98.6
DCF 5.4 5.1 3.7 1.3 0.6

Libri-
Speech

F1 NA 82.5 87.5 88.3 90.1
DCF NA 15.3 11.7 13.4 10.3

Table 2. Comparison of F1-Score and DCF on TIMIT versus
SNR

SNR Metric rVAD DCU-10 ACAM STAM AM-cIRM

-5 dB F1 79.5 86.4 85.9 97.7 98.0
DCF 8.3 7.8 6.2 1.5 1.0

0 dB F1 86.0 89.8 90.7 98.0 98.5
DCF 5.8 5.7 3.7 1.3 0.7

5 dB F1 92.4 92.3 95.4 98.3 98.9
DCF 3.9 4.0 2.6 1.2 0.5

10 dB F1 94.0 94.2 96.0 98.4 99.1
DCF 3.4 2.8 2.3 1.1 0.4

Table 3. Influence of Neighboring Frames on Proposed AM-
cIRM

Metric R=19, U=9 R=13, U=6 R=9, U=4 R=7, U=3
Avg. F1-Score 98.6 98.5 98.3 98.3

Avg. DCF 0.6 0.6 0.6 0.7

Table 4. Number of Parameters and Averaged Running Time
Methods rVAD DCU-10 ACAM STAM AM-cIRM

Parameters NA 2808K 957K 559K 3613K
Run Time (ms) 86 251 1263 132 269

average F1-score and DCF values on TIMIT dataset for different
choices of R and U , and fixed L = 7. It can be seen that at the
cost of a slight decrease in performance, the latency of AM-cIRM
(specified by parameter R) can be significantly reduced to facilitate
real-time implementation.

Table 4 shows the number of model parameters and the aver-
aged run time for processing a 10-second utterance. Experiments
were conducted on a platform equipped with Intel Core i7-10700F
CPU and NVIDIA GeForce RTX 2070 SUPER GPU. The results
indicate that the merits of AM-cIRM come at the cost of additional
computation resources.

5. CONCLUSION

In this paper, we proposed a novel VAD model, callled AM-cIRM,
which firstly extracts cIRM features from noisy speech, then com-
bines the cIRM and log-Mel spectrogram features before the tempo-
ral contextual extension, and finally applies attention model to pre-
dict the presence/absence of speech. Experimental results show that
the proposed AM-cIRM achieves improved VAD performance when
compared to state-of-the-art methods under different noise condi-
tions.
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