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ABSTRACT

This paper addresses the problem of optimum space-time pro-
cessing for multiple Gaussian source signals transmitted through a
slowly-varying linear channel and monitored with a passive array
of sensors in the presence of spatially correlated noise. To solve
this problem, a new class of linear systems (LS) referred to as
semi-stationary is introduced. These LS are characterized by
time-frequency representations whose variations in time occur over
intervals much larger than the corresponding system correlation
time. The general conditions under which semi-stationary LS can
be used in array processing are investigated and shown to be
satisfied in many applications. By modeling the slowly-varying
linear channel as a semi-stationary LS and using the factorization
properties of the optimum processor, closed form expressions are
obtained for the log-likelihood function of the array output and for
the associated Cramér-Rao lower bound on estimator variance.

L. INTRODUCTION

When a passive array of sensors is used to monitor a radiating
source, it may be unrealistic to model the sensor outputs as a sta-
tionary vector random process. For instance, in the presence of
source or receiver motion, the differential delays between the sig-
nal components received at the various sensors are time-varying
and, as a result, the array output vector process exhibits a slowly-
varying non-stationary behavior. Even though these non-
stationarities pose a serious difficulty from a mathematical point of
view, it is ol primary importance to incorporate any a priori
knowledge about them in the array processing algorithm for at least
two reasons. First, if not compensated, they can seriously degrade
the performance of the processing scheme [1]. Secondly, by prop-
erly modeling and processing the sensor outputs, it is actually pos-
sible to exploit the non-stationary nature of the received signals to
improve the accuracy of the track parameter estimates of the mov-
ing source [2].

Based on these considerations, different aspects of the prob-
lem of optimum space-time processing for a slowly moving source
radiating a wideband random signal and monitored with a passive
array of sensors in the presence of noise have been addressed in the
literatre. In [3], the log-likelihood processor (LLP) is derived
under the realistic assumption that v/c <« 1, where v is the speed of
the source and ¢ is the wave propagation velocity. In [4], the
Cramér-Rao lower bound (CRLB) on the error covariance matrix
of differential Doppler shift estimates is obtained under similar
conditions. However, these studies are limited in scope since they
apply only in the case of a single source monitored in the presence
of spatially uncorrelated noise, conditions which are rarely
satisfied in applications. Besides these practical limitations, the
analysis in [3]-{4] does not seem to take full advantage of the
slowly-varying nature of the non-stationarities present in the

received signals. For instance, the derivation of the CRLB in [4] is
considerably tedious and it is not clear how it could be extended to
more general situations.

In this paper, we address the problem of optimum space-time
processing for multiple Gaussian source signals transmitied through
a slowly varying linear channel and monitored in the presence of
spatially correlated noise. To this end, we introduce a new class of
slowly-varying linear systems (LS) referred to as semi-stationary.
These LS are characterized by time-varying frequency responses
whose variations in time occur over intervals much longer than the
corresponding system correlation time. The general conditions of
applicability of semi-stationary LS in the context of array process-
ing are obtained and expressed in terms of important physical
parameters. The properties of semi-stationary LS are then used in
connection with the factorization properties of the LLP {5] to
derive closed form expressions for the log-likelihood function
(LLF) of the sensor outputs and for the associated”CRLB on esti-
mator variance.

1. SEMI-STATIONARY LINEAR SYSTEMS
Consider a LS L with impulse response L (t,u). By the princi-
ple of superposition, the response of L to an arbitrary input function
f(t)is given by

(L 1) = [L(tu) f W) du, t,ue (—oo,0=). m
The system function (SF) associated with L is defined by [6]
Clw)=e 7™ L{e/™) = [L(tu) e du. @

When L is time-invariant, L (t,u)=L(t—u) and (2) reduces to the
conventional definition of a transfer function.

The limitations of the SF C (¢, ®) become apparent when we
try to cascade two or more time-varying LS. Indeed, let L; and L;
be arbitrary LS with SF C (¢, ®) and C,(t, @), respectively, and let
h=L,L,f, as shown in Fig. 1.
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Fig. 1. Cascade of two arbitrary LS L; and Lj.

Then, it is not true in general that
h(O) =1 [C2 ) €1 0 F (@™ do. 3)

Of course, (3) is satisfied when L; and L, are time-invariant, i.e.
when C;(t,w)=C;(®), (i=1,2). Hence, contrarily to the conven-
tional transfer function for time-invariant LS, the SF C (¢, @) does
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not provide a simple mean for analyzing a cascade of arbitrary
time-varying LS.

There seems to be, however, one particular case of consider-
able practical interest where (3) could be used without introducing
any significant error. Indeed, suppose that the following conditions
arc satisfied: (i) there exists a positive constant T such that
Lo(t,u)=0 whenever|t—u | >; and (ii) over time intervals on the
order of 1, C;(t,®) does not vary significantly, i.e.
C(t,®)=C (4, ®) whenever {t—u | <t. Then, it is not difficult to
argue that the right hand side of (3) should provide a "good"
approximation to 4 (¢). First, we note that

h(ty= = [ ([ C 1@ @)™ du} F@)do  (4)

where F(w) is the Fourier transform of f(f). Now consider the
bracketted quantity in (4). Invoking (i), (ii) and (2), it is easy to see
that

[Latw) Cr(n, @) ™™ du = € (1, @) ot @) /™. (5)

Equation (3) follows by substituting (5) into (4). While the above
argument is informative of the mathematical principles that we
want to emphasize in this study, it is rather intuitive in nature and
does not provide any measure of the approximation error made in
using (3). We now introduce a new class of slowly-varying LS for
which this approximation error can be quantified.

Consider a LS L, with impulse response L(s,u) and SF
C(t,w). Let

JIL@u)l 11-u | du

sup [Ctw)| ©®
()

T=supT(t), 1(t)=
t

[18.ct o) do

, (7)
sup|C (2, 0)| do
t

B= sup B, BY=

where d, indicates a partial derivative with respect to t and sup
denotes the least upper bound (the denominators in (6)-(7) are
assumed finite). T (6) provides a measure of the duration of L (t,u)
and is referred to as the correlation time of L. B (7) provides a
measure of the bandwidth of jC (t,0)do (when interpreted as a
function of #) and is referred to as the spectral-fluctuation
bandwidth of L. We shall say that L is semi-stationary if

<1, 8)
We immediately note that time-invariant linear systems are semi-
stationary for if L (t,u)=L (t—u), then 9,C (t, @) =0.

Asymptotic convolution theorem. Let L; (i=1,2) be semi-
stationary LS with maximum spectral-fluctuation bandwidth  and
maximum correlation time T, and let A=L,L,f. Then

WO = [C2.0) CLOF @ e do+0 BV, (©)
where the notation y =0 (x), i.e. y is of the order of x, is used 10
indicate that y/x remains bounded as x tends to 0.

Other important asymptotic properties of semi-stationary LS are
stated and proved in {7].

1. SEMI-STATIONARITY IN ARRAY PROCESSING

A. General discussion

For simplicity, consider a source-array configuration consist-
ing of one moving source and two fixed sensors. Assuming that the
signal transmission is ideal, the vector process s (¢) of received sig-
nal components at the sensor outputs is given by

s@) =[Lal®),
where L is a linear system defined by

10)
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a(t)
[Lal®t)= a@-d@)|’ 1)

a(t) is the reference signal at the output of the first sensor, and d (¢)
is the intersensor delay.
Suppose that g(¢) is a zero-mean stationary random process
with autocorrelation function R,(t). Then, according to (10)-(11),
the autocorrelation function Ry(¢,u) of s (¢) is given by
Ry(t—u) Ra(t-u+d(u))

Ry(tuy= [Ra(t—d(t)—u) Ra(t-d(t)—u+d(u))}‘ a2

Unless d(¢) is constant, Ry(t,u) is not a function of t—u and there-
fore, the process s (¢) is not stationary.

A simple way of interpreting the non-stationarity in (12) is in

terms of a “time-varying” spectral representation for R(t,u).
Indeed, it follows from (12) that

R(t) = o [C(1.0) Go@) CH(u, @) /X0 dw,  (13)
where G,(w) is the power spectral density (PSD) of the process
a(t) and

14)

1
Cw= L—jwd(t) .

Observe that C(f, @) (l;p is precisely the SF (2) of L (11). The
quantity C (z, ®)G,(®)C " (4, ®) appearing under the integral sign in
(13) can be interpreted as a "time-varying spectral density matrix"
responsible for the non-stationarity of the process s (¢).

Unless additional assumptions are made, neither of the above
representations (12) and (13) for Ry(t,u) can provide more informa-
tion about the LLP for the non-stationary signal model (10)-(11)
than what is already known from the analysis in [5]. As we now
explain, however, C (1, ) is a "slowly" varying function of time in
most cases of practical interest and it should be possible somehow
to exploit this fact in the study of the LLP.

Let Ca(t,0)=e7*® denote the second component of
C (¢, w) (14) and observe that

laCata) =] 14’ (D) | C2(h @), 1%

where d’(¢) is the time derivative of d(¢). In most applications,
v « ¢ and it follows that

[d'@®| < 1. (16)

Let B denote the bandwidth of G,(®). From (15) and (16), it fol-
lows that for all @ with |®| <B and for all time intervals Az <B™,
we have

At 10,C,(t 0)] < |Ca(r, w)]. a7n

This inequality means that over time intervals of the order of the
(statistical) correlation time B! of the process a(t), the spectral
function C(t,®) appearing in the integral representation (13) of
R, (t,u) does not change significantly.

Random processes s (¢) with second order spectral representa-
tions of the type (13), where C (1, ®) is a slowly varying function of
time in the above sense, have been studied extensively by Priestley
[8]-[9]. However, his approach is not appropriate for the present
application because it is too restrictive [10]. Besides, the structure
of the optimum array processor, with its various components
specified in terms of compositions and inversions of linear opera-
tors, is already known from {5]. Thus, we are actually more
interested in the properties of time-varying LS with slowly varying
SF of the type (14) than in the associated random process s (r) (10).
These considerations are indeed the main justification for the intro-
duction and study of semi-stationary LS.



B. Conditions of applicability

In order to relate the condition (8) defining a semi-stationary
LS to important physical parameters characterizing the problem of
array processing in the presence of moving sources, consider the
representative SF

C(r, ) = §(t) ¥(w) 7040, (18)

where
o)y =T, (19)
Y(e) = e™8*, (0)

The function ¢(z) (19) is a Gaussian weighting which is used to
mode] the finite temporal extent of the processing taking place at
the sensor outputs. In this respect, T provides a measure of the
observation interval. In the same way, (@) (20) is a Gaussian
weighting which is used to model the finite frequency response of
the channel or the processor, and B is a measure of the correspond-
ing bandwidth. In (18), d(s) is a time-varying delay function
which represents the difference in time of arrival of the signal
wavefront at two different locations. We assume that
ld@)| $Do, 14'®| <Dy, @n
where D and D are the maximum delay and delay rate, respec-
tively.
The calculation of the correlation time T (6) and the spectral

fluctuation bandwidth B (7) for C (¢, ) (18) is carried out in [7].
For 1, we find that

1<B 1 +Dy. (22)

Hence, the correlation time of the LS specified by (18) is of the
order of the inverse bandwidth of W(®) (20) plus the maximum
delay D (21). For §, the results indicate that

B<T!'+BD;. 3)

The term T~ in (23) is a measure of the bandwidth of the weight-
ing function ¢(¢) used to model the finite temporal extent of C (¢, )
(18). In the limit T—eo, (23) reduces to § <BD;. When the
bandwidth of d(¢) is much smaller than B (which will usually be
the case in applications), the quantity BD provides a measure of
the bandwidth of the frequency modulated signal ¢ /54,
Equations (22) and (23) imply that
Bt < (BT)™' +DyT' + D +BDyD,. (24)

Therefore, the LS specified by (18) will be semi-stationary (i.e.
Br« 1) if the following conditions are satisfied:

BT>1 ©5)
DoT<1 (26)
Di<1 @n
BDoD; <1 ©28)

According to (25), the product of observation time and processor
bandwidth (known as the time-bandwidth product) must be large.
Equation (26) means that the maximum delay is small in com-
parison to the observation time. Equation (27) imposes a constraint
on the maximum delay rate. Finally, (28) can be interpreted as a
requirement that the maximum variation in the phase of e/54®) dur-
ing the time interval D be negligible.

Recall that (25) and (26), together with D =0, are the con-
ventional assumptions made in the study of time-invariant array
processors [11). Therefore, (27) and (28) can be regarded as a
relaxation of the condition D=0, made possible by the use of
semi-stationary LS instead of conventional time-invariant LS.

IV.SPACE-TIME LLP

Consider a source-array configuration consisting of N
sources, M sensors, and a transmission medium, as shown in Fig. 2.

ay ()

——x1(®

a2(t) transmission D> %2()
. medium :

D>— ()

ay()

Fig. 2. Source-array configuration.

The following assumptions are made:
(i) The vector x () =[x1(t),....x¢(1)]” of sensor outputs is given by
x(@)=[Lal®)+n@), —oo<t<oo, 29)

where a(t)=[a, (t),...,aN(t)]T is the source signal vector,
n(t)=[n1(z),...,nM(t)]T is the sensor noise signal vector, and L is a
linear operator with impulse response L (¢,u) and SF C (¢, ®) model-
ing the signal transmission from the sources to the sensors.

(ii) a(z) and n(z) are samples from zero-mean, uncorrelated Gaus-
sian random processes with autocorrelations R,(z,u) and R,(z,u),
respectively.

(iii) L (z,u), R,(t,u) and R, (t,u) are semi-stationary with maximum
correlation time 7 and maximum spectral-fluctuation bandwidth 3.
Contrarily to the conventional PSD matrix of a stationary process,
the SF of an arbitrary autocorrelation kernel R,(¢,u) will not, in
general, be Hermitian and non-negative definite. However, it can
be verified that this will "nearly" be the case if R,(t,u) is semi-
stationary, as assumed in (iii). This leads us naturally to make an
additional assumption about R,(z,u) and R,(z,u), namely:

@iv) Therg exists a NxN non-negative Hermitian matrix
A(t,@)=A"(t,—w) such that

Ra(tu) = —21; A @) e/ do + 0 Br). (30)

Similarly, there exists a MM non-negative Hermitian matrix
N(t,®)=N"(t,—m) in terms of which R,(t,u) can be expressed as
in (30). It is further assumed that N (¢, ®)=n/y, where >0 is
independent of ¢ and @ and where Iy, is the MxM identity matrix.
(This ensures that the noise-prewhitening operation is well-
defined.)

When a(t) is stationary, one can (and should) use for A (z,®) the
PSD matrix of a (7), in which case (30) is exact, i.e. O (ft)=0.

By definition, the LLP for the above model evaluates the
log-likelihood function (LLF), InA(x), of the array output vector
x(#) (29). Using the properties of semi-stationary LS derived in [7]
and the factorization properties of the LLP [5], the following
expressions can be obtained for the LLF:

InA@) =Y {11 (x)~ 12}, (31
L@ =[yT@®aw (32)
Y=Y e do (33)
Y6, 0) = CH(, N t, )X (@), (34)
X ()= [x()e ™ d1. (35)

a() = 5% [y we™ (36)

Gt,@) =l +A(r, 0) QO AG ), 37



Q@ 0) = CH i 0N (6, 0)C (1, ).
lp = - [ [Indet (1 +4 (¢, )1, ) do dr,

(38)
(39

where I is the NxN identy matrix. [(x) (32) simply evalyates the
scalar product (or correlation integral) of the N-component vector
signals y (¢) and a(z). y(¢) (33)-(35) is obtained by passing the sen-
sor output vector x(¢) through a space-time whitening filter fol-
lowed by a generalized beamformer "steered” at the N individual
sources present in the signal model (29). a(t) (36)-(38) is the non-
causal minimum mean square error (MMSE) estimate of the source
signal a(¢) from the sensor outputs x(z), —o <t <oe, Finally, I,
(39) is a bias term independent of the observed data. The above
expressions are asymptotic in nature and can be used with great
accuracy whenever Bt< 1. We note that the results of [3] can be
obtained as a particular case of these expressions.

V.CRLB

The general expressions derived in the previous Section for
the LLF can be used to find the ML estimator of any unknown
parameter present in the observation model (29) for x (¢). It is well
known that when the observation interval is sufficiently long,
which is the case under the assumption of semi-stationarity, this
estimator achieves the best performance among all unbiased esti-
mators, with its error covariance matrix reaching the absolute
minimum predicted by the Cramér-Rao lower bound (CRLB) [2].
We now present general expressions for the CRLB that apply to
any source-array configuration satisfying the basic assumptions of
(i)-(iv) stated at the beginning of Section IV.

First, we recall the definitions of the Fisher information
matrix (FIM) and the CRLB. Let 6 be the vector of unknown
parameiers in the observation model (29). The FIM, denoted J (),
is a square matrix of dimension equal to the number of parameters
in 8, whose i, j* element is given by

J;j(0) =—E¢{0;0;InA(x;0)}, (40)
where Eg is the expectation conditioned on 6 and d;=0/90; indi-
cates a partial derivative with respect to 6;, the i component of 6.

The CRLB sets a lowey bound on the error covariance matrix of
any unbiased estimator 0(x) of 8. More precisely, it asserts that

Eo{[80x)-8)[8(x)- 017} > J(8)! @1)
where J(0)™! is the inverse of the FIM.

Under the assumptions (i)-(iv) stated in Section IV, the fol-
lowing expression can be obtained for the elements of J (6),

Jij(0) = = [ [ Tr(3,Cr(t, 0:0)8;Ci(t, :0)) dovdr,  (42)
Cr(t,®;0) =N""CACHN™", 43)
Cyt, @;0)=N"*CU+AQ " ACHN™. @4

In (43)-(44), the dependence of A, C, N and € (38) on ¢, ® and 6
has been omitted for convenience. Some important specializations
of (42) are now presented.

Let 8, and 6; be the vectors of unknown parameters in terms
of which the source signal autocorrelation R,(t,u;0,) and the chan-
nel impulse response L (t,u;6;) are specified. 6, and 6, will be
referred to as the source signal and transmission parameter vectors,
respectively. Depending whether 6; and 0; in (42) are source sig-
nal or transmission parameters, four distinct cases occur in the
evaluation of J;;(6). However, since the FIM is symmetric, onty
three of them need to be considered. Substituting (43)-(44) in (42)
and using the dependence relations A =A(f,w;6,), C = C (1, ;9)),
N =N(1, 0), and Q =Q(r, @;6;), it can be verified that when 6; and
6; are both source signal parameters,

Jj@)= 2= [ Tr (34 QU+AQ) 8,4 QU +AQ)™ Y dwdr. (45)
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It is interesting to note that in this case, the dependence of J; j(e) on
the channel SF C (¢, ®) is only through Q=CHN"'C. In a similar
way, it can be verified that when 0; is a transmission parameter
and 8; is a source signal parameter,

1) = #”TI{A %CENT C QU+AQ)™

0;A QU+AQ)™ Jdwat. (46)

In this case, J;j(8) depends explicitely on C (except in the case
N =1 where further simplifications are possible; see [7]). Equation
(46) can be used to draw general conclusions on how a lack of a
priori knowledge of the source signal parameters affects the
minimum variance achievable in estimating transmission parame-
ters. Finally, when both ©; and ©; are transmission parameters,

J;j(e)=ﬁjjTr{A JCH N [9,c G CH+C GacH

-CGy;QGCHINT C)doadt 47

where G is given by (37). We note that the expression of the FIM
for the Taylor coefficients of the differential delays given in [4] in
the case of a single source and spatially uncorrelated noise follows
trivially as a particular case of (47).
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