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ABSTRACT

In this paper, we present a new adaptive eigendecompo-
sition algorithm that can be used for on-line high-resolution
spectral/spatial analysis. The formulation of the algorithm is
based on the interpretation of the correction term in the recur-
sive update of the data covariance matrix estimate as a pertur-
bation term, with the forgetting factor playing the role of a per-
turbation parameter. Following this interpretation, a first-order
perturbation analysis is made to obtain a new recursion
expressing the eigenstructure estimate of the true data covari-
ance matrix at time £, in terms of the eigenstructure estimate at
time k—1. The resulting algorithm can be realized by means
of M linear combiners with non-linear weight-vector adapta-
tion equations, where M is the signal-subspace dimensionality.
Moreover, it does not require an explicit Gram-Schmidt
orthogonalization step. Comparative simulation results for
narrow-band array data indicate very good performance of the
proposed algorithm.

I. INTRODUCTION

Signal-subspace algorithms, which are based on the
eigendecomposition of the data covariance matrix, have been
applied successfully to both temporal and spatial-domain high-
resolution spectral analysis [1]. It is common practice to
implement these algorithms in a batch mode, using a sample
covariance matrix obtained by collecting observation vectors
over a sufficiently long time interval. This approach, which
relies on the assumption of stationarity of the observed data,
can not be used in situations where signal characteristics
change with time. In this case, the application of signal-
subspace algorithms requires repeated eigendecomposition of
an updated sample covariance matrix, a task which is generally
prohibitive.

Various adaptive eigendecomposition algorithms have
been suggested in the past to overcome this difficulty. Most of
these can be classified into two distinct families. In the first
family (e.g. [2]), the determination of the signal subspace is
formulated as a constrained optimization problem which is
solved via a stochastic gradient search over time, using a recur-
sive estimate of the array covariance matrix to evaluate the
gradient vector. In the second family (e.g. [3]), variations and
extensions of Bunch’s rank one eigenstructure updating algo-
rithm are used to update the eigenstructure of the sample
covariance matrix of the data at each iteration.

In this paper, we present a new adaptive eigendecompo-
sition algorithm that is based on an alternate formulation of the
problem. In this formulation, the correction term in the recur-
sive update of the data covariance matrix estimate is

interpreted as a perturbation term, with the (small) forgetting
factor playing the role of a perturbation parameter. Following
this interpretation, a first-order perturbation analysis is made to
obtain a recursion expressing the eigenstructure estimate at
time &, in terms of the eigenstructure estimate at time k— 1.
The resulting algorithm can be realized by means of M linear
combiners with non-linear weight-vector adaptation equations,
where M is the signal-subspace dimensionality. Moreover, it
does not require an explicit Gram-Schmidt orthogonalization
step. Simulation results for narrow-band array data indicate
improved performance of the proposed algorithm when com-
pared to the family of adaptive algorithms proposed in [2].

The paper is organized as follows. In Section II, we
describe the data model and we formulate the adaptive eigen-
decomposition of the data covariance matrix as a perturbation
problem. The first-order perturbation analysis along with the
resulting algorithm are discussed in Section II. Finally, com-
parative simulation results are presented in Section I'V.

II. A PERTURBATION CRITERION

Let x(k) denote the complex L-dimensional data vector
observed at time k. In time series analysis, x(k) would consist
of the signal samples over a given frame of length L, while in
array processing, x(k) could be the narrow-band output of an
L-sensor array. We assume that x(k) consists of the linear
superposition of M source signals over a background noise.
More precisely, let

x(k) = A(k)s(k) + n(k) (1)
where s(k) is a complex M-dimensional signal process, A(k) is
a LxM transmission matrix, and n(k) is a complex L-
dimensional background noise process. We assume that s(k)

and n(k) are zero-mean, uncorrelated random processes with
covariance matrices at time k given by

R,(k) = E[s(b)s" (k)] 2

Ry(ky=o3(k) 1, &)

where the superscript H denotes complex conjugate transposi-
tion, 62(k) is the noise variance at time & and I, is the Lx L
identity matrix. From these assumptions, the data covariance
matrix satisfies

R (k)= A(k) R, (k) A¥ (k) + o3 (k) I .. C))

Let A;(k) and q;(k), i =1, ..., L, denote the eigenvalues
and corresponding orthonormalized eigenvectors of the covari-
ance matrix R,(k), with the eigenvalues arranged in descend-
ing order. It is well known that if the rank of A(k) is equal to
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M, then
2

1’12'122"'2}'51>AM+1="'=’1L:O';; (5)
A" Q,(ky=0 (6)

where 0 denotes the M x (L - M ) zero matrix and
On(0) = [qua1, Qe - -+ g1l @)

Hence, the number of source signals is given indirectly by the
multiplicity of the smallest eigenvalue, while the column span
of A is identical to that of the matrix

O,(b)=191.92....,q4). (8

The span of Q,(k) and Q,(k) are appropriately referred to as
the signal-subspace and the noise-subspace, respectively.

Signal-subspace algorithms such as MUSIC [1] use the
information embedded in the eigendecomposition of the data
covariance matrix to achieve high-resolution spectral analysis
of the observed data. Practical implementation of these algo-
rithms are usually based on batch estimation of the data covari-
ance matrix, as in

x(k)x"(k),

M

N 1
R, V- &)

k

followed by eigendecomposition of R.Ina stationary envi-
ronment, the performance of the signal-subspace algorithms
will usually improve as K is increased.

In many applications, however, the observed data can
only be considered stationary over a limited time interval due
to changes in the characteristics of the signal generation mech-
anisms. In array processing, for instance, one might be observ-
ing plane wave signals whose directions of propagation are
changing with time. In these situations, a beiter estimate of the
data covariance matrix is given by

Ry=(1-a)R (k-1)+ a x(k) xH (k) (10)

where the parameter (0 < & < 1) is used to control the mem-
ory of the estimate. In this case, a major drawback of the
above batch approach is that it requires repeated eigendecom-
position of the time-varying sample covariance matrix R.(k), a
task which is computationally very expensive.

As indicated earlier, various adaptive eigendecomposi-
tion algorithms have been suggested in the past to overcome
this difficulty. Rather than performing a complete eigende-
composition of Ié,(k) at each time iteration, these algorithms
attempt to reduce the computational load by recursively updat-
ing the current eigendecomposition. Naturally, some approxi-
mations are required to make the recursion simple and compu-
tationally efficient. These algorithms can be grouped into two
distinct families, depending upon the approach used to derive
the recursion. In the following paragraphs, we present an alter-
nate formulation of the adaptive eigendecomposition problem
that will lead to a new class of algorithms.

Let us rewrite the updating equation (10) for R (k) as
Rk = Ruk=1) + e [x(bx(k) - Ryk-1)] (1)

where £ now replaces «. For ¢ small (compared to 1), the cor-
rection term e[x(k)x" (k)— R (k- 1)] in (11) can be viewed as
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a perturbation of R, (k~1). Since R (k) (11) is a convergent
power series in ¢ around R;x(k ~ 1), the theory of perturbation
of Hermitian matrices [4] asserts that the eigenvalues and
eigenvectors of l?,(k) (if properly selected) can be expanded in
power series in &, convergent for £ small, around the eigenval-
ues and eigenvectors of B, (k—1). This theory also provides
methods for determining these power series. Hence, if we
knew the exact eigendecomposition of R (k — 1), it would be
possible to express the eigenvalues and eigenvectors of R_(k)
as power series in & around the corresponding eigenvalues and
eigenvectors of R, (k- 1), subject to appropriate convergence
Testrictions. By truncating these power series at a prescribed
power of £, we would obtain a closed form recursion for
updating the eigendecomposition.

While the above argument is at the basis of the mathe-
matical derivations presented in this paper, some modifications
are needed before it lends itself to the development of a new
adaptive eigendecomposition algorithm. Indeed, we generally
do not know the exact eigendecomposition of R, (k — 1) (and
even if we knew it, application of the proposed approach
would lead to an approximate eigendecomposition at time k).
This technical difficulty can be overcome as follows. Let yi(k)
and u;(k) denote the desired estimates of the true eigenvalues
A;(k) and corresponding eigenvectors q:(k) of R (k). Rather
than seeking estimates which are exact eigenvalues and eigen-
vectors of R (k) (11), we require that for every values of k,

Ro(kyus(k) = yi(kyus(k) + O(e™) (12)

™ (kyuj(k) = &; + O(™) (13)

where n is the highest power of ¢ to be included in the pertur-
bative series, O(¢™) represents an error term of order £,
and &; is the Kronecker delta. For example, when n=1,
(12)-(13) state that y(k) and u;(k) are eigenvalues and
orthonormalized eigenvectors of R,(k), respectively, up to
error terms of order £2.

At this point, a sensible application of the theory of per-
turbation will lead to perturbative series expressing the esti-
mates at time X, i.e. (k) and u;(k) i=1,... ,L), in terms of
the estimates at time k-1, i.e. 7i{(k~1) and uy(k-1),
Jj=1,...,L. The recursive equations so obtained will enable
us to adapt our estimates of the eigenstructure of R, (k) as the
time index k is incremented, without having to completely
recompute these estimates. The perturbation analysis is dis-
cussed in the next section for the case n = 1.

III. FIRST-ORDER PERTURBATION ANALYSIS

In the case n =1, the desired series expansions for the
eigendecomposition estimates of R, (k) take the simple form

7=y + 1k, Yo =wlk-1) (14)

ui(k) = uo; + uye,  ug; = u(k—1) @s)

where the coefficients of ¢, i.e. 7,; and uq;, remain to be deter-
mined. Because the series (14)-(15) are linear in &, we refer to
the determination of these coefficients as a first-order perturba-
tion analysis. Although y(k-1) and u;(k—1) are not exact
eigenvalues and eigenvectors of the unperturbed matrix



R.(k-1), the conditions (12)-(13) ensure that the theory of
perturbation can be applied in a meaningful way.

In this respect, the most serious difficulty comes from
the degenerate nature of the noise subspace. If all the eigen-
value estimates y;(k — 1) where distinct, the application of the
theory would be relatively straightforward. However, because
of the particular structure of the data covariance matrix R, (k)
(4) whose L — M smallest eigenvalues are degenerate, any rea-
sonable estimation procedure will eventually result in
Yu+1(k), .. ., y.(k) clustering together as k increases. In turn,
this will make the recursion obtained under the assumption of
distinct y;(k — 1) unstable. It is therefore necessary to impose
the following condition on the L — M smallest eigenvalue esti-
mates:

Tun (k) =+ =y (k) (16)

for all k. That is, we construct the recursive eigenvalue esti-
mates so that the smallest eigenvalue has the proper multiplic-
ity. Of course, this requires that the signal subspace dimen-
sionality M be known in advance.

A similar problem occurs if some of the eigenvalues
4;(k) of R,(k) are degenerate for 1<i< M. In principle, this
problem can be handled in the same way as above. However,
to simplify the presentation, we shall assume that

71(K) > -+ >y (k). 17
We refer to (17) as the non-degenerate signal-subspace
assumption.

Mathematical details of the first-order perturbation anal-
ysis under the constraints (16)-(17) are given in [5]. One
important characteristic of the resulting coefficients ; and u;;
is that they depend only on the new data vector x(k) and the
previous estimates ¥;(k — 1) and u;(k — 1), and not on the previ-
ous estimate R (k- 1) of the array covariance matrix. Once
these coefficients are available, the formulation of a complete
adaptive eigendecomposition algorithm is straightforward.
The resulting algorithm (P1) is given below:

Data needed at time k:

x = x(k)
ug; =u(k-1), i=1,....M
Yo =vk=1), i=1,...,.M+1

Computation of first-order coefficients:

yi=ullx, i=1,....M (18)
==y i=1,.... M 19
Fratn = 7 (x = Sy ) - 3 @0)
WL = T & 0,M+1
V=Yg i=1,.... M (21)
1, j=i
bi=) iz town L, 22)
Yo;j — Yoi ’

yi d
“li:—{x'zb;‘i"j} (23)
Yoi — Yo,M+1 =t
Updating eigenstructure:
k) =y +€nin i=1,...,M+1 (24)
uik)=ug; +euy, i=1,..., M. (25)

The dimensionality of the signal subspace, M, and the initial
values %(0), i=1,...,M +1 and 4;(0), i=1,..., M are needed
to start the recursion. They can be obtained, for example, by
performing a single eigendecomposition on an initial estimate
R ,(0) of the array covariance matrix.

Equation (18) can be realized by means of M linear
combiners with complex weight vectors given by u;(k-1).
The output y; of the ith combiner is used to evaluate 3;; (19).
To evaluate % u.; (20), we must further evaluate the energy of
x(k). The quantity v; (21) is the projection of x(k) along
u;(k—1). The coefficient vector u,; is obtained by subtracting
the proper linear combination of the v; from x(k) (using the b;
as weights), and then scaling the result. In (24)-(25), the coef-
ficients 7,; and u,; are used to update the estimates at time k.
Together, (23) and (25) provide a non-linear weight-vector
adaptation equation for the ith linear combiner. This non-
linearity appears to be a substitute for the Gram-Schmidt
orthonormalization step found in other algorithms [2].

In the case of widely spread eigenvalues, considerable
simplifications of the above algorithm are possible. Indeed,
suppose that

Yor 3> - 3> Yo M- (26)

Then,
1, j<i
b.= 7
ji {0‘ i 27

and (23) can be simplified as follows:

uy= 2 (2= X)) @8)

Yoi j=1

We refer to the resulting algorithm as the approximate pertur-
bation algorithm (P2).

IV. SIMULATIONS

Computer simulated narrow-band array data was used to
compare the convergence behavior of the proposed algorithm
to that of various gradient-based adaptive eigendecomposition
algorithms [2]. The scenario considered for the simulation is
the following. A uniform linear array of L =8 sensors is used
to monitor M =2 uncorrelated narrow-band plane waves of
common frequency with directions of arrival initially given by
6, =9° and 6, = 12°. The intersensor spacing equals half the
wavelength. The plane waves are monitored in the presence of
background noise as described in Section II. The signal-to-
noise ratios are set to SNR; = SNR, = 104B.

To initialize the algorithms, a sequence of 10 indepen-
dent array output vectors x(k) is first used to estimate K, as in
(9). The 2 largest eigenvalues of R, are used as the initial
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values #;(0) and ,(0), and the corresponding eigenvectors are
used as #,(0) and #,(0). The initial value 73(0) is obtained by
averaging the remaining eigenvalues.

The performance of the various algorithms is evaluated
in terms of the following measure:

=L HOE ) 2

J (k) W”U,(k)U, (k) = @, (1), (k)N (29)
where l.ildenotes the Euclidean norm of a matrix. The quantity
J(k) measures the normalized error between the projector on
the true signal subspace, i.e. Q,(k)Q,(k)", and an estimate of
this projector at time & given by U, (k)U f’ (k). Average learn-
ing curves are obtained by performing 40 independent experi-
ments (with independent reinitialization).

Fig. 1 shows the average learning curves of the follow-
ing algorithms under stationary conditions: perturbation algo-
rithm (P1); covariance matrix gradient (YK1); instantaneous
gradient (YK2). The parameter ¢ is set to 0.015, while the cor-
responding parameters of the other algorithms (i.e. #, and u1,)
are adjusted to give the same steady-state normalized error.
Under these conditions, the new algorithm converges more
rapidly than the gradient-based algorithms. Fig. 2 shows the
average learning curves of P1, YK1 and YK?2 under the same
conditions as in Fig. 1, except that 4 and 4, are now adjusted
so that the convergence rate at the origin is fixed. In this case,
the steady state normalized error of the new algorithm is the
lowest. Fig. 3 illustrates the behavior of P1, YK1 and YK?2
under non-stationary conditions: initially, the scenario is that of
Fig. 2, but at time k =200, 6, and 6, are changed suddenly.
The approximate perturbation algorithm (P2) is compared to
P1 in Fig4. We note that both algorihtms have a similar
behavior, except that the computational load of P2 is much
lower. In fact, of all the algorithms considered, P2 has the
smallest computational load, requiring on the order of 3LM
complex multiplications. We have also found P2 to be more
robust than P1 in situations where some eigenvalues get too
close together, despite the assumption (26) made in the deriva-
tion of P2.
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Fig. 1. Average leaming curves of algorithms P1, YK1 and YK2 for
fixed steady-state error () = 9°, 6, = 12°, u; = . 0016, u, = . 0009).
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Fig. 2. Average leaming curves of algorithms P1, YK1 and YK2 for
fixed convergence rate at the origin (8; =9°, 6,=12°,
#1 = pp =.0025).
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Fig. 3. Average leaming curves of algorithms P1, YK1 and YK2
under non-stationary conditions (8; =92, 6, =12° for 0< k < 200,
8, =11°,8; = 14° for 200 < k < 400, g1 = u, =.0025).

5|

0.4

° 100 200 00 400 500 800

Fig. 4. Average leaming curves of algorithms P1 and P2 (8; = 9°,
8, =12°).
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