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ABSTRACT

This paper deals with the joint problem of source detec-
tion and direction of arrival (DOA) estimation from the obser-
vation of a line aperture of finite length at two distinct times.
The emphasis is given to the practical case of small XL prod-
uct, where K is the bandwidth of the spatial signal and L is the
aperture length. The optimum (log-likelihood) processor for
detection and DOA estimation is derived. A suboptimum pro-
cessor with reduced computational complexity is also obtained
based on a high signal-to-noise ratio (SNR) approximation.
Computer simulations indicate that significant improvements
in performance are possible with these processors when com-
pared with more conventional correlation-based processing
techniques. Moreover, at high SNR, the proposed DOA esti-
mators are nearly efficient.

I. INTRODUCTION

In several applications of array processing, the time
interval available to detect a plane wave signal or to estimate
its direction of arrival (DOA) is limited. This occurs for
instance when monitoring transient signals of short duration.
In this paper, we investigate the joint problem of source detec-
tion and DOA estimation for a plane wave signal observed in
the presence of noise over a line aperture of finite length at
only two consecutive times.

This problem has a well known dual in the time domain:
detection and DOA estimation of a plane wave observed over a
finite time aperture (window) at two spatially separated loca-
tions. The corresponding estimation problem is better known
as time delay estimation (TDE). Several TDE processors have
been developed in the past under the asymptotic condition of
long observation window [1]. However, these processors per-
form generally poorly when the observation window is too
short. Recently, an exact version of the maximum likelihood
TDE processor which incorporates the effects of finite observa-
tion window has been proposed to overcome this difficulty [2].

In the present context, the condition of long observation
window used in TDE is equivalent to that of long spatial aper-
ture. However, due to the assumed transient nature of the sig-
nal, to physical limitations in the size of the line aperture and
to the behavior of the observed spatial signals as a function of
the DOA, this condition is not very practical. Based on the
results of [2] for the TDE problem, it appears necessary to take
into account the effects of finite aperture length for a proper
treatment of the problem under consideration here.

This paper focuses on the derivation and the perfor-
mance evaluation of the exact optimum processor for source
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detection and DOA estimation using the observations of a
finite line aperture at two consecutive times. The emphasis is
given to the practical case of small KL product, where KX is the
bandwidth of the spatial signal and L is the aperture length.
This study provides and extension to the results of [3] where
only the estimation problem is considered.

1. SIGNAL MODEL; CONNECTION TO TDE

Consider a plane wave incident on a continuous line
aperture of length L, with extremities located at x=0 and
x=L along the x-axis, as shown in Fig. 1. Assuming that the
propagation medium is non-dispersive and that the aperture
operates as an ideal transducer, the response r(x, 7) of the aper-
ture at position x and time ¢ can be expressed as

rx,0) = st + ; cos 8) + n(x, 1) N
where s(t) is the plane wave signal, 8 is the corresponding
DOA measured from endfire, ¢ is the wave propagation veloc-
ity and n(x,¢) is an additive noise term. Sources of noise
include the electronic circuitry used for the measurement as
well as unwanted signals propagating in the environment.
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Fig. 1. Plane wave incident on a continuous line aperture of length L.

The response of the aperture along the x-axis is observed
(sampled) at two distinct times, say t=0 and ¢ =T,, resulting in
the following spatial signals:

ri(x) = a(x; 8) + m(x),
ro(x) = a(x+4A; 8) + ny(x),

0<x<L,
2

where

3

a(x; 8) = s(% cos §)
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is the observed signal component at time t =0,
A=cT,/cos@ @

is the space shift between the two signal components and
rix)=r(x,t;), n;(x)=n(x,t;) fori=1,2.

The signals s(¢), 7,(x) and n,(x) are modeled as uncor-
related stationary Gaussian random processes with zero-mean
and known second-order statistics. The autocorrelation func-
tion and power spectral density of the process s(¢) are repre-
sented by R,(7)= E[s(t + 7)s(¢)], where E[.] stands for statisti-
cal expectation, and G,(@) = | R,(7) €77% dt, respectively. At
this point, no particular assumption is made on R,(z) and
G,(w). The noise components ny(x), i = 1,2, are modeled as
normalized white noise processes with autocorrelation function
and power spectral density given by

R(£)=68(8) Gax)=1. (&)

The following convention is used throughout: the variables 7
and @ are used to denote time lag and temporal frequency,
while the variables £ and x are used to denote space lag and
spatial frequency, respectively.

In this paper, we consider the joint problem of source
detection and DOA estimation from an observation of the spa-
tial waveforms r;(x), i=1,2, on the interval 0<x<L. In the
first case, we have to decide between two hypotheses: source
present or source absent (i.e. no signal component in (2)). In
the second case, we know that a signal is present, but we do
not know the true value of the DOA parameter, denoted 8". To
simplify the discussion, it is assumed that 0< 8 <
arc cos(c T,/L), or equivalently ¢ T, € A" < L, where A" is the
true space shift corresponding to 8°. When A" > L, there is no
overlap between a(x; 8) and a(x+A;8) in (2) and coherent
processing of r;(x) and ry(x) is of limited interest.

We now make further comments on the relation existing
between the above problem and the TDE problem mentioned
earlier. First, we note that there is a direct analogy between the
model equation (2) and the conventional TDE model used in
the literature [1], with the roles of space and time being
exchanged. This means that conventional TDE processors can
also be applied to the problem of interest here by making the
appropriate modifications. Hence, in principle at least, 8” can
be estimated by first estimating the space shift A" between
ri(x) and r,(x) with a generalized cross-correlator and then
using (4) to obtain the corresponding angle.

There are however fundamental differences between a
conventional TDE model and the model equations (2)-(4). Ina
conventional (i.e. asymptotic) TDE model, it is assumed that
the observation window is sufficiently long, so that T/D>>1
and TB>>1, where T/D represents the ratio of observation
window to time delay and 7B represents the time-bandwidth
product. The spatial counterpart of T/D is the ratio of aperture
length to space shift

L/A = (L cos 8)/cT,. (6)

The spatial counterpart of TB is the product KL, where K is
the spatial bandwidth of the signal a(x; ). If we denote by B
the bandwidth of G (), it follows from (3) that

KL = (BL cos 8)/c. O

Hence, for a fixed L, both L/A and KL tend to zero as the DOA
increases from endfire (8 =0°) to broadside (¢ =90°).
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In the present context, because of physical limitations on
the aperture length L, the conditions L/A>>1 and KL>1 can
only be satisfied over a limited range of values of . More-
over, there are situations where the product KL is intrinsically
small, even for #=0. This occurs for instance when monitor-
ing high-energy transient signals of short spatial duration.
Consequently, when investigating the optimum processor asso-
ciated with the signal model (2)-(4), it does not appear very
practical to work under the asymptotic condition of long spa-
tial aperture. In the rest of the paper, no such assumption is
made; the emphasis is given to the more practical case of small

KL product.

II1. OPTIMUM PROCESSOR

The optimum processor, also known as the log-
likelihood processor, evaluates the log-likelihood function
(LLF) of the observed data. For the problem under considera-
tion here, the observed data consists of the vector process

r(x) = [r(x), 7,0, 0<x<L, ®)

where r;(x), i=1,2, are given by (2)-(4) and the superscript T
denotes transposition. We note that r(x) belongs to the general
class of Gaussian signals in additive Gaussian white noise.
Consequently, its LLF, denoted In A(r(. ); 8), can be expressed
in the form

InA(r(. ); ) = 3 [L(r(.); 6) = 12(9)), o

L
o 2.
e =E 0 (fdwmmar o
= i 9

an

In (9)-(11), 4; and ¢,(x) are the eigenvalues and normalized
eigenfunctions of the vector process

a(x; 8) = [a(x; 8),a(x+A; .

1,(6) = 21n(1+1,-).

(12)
They are obtained by solving the integral equations

L
[ Etata@M6:6)dt = 2i0x), 0sx<L (13)
0

L
[ rcorm corae = 8. (14)
0

Although not specified explicitly, the eigenvalues 4; and eigen-
functions ¢,(x) depend on the DOA parameter &.

In a typical detection problem, the output of the opti-
mum processor, as given by the LLF (9)-(11), is compared to a
preset threshold. A decision is made in favor of a source being
present only if the LLF exceeds the threshold. In a typical esti-
mation problem where no a priori information is available
about the true value of the DOA §°, the LLF is evaluated for
different values of the hypothetical DOA parameter 6. The
value of 4 resulting in a maximum for the LLF is selected as
the estimate of 8". This estimate is known as the maximum
likelihood (ML) estimate.

To completely specify the optimum processor, we must
solve the integral equations (13)-(14). Following the approach




of [2], this can be achieved in two steps. In the first step, the
vector integral equations are transformed into equivalent scalar
integral equations by applying a generalized beamforming
operation on the observed data r(x) (8). In the secord step, the
resulting “reduced” integral equations are solved, using either
an analytical or a numerical approach.

When 0< @ <arccos(cT,/L), the results of the dimen-
sionality reduction can be summarized as follows: Let 2;
denote the non-zero eigenvalues of (13) and ¢,(t) be the corre-
sponding normalized eigenfunctions. Then,

8:(x) = [m(x), mix + ). 15)

The functions 7;(x) and the eigenvalues 4; satisfy the scalar
integral equations:

LA
[ RE D cosom@rp@re =ames. a6
0
L+A
| momypods = 8. an
[+]
where
1, O0<x<AorL<x<L+A.
”(x)‘{z. A<x<L. (1)

is a spatial weighting function.

In general, it is possible to obtain a numerical solution to
(16)-(17) by following these steps: sampling uniformly in the
spatial domain, expressing (16) as a matrix eigenvalue problem
and using a general computer routine for eigenvalue decompo-
sition. However, when the source signal s(¢) has a rational
power spectral density function, an exact analytical solution to
(16)-(17) may be obtained by properly modifying the tech-
nique of [2].

Upon substitution of (15) in (10), we obtain

i
1+2;

L+a
he(30) =5 ([ neuma a9)
= 0

where

u(x)=ri(x)+ry(x—4), 0<x<L+A, (20)

with r(x)=0 for x <0 and x > L. Hence, the optimum pro-
cessor (9)-(11) can be decomposed into a cascade of two func-
tionally distinct sub-processors. The first sub-processor, which
performs the operation in (20), is the spatial counterpart of a
delay-and-sum beamformer. It attempts to recombine r,(x)
and r(x) coherently based on the assumed signal model
(2)-(4). The second sub-processor, defined by (19), (9) and
(11), can be interpreted as a log-likelihood energy detector for
the scalar signal u(x) at the beamformer output.
At high signal-to-noise ratio (SNR), the following
approximation can be obtained for /; (r(.); 6) in (19):
L+A

W)= |
[

u?*(x)

dx
p(x)

@n

The expression (21) has two important advantages over (19).
From a computational viewpoint, (21) is considerably simpler
since it does not require the calculation and the use of the
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eigenfunctions 7;(x). From a statistical viewpoint, (21) is
more robust since it does not require any knowledge of the
source signal statistics.

Additional details concerning the digital implementation
of the optimum processor can be found in [3].

IV. COMPUTER SIMULATIONS

Computer simulations were used to evaluate the perfor-
mance of the optimum and sub-optimum processors derived in
Section INI. Conventional correlation-based processors
adapted from the TDE literature were also evaluated for the
purpose of comparison.

The following scenario was used for the simulations.
The continuous-time signal s(t) was modeled as a zero-mean
stationary Gaussian process with a first-order Butterworth
spectral density function of the form G,(@) = 2aP/ (*+a?),
where P represents the mean-square value of s(tf) and « is a
measure of its spectral width (G (@) = -3dB).

The continuous line aperture was realized as a uniform
line array of N, =32 sensors. To minimize the effects of spa-
tial aliasing, the maximum angular frequency of interest was
taken as 27 fp., = 16a (-24dB point of G,()), and the sensor
spacing was set 10 L, = Anf2, Where Apin = ¢/ fmax is the wave-
length corresponding 10 finu. The resulting aperture length,
i.e. L=2mc/e, was used as the unit of distance in the simula-
tions. The time interval T, between successive observations of
the array response was chosen as a multiple of LJ/c=2 Jrvaxs
which is the Nyquist rate corresponding t0 frnu.

Synthetic random signals corresponding to specific val-
ues of SNR and true DOA 8" were generated according to the
above specifications. These signals were simultaneously
applied to the input of four different processors, namely: opti-
mum processor (OPT); high-SNR approximation to optimum
processor (HOPT); asymptotic processor based on large KL
product assumption (ASYM); and a processor calculating the
tapered cross-correlation (TCC) [4]. The ASYM processor is
an adaptation of the Hannan-Thompson processor used for
TDE [1); modifications have been included to account for the
dependence of the spectrum of the process a(x; 8) in (3) on the
DOA parameter 8.

The detection and DOA estimation performance of each
processor were evaluated statistically by running a large num-
ber of independent experiments. For any given value of the
detection threshold, 10* independent experiments were run,
with and without source signals. The corresponding probabili-
ties of detection p, and false alarm p, were then estimated as
relative frequencies. To obtain the receiver operating charac-
teristic (ROC) curve (i.e. p; versus p,), this procedure was
repeated for several values of the threshold.

In the case of DOA estimation, an initial estimate of A
was obtained by maximizing the processor output over a dis-
crete set of values of A given by A=Atk L, k=0,...,5.
(By considering a search region of this type, we limit our atten-
tion to the small-error behavior of the estimators.) The initial
estimate was then refined by means of a three point quadratic
interpolation scheme. The resulting estimate A was finally
converted to a DOA estimate § by means of (4). The sample
mean and variance of the estimates were evaluated by running
1000 independent experiments.



The following results correspond to a sampling interval
of T, = 4L,/c and a true DOA of 6°=48.2°, i.e. A"=6L,. Fig.
2 shows the ROC curves of the various processors for SNR =
5dB. The results clearly indicate that better detection perfor-
mance can be achieved with the OPT and HOPT processors.
We note the particularly poor performance of the ASYM pro-
cessor. Because it is based on the assumption of large aperture
length, the ASYM processor does not properly handle edge
effects, which are responsible for the performance deteriora-
tion. The TCC processor, which incorporates corrections for
the finite aperture length, has better detection characteristics
than the ASYM processor, although not as good as the OPT
and HOPT processors.

Fig. 3 shows the sample bias (in degrees) of the corre-
sponding estimators as a function of SNR. We note that for
SNR 2 20dB, both OPT and HOPT estimators are practically
unbiased. Fig. 4 shows the sample standard deviation (in
degrees) of the four estimators as a function of SNR. The
Cramer-Rao lower bound (CRLB) is also shown for the sake of
comparison. The standard deviation of both OPT and HOPT
estimators is comparable to the CRLB for SNR > 20dB. We
therefore conclude that these estimators are almost efficient at
high SNR and that any significant improvement in perfor-
mance is not feasible.

Finally, we note that the performance of the various pro-
cessors is not uniform as a function of the true DOA parameter
8°. For instance, it can be shown easily that the CRLB tends
10 oo in the limit & — 0. This is due to the non-linear relation
(4) between @ and A: for @ close to zero, a small error in A will
induce a very large error in 6. It can also be argued that the
performance of the estimators will deteriorate severely as
A— L. In this case, there is no overlap between the observed
signal components and the estimation process should be domi-
nated by large errors. These observations have been confirmed
by simulations. Fig. 5 shows the standard deviations of the
OPT and HOPT estimators as a function of 4° for SNR =
20dB. We clearly note the deviation from the CRLB as ¢
increases.
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Fig. 2. ROC curves of the four processors for SNR = 5dB and true
DOA 6" =48.2°.
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Fig. 3. Bias of the four DOA estimators as a function of SNR for true
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Fig. 5. Standard deviation of the OPT and HOPT estimators as a func-
tion of true DOA 6° for SNR = 20dB.




