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ABSTRACT: A new approach to parametric 
localization of a distributed source is proposed. 
This method is based 071 the ESPRIT Algorithm. 
the Central angle and the angular extension of 
an incoherently distributed source are estimated. 
This algorithm has a low computational complex­
ity. The method does not require array calibration 

Introduction 

Array signal processing is used to detect and lo­
calize signal emitting sources. Several algorithms 
ranging from the low to high resolution techniques 
have been proposed in the literature. 

The conventional array processing techniques 
assume point source modeling. By a point source, 
we mean that the radiated energy is emitted from 
a discrete angle in space. Various algorithms 
have been developed for point source localization. 
Among these methods, MUSIC [I] and ESPRIT 
[2] [3] are well-known. MUSIC carries out a one­
dimensional search over the MUSIC spatial spec­
trum to find its prominant peaks. The location 
of these peaks corresponds to the estimate of the 
Direction Of Arrivals (DOA). In constructing the 
MUSIC spectrum, one needs to measure the ar­
ray manifold, the set of possi ble steering vectors 
over all angular parameters. This is called array 
calibration which is practically expensive. An al­
ternative is to use the ESPRIT algorithm which 
does not need array calibration. 

The point source modeling may fail in certain 
practical situations. For example, the variation 
of sound speed in water may cause energy be 
distributed over an angular volume in a bottom­
mounted passive sonar. In an undersea echo beam 
sounder, scattered signal from lower layers is dis­
tributed over an angular volume which is equiv­

alent to a superpositIOn of plan~waves originat­
ing from a continum of angles [4]. Other exam­
ples are acoustic sources in a reverberant room, 
tropospheric or ionospheric propagation of radio 
waves, the reflection of a low radio link signal from 
ground, etc. The above examples show the impor­
tance of the distributed source modeling. 

Jantii [4] models a distributed source as a sum of 
finite number of point sources and then estimates 
the angle of arrival of those point sources using the 
MUSIC and ESPRIT algorithms. A shortcoming 
of this technique is that for unique localization 
of sources, the number of point sources must be 
upper bounded by the number of sensors [5]. Fur­
thermore, inference of the spatial extension using 
the point source location estimate is not Clear. 

Valaee et.al. [6] have presented a parametric 
method for localization of distributed sources. 
They generalize the concept of the signal and noise 
subspaces and derive a MUSIC-type spatial spec­
trum estimator. Similar to the original MUSIC 
algorithm, their approach also requires array man­
ifold calibration. 

In this paper, a new technique is presented 
for estimation of the central angle and the angu­
lar extension of a IIniform incoherently distributed 
(UI D) source. Estimation of the central angle 
is performed using an ESPRIT-type algorithm. 
Hence, there is no need for array calibration. The 
angular extension is estimated using the eigenval­
ues of covariance matrix. It is shown that the co­
varinace matrix for a uniformly distributed source 
can be represented in terms or the Discrete Prolate 
Spheroidal Sequences (DPSS) [8]. 

The paper is organized as follows. In the next 
section, the array output model for distributed 
sources is presented. Properties for the uniform 
linear array (ULA) covariance matrix is expressed 
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in Section 3. Section 4 summerizes the estimation 
algorithm and Section 5 contains the simulation 
results. 

2	 Distributed Source
 
Modeling
 

Consider an array of 2p sensors (p doublets). As­
sume that the two sensors in each doublet are iden­
tical and have the same gain and phase and sen­
sitivity pattern and are seperated by a constant 
displacement vector d. It means that the array 
is divided into two subarrays. We call them the 
X and Y subarrays. Also, it is assumed that q 

narrowband distributed sources with central fre­
quency Wo are present in the environment of these 
subarrays. The complex envelope of the out.put of 
ith sensor in subarray X is 

(I) 

where aj (8) is the response of the ith sensor 
to a unit energy source emitting at direction 0, 
s(8, l/Jm) is the angular density of the mth source, 
l/Jm is the mth source location parameter vector, 
and n",; is the additive zero mean noise at the ith 
sensor. The corresponding element output in sub­
array Y is 

Yj = 2:
q 

f'w 
~ 

aj(8)e- jwoT (8)s(8, l/Jm)d8 + ny ; (2) 
m=!	 -, 

where n y ; is the additive zero mean noise at. t.he 
ith sensor of the subarray Y, and r(8) is t.he prop­
agation delay between t.he identical elements of a 
doublet for the signal arriving at the direction (). 
Using a vector notation, we have 

x =2:
q 

f'w 
~ 

a(8)s(8,l/Jm)d8+ux , (3) 
m=!	 -, 

y = 2:
q 

f'w 
~ 

e- jwoT(8)a(8)s(8, l/Jm)d8 + n y (4) 
m=!	 -, 

where x and yare the subarray X and Y output 
vectors, respectively, n x and u y are the noise vec­
tors for subarray X and Y, a(()) is the location 
vector for a source at the direction (). 

For uncorrelated sources, the covariance matrix 
at the output of array X and the cross-covariance 
matrix between the two subarrays are [6] 

a(8)p(8, 8'; l/Jm)aH (8')d8d8' + O'~I, (5) 

R xy	 = ~[:[: 
a(8)p( (), ()'; l/Jm )ejwoT (8') aH (8')dOdO'(6) 

where O'~ is the noise power and 

is the aTigulal' cross correlation for the source m. 
If different rays of the signal which arrive at the 

array are uncorrelated, the source is called an in­
coherently distributed (ID) source. This model has 
been introduced in [9] ancl [6]. For an ID source, 
we have 

E{s(8, l/Jm)s·(8', l/Jm)} = p((), l/Jm)J(8 - 8') (8) 

where p(O, l/Jm) is called the angulm' power density. 

3	 ULA Covariance Matrix 

For a uniform linear array with interelement spac­
ing ~ (half the signal wavelength), the response of 
the ith sensor for a signal arriving at.. the angle 8 
made with the array broadside is 

aj(8) = ej (j-!) ....in(8). (9) 

Therefore, for a single ID source scenario, the 
mnth element of the covariance matrix can be 
written as 

w 

[R] j(m-n) ....in 8 (8 "')d8 + 2 rxx mn = _~ e p ,'f/ O'num-n·j' , 
(10) 

For a uniformly distributed source, 

I if /8 -	 80 I < L\2A 

p(8,l/J) = 0	 (11 ) 
{ otherwise 

where 80 is the source central angle and L\ is the 
source half extension width, 

for small L\, it can be shown that [4], [7] 

- ej (m-n)7r 9in(8 0 )[R]xx mn­

sin( (m - n)1T L\ cos( ()o)) 
x ( ) () +0'~om_n(13) m -	 n 1T L\ cos ()o 



• • • 

Define 
LJ.	 ~ 

W = "2 cos(90), (14) 

and the p x p matrix M(W) as 

~ sin(21TW(m - n))
[M (W )]mn - ( ) . (15)

1T	 m - n 

Then 

= _l_e j (m-n)1rsin(Bo)[M(W)] +u2 6_[R]xx mn 2vV	 mn n m n 

(16) 
which can also been written as 

I 11 2
R xx = 2W DM(W)D + Un! ( 17) 

where 

D	 = diag(I,ej1rSin90, ... ,ej1r (P-I)sin90). (18) 

diag(-) is a representation for a diagonal matrix 
with the diagonal elements in the parantheses. 
The eigenvectors of M(W) are the Discrete Pro­
late Spheroidal Sequences (DPSS)[8]. A good ap­
proximation to the eigenvalues of M(W) is [8] 

-'k(W) ~ ..!.(21TW)2k+ 1G(k, p) k = 0, I, ... ,p - I
1T 

(19) 
where 

It can be seen that 

-'0 ~ 2Wp,	 (21) 
1-'I ~ 36(P-l)p(p+I)1T2(2W)3. (22) 

In the same manner, it can be shown that for the 
array configuration shown ill Fig.l (a), the cross 
covariance matrix, is 

ej21rd/ A8in(90 ) 

R(a) = DM'(W)D H (23)
xy 2W 

where 

I sin(21TW(m-n-2d/-')) 
[M (W)]mn = 1T(m _ n _ 2d/-') . (24) 

The superscript (a) represents the correlation ma­
trix associated with Fig.1 (a). For the array con­
figuration shown in Fig.l(b), it is easy to show 
that 

ej21rd/ABin(90) 
R(b) = DM"(W)D H (25)xy 2W 

Planar wavefront
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Figure 1: Two possible subarray configurations. 

where 

" sin (21TW(m - n - 2d/-' tan 00 )) 

[M (W)]mn= 1T(m-n-2d/-'tan(00)) . 

(26) 
In the above equations, d is the magnitude of dis­
placement vector between the two subarrays. 

4 Estimation Algorithm 

The proposed estimation technique is summarized 
as follows: 

I.	 The central angle is estimated using the TLS­
ESPRIT algorithm [2]. TLS-ESPRIT is im­
plemented in four steps: 

(a) Let 

(27)z=[;], 
and define R zz as 

R zz ~ E{zzH} = [~:; ~::], 
(28) 

and let eo be the eigenvector of R .. cor­
responding to the largest eigenvalue of 
R H . 

(b) Then eo is written as 

eo = [ eox ] (29)I 

eOY 

where eox and eOY are the upper and 
the lower half of e, respectively. 



(c) Define Exy as 

A
Exy=[eox eoY]. (30) 

Compute the	 eigendecomposition of 
E~yExy, 

E~yEx}' = EAEH 
. (31) 

For a single distributed source, E is a 
2 x 2 matrix and can be written as 

(32) 

(d)	 For Fig.l(a), (Jo is estimated as 

- . _1{Aarg(-E12/En )}(J0= Sin	 (33)
21rd 

and for Fig.l (b), (Jo is estimated as 

- -1 {A arg( -E12 / E22)}(J
o = cos 2rrd (34) 

2.	 According to Equation (13) it is clear that 

[Rrx]mm = 1 + IT~. (35) 

Hence the noise power estimate, o-~ is 

o-~ = min{diag(Rrx )} - 1. (36) 

The noise free covariance matrix 

(37) 

can be estimated from 

3.	 The parameter W is estimated using (22). 
Let I ( be the second eigenvalue of (Rxx ) N F. 

From (22) and (37), we have 

Al	 1 2 2 
l( = 2W = 36(P-I)p(p+ 1)411' W. (39) 

Hence 

(40)(p - 1)p(p + 1) . 

Note that the first eigenvalue of (Rxx ) N F can 
not be used for the estimation of W. In fact, 
from (21) and (37) it is clear that the largest 
eigenvalue of (Rxx)NF is approximately inde­
pendent from W, that is 

10 ~ p (41 ) 

4. Having Wand (Jo, one can estimate ~ using 

~ = 2W / cos (Jo. (42) 

5 Simulation 

In this section, the computer simulations are pre­
sented. The simulated array consists of 32 om­
nidirectional sensors, 16 sensors in each subarray. 
The two subarrays are displaced from each other 
as shown in Fig. l(a) with d = A/15. the source 
power is distributed uniformly and incoherently 
over the angular interval [(Jo - ~, (Jo +~] , where 
(Jo = 30 deg. Parameter ~ is chosen to be 1,2,3 
and 4 degrees in different trials. 

Fig. 2 and Fig. 3 show the bias and the variance 
of the central angle estimation, respectively, for 
different values of ~. 

Fig. 4 and Fig. 5 show the bias and the variance 
of the extension width estimate, ~, respectively, 
for different val ues of ~. 
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