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Abstract

The objective is Lo develop information theorelic
criterta for detection of sinusoidal signals. The
minimum description length (MDL) and the pre-
dictive stochastic complezity (PSC) have been for-
mulated for harmonic resolution. MDL and PSC
are the codelength for dalta and model. The pro-
posed techniques are based on decomposing the ob-
servalion veclor tnlo its components in the signal
and noise subspaces. Each component is encoded
separately and the results are added to form the to-
tal codelength. The codelength is minimized over
different models to select the best model.

1 Introduction

Sinusoidal signal detection is applied in various
fields ranging from telecommunications to array
processing and spectrum estimation. Various tec-
chniques have been proposed in the literature
based on the low resolution as well as the high res-
olution approaches; see [1] and [2]. In some tech-
niques, it is frequently assumed that the number
of signals is known. This is an unrealistic assump-
tion which might not hold in practice.

Here, we propose two techniques that can be
used for signal enumeration. The techniques are
based on the information theoretic approacli. We
formulate the problem based on the minimum
description lenght (MDL) [3] and the predictive
stochastic complexity (PSC) [4] principles. Both
techniques are used to estimate the model order by
minimizing the Kullback-Leibler distance between
the true model and the estimated one.

Direct application of MDL and PSC to sinu-
soidal resolution generates erroneous results — the
number of signals is always detected as 1. This is
due to the temporal coherency of sinusoids. In
the present work, we introduce an alternative ap-

proach, such as the one presented in [5] and [6].
The proposed technique is based on decomposing
the observation vectors into their orthogonal com-
ponents in the signal and noise subspaces. Using
the MDL or PSC principle, these components are
encoded separately and the results are added to
obtain the total codelength. This procedure is
performed for all possible models and the mini-
mum codelength is selected to give the best model.
Simulation study shows that both techniques can
detect the number of signals. PSC has a better
performancce in nonstationary environments.

2 Problem Formulation

Assume that the observation is a time series mod-
eled at time ¢ as

K
z(l) = Zak cos(wit + dx) + n(t) (1)

k=1
where the parameters §° = (ok,wk, dx), k =
1,..., K, and their number K are unknown; n(t)

is a Gaussian white noise with an unknown vari-
ance o2, All unknowns can be arranged in a pa-
rameter vector

¥ =(anwn,é1,. .. 0k,wk, 0k,0°). (2)

The observed data is sampled with the sam-
pling rate w, > kaax{wk} and arranged in a ma-

trix form with each column representing an M x 1
snapshot vector

K
x(8) = > a(wk)s(t, ax,wi, ) + n(t)  (3)

k=1



where

1 0
cos(wi D) sin(wg D)
a(wg)= .

cos(wk(IV.I - 1)D) sin(wk(M - 1)D)
(4)

with D = Ll being the sainpling interval, and
Wy

ok cos(wkt + k)
s(t,ak,wk,dJk) = . (5)
—ak sin(wkt + k)

The matrix a(wk) is time-invariant — it is only a
function of the frequency wi. Arrangement of all
a(wk),k=1,..., K in a matrix gives

A(Q) = [a(w), ..., a(wk)] (6)

where Q = (wy,...,wk) is the vector of all fre-
quencies of the sinusoids. The signal subspace is
defined as the span of A(2). The noise subspace is
the orthogonal complement of the signal subspace.
Let X(T) = [x(¢)],t=1,...,T, be the M x T
observation matrix — the matrix of snapshot vec-
tors collected in the window (1,...,T). Using the
observation matrix X(7'), we present information
theoretic methods to estimate the number of sig-
nals K and their frequencies wg,k =1,..., K.

3 Information Theoretic
Criteria

We use the minimum description length (MDL)
(3] and the predictive stochastic complezity (PSC)
[4] techniques. PSC and MDL are the codelengths
used to represent data. Both principles are based
on minimizing the Kullback-Leibler distance be-
tween the true model and the estimated one.

The MDL criterion for a model of order k at
time instant 7 is

MDL(T, k) = — Iogf(X(T)|‘iJ'7"‘) + % log T (7)

where f(X|®) is the conditional probability den-
sity function, and Wk is the mazimum likelihood
(ML) estimate of the parameter vector ¥* using
the observations up to time 7. In MDL, data and
model are encoded separately and the results are
added to obtain the total codelength. The model
order at time T is determined from

K= min MDL(T, k) (8)

where the minimization is performed over all pos-
sible models.

PSC is the codelength for a minimal description
of data; at time 7 and for a model order k, it
amounts to -

T
PSC(T, k)= -3 logf(x(t)|‘ilf_,) 9)

t=1

wlere ¥¥_, is the ML estimate of the parameter
vector ¥¥ using the observations up to time (¢—1).
The estimated model order at time T is given by

K= min PSC(T, k) (10)

witl the minimization performed over all possible
models.

4 Harmonic Resolution

In a straightforward approach, the conditional
probability density of X(7') is determined and
used in (7) and (9). This approach to detection of
sinusoids produces erroneous results — in fact the
model order is always estimated as 1. This is due
to the temporal coherency of the signals.

In this paper, we take an alternative approach
similar to the one presented in [5] [6]. We propose
decomposing the observation vectors into their
components in the signal and noise subspaces and
encoding them separately. Since the components
of the observation vectors in the signal and noise
subspaces are independent, the total codelength
will be the sum of the codelengths of the two com-
ponents.

Let us represent by P,(Q) and P,(2) the pro-
jection matrices onto the signal and noise sub-
spaces, respectively. The signal subspace is the
column span of A(2), hence the projection ma-
trix onto the signal subspace is given by

P,() = A(Q) (A”(Q)A(Q))_IA”(Q). (11)

The projection matrix onto the noise subspace is
then
P.(Q) =1-P,(Q), (12)

where I 'is the M x M unity matrix. The observa-
tion vector x(t) can be decomposed as

x(1) = P, (Q)x(t) + Pu(Q2)x(t). (13)

The M x 1 vector P,(2)x(¢) is in the 2K-
dimensional signal subspace. Similarly, P, (Q)x(t)



is in the (M — 2K)-dimensional noise subspace.
We represent these vectors by

P, (Q)x(¢), (14)
xn(t) = P (Q)x(¢). (15)
Note that x,(t) and x,(¢) are orthogonal. Hence

R, = R,(Q) + R.(Q) (16)

where R is the correlation matrix of the obser-
vation vector x(¢), and

P,(Q)R.P,(Q?), (17)
P,(Q)R.P,(£2) (18)

R,(2) =
R,(Q) =

are the correlation matrices of the signal and noise
components, respectively.

The noise vector n(t) is a white Gaussain pro-
cess. The probabilty density function of x(¢) is
then

J(x(O)IRz) = |[7R.| ™" exp{—x" ()R 'x(1)}.
(19)
We use a stochastic modeling for the signals — an
example would be when « or ¢ are stochastic pro-
cesses. The probability density function for X(T')
is

SX(T)R;) = |“'RJ:|_T exp{—Ttr(R,;lI_II)}
(20)

where tr(.) is the trace operator and

_ 1 T
R. = > x(t)x" (1) (21)

t=1

is the sample correlation matrix of the observation
vector. The log-likelihood function for X(T) is

—log f(X(T)|R;) = Tlog|nR;| + Ttr(R;'R.).

(22)

We develope the MDL and PSC information

theoretic criteria for signal resolution. The fol-
lowing lemmas will be used later.

Lemma 1 Let A, B be n x n Hermitian matri-
ces orthogonal to each other such that A"B =
BYA = 0. If the matriz C is given by

C=A+B (23)
where C is full rank, then
|| =¢(A) ¢(B) (24)

where |.| is the delerminant, and ((.) represents
the mulliplication of the nonzero eigenvalues.

Proof: See Appendix A.

Lemma 2 Let Ay > ... > A, with multiplicities
my,...,m, be the eigenvalues of correlation ma-
triz R, and vy be the eigenvectors. Correspond-
tng values for the sample correlation matriz are

defined by \x and ¥x. Then the ML estimate of

Ak 18 i
o= — §5
E= .Z by (25)
1€L,

where Ly is the set of integers {E:;ll m; +

1:: ..,}:;;l] mj + my}, and the ML estimale of

Vi S

U = Vg. (26)

Proof: See [7].

4.1 The MDL criterion

The log-likelihood function using the ML estimate
of the correlation matrix is given by

—log f(X(T)|R;) = TMlogn+ Tlog|R,|
+Ttr(R;'R;) (27)

wliere R, is the ML estimate of the correlation
matrix R;. Let us represent by A;(R) and v;(R)
the eigenvalues and the corresponding eigenvec-
tors of the correlation matrix R, with the eigen-
values arranged in non-increasing order. Using
Lemma 2, we have

vi(R:) = vi(Rs), i=1,...,M (28)

M(R:) = XN(Rg), i=1,...,2K (29)
M

MR = gar Y AR, (0)

k=2K+1
i=9K +1,..., M.

Using these results,

T

tr(R;'Ry) = M. (31)

Substituting this in (27) gives

- ]Og f(X(T)IR, + fln) = TM log m
+T log R, + Ra|
+TM. (32)

We know find the number of unknowns that can
be freely chosen. R, is a complex Hermitiam ma-
trix with rank 2. Thus, the number of free pa-
rameters in determining R, is 4K2. The parame-
ter vector Q2 is determined by K parameters, and



&2 is an unknown scalar. Thus the MDL criterion,
excluding the terms independent of the model or-

der I, is given by
MDL(T, K) = Tlog|R, + R,|
4K? 4+ K
+—_2+— log . (33)

Using Lemma 1, we have

MDL(T, K) = Tlog (¢(R,)((R,))
.2 -
+§-132L1‘10gT. (34)
Let us define
R, = P,(QR.P,(Q), (35)
R, = P,.(Q)R.P,(Q). (36)
Using these definitions,
. 2K ~
((Ry) = J[M(R,), (37)

. M—2K (M=2K)
—_ Ai(R 38
(M_Q,‘. ‘;1 ( n) (38)
So far we have assumed that K and Q are
known, whereas in practice they are to be esti-
mated. Define

C(Rn) =

OF = (wy,...,wx) (39)
where w),...,w, are unknown frequencies of the
sinusoids. We find MDL criterion for all & =

0,...,M/2 — 1 and choose the minimum to de-
tect the number of signals. The MDL criterion for
the model k is then given by

MDL(T,k) = Tlog (¢(RE)C(RE))

Ak? + k

+ log T (40)

(RY) = Jrn®RH, (41)

=1

, ;o M- (M —2k)
((Ry) = (M_2k ) A.-(Rf,)) (42)
f=1

RX P, (Q%)R, P, (Q), (43)
R = P.(QYR.P,(QF). (44)

As seen the computation of the MDL criterion
depends on the parameter vector Q¥. In the orig-
inal MDL approach, an ML estimate of Q¥ is re-
quired.

4.2 The PSC criterion

The PSC criterion is computed for all ¢ inside the
window [0,7]. The final value is minimized at the
end of the window (although the minimization can
be performed at each step).

Let us define the sample correlation matrix at
time instant ¢ by

t

> " x(i)x" (i), (45)

1=

Ry =

|

The projection of this matrix onto the signal and
noise subspaces for model k are defined as

P,(QF)R.,P,(QF), (46)
Pl IR Pol0): D)

nk
Ry,
ok
R,

where QF is tle estimate of parameter vector for
model & using the observations upto time ¢.
The ML estimate of the correlation matrix for

the k-th model and the (¢ — 1)-th snapshot is

= 5 5k

Rf‘!—l = R“;l-x + Rn,_, (48)
where RL"_‘ and l:tﬁ‘_l are the ML estimate of
the projection of correlation matrix onto the signal
and noise subspaces. Using Lemma 2,

Ri_ =Rt _ (49)
Similary, it is possible to show that I:(f,’_l has the

samne eigenvectors as I_lf,‘_l and a single eigenvalue
with multiplicity (M — 2k) which is found from

1 .
~2 Qk = k .
(% _y) 7 2ktrR""‘ (50)
Note that f{ﬁ'_l can be obtained by
R, =Ti, R, (51)
where T}_, is a matrix defined as
_ ) F2%_) ] -
T, = Var-o dlag[/\j(ﬁ—:‘_ll)] r[I{,M—Zk
(52)

with Aj(Rn,_,), j = 1,...,M — 2k, being the
nonzero eigenvalues of R,,,_l, and VH'A[_QA-, the
M x (M — 2k) matrix of corresponding eigenvec-
tors; the diagl.] is a representation for a diagonal
matrix formed by the elements in the brackets.

Using Lemma 1, the ML estimate of tlie deter-
minant of the correlation matrix is obtained by
the multiplication of the nonzero eigenvalues of
its projected components

IRE,_|=C(RE_ ) C(RE,) (53)

Ty—1 St Ni—



where from (49) and (50),
CRE_) = (RS, (54)
M—2k
(#2(k) (55)

Using these results, the PSC criterion is

PSCk(N) = [log¢(RS,_,)
t=1

1 =
+(M — 2k) log(3r—tr Ry, )

! (RE,_, + TE RE,) " x| (56)

It is seen that the computation of PSC depends
on the parameter vector 2f_,. In the original ver-
sion of the PSC algorithm the ML estimate of the
parameter vector is used.

5 Simulation Results

We include here the results for the simulation
study. To avoid the computational complexity of
the ML estimator, we choose to use a root MUSIC
technique to estimate QF.

Example 1: We study a scenario with two si-
nusoids with the parameters: {a; = 2,w; =
]lo,¢1 = %}, and {02 = ],(.a)z = 160,¢2 = -—-% .
The sampling interval is 1 ms. The data were
collected over 0.8 second and decomposed into 50
non-overlapping snapshots of length 16 samples
each. The case was simulated for 100 independent
trials. Table 1 compares the PSC and the MDL
techniques based on the number of times that each
method resolves the two signals as the noise power
varies from —2 dB to 12 dB. The MDL and PSC
algorithms have close performance.

Example 2: To study the two methods in a time
varying environment, we simulate a case in which
the phase of the first signal suddenly changes to
Z% at { = 570 ms. The signals are such as in Ex-
ample 1. The observation time is 1 second. The
size of snapshot vector is 10. If the MDL criterion
is computed and minimized at the end of obser-
vation, the number of signals will be dectected as
4. PSC is computed at each snapshot. The esti-
mated model order as a function of the snapshots
is depicted in Fig. 1. As seen PSC still detects
signals. Fig. 2 illustrates the difference between
the PSC terms. At ¢t = 570 we notice an abrupt
change in the PSC criterion. This sudden jump
indicates that the statistics ol the model has been
altered. Thus, PSC can be used for change-point

detection. MDL does not see this change — it is
only calculated at the end of observation window.

Example 3: In this example we study a case in
which the frequency of the second source is time-
varying with a rate of 4 Hz per second. MDL and
PSC are computed at each time instant. Note that
usually MDL is not used as simulated here — we
use it so as to compare the techniques based on
their behavior to source drift. The results of model
selection have been reported in Fig. 3. PSC breaks
down much later than MDL. This is due to adap-
tive nature of PSC. In fact, at each time ¢, PSC
adds a new term to the PSC criterion computed
at the previous time instant for each model. This
might compensate for the drift in the frequency.
On the contrary, MDL uses all data upto time ¢
and assumes that the characteristics of the sources
are stationary.

These two examples show that the PSC algo-
rithm might be more appropriate for a nonsta-
tionary environment.

6 Conclusion

This paper presented two information theoretic
techniques for sinusoidal signal detection. The
technqiues used tlie minimum description length
(MDL) and the predictive stochastic complexity
(PSC) principles. MDL and PSC both use a code-
length of data for signal enumeration.

We used a subspace decomposition approach.
Data were decomposed into their components in
the signal and noise subspaces. Since the signal
and noise subspaces were orthogonal, the total
codelength of data was the addition of the code-
length of their components. The codelengths were
computed for each model and minimized over all
models. Simulation study showed that for sta-
tionary environment the two techniques perform
closely. For nonstationary environments PSC out-
performed MDL.

A  Proof of Lemma 1

Let A; and Ap be the diagonal matrices of nonzero
eigenvalues of A and B, and V, and V, be the
matrices of corresponding eigenvectors. Then C
can be written as

C

ViAo VE £ VA VE

v[ AO“ 18,, ]v” (57)



Noise Selected Model

Power PSC MDL N

(dB) 1 2 3 ] 2 3
-2 0 100 0 0 100 0
0 0 100 O 0 100 0
2 0 97 3 0 100 O
4 8 84 8 13 87 0
6 61 3 4| 73 271 0
8 86 13 1 99 1 0
10 87 12 1] 99 1 0
12 91 8 1] 100 0 0

Table 1: The resolution of the two methods PSC
and MDL.

where V = [V, V,]. Since C is a full rank Ilermi-
tian matrix it is unitarily diagonalizable and the
orthonorial matrix V is its eigenvector matrix .
T'hus the determinant of C is equal to

[Cl = [Aa] [As]. (58)

Note that |[Ag| and A are in fact the multiplica-
tion of the nouzero eigenvalues ol A and B.
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Figure 1: T'he detected model when the phase of
the first signal varies al { = 570 ms.
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Figure 3: The detected model when one of the
[requencies is lime varying.



