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Abstract 
The objective is to develop information theoT"€tic 

criteria for detection of sinusoidal signals. The 
minimum description length (MDL) and the pre­
dictive stochastic complexity (PSC) have been for­
mulated for harmonic resolution. MDL and PSC 
QI"€ the codelength for data and model. The pro­
posed techniques are based on decomposing the ob­
servation vector into its components in the signal 
and noise subspaces. Each component is encoded 
separately and the results are added to form the to­
tal codelength. The codelength is minimized over 
different models to select the best model. 

Introduction 

Sinusoidal signal detection is applied in various 
fields ranging from telecommunications to array 
processing and spectrum estimation. Various tec­
chniques have been proposed in the literature 
based on the low resolution as well as the high res­
olution approaches; see (I] and [2]. In some tech­
niques, it is frequently assumed that the number 
of signals is known. This is an unrealistic assump­
tion which might not hold in practice. 

Here, we propose two techniques that can be 
used for signal enumeration. The techniques are 
based on the information theoretic approach. We 
formulate the problem based on the minimum 
description lenght (M DL) [3] and the predictive 
stochastic complexity (PSC) [4] principles. Both 
techniques are used to estimate the model order by 
minimizing the Kullback-Leibler distance between 
the true model and the estimated one. 

Direct application of MDL and PSC to sinu­
soidal resolution generates erroneous results - the 
number of signals is always detected as 1. This is 
due to t.he temporal coherency of sinusoids. In 
the present work, we introduce an alternative ap­

proach, such as the one presented in [5] and [6]. 
The proposed technique is based on decomposing 
the observation vectors into their orthogonal com­
ponents in the signal and noise su bspaces. Using 
the MOL or PSC principle, these components are 
encoded sepm-ately and the results are added to 
obtain the total codelength. This procedure is 
performed for all possible models and the mini­
mum codelength is selected to give the best model. 
Simulation study shows that both techniques can 
detect the number of signals. PSC has a better 
performancce in nonstationary environments. 

2 Problem Formulation 

Assume that the observation is a time series mod­
eled at time t as 

K 

x(t) = L Ok COS(Wk t + ~k) + n(t) (I) 
k=1 

where the parameters (l = (Ok, Wk, ~k), k = 
1, ... ,](, and their number!( are unknown; n(t) 
is a Gaussian white noise with an unknown vari­
ance (72. All unknowns can be arranged in a pa­
rameter vector 

The observed data is sampled with the sam­
pling rate w. > 2max{wk} and arranged in a ma­

k 

trix form with each column representing an M x I 
snapshot vector 

K 

x(t) =La(wk)s(t,ok,Wk'~k)+n(t) (3) 
k=\ 



3 

where the minimization is performed over all pos­where 

jCOS(WkI D) 0sin(wk D) 
a(wk)=. . 

[ 
cos(wdM - I)D) sin(wdAI- I)D) 

(4) 
. I D 2rr b .Wit I = - emg the sampling interval, and 

w. 

(5) 

The matrix a(wk) is time-invariant - it is only a 
function of the frequency Wk. Arrangement of all 
a(wk), k = 1, ... , J( in a matrix gives 

A(O) = [a(wd, ... ,a(wK)] (6) 

where 0 = (WI, ... ,WK) is the vector of all fre­
quencies or the sillusoids. The Sig7W! subspace is 
defined as the span of A(O). The noise subspace is 
the orthogonal complement of the signal subspace. 

Let X(T) = [x(t)],t = I,.",T, be the M x T 
observation matrix - the matrix of snapshot vec­
tors collected in the window (1, ... ,T). Using the 
observation matrix X(T), we present informatioll 
theoretic methods to estimate the number of sig­
nals J( and their frequencies Wk, k = 1, ... , J(. 

Infornlation Theoretic 
Criteria 

We use the minimum desc7'iption length (MOL) 
(3) and the predictive stochastic complexity (PSC) 
[4) techniques. PSC and MOL are the codelengths 
used to represellt data. Both principles are based 
on minimizing the Kullback-Leibler distance be­
tween the true model and the estimated one. 

The MOL criterion for a model of order k at 
time instant T is 

MDL(T, k) = -logf(X(T)I~~') + ~ 10gT (7) 

where f(XllII) is the cOllditional probability den­
sity functioll, and ~} is the maximum likelihood 
(ML) estimate of the parameter vector lII k using 
the observations up to time T. In MDL, data and 
model are encoded separately and the results are 
added to obtain the total codelength. The model 
order at time T is determined from 

k = mill MOL(T, k) (8)
k 

sible models. 
PSC is the codelength for a minimal description 

of data; at time T and for a model order k, it 
amounts to . 

T 

PSC(T,k) = - Llogf(x(t)I~~-l) (9) 
1=1 

where ~~_I is the ML estimate of the parameter 
vector lII k usi ng the observations up to time (t -1). 
The estimated model order at time T is given by 

j( = min PSC(T, k) (10) 
k 

with the minimization performed over all possible 
models. 

4 Harnlonic Resolution 

In a straightforward approach, the conditional 
probability density of X(T) is determined and 
used in (7) alld (9). This approach to detection or 
sinusoids produces erroneous results - ill fact the 
model order is always estimated as 1. This is due 
to the tempo,ral coherency of the signals. 

In this paper, we take an alternative approach 
similar to the one presented in [5] [6]. We propose 
decomposing the observation vectors illto their 
components ill the signal and noise subspaces and 
encodillg them separately. Since the components 
of the observation vectors in the signal and noise 
subspaces are illdependent, the total codelength 
will be the sum of the codelengths or the two com­
ponents. 

Let us represent by p. (0) and Pn (0) the pro­
jection matrices onto the signal and noise su b­
spaces, respectively. The signal subspace is the 
column span of A(O), hence the projection ma­
trix onto the signal subspace is given by 

The projection matrix Ollto the noise subspace is 
then 

Pn(O) =1- P.(O), (12) 

where I is the M x M unity matrix. The observa­
tion vector x(t) can be decomposed as 

x(t) = p.(O)x(t) + Pn(O)x(t). (13) 

The M x 1 vector P .(O)x(t) is in the 21(­
dimensional signal subspace. Similarly, P n (O)x(t) 
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is in the (M - 2[()-dimensional noise subspace. 
We represent these vectors by 

x. (t) p.(f2)x(t), (14) 

x,. (t) P,.(f2)x(t). (15) 

Note that x. (t) and x,. (t) are orthogonal. Hence 

R x = R.(f2) + R,.(f2) (16) 

where R x is the correlation matrix of the obser­
vation vector x(t), and 

R.(f2) p. (f2)Rx P. (n), (17) 

R n (f2) = P n (f2)Rx P n (f2) (18) 

are the correlation matrices of the signal and noise 
components, respectively. 

The noise vector n(t) is a white Gaussain pro­
cess. The probabilty density function of x(t) is 
then 

j(x(t)IRx) = IrrRxl- 1 exp{-xH(t)R;lx(t)}. 
(19) 

We use a stochastic modeling for the signals - an 
example would be when 0' or ¢ are stochastic pro­
cesses. The probability density function for X(T) 
IS 

f(X(T) lUx) = IrrRx1-1' exp{ -Ttr(R; I n.x)} 
(20) 

where tr(.) is the trace operator and 

1 T 
Rx = T L:x(t)xH(t) (21) 

1=1 

is the sample correlation matrix of the observation 
vector. The log-likelihood function for X(T) is 

-logf(X(T)IRx) = TloglrrRxl +Ttr(R;IRx). 
(22) 

We develope the MDL and PSC information 
theoretic criteria for signal resolution. The fol­
lowing lemmas will be used later. 

Lemma 1 Let A, B be n x n Hermitian matri­
ces orthogonal to each other such that A H B = 
B H A = O. If the matrix C is given by 

C=A+B (23) 

where C is full rank, then 

ICI = ((A) ((B) (24) 

where 1.1 is the determinant, and ((.) represents 
the multiplication of the nonzero eigenvalues. 

Proof: See Appendix A. 

Lemma 2 Let Al > ... > A, with multiplicities 
ml, ... ,In, be the eigenvalues of correlation ma­
17'ix R x } and Vk be the eigenvectors. Correspond­
ing values for the sample correlatiqn matrix are 
defined by jk and Vk. Then the M L estimate of 
Ak is 

(25) 

where Lk is the set of integers {L~~II mj + 
1, . : . 'L~~: mj + mk}, and the ML estimate of 
Vk IS 

(26) 

Proof: See [7]. 

4.1 The MDL criterion 

The log-likelihood function using the M L estimate 
of the correlation matrix is given by 

-logj(X(T)IRx) =	 TMlogrr+TloglRxl 

+Ttr(R;IRx ) (27) 

where Rx is the ML estimate of the correlation 
matrix R x . Let us represent by A;(R) and v;(R) 
the eigenvalues and the corresponding eigenvec­
tors of the correlation matrix R, with the eigen­
values arranged in non-increasing order. Using 
Lemma 2, we have 

vi(Rx ) Vi (Rx), i = 1, .. . ,M (28) 

A;(Rx) = Ai (Rx), i=I, ... ,2I< (29) 
M

1
Ai(Rx )	 Ak (Rx), (30)M - 2]( L: 

k=2K +1 
i = 2!( + 1, ... , M. 

Using these results, 

(31 ) 

Substituting this in (27) gives 

- log j(X(T)lR. + Rn) = T M log rr 

+Tlogln.• + Rnl 
+TM. (32) 

We know find the number of unknowns that can 
be freely chosen. R. is a complex Hermitiam ma­
trix with rank 2](. Thus, the number of free pa­
rameters in d.etermining R. is 4](2. The parame­
ter vector f2 is determined by ]( parameters, and 
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u2 is an unknown scalar. Thus the MOL criterion, 
excluding the terms independent of the model or­
der K, is gi ven by 

1\1 OL(T, J() = T log 1ft. + ftn I 
41<2+/(1 T+ 2 og. (33) 

Using Lemma I, we have 

MOL(T, K) 

(34) 

Let us define 

P .(D)RrP. (D). (35) 

P n(D)RrPn(D). (36) 

Using these definitions, 

2J( 

((ft.) IT Ai (R.), (37) 
i=l 

M-2K ) (M-2K) 

M ~ 2K ~ A,(Rn ) (38)( 

So far we have assumed that 1< and Dare 
known, whereas in practice they are to be esti­
mated. Define 

(39) 

where WI,' .. , Wk are unknown frequencies of the 
sinusoids. We find MOL criterion for all k = 
0, ... , M /2 - 1 and choose the minimum to de­
tect the number of signals. The MOL criterion for 
the model k is then given by 

MOL(T, k) Tlog (((ftZ)((ft~)) 

4k2 + k
+ 2 10gT (40) 

where 

2k -k
Ai(R. ), (41 )IT 

i=l 

M-2k ) (M-2k) 

((ft~) = ( M ~ 2k ~ Ai(R~) (42) 

and 

p. (D k )RrP. (D k 
), (43) 

P n (Dk)RrP n (nk 
). (44) 

As seen the computation of the MOL criterion 
depends on the parameter vector Dk . In the orig­
inal MOL approach, an ML estimate of Dk is re­
quired. 

4.2 The PSC criterion 

The PSC criterion is computed for all t inside the 
window [0, TJ. The final value is minimized at the 
end of the window (although the minimization can 
be performed at each step). 

Let us define the sample correlation matrix at 
time instant t by 

The projection of this matrix onto the signal and 
noise subspaces for model k are defined as 

(46) 

(47) 

where D~ is the estimate of parameter vector for 
model k using the observations upto time t. 

The ML estimate of the correlation matrix for 
the k-th model and the (t - I)-th snapshot is 

ftk = Ilk + Ilk (48)
~t-l J'_I n,_t 

where ft:'_1 and ft~,_, are the ML estimate of 
the projection of correlation matrix onto the signal 
and noise subspaces. Using Lemma 2, 

(49) 

Similary, it is possible to show that it~'_1 has the 

same eigenvectors as R~,_, and a single eigenvalue 
with lTIultiplicity (M - 2k) which is found from 

-2(Dk) 1 -k 
(J' I-I = M _ 2k trRn,_" (50) 

Note that ft~ can be obtained by'-I 

(51 ) 

where T~_I is a matrix defined as 

k - . [U2(D~_d]-H
T I _ 1 = V n ,M_2k d1ag A.(R ) V n,M-2k 

J n'_l 

(52) 
with Aj(Rn ,_,), j = 1, ... , M - 2k, being the 
nonzero eigenvalues of Rn'_I' and Vn,M-2k, the 
M x (M - 2k) matrix of corresponding eigenvec­
tors; the diag[.J is a representation for a diagonal 
matrix formed by the elements in the brackets. 

Using Lemma I, the ML estimate of the deter­
minant of the correlation matrix is obtained by 
the multiplication of the nonzero eigenvalues of 
its projected components 
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where from (49) and (50), 

(54)((it~'_l ) 

(55)((it~'_l ) = 

Using these results, the PSG criterion is 

T 

PSGk(N) =L [log((R~f_l) 
t=1 

It is seen that the compu tation of PSG depends 
on the parameter vector r27-1' In the original ver­
sion of the PSG algorithm the ML estimate of the 
parameter vector is used. 

Sitnulation Results 

We include here the results for the simulation 
study. To avoid the computational complexity of 
the ML estimator, we choose to use a root MUSIG 
technique to estimate r2 k . 

Example 1: We study a scenario with two si­
nusoids with the parameters: {O'l = 2,Wl = 
110,.p1 = ~}, and {0'2 = I ,W2 = 160, tP2 = -~}. 

The sampling interval is 1 ms. The data were 
collected over 0.8 second and decomposed into 50 
non-overlapping snapshots of length 16 samples 
each. The case was simulated for 100 independent 
trials. Table 1 compares the PSG and the M DL 
techniques based on the number of times that each 
method resolves the two signals as the noise power 
varies from -2 dB to 12 dB. The MDL and PSG 
algorithms have close performance. 

Example 2: To study the two methods in a time 
varying environment, we simulate a case in which 
the phase of the first signal suddenly changes to 
2; at t = 570 ms. The signals are such as in Ex­
ample I. The observation time is I second. The 
size of snapshot vector is 10. If the MDL criterion 
is computed and minimized at the end of obser­
vation, the number of signals will be dectected as 
4. PSG is computed at each snapshot. The esti­
mated model order as a function of the snapshots 
is depicted in Fig. 1. As seen PSG still detects 
signals. Fig. 2 illustrates the difference between 
the PSG terms. At t = 570 we notice an abrupt 
change in the PSG criterion. This sudden jump 
indicates that the statistics of the model has been 
altered. Thus, PSG can be used for change-point 

detection. MDL does not see this change - it is 
on Iy calculated at the end of observation window. 

Example 3: In this example we study a case in 
which the frequency of the second source is time­
varying with a rate of 4 Hz per second. MDL and 
PSG are computed at each time instant. Note that 
usually MDL is not used as simulated here - we 
use it so as to compare the techniques based on 
their behavior to source drift. The results of model 
selection have been reported in Fig. 3. PSG breaks 
down much later than MDL. This is due to adap­
tive nature of PSG. In fact, at each time t, PSG 
adds it new term to the PSG criterion computed 
at the previous time instant for each model. This 
might compensate for the drift in the frequency. 
Oil the contrary, MDL uses all data upto time t 
and assumes that the characteristics of the sources 
are stationary. 

These two examples show that the PSG algo­
rithm might be more appropriate for a nonsta­
tionary environment. 

6 Conclusion 

This paper presented two information theoretic 
techniques for sinusoidal signal detection. The 
technqiues used the minimum description length 
(MOL) and the predictive stochastic complexity 
(PSG) principles. MDL and PSG both use a code­
length of data for signal enumeration. 

We used a su bspace decomposition approach. 
Data were decomposed into their components in 
the signal and noise subspaces. Since the signal 
and noise su bspaces were orthogonal, the total 
codelength of data was the addition of the code­
length of their components. The codelengths were 
computed for each model and minimized over all 
models. Simulation study showed that for sta­
tionary environment the two techniques perform 
closely. For nOllstationary environments PSG out­
performed M DL. 

A Proof of Lemma 1 

Let 1\a and 1\b be the diagonal matrices of nonzero 
eigenvalues of A and B, and Va and Vb be the 
matrices of corresponding eigenvectors. Then C 
can be written as 

C 

(57) 
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Selected JVlodelNoise 

Table I: The resolution of the two /llethods PSC o 0.5 
alld l'vlOL. Time (sec) 

where V = [VaVb]. Sillce C is a full rank IIcrrlli­ Figure I: The detected Illodel whell tlte phase of 
tian lllatrix it is unitarily diagollalizable anJ the the lirst signal varies at t = G70 /fIS. 
orthonoflnal Illatrix V is its eigenvector "latrix. .. 
Thus the deterlllinant of C is e<.jllal to PSC(T+1 ,2)-PSC(T,2) 

2000..-------..--------,
(58) 

Note that IAal alld lAb I are in fact the /llultiplica­ 1500
 
tion of the nOllzero eigenvalues of A and n.
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o 0.5 1 
Time (sec) 

Power PSC 
(dB) I 2 3 
-2 0 100 0 
0 0 100 a 
2 0 97 3 
4 8 84 8 
6 61 35 4 
8 86 13 1 
10 87 12 I 
12 91 8 I 

MOL
 
I 2 3
 

~4
0	 100 0 Q.l 
0	 100 0 uL...3a0	 100 0 

13 87 0 
~27:3 27 0 o 
:299 I 0 

99 I 0 
100 0 0 

MOL 

PSC 
1 

o 
1 


