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Abstract—Speech spectrograms exhibit strong contextual de-
pendencies along both time and frequency dimensions. In this
paper, a novel composite model integrating a long short-term
memory (LSTM) and convolutional neural network (CNN) to
exploit temporal and spectral contextual speech information,
respectively, is proposed for speech separation. LSTM and CNN
operate in a parallel fashion to speed up the process and
independently extract a complementary set of speech features.
A fully-connected network then maps these features to the real
and imaginary components of a ratio mask to enhance the
magnitude and phase of the corrupted speech simultaneously.
In the CNN path, a new delicately designed CNN with frequency
dilated one-dimension (1D) convolutional layers is employed to
expand the receptive field of CNN kernels without increasing
the complexity. Furthermore, this CNN benefits from residual
learning and skip connections to facilitate training and accelerate
convergence. In spite of different neural networks included in the
composite model, the proposed separation system not only has a
low computational complexity, but also significantly outperforms
some other deep learning-based methods.

I. INTRODUCTION

Speech separation aims at separating a desired speech signal

from its noisy background, consisting of ambient noise and

interference. It has been a challenging topic in the speech

processing area and found many important applications, es-

pecially in speech recognition-related services and products.

Thanks to growing computing resources and widely avail-

able training datasets, significant advances have been made in

data-driven approaches for speech separation in recent years.

These approaches model speech separation as a supervised

learning problem and help resolve some issues of traditional

unsupervised methods, like musical noise and speech dis-

tortion [1][2]. In particular, deep learning as a promising

alternative to statistical solutions has been extensively used

to develop supervised methods.

Xu et al. [3] employed a fully-connected (FC) network to

directly map the log-power spectrum (LPS) of noisy speech

to that of the clean one, and reported a significant improve-

ment on speech quality and intelligibility in comparison with

traditional speech separation methods. Many similar methods

were introduced, as in e.g. [4] and [5]. Although direct

mapping is straightforward, it requires a large training dataset

to accurately learn the mapping between input and output.

On contrast, deep learning-based methods were proposed in

[6] and [7], where the network target is one of the common

spectral masks, such as ideal binary mask (IBM) and ideal

ratio mask (IRM). In these methods, the masks are applied to

a subset of spectrogram time-frequency (TF) cells of the noisy

speech. These methods yield notable improvements in speech

separation results. The authors in [7] also compared the speech

separation performance resulting from different mask types

with direct mapping, and showed that masking-based methods

generally give a better separation performance. Besides, to

enhance speech phase alongside magnitude, a complex IRM

(cIRM) was presented in [8], where an FC network was

employed to predict the spectral mask.

Most of the above methods use an FC network to estimate

a desired target, while they neglect the strong temporal depen-

dencies of speech. Even though some of these studies adopt a

concatenation of several consecutive speech frames as input to

the network to make use of the temporal information, this not

only causes additional network complexity, but also processing

delays, especially when a large window size is chosen. More-

over the information outside the window is always ignored

regardless of the window length. To resolve these issues, Jitong

et al. [9] proposed an LSTM network for IRM estimation

which shows substantial performance improvements as well as

better speaker generalization over the FC network. Although

LSTM exploits the temporal contextual information of speech,

it does not consider the spectral dependencies in speech

spectrogram.

Several neural network architectures based on a combination

of LSTM and CNN including CLDNNs [10], multi-LCNN

[11], and hybrid LSTM-CNN [6] were suggested to extract

the temporal and spectral contextual information of an input

voice for acoustic scene classification. Apart from the fact that

these models were not tested for speech separation, due to the

restricted receptive field of the CNN filters, they encounter

limitations in the CNN path. Since the frequency dimension

of speech spectrogram is on the order of a few hundred,

there is a need for a large receptive field of CNN kernels

to maintain the contextual information along the frequency

axis. To overcome this issue, researchers have suggested using

large CNN kernels and stride convolution. However, a larger

CNN kernel increases the complexity while the stride convo-

lution overly smooths the TF cell prediction. Furthermore, the

pooling layer in the traditional CNN structure only retains the

rough information of the receptive field. Hence, a new CNN

structure with 1D convolution in frequency and 2D dilated

convolution in the TF plane was proposed to overcome these
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Fig. 1: Proposed composite model with two parallel paths.

problems in our previous work [12].

In this paper, we propose a composite model using a light

LSTM and a new low-complexity CNN to simultaneously

extract a complementary set of spectral and temporal speech

features. The LSTM and CNN operate independently in a

parallel fashion, where the former extracts temporal informa-

tion in the RNN path, while the latter simultaneously exploits

spectral information in the CNN path. Unlike the serial models

such as CLDNN and LCNN, where the performance of each

step depends on the previous step, the components in our

composite model function independently which can speed up

the process. The outputs of both paths are then fused and

input to an FC network to be mapped to a complex ratio

mask for enhancing both speech magnitude and phase. It

is shown that the new composite model not only gives a

superior speech separation performance, but also has a lower

complexity compared to some existing deep learning-based

methods.

II. PROPOSED COMPOSITE MODEL

The proposed model integrates an RNN, CNN, and FC

network as shown in Fig. 1. For the CNN path, the short-

time Fourier transform (STFT) of the input speech is fed to

the CNN to exploit the spectral contextual information of the

speech. Meanwhile, the Mel frequency cepstral coefficients

(MFCCs) are computed within the RNN path and then input to

the LSTM network to extract the speech temporal information.

The fusion layer combines the outputs from the CNN and

RNN paths and delivers them to an FC network for the final

regression where the objective is to estimate the real and

imaginary components of a complex ratio mask. The main

components of the network are described in the following.

A. Complex Spectrogram and Ratio Mask

Application of STFT to the clean speech yields its complex

spectrogram as S(k, l) = Sr(k, l) + jSi(k, l), where Sr and

Si are the real and imaginary components of S, and k and

l denote time frame and frequency bin, respectively. In the

sequel, the (k, l) argument will be omitted for brevity. Since

Sr and Si bear both speech phase and magnitude information,

they can be considered as the training target of the network

to enhance both the magnitude and phase of the noisy speech

simultaneously. Due to similar structures, a single network can

be employed to predict both Sr and Si at the same time [13].

However, estimating a TF mask is more efficient than a direct

spectrogram [8]. Hence, considering that S = M ◦ Y , where

M and Y respectively denote the STFT of the spectral mask

and noisy signal and ◦ denotes element-wise multiplication,

we can express mask M in terms of its real and imaginary

components as follows,

M =
YrSr + YiSi

Yi
2 + Yr

2
+ i

YrSi − YiSr

Yi
2 + Yr

2
(1)

It is worth mentioning that these components are then com-

pressed by tangent hyperbolic, since they are originally of a

wide dynamic rage not suitable for neural network.

B. CNN Path: Dilated 1D Frequency Convolution

The purpose of the CNN path is to exploit spectral contex-

tual information of speech. The real and imaginary compo-

nents of the input STFT are fed to the CNN as two channels.

To exponentially expand the receptive field of CNN kernels,

four dilated 1D frequency convolution layers are stacked

with increasing dilation rates of 1, 2, 4, and 8. The 1D

convolution is chosen, since the goal of this path is to exploit

the contextual information alongside the frequency axis and

reduce the computational burden of CNN. To maintain the

network symmetry, the number of channels for the four layers

is respectively set to 16, 32, 16, and 8 with ReLU activation

function. The output of each layer is input to an identity

mapping layer to adjust the number of channels and then added

to the outputs of other dilated 1D frequency layers. By the

identity mapping layer, we mean a layer with a kernel size of

1 × 1 which just changes the number of channels. To adopt

residual learning, the input of each layer is taken as the sum

of the output and the bypassed input of the previous layer.

Finally, the number of channels of CNN output is shrunk by

the last identity mapping layer, and then the flattened output

is delivered to the fusion layer.

C. RNN Path

In the composite model, LSTM is employed to extract

temporal contextual information of the input speech. In the

RNN path, two layers are stacked each having 128 LSTM

units. The dropout technique at the rate of 0.3 is adopted to

avoid over-fitting and improve generalization. We point out

that, unlike CNN, feeding LSTM with input STFT will not

lead to good results. Hence, MFCCs concatenated with their

deltas and acceleration are selected as the LSTM input, as

further explained in Section III-C.

D. Fusion and Regression

The flattened output of the CNN and RNN paths are

combined by an FC fusion layer. Afterward, the enriched

complementary set of features bearing temporal and spectral

information of the input speech is mapped to the real and

imaginary components of a complex ratio mask using a 2-

layer FC network, where each layer consists of 512 nodes
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with ReLU activation function being utilized. Furthermore, the

dropout technique is again utilized here at the rate of 0.3. It is

worth mentioning that the composite model never encounters

an over-fitting problem since it is trained with a huge amount

of data while the number of parameters is relatively small. As

such, the network learns just fundamental information from

the training dataset but not the details.

III. EXPERIMENTS

A. Experimental Setup

The performance of the composite model is evaluated with

TIMIT [14] dataset consisting of 6300 utterances spoken by

630 males and females. These utterances are mixed with ran-

dom cuts of non-stationary noises, namely babble, restaurant,

street, and factory, from NOISEX-92 [15] at SNR levels of

−5, 0, 5, and 10 dB. In total, more than 100, 000 (6300 × 4
noises ×4 SNR levels) mixtures form the training dataset.

The sampling rate is set to 16 kHz and the input utterances

are divided into frames of 320 samples using a Hanning

window with 160 samples overlap, equivalent to 20 ms frame

length and 10 ms frameshift, based on which a 320-point

DFT is then computed for each frame. Testing is performed

using 60 unmatched utterances mixed with unseen cuts of the

aforementioned noises and unmatched SNR levels of −6, 0, 6,

and 12 dB, i.e. 960 (6300×4 noises ×4 SNR levels) mixtures.

Adam optimizer is used to minimize the MSE cost function

defined between the ground truth and the network-estimated

real and imaginary components of the ratio mask with size

322 (161 × 2 for real and imaginary). Finally, evaluation of

the enhancement results is carried out by means of PESQ and

segmental signal-to-noise ratio (SSNR) objective measures.

B. Comparison of RNN types for Composite Model

LSTM consists of three control gates and one memory cell.

An efficient implementation of LSTM is GRU which consists

of just two gates and no memory cell. These processing units

can be also used in a bidirectional fashion. Here, we test

bidirectional LSTM (BLSTM) in our comparison study [16].

To conduct the comparison, two hidden layers of the afore-

mentioned RNN types, each having 128 units, are used to

build the RNN path of the composite model. Figure 2(a) illus-

trates the average PESQ score improvement of the composite

model using BLSTM, LSTM, and GRU, on all the mentioned

noises and SNR levels. Figure 2(b) shows the comparison of

computational time, memory, and the number of parameters

of the model using different RNN variations. Clearly, the

model using BLSTM outperforms that using LSTM or GRU

for males, but the number of parameters of the model using

BLSTM jumps by around 33% compared to LSTM and

GRU. Consequently, more computational time and memory

are exhausted by the model using BLSTM in the RNN path.

However, though the computational cost of using GRU or

LSTM in the RNN path is roughly the same, the performance

of the model using LSTM is better than GRU for males and

better than both BLSTM and GRU for females. Hence, LSTM

offers the best trade-off for the composite model to exploit the

temporal contextual information of the input speech.
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Fig. 2: Comparison of different units, (a) Average PESQ score

improvement, (b) Comparison of computational time, memory,

and number of parameters (in million).

C. Comparison of Different LSTM Network Inputs

Here, we investigate the whole model performance using

well-known spectrogram-based and Gammatone-domain fea-

tures, namely: MFCC, log Mel-filterbank energy (Log-Mel)

[17], Gammatone frequency (GF) [5], and multi-resolution

cochleagram (MRCG) [18]. These features are concatenated

with their delta and acceleration and then normalized to

zero mean and unit variance to avoid unbiased participation

of different components of the feature vector. Consequently,

the feature size for MFCC, Log-Mel, GF, and MRCG is

39, 78, 64,, and 768, respectively. The comparison results are

shown in Fig. 3 in terms of PESQ performance, computational

time, memory, and the number of parameters. As shown,

MRCG yields the best model performance which results not

only from the high quality of these features, as they use local

and contextual information of speech cochleagram, but also

from the high number of network parameters when employ-

ing these features, which is about 27% more than others.

Similarly, GF features lead to relatively better results as they

are also defined in gammatone-domain. However, extracting

these features is quite costly in terms of computational time

in comparison with Log-Mel and MFCC, which are extracted

roughly 20 times faster, while the model performance using

them is comparable with GF. Between Log-Mel and MFCC

which result in equal model performance, MFCC is preferable

because of its smaller dimension. In conclusion, the MFCC

features are used as the input of the LSTM network.

D. Comparison with other DNN-Based Methods

To show the advantage of the composite model, it is

compared with some other well-known deep learning-based

methods. Spectral magnitude mask (SMM), IRM [7], and

cIRM are three mask types that are predicted by an FC network

with three-layers each having 1024 units. Predicted SMM and

IRM are applied to the magnitude spectrogram and the clean

speech is then reconstructed using the input noisy phase, while

cIRM enhances both magnitude and phase simultaneously. In

contrast, FFT-Mag [7] directly maps input STFT magnitude

to the clean speech spectral magnitude using a three-layer FC

network with 1024 units per layer, and the target magnitude
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Fig. 3: Feature comparison: (a) Average PESQ score improve-

ment; (b) Comparison of computational time, memory, and

number of parameters (in Million).

TABLE I: Average SSNR and PESQ Scores of Different

Methods With Unmatched SNR Levels

Method
PESQ SSNR No. of Pa-

rameters-6 0 6 12 -6 0 6 12

Unprocessed
1.29
0.98

1.64
1.35

2.02
1.79

2.41
2.20

-9.03
-8.54

-5.00
-4.85

-0.50
-0.36

4.31
4.33

-

FFT-Mag
1.84
1.40

2.28
1.80

2.61
2.11

2.81
2.28

0.49
0.74

2.14
2.21

3.44
3.44

4.40
4.28

2.66M

TMS
1.72
1.49

2.20
2.00

2.62
2.45

2.95
2.82

0.88
1.45

2.68
3.26

4.53
4.98

6.07
6.29

12.35M

IRM
1.83
1.41

2.40
2.02

2.95
2.62

3.41
3.15

-0.98
-0.55

3.25
3.62

7.13
7.73

10.21

11.14
2.66M

SMM
1.85
1.45

2.30
1.95

2.71
2.39

3.10
2.83

-1.22
-0.56

2.03
2.70

5.50
6.07

9.51
9.97

2.66M

cIRM
1.98
1.65

2.48
2.17

2.94
2.63

3.34
3.07

1.04
1.22

3.84
4.00

6.63
6.59

9.21
9.15

2.82M

Proposed
2.00

1.74

2.52

2.30

3.01

2.76

3.42

3.20

1.50

2.04

4.25

4.72

7.19

7.54
10.16
10.25

0.99M

spectrum (TMS) [3] maps log-power spectral magnitude of the

noisy speech to that of the clean one by the same network,

except for the use of 2048 units per layer. Both FFT-Mag and

TMS reconstruct the clean speech with input noisy phase.

The results of the comparisons are shown in Table I. The

values in the table are the average of PESQ score and SSNR

over all the noises at unmatched SNR levels of −6, 0, 6, and

12 dB. The upper and lower numbers in each table cell are

for males and females, respectively. As shown, the proposed

composite model outperforms all other methods in terms of the

PESQ score. With respect to the SSNR, the composite model

yields better results at SNR levels of −6 and 0 dB for both

males and females as well as at 6 dB for males, while IRM

performs slightly better for females at 6 dB SNR level and

also marginally better at 12 dB for both males and females.

In regards to the number of model parameters, the same table

shows that the promising performance of the composite model

is achieved at a lower computation cost where only 0.99 M

parameters are involved.

IV. CONCLUSION

In this paper, a composite model has been proposed for

speech separation in which a light LSTM and a new CNN

structure are exploited to extract the temporal and spectral

information of input speech. A complex ratio mask is con-

sidered as the network objective to simultaneously enhance

both magnitude and phase of the input mixture. The perfor-

mance of the composite model using different RNN variations

with different inputs was then compared. Through a series

of comparative experiments, the advantages of the proposed

model over some known deep learning-based methods in both

separation performance and computational complexity were

finally demonstrated.
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