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Abstract—Bayesian estimators of short time spectral ampli-
tude (STSA) have received considerable attention in the field
of speech enhancement. In this paper, we propose new multi-
microphone extensions for the conventional Ephraim and Malah’s
speech spectral amplitude estimation method. Unlike the con-
ventional estimators where the spectral phase is assumed to be
uniformly distributed, the proposed extensions treat the latter
as an unknown parameter to be estimated. It is shown that the
proposed methods can exploit spectral phase estimates to improve
the performance of the current speech STSA estimators and
have the potential to provide even further improvement given
a more accurate estimate of the spectral phase. Experimental
results indicate the superiority of the new approaches in terms
of noise reduction and speech distortion measures, in addition to
the reduced computational complexity provided by the proposed
minimum mean square method as compared to state-of-the-art
solutions.
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I. INTRODUCTION

Speech enhancement aims at the estimation of a clean
speech signal from its noisy observations. In this application,
frequency domain methods have become a dominant choice
for practical systems, due to their effectiveness in providing
better separation of the clean speech from the noise in addition
to their efficient implementation via fast Fourier transform
(FFT) [1]. Among the well-known speech spectrum estimation
methods, the class of short-time spectral amplitude (STSA)
estimators proposed by Ephraim and Malah in [2] and [3]
are favored due to their superior performance compared to
the other classical approaches like spectral subtraction and
Wiener filtering. These authors proposed to estimate the speech
STSA by minimization of cost functions representing the
error between the clean speech and the estimated speech
spectral amplitude with the spectral phase treated as a nuisance
variable. Several major modifications of their groundbreaking
work have been later suggested in the literature, either by
defining new perceptually more relevant cost functions, e.g.
[4] and references therein, or by taking into account heavy-
tailed non-Gaussian prior distributions in modeling the clean
speech STSA [5].

It is noted that the above mentioned STSA estimators are
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derived by assuming a uniformly distributed speech spectral
phase and then treating the problem by taking statistical
expectation with respect to this unknown phase. Although
being optimal in the sense of minimum mean square error
(MMSE), these methods lack the use of any prior information
for the phase component, and therefore, neglect the potential
to improve the speech STSA estimation performance by em-
ploying the spectral phase estimate. Moreover, they lead to
the appearance of complex hypergeometric or modified Bessel
functions in the structure of the STSA gain functions, which
are computationally expensive and numerically unstable for
large input arguments.

In this paper, we propose to treat the speech spectral phase as
an unknown parameter to be estimated and obtain a new class
of STSA estimators which exploits the phase component in its
structure. We consider a more general scenario of speech STSA
estimation with microphone array and obtain the unknown
spectral phase component by conventional estimation methods.
We investigate the new estimators with spectral phase in terms
of objective quality measures as well as computational load,
and demonstrate that they outperform the conventional STSA
estimators where the speech spectral phase is treated as a
uniformly distributed random variable.

II. PROBLEM STATEMENT

We consider a multiple microphone configuration for the
proposed method, leaving the single microphone scheme as a
special case. Without loss of generality, we assume that a set
of N microphones are used to capture the noisy observation
waveforms y,, (t). The latter consists of the time delayed clean
speech signals x(t — 7,,) contaminated by additive spatially
uncorrelated noise samples vy, (t), where n is the microphone
index and 7, is the relative time delay of the speech signal
in the nth microphone with respect to the reference (first)
microphone. Assuming the microphone array can accurately
time align the delayed speech signal components, z(t — 7,,),
to compensate for the time delays, we have equivalently that

yn(t) = x(t) +vn(t), n=12,..,N (D

where x(t) is the coherent speech signal under estimation.
After sampling and using short-time Fourier transform (STFT)



analysis, the noisy speech signal can be represented in the
frequency domain as

Yo(k,l) = X(k, 1)+ Vo(k,D), n=1,2,.,N (2)

with k£ denoting the frequency bin number and [ the time frame
index. The speech spectral component X (k,[) can be written
as X (k,1) = A(k,1)e?*D with A(k,1) > 0 being the spectral
amplitude and 0(k, 1) € [—m, 7| the spectral phase. The goal of
the proposed STSA estimator is to estimate the signal’s spectral
amplitude A(k,[) given the set of noisy spectral observations
Yo (k,1).

III. PROPOSED STSA ESTIMATORS

In this section, we first derive a novel solution for the
MMSE STSA estimation problem in the general multiple
microphone case, based on an estimate of the speech spectral
phase. Next, an extension of the MMSE based algorithm using
a generalized Bayesian cost function is introduced. Finally,
the problem of spectral phase estimation is addressed using a
multi-microphone MMSE algorithm.

A. Proposed MMSE STSA estimator

An MMSE based spectral amplitude estimator aims at
minimization of the MMSE cost function, E{(Ay — Ax)?},
given the set of spectral observations, where A; and Ay
denote the clean and estimated speech STSA, respectively and
E{.} is the statistical expectation. As discussed in [2], the
general form of an MMSE optimal STSA estimate, AMMSE
in the single microphone case, based on the assumption of
independent spectral observations, is indeed the conditional
expectation of the STSA given the spectral observation, i.e.,
E{Ay|Yy}. In [7], it is stated that for the multiple microphone
case, the conditional expectation is replaced by E{A|Yx}
with Y, = [ijl,Yk,g,...,YhN]T as the vector of spectral
observations from all microphones. Note that, hereafter, we
omit the time frame index [ for brevity and only note the
frequency bin number k. In contrast to [2], we base our STSA
estimation on treating the spectral phase component 6(k) as
a known parameter that will be replaced by the estimated
speech phase later in this section. Using Bayesian rule for the
a posteriori probability density function (pdf) of the spectral
amplitudes, p(a|Yy), we obtain [2]

Alzf\/IMSE _ fOO:Oap(Yk|a, Or)p(a)d,
fO p(Yk|a79k)p(a’)da

with p(Yg|a,0;) and p(a) as the conditional pdf of the
observations and the STSA prior distribution, respectively. To
derive the resulting STSA estimator, further assumptions are
required for the aforementioned distributions. In the single mi-
crophone case, based on the assumption of complex Gaussian
distribution for p(Yj|a, 6x) resulting from the complex noise
components, and also Rayleigh distribution for the STSA prior
pdf [6], we have

3)
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where ogk and aik are the spectral noise and speech STSA
variances, respectively. We consider a diffuse noise field
where the noise component across all microphones is spatially
uncorrelated. Using the model in (2), it is inferred that the
conditional observation pdf, p(Yx|a,0), can be written as
the product of the individual observation pdfs across all
microphones [7]. Under this assumption and by considering
Yin = kaej Oui,m , we can obtain the conditional joint pdf of
the observation vector as

N N
1
Yela,0k) = Yinla, O) = 6
p(Yrla, 0r) nl;[lp( @, 01) 711;[17r 12)Mx (6)
N 2 2
2Ry na cos(ﬂk - ka,n) —a" - Rk n
exp (; 012”@7"

where n denotes the microphone index. Substituting (5) and
(6) into (3), and using Eq. (3.462.5) and Eq. (3.462.7) in [8] to
compute the resulting integrations in (3), the following MMSE
STSA estimator is obtained

e g (252) o () - )
S SN N )

where erf(.) denotes the Gaussian error function and the
parameters py and v are defined as

_ _ k,n o
P = —5 + E 5 Vk E = cos(bx — Oy, .n)
k n=1 Yk n=1_Uk:n
3

It is observed that, unlike the state-of-the-art spectral amplitude
estimation methods, the proposed STSA estimator in (7) does
not employ hypergeometric or modified Bessel functions,
and instead, exploits one error function term which has less
computational load and has a fast convergence rate by using
its power series expansion [9].

B. Extension to the auditory based STSA estimator

The MMSE spectral amplitude estimator exploits the most
basic cost function, i.e., the expected value of the square
error between the clean and estimated STSA. Yet, a few
developments of such cost functions have been suggested and
used in the literature, such as the auditory based (weighted
B-SA) cost function introduced in [4]. Minimization of this
parametric Bayesian cost function results in the following
STSA estimator

1/Bk
E {Afk—%xk |ch} F

AAuditory _
’ E{ A% Y}

(€))

where o, and [ are the frequency dependent parameters of
the cost function. Hence, to extend our proposed estimator for
the auditory based cost function, in light of (9), it is required
to obtain the conditional expectation, E{Af|Y}} with p as an
arbitrary power. In a more general case than that in (3), use of
Eq. (3.462.1) in [8] to handle the resulting integration leads to

L(p+2)D_(p+2) ( M%Vk)

r@)ewsD-2 (\/Zu)

E{A?|Y:} = (10)



with D (.) as the parabolic cylinder function defined by Eq.
(9.24) in [8], I'(.) as the Gamma function, and py, and vy as
given by (8). Now, by using (10) into (9), an auditory based
formulation of the STSA estimator is obtained as

1
Br
T'(Br — 200 + 2)Doqy—pj—2 ( lV/c) §

B
P(2 = 200)(240) # Dz 2 (/200

1 Auditory
Ay =

a1
It should be noted that the frequency dependent parameters oy
and [ are to be selected based on the properties of human
auditory system, which is elaborated in [4]. Also, the above
considered cost function, and hence the resulting estimator,
are simplified to the MMSE estimator discussed in Subsection
III-A by choosing ay, and B to be zero and one, respectively.

C. Estimation of the Speech Spectral Phase

As stated in Subsection III-A, the spectral phase of the
speech signal, i.e., 0y, is regarded as an unknown parameter
which needs to be estimated. In [2], it is proved that an MMSE
optimal estimate of the principle value of the phase is simply
the noisy phase of the spectral observations, i.e., 0, ,. All
typical STSA estimators, for the same reason, aim at estimation
of the spectral amplitude while keeping the phase unchanged.
Nevertheless, recently there has been growing interest in the
investigation of the spectral phase component in the spectral
estimation process [10]. Whereas in the multi-microphone
scenario, averaging schemes can be done across the noisy
phases of different observations, in the diffuse noise field,
i.e., spatially uncorrelated noise, the following MMSE optimal
phase estimator, 6, has been derived in [7]

SN (VCen)Toem) S{Vin}
SN (VCen/Toem) R{ Vi)

where (. , is the a priori SNR defined as 03, /o2, . and R{.}
and ${.} denote the real and imaginary parts. While in the
single microphone case, we still use the input noisy phase as
the spectral phase estimate to be combined with the estimated
STSA, the aforementioned method is employed to estimate the

spectral phase component in the multi-microphone case.

tan(@}c) = (12)

IV. PERFORMANCE ASSESSMENT

In this section, we investigate the performance of the
proposed multiple microphone speech enhancement methods
in terms of objective measures. We choose clean speech
sentences from TIMIT database [11] and additive babble noise
at various SNR points from NOISEX-92 [12]. The sampling
rate is set to 8 kHz and a time segmental length of 20 ms is
chosen for the STFT. To evaluate the estimators parameters as
in (8), the noise and speech variances are required. Due to the
non-stationarity of the considered noise scenarios, estimates of
the noise variance o2 . are obtained using Cohen’s soft-decision
IMCRA method [13]. The spectral speech variance Jik is then
obtained by the product Ck.aﬁk where (j; is the a priori SNR,
which in turn, is estimated by the decision-directed approach
[2]. For the single channel scenario, we consider the proposed
MMSE and auditory based estimators, defined respectively in
(7) and (11) with N = 1, and compare their performance to
that of the MMSE [2] and logarithmic MMSE (Log MMSE)
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Fig. 1. Segmental SNR for the proposed and conventional STSA estimators
versus the input SNR for the single-microphone case.
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Fig. 2. Segmental SNR for the proposed and conventional STSA estimators
versus the input SNR for the multi-microphone case with N = 2.

[3] estimators. In the multi-microphone case, however, com-
parisons are made with the multi-microphone generalizations
of the MMSE and Log MMSE methods introduced in [7].

To assess the noise reduction performance of our methods,
we investigate the segmental SNR of the enhanced speech
signals for both the single and multiple microphone scenarios.
Fig. 1 shows the segmental SNR measure of the output speech
signal for the discussed methods versus the input SNR of
the noisy speech signal for the single microphone case. The
results corresponding to the two-microphone case are shown in
Fig. 2. It is apparent that in the single microphone scenario, the
proposed estimators reach better performance scores compared
to the conventional estimators for a moderate range of the input
SNR. This advantage along with the relative computational
efficiency is inherent in the structure of the proposed MMSE
estimator. As for the multi-microphone scenario, the same
trend appears to be true while the auditory based estimation
approach largely outperforms the other estimators. This proves
the usefulness of the employment of more elaborate cost func-
tions in the multi-microphone STSA estimation methods. Next,
we assess the performance of the proposed STSA estimators
using the log-likelihood ratio (LLR). Whereas the segmental
SNR is associated with the amount of noise reduction in the
enhanced speech, the LLR measure commonly corresponds to
the level of distortion in output speech signal, with smaller
LLR values indicating smaller speech distortion. Figs. 3 and
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Fig. 3. LLR performance measure for the proposed and conventional STSA
estimators versus the input SNR for the single-microphone case.
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Fig. 4. LLR performance measure for the proposed and conventional STSA
estimators versus the input SNR for the multi-microphone case with N = 2.

4 indicate the LLR measurement in the cases of the single
and multiple microphones, respectively. In a fashion similar
to that for the segmental SNR measure, both the MMSE
and auditory based STSA estimators outperform Ephraim and
Malah’s estimators with the auditory based estimator showing
a higher level of improvement. This leaves an open topic
for further investigating the structure of the Bayesian cost
functions used in the STSA estimators.

TABLE 1. EXECUTION TIME PER SECOND OF THE INPUT SPEECH

SIGNAL FOR DIFFERENT METHODS

Method Normalized Execution Time ]
Conventional MMSE with N =1 0.77
Proposed MMSE with N =1 0.54
Conventional MMSE with N = 4 1.29
Proposed MMSE with N =4 0.98

We have also experimentally evaluated the performance of
the proposed MMSE method in terms of the computational
load. As discussed in Section III, the proposed estimators use
the Gaussian error function as opposed to the computationally
lengthy hypergeometric or modified Bessel functions used
in the conventional STSA estimators. Table I illustrates the
execution time needed to process each second of the noisy
speech files of large sizes on a dual core i7 CPU at 2.80GHz
with 4 GB of RAM. We measured the time length needed
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for the execution of the methods in Matlab and normalized it
with respect to the time length of the input noisy speech. The
MMSE estimator in (7) is considered herein for comparison
with the conventional MMSE estimator for N = 1 and
N = 4. Smaller normalized execution times for the proposed
STSA estimation methods prove their relative computational
efficiency in comparison with their previous counterparts.

V. CONCLUSIONS

In this paper, we have proposed new structures for the
conventional Ephraim and Malah’s speech STSA estimators,
by using the spectral phase estimate of the speech signal.
In addition to providing superior performance in terms of
objective measures, the proposed Bayesian MMSE method
is found to be advantageous in terms of computational com-
plexity over the conventional MMSE estimator. Extension of
the introduced STSA estimators to the multiple microphone
scheme in the case of diffuse noise fields was also studied
and the corresponding results demonstrated that the use of
more elaborated Bayesian cost functions, e.g., the auditory
based cost function, is highly beneficial in such scenarios.
Based on this study, innovation of spectral phase estimators
and use of perceptually more relevant Bayesian cost functions
are expected to further improve the current STSA estimation
methods.
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