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ABSTRACT

We present a new algorithm for collaborative uplink transmit
beamforming with robustness against mismatches in the chan-
nel state information. The beamforming coefficients are com-
puted at the base station using the uplink measurements and
fed back to the cooperating terminals. This can be considered
as a robust feedback of the channel state. Our beamformer is
derived by minimizing the total transmitted power while pre-
serving the received signal at the base station for all the chan-
nel realizations within a prescribed uncertainty set. The prob-
lem is formulated as a second-order cone program that can be
efficiently solved using interior point methods. Simulations
results are presented showing the superior performance of our
technique compared to classical transmit beamforming.

1. INTRODUCTION

Multihop relaying is one of the major modifications to the ar-
chitecture of wireless cellular networks to achieve the high
data rates envisioned for fourth generation wireless systems.
In these systems, multiple relay terminals can collaboratively
transmit the signal of a nearby user to a distant base station.
Hence, multiple antenna signaling techniques can be used
to exploit the spatial characteristics of the channel. Trans-
mit beamforming is one of the approaches to exploit these
characteristics as it is capable of providing spatially matched
transmission that increases the received signl-to-noise ratio
(SNR) at the target destination and reduces interference to
non-targeted base stations [1].

Optimum collaborative transmit beamforming requires ex-
act knowledge of the channel state at the transmitting relay
terminals. However, this information might be difficult to ac-
quire at the terminals due to the time varying nature of the
channel [2], and/or relative phase and frequency offsets be-
tween the various terminals [3]. Many adaptive beamforming
algorithms have been recently proposed to provide robustness
against various mismatches in the array manifold (e.g., [4],
[5] and the references therein). These algorithms are based
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on preserving all the received signals within a predefined un-
certainty set centered around the channel state estimate. How-
ever, only line-of-sight (LOS) propagation was considered in
all these receive beamforming algorithms. Moreover, it was
assumed that the array elements are located within a single
processing unit, and hence, these algorithms are not suitable
for collaborative transmission scenarios where the array el-
ements are distributed among different relay terminals with
each terminal having an estimate (together with its associated
uncertainty) of its channel vector only. This limits the ability
of these approaches to exploit the good estimates that some
terminals may have of their channels [6].

In this paper, we consider the problem of robust collabo-
rative beamforming for uplink transmission. First, we present
a unified signal model for both LOS and flat fading channels.
Our signal model divides the available channel information
into two parts: a perfectly known part that corresponds to the
second-order statistics of the channel or the local array man-
ifolds of the cooperating terminals, and a possibly erroneous
estimate of the channel realization driving vector that cap-
tures the channel randomness and is assumed to belong to a
prescribed uncertainty set. We formulate our beamforming
problem as minimizing the total transmitted power by the co-
operating terminals subject to a constraint that preserves the
received signal at the target base station for all the channel
vectors in the uncertainty set. The problem is converted to
a convex optimization problem that can be solved efficiently
with polynomial complexity using interior point methods [7].
We also introduce additional convex constraints that limit the
interference received by nearby stations even in the presence
of channel mismatches. Hence, using the uplink measure-
ments, the base station can compute and feedback the uplink
beamforming coefficients to the cooperating terminals. This
can be viewed as a robust feedback of the channel state. Simu-
lation results are presented showing the superior performance
of our beamformer compared to classical beamforming tech-
niques in both LOS and flat fading channels.

2. SIGNAL MODEL

We consider the uplink of a narrowband wireless communica-
tion system with M relay terminals collaboratively transmit-
ting a common signal to the base station. The mth terminal
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is equipped with a k,,-element antenna array. The received
baseband signal at the base station at the ith time instant is

M
y(i) =Y whhms(i) + w(i) = whs(i) + w(i) (1)

where (-)T and (-) denote the transpose and Hermitian trans-
pose, respectively, s(4) is the common information signal trans-
mitted by the M relay terminals, h,, is the k,, X1 vector con-
taining the channel coefficients from the mth terminal to the
base station, w,, is the k,,, x1 beamforming vector of the mth
terminal, and w(z) is white Gaussian noise with zero mean
and variance 02 . The K x 1 stacked channel vector h is given
byh=T[h{,...,h}]T where K = "M _ k., and the K x1
vectorw = [wT ..., w%,]" is the beamforming vector.

2.1. Line-of-Sight Propagation Environment

In the case of LOS propagation, the channel vector of the
mth terminal can be written as h,,, = e 727 foTmq, (6,,) [3],
where @, (0) =[1, e~ 92 form20m) =327 foTm knl0m)]T £,
is the carrier frequency, 7, ;(6,,) is the propagation delay of
the signal transmitted from the ith antenna of the mth terminal
towards the base station, located in the direction 8,,,, relative
to that of the signal transmitted from the first antenna of the
mth terminal, and T}, is the propagation delay of the signal
transmitted from the first antenna of the mth terminal relative
to that transmitted from a common reference point. We can
write the stacked channel vector as

h=Vn 2)
where n = [e’ﬂﬂf‘)Tl, e e’j%fOTM] Tis the channel real-
ization driving vector, the K x M matrix V' is given by

ai (91) 0 . 0
vV — 0 0,2(92) 0 . ’ 3)
: 0 e 0
0 - 0 an(fm)

and O is column vector of zeros with appropriate dimension.
We can see from (2) that the channel vector can be decom-
posed into the product of a matrix V' that contains the local
array manifold vectors of each terminal and a vector n con-
taining the relative phase offsets between different terminals.
The uncertainty in the location and/or the synchronization er-
ror of the mth terminal can be modeled as an error in the
propagation delay 75, and hence, as an error in the vector no
[3]. Thus, we can model the channel vector h as

h=V (n+A) 4
where 7. = [e‘ﬂ’rf”ﬁ, o e‘jg“ff‘Tf‘f]Tis the estimate of the

vector 1 and {7, } are the presumed delay offsets.

2.2. Flat Fading Propagation Environment
In the case of multipath flat fading channels, the channel vec-

1
tor of the mth terminal can be written as h,,, = Ran,, [2],

where R, is the covariance matrix of the channel vector of
the mth terminal, and n,, is a k,, x 1 vector of independent
zero mean, unit variance, circular Gaussian random variables.
Note that we have assumed that the channel vector of each
relay terminal is independent of that of the other terminals,
i.e., the terminals are well-separated in space. Therefore,
we can write the stacked channel vector as h = Vn where
the K x 1 channel realization driving vector n is given by

n = [n{,...,n%}]TandtherKmatrixVisgivenby
1

RrR; 0 ... O
1
5

vV — 0 R; O )

0o . 0

1

0o ... 0 Rj

In practice, we can assume that the channel is quasi-stationary,
i.e., the second-order statistics of the channel are approxi-
mately constant within a certain stationarity period [2]. Hence,
we can model the stacked channel vector h by the same model
as that in Eq. (4) where n=[n] , ..., 73] is the estimate of
n, e.g., obtained by (delayed) feedback from the base station,
and A is the corresponding error vector.

3. ROBUST TRANSMIT BEAMFORMING

If the cooperating terminals have perfect knowledge of the
channel vector h, the optimum (power-constrained) beam-
former that maximizes the received signal-to-noise ratio (SNR)
at the base station can be found by solving the equivalent min-
imum variance distortionless response problem [4]

i wvn =1, (6)

minw w s.t.
w

whose solution is given by w = %Vn where 3 = ||[Vn]?.
However, at the transmission instant each terminal has a pos-
sibly erroneous estimate 72 of the channel realization vector.
This estimate is used instead of the actual vector n which
might lead to considerable degradation in the received SNR
at the target base station [6].

We define the uncertainty set .4 associated with the esti-
mate of the channel realization driving vector as

A={a=a]+ Al al+ AL 1A <ent @)

where £, > 0 reflects the uncertainty in the channel estimate
of the mth terminal. Note that in the case of LOS propaga-
tion, the vectors { A, } decompose into scalar quantities that
reflect the amount of error in the phase offset of each terminal.
Hence, €,,, can be estimated given the amount of uncertainty
in the location of the mth terminal and the phase error due to
its local oscillator imperfections. In the case of fading chan-
nels, the parameter £,, is a function of the feedback delay and
the coherence time of the channel of the mth terminal.

In order to provide robustness against errors in the channel
realization driving vector, we will modify the constraint in (6)
such that a high gain is provided for the worst-case channel
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error (that yields the minimum SNR at the target base station),
and hence, for all the channel vectors in A [4], i.e.,

min ww s.t.  min |wHVﬁf > 1. (8)
w neA

Using the triangle inequality, we can write

lwVa| > lw'Val - [w"VAJ. )
For the case of flat fading channels, we have
M . M .
W VA <Y JwiRAAL| <D en||RAw,| (10)
m=1 m=1
where A,, = —emej‘/’Rn%wm/ler%n’wmII satisfies (9) and

(10) with equality, and ¢ = arg{wVn}. Combining (9)
and (10), we can write the robust beamforming problem as
M

= en||Rivwn|| > 1. (11)

m=1

min w?

w st ‘wHVﬁ,
w

The above optimization problem is nonconvex due to the ab-
solute value operator in the constraint. However, we can al-
ways phase-rotate the vector w such that w V# is real with-
out changing the value of the cost function. Hence, we can
write (11) as the following second-order cone program (SOCP)

min w’w st Imag {w"Va}=0
W,0m,
|R3wn| < om ¥m=1,... M
M
w'Vn - > epom > 1. (12)
m=1

Similarly, for the case of LOS propagation, we have

M

W'V > [wVal - > e |alw,]  (13)
m=1
with equality if Ay, = — 72— e’?allw,,. Therefore, we

can write the robust beamf()"fming problem in (8) as the fol-
lowing SOCP

min ww st Imag {w?Vna}=0

wya’!n
|aﬁwm| <oy VYm=1,....M
M
wVi =Y epom > 1. (14)
m=1

The above SOCPs in (12) and (14) can be efficiently solved
using interior point methods [8]. The computational complex-
ity associated with solving an SOCP can be calculated as fol-
lows [7]. The number of iterations required to solve an SOCP
problem is bounded by the square root of the number of con-
straints. The computational complexity associated with each
iteration is of O(n2 Y, q;), where n, = 2K + M + 1 is the
number of design parameters and g; is the dimension of the

1th constraint. Therefore, the worst-case computational load
of each of (12) and (14) is of O(VMK (M + K)?).

Therefore, based on the propagation model, and given the
matrix V' and the presumed channel realization driving vector
1, the base station can compute the robust uplink beamform-
ing vector for each of the M relay terminals by solving the
SOCP optimization problem in (12) or (14). The beamform-
ing vector w,, is then fed back to the mth terminal to be used
in subsequent transmissions.

One of the advantages of our proposed beamformer is that
any additional convex constraints can be easily incorporated
in the beamforming problem. We will provide examples of
some possible additional constraints:
1-Maximum Power Constraints
Due to physical considerations, the maximum power trans-
mitted by each terminal might be limited. This is equivalent
to constraining the norm of the beamforming vector of each
terminal, i.e., ||w,,|| < v/P,, which is a convex second-order
cone constraint of 2k,,, + 1 real dimensions.
2-Interference Suppression
Another possible constraint is to completely suppress the in-
terference caused at nearby base stations due to the coopera-
tive transmission. This constraint can be written as

whh" =0 (15)
where the superscript (-)(*) refers to the vth non-targeted base
station. This constraint is a linear constraint that can be eas-
ily incorporated in the beamforming problem, e.g., by substi-

tuting w = Ni@,)v where N;i_“’) is the K x (K —1) matrix

spanning the subspace orthogonal to ﬁ<v) and v is the K—1 di-
mensional vector containing the new optimization variables.
3-Robust Interference Reduction

Each interference suppression constraint with the form of (15)
reduces one of the degrees of freedom available for beam-
forming, and hence, reduces the received signal power at the
target base station. An alternate solution is to limit the trans-
mitted interference power in the directions of other base sta-
tions. Using the same signal model and notation discussed in
Section II, we can write the stacked channel vector from the
M terminals to the vth base station as

) — y @) ) — ) (,ﬁ(v) + A) (16)
where the error vector A belongs to the uncertainty set
AW = (A = (AT, AT ARl <em). (A7)

The robust interference reduction constraint can be written as

max |wHvV® (ﬂ“’ + A)’ <@ (18)

AcAM)

where ¢(*) is a design parameter that controls the maximum
admissible interference. Using the triangle inequality, we get

‘wHV(”) (ﬂw) n A)’ < ‘,vamﬁ(v)

+ ‘wHV(”)A’ .
(19)
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Fig. 1. Average received signal power versus €.

Using (10), we can write the constraint in (18) in the case of
flat fading channels as

M
leV<”)fz(v) + Z sm‘[ﬁ)%wmﬂ < (W), (20)
m=1

which is equivalent to the M+1 second-order cone constraints:

M
\va(v)ﬁ(v) < C(v) _ Z 5m04£:i) 1)
m=1
E\R(m“)%me < o Vm=1,....M. (2
Similarly, for LOS propagation we can write (18) as
M
’wHV(”)ﬁ(”) +3 e H“(mv)meH <c® (23
=1

which is equivalent to M +1 second-order cone constraints.

4. NUMERICAL SIMULATIONS

Simulation 1: Line-of-sight propagation environment

We consider the uplink of a wireless communication sys-
tem with M = 5 cooperating terminals. Each terminal is
equipped with an antenna array of k1 = 4, ko = 3, k3 = 2,
ky = 4, and k5 = 5 elements with half-wavelength spac-
ing. The antenna arrays of the first, third, and fourth ter-
minals are located parallel to the X-axis with the center of
the arrays presumed to be at [50.75)\, 25)], [75.25), 0], and
[60.75X, —15A], respectively. The arrays of the second and
fifth terminals are located parallel to the Y-axis with the cen-
ter of the arrays presumed to be at [75\, 25.5\] and [90), A],
respectively. The actual location of the mth terminal is dis-
placed along the X- and Y-axes from its nominal location
by independent random displacements that are uniformly dis-
tributed between [—0.5Ad,,, 0.5A0,,] where 61 = 0.1, 02 = 1,
03 = 2,04 = 0.2, and 05 = 0.1. The uncertainty sets A and
AW are formed using the values {em = €6, }. The desired
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Fig. 2. Average beampattern.

base station is located along 6 = 0°, where 6 is measured rel-
ative to the X-axis, and the wave propagation is planar. A
second (non-targeted) base station is located at § = 50°. All
the beamforming vectors are normalized to have unit norm.
Simulation results are averaged over 10* Monte Carlo runs.

Fig. 1 shows the average received power by the target base
station using our robust beamformer in (14) and that with
the additional robust interference reduction constraints in (23)
where ¢(*) is selected as 10~2 The performance of the two
beamformers is tested for different values of the parameter
. It also shows the average received power using the classi-
cal non-robust beamformer and the maximum received power
using the optimal beamformer (with perfect channel knowl-
edge). We can clearly see the SNR improvements achieved
by our beamformers compared to the classical beamformer.
Moreover, they are not very sensitive to the exact size of the
uncertainty sets A and A and perform well over a wide
range of the parameter €. We can also notice that the ad-
ditional constraints in (23) do not considerably degrade the
received signal power at the target base station.

Fig. 2 shows the average beampattern versus the angle of
transmission, i.e., the received power at different directions.
We compare the performance of our robust beamformer (with
¢ = 1) with the additional robust interference reduction con-
straints, the classical non-robust beamformer with the inter-
ference suppression constraint in (15), and the optimal beam-
former with the interference reduction constraint |w*! h®) | <
¢, We can clearly see the effect of the robust interference
reduction constraint in widening and deepening the null in the
direction of the non-desired base station. We can also notice
that the robustness constraint provides high gain at § = 0°
compared to the classical beamformer.

Simulation 2: Flat fading environment

We consider the same collaborative transmission scenario
described in the previous simulation. The propagation envi-
ronment for each of the 5 terminals is modeled as a Ricean flat
fading channel with Ricean K-factor equal to 0.1 and random
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Fig. 3. Average received signal power versus €.

LOS arrival angles uniformly distributed between [0, 27]. The
scattered component of the received signal due to each of the
5 terminals has a Laplacian power-angle-profile with random
mean angle of arrival uniformly distributed between [0, 2]
and angular spread 8°, 3°, 2°, 2°, and 10° for the 1st to 5th
terminal, respectively. We generate 100 independent channel
realizations. For each channel realization, the estimate of the
channel realization vector of the mth terminal is obtained as

Om

[
where A, is modeled as a standard circular Gaussian vector
with independent components, and d,, is the relative magni-
tude of the error in the channel vector estimate. The values
of §,, are given by 0.2, 3, 2, 4, and 0.1 for m =1 to m =5,
respectively. The uncertainty set A is formed using the values
{&m = €0, }. Simulation results are averaged over 50 real-
izations of { A, } for each of the 100 independent channel re-
alizations. Fig. 3 shows the average received signal power at
the base station versus different values of the parameter . We
can clearly see that our robust beamforming technique can im-
prove the received signal power by more than 1 dB compared
to the classical non-robust beamformer. We can also notice
that the received signal power does not degrade severely over
a wide range of the size of the robustness set. Fig. 4 shows the
average symbol error rate (SER) versus the transmitted SNR
for different beamformers using a QAM-16 constellation. For
our robust beamformer, we have selected the value of ¢ that
yields the highest received SNR. From Fig. 4, it is clear that
the power gain offered by our beamformer is translated into a
corresponding gain in the SER.

T, = My, + (24)

5. CONCLUSION

In this paper, we have presented a framework for collaborative
transmit beamforming with robustness against mismatches in
the channel state information. Our technique is applicable to
both LOS propagation and fading environments. The beam-
forming vector is derived by minimizing the transmitted power

* - Optimal beamformer ¥
— - Classical non-robust beamformer
—— Robust beamformer

| \ I | ) I I I )
-10 -8 -6 -4 -2 0 2 4 6 8 10
Transmitted SNR (dB)

Fig. 4. Average SER versus transmitted SNR.

while preserving the received SNR at the target base station
for a predefined set of channel realizations centered around
the current estimate. The base station calculates the beam-
forming coefficients using the uplink measurements by solv-
ing an SOCP optimization problem. These coefficients are
then fed back to the collaborating relay terminals to be used
in uplink transmit beamforming. Simulation results have been
presented showing the improved performance of our proposed
algorithms compared to classical beamforming techniques.
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