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Abstract— In this paper, we introduce a joint channel and
noise variance estimation, and primary user (PU) signal detection
scheme using the expectation-maximization (EM) algorithm for
cognitive radios. In our investigation, we consider two scenarios:
In the first scenario, the channel and noise variance are assumed
to be perfectly known by the secondary user (SU). Here, we
propose a maximum-likelihood (ML) solution of the PU signal
detection as an upper bound on the performance of the proposed
joint estimation and detection (JED) scheme. We also provide
an iterative implementation of the ML-based detector using the
EM algorithm. In the second case, we extend our work to the
problem of channel and noise variance estimation in cognitive
radios, where we propose an iterative JED scheme based on the
EM algorithm. The simulation results show that the proposed
JED scheme can iteratively attain a reliable performance with
few iterations and modest computational complexity.

I. INTRODUCTION

The current spectrum allocation policy divides the available
radio frequency spectrum into fixed bands for specific applica-
tions. However, the frequency resources have become scarce
as more wireless services/applications have emerged into the
market. Furthermore, the Federal Communication Commission
(FCC) in the U.S.A. has reported that the spectrum utilization
varies greatly depending on the temporal and geographical lo-
cation [1] with a nominal rate between 15% to 85% [2]. Hence,
the need for a technology to overcome the spectrum scarcity
and under-utilization has emerged in recent years. Cognitive
radio (CR) has been proposed as the possible solution for the
aforementioned shortcomings of the fixed spectrum allocation
policy by providing opportunistic spectrum access over the
licensed and unlicensed bands [3], [4].

The focus of this work will be on CR networks operating
over the bands licensed to the primary users (PUs). In this
context, CR is defined as an intelligent radio which can sense
its surrounding environment to exploit the unoccupied spec-
trum bands without causing harmful interference to the PU’s
transmission. Spectrum sensing is the core of this operation as
the mean to detect the spectrum holes and PU emergence. The
most common spectrum sensing techniques in the literature
are energy detection (ED) [5], [6], match filter detection
[7], [8], and cyclostationary feature detection [9], [10]. The
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choice of the appropriate technique is dictated by the a priori
knowledge about the PU’s signal and the receiver complexity.
The matched-filter is the optimal detection technique when
the PU’s signal is known. The cyclostationary feature detector
exploits the periodicity of the modulated signal to distinguish
it from the stationary noise; however, it suffers from high
computational complexity. The ED is the optimal detection
scheme if the PU’s signal is unknown. In this paper, we assume
that there is no a priori knowledge about the PU’s signal
structure and modulation. Therefore, in this context, the ED
is the most appropriate spectrum sensing technique.
Most works conducted in this area assume perfect knowledge
of the channel and noise variance at the secondary user
(SU) unit, and few researchers have investigated the effect
of estimation errors on the performance of the detection pro-
cess and possible estimation techniques [11]. Recently, there
has been a growing interest in iterative joint estimation and
detection (JED) techniques because of their ability to achieve
accurate estimation without wasting the system resources [12].
In particular, the expectation-maximization (EM) algorithm
has been proposed in iterative receivers due to its attractive
features such as iteratively attaining the maximum-likelihood
(ML) solution with reduced complexity [13] [14].
In this work, we first present a spectrum sensing technique
based on the ML algorithm, assuming a perfect knowledge
of the channel coefficients and noise variance by the SU.
We also provide an iterative implementation of the ML-based
detector using the EM algorithm, and we prove that the
performance of the EM-based detector converges iteratively
to the ML solution. Then, we extend our work to the problem
of channel and noise variance estimation, where we propose
an iterative JED scheme based on the EM algorithm. The
results show that the proposed scheme enhances the quality
of spectrum sensing with short processing time and modest
computational complexity. The rest of the paper is organized
as follows. The system model is described in Section II. In
Section III, the ML-based spectrum sensing is presented. In
Sections IV, we introduce the EM-based spectrum sensing and
its extension to JED with unknown channel and noise variance.
The initialization of the EM-based JED is discussed in Section
V. Simulation results and discussions are then presented in
Section VI. Finally, conclusions are drawn in Section VII.
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II. SYSTEM MODEL

Consider that the SU detects the presence of the PU signal
over a wideband frequency spectrum, which is divided into
K frequency subbands. The channel between the PU and the
the SU experiences multipath fading with L resolvable paths.
In this case, the discrete-time baseband complex envelope
representation of the signal observed by the SU over the
wideband frequency spectrum is defined as

r(n) =
L−1∑
l=0

h(l)s(n− l) + v(n), (1)

where s(n) is the PU signal, and h(l) is the channel coefficient
corresponding to the l-th path between the PU and the SU,
and v(n) is a complex, zero-mean, additive white Gaussian
noise term. Using a K-point discrete Fourier Transform (DFT)
operation, successive frames of r(n) are decomposed into
narrowband discrete frequency components as follows

Rk(m) =

K−1∑
n=0

r(mK + n)e−j2πnk/K ,

= HkSk(m) + Vk(m), k = 0, 1, . . . ,K − 1, (2)

where k is the frequency index, m ∈ {0, 1, . . . ,M − 1} is
the frame index, and M is the number of frames available for
detection. In (2), Hk, Sk(m) and Vk(m) denote the k-th DFT
coefficients of h(l), s(mK+n) and v(mK+n), respectively.
Also, the product of Hk and Sk(m) in (2) is an approximation
of the corresponding convolution in (1) under the assumption
that K > L.

Consider the following statistical model of {Sk(m)}, {Hk}
and {Vk(m)}, which is widely adopted in the literature (see,
e.g., [15]). The PU signal samples, {Sk(m)}, and background
noise samples, {Vk(m)}, are modeled as independent random
processes, whereby, for any given state of occupancy of the
wideband channel, samples from each process are independent
across frequency and frame indices, and obey a zero-mean
complex circular Gaussian distribution. We assume that the
noise variance, E[|Vk(m)|2] = σ2

v , and the channel coefficients
Hk remain constant during the processing interval of M
frames. Without loss of generality, we set E[|Sk(m)|2] = 1 if
the k-th subband is occupied while E[|Sk(m)|2] = 0 if the PU
signal is absent. Using the formalism of subband occupancy
proposed in [5], the occupancy of the k-th subband is modeled
as a binary random variable (indicator), Bk, with realization
bk ∈ {0, 1}, where 0 represents a spectrum hole, while 1
indicates the presence of a PU signal in the k-th subband.
Accordingly, the conditional signal power of the PU in the
kth subband is expressed as E[|Sk(m)|2

∣∣Bk = bk] = bk. The
mean and the variance of Rk(m) conditioned on Bk = bk are
given by

E[Rk(m)|Bk = bk] = 0, (3)

V ar[Rk(m)|Bk = bk] = bkGk + σ2
v , (4)

where E[·] denotes the expected value, V ar[·] is the variance
operator, and Gk = |Hk|2. In the following sections, we pro-
pose a spectrum sensing technique based on the ML algorithm.

Initially, we assume perfect knowledge of the channel state
information (CSI) and noise variance by the SU receiver. Then,
we present an iterative implementation of the proposed ML-
based spectrum sensing using the EM algorithm. Finally, we
introduce a joint channel and noise variance estimation, and
PU signal detection scheme based on the EM algorithm.

III. ML-BASED SPECTRUM SENSING

In our work, we assume independent subband occu-
pancy: the joint distribution of the occupancy vector, B =
[B0, . . . , BK−1]T , is given by fB(b) =

∏K−1
k=0 fBk

(bk),
where b = [b0, . . . , bK−1]T . Let R represents the received
samples over K subbands, i.e., R = [RT

0 , . . . ,R
T
K−1]T , where

Rk = [Rk(0), . . . , Rk(M − 1)]T , with corresponding realiza-
tions r = [rT0 , . . . , r

T
K−1]T , where rk = [rk(0), . . . , rk(M −

1)]T . Then, the log-likelihood function of R given B = b is
defined as follows

LR|B(r|b) =
K−1∑
k=0

LRk|Bk
(rk|bk)

= −M
K−1∑
k=0

ln(Gkbk + σ2
v)−

K−1∑
k=0

1

Gkbk + σ2
v

M−1∑
m=0

|rk(m)|2.

(5)

Since the subband occupancies are independent of each other,
the maximization process of (5) can be done independently
for each k, i.e., B̂ML

k = arg maxbk LRk|Bk
(rk|bk). This leads

to the "soft" occupancy estimation

B̂ML
k = max

{
0,

1

MGk

(
M−1∑
m=0

|rk(m)|2 −Mσ2
v

)}
. (6)

The right-hand side of (6) is indeed the ML estimate of
the transmitted PU energy over the k-th subband. This value
can be used to determine the occupancy of subband k by
comparing B̂ML

k with a certain threshold, γk, resulting in a
hard estimate of Bk, that is B̃ML

k ∈ {0, 1}, as follows

B̂ML
k

B̃ML
k =1

R
B̃ML

k =0

γk. (7)

A. Performance Analysis

For a given probability of false alarm, the optimum thresh-
old, which gives the maximum probability of detection, is
derived using the Neyman-Pearson criterion as follows [16].
Let Zk = 1

MGk

(∑M−1
m=0 |Rk(m)|2 −Mσ2

v

)
, and assume that

M is sufficiently large. In this case, according to the central
limit theorem, Zk is approximately normally distributed under
each hypothesis, Bk ∈ {0, 1}. Therefore, the probability of
false alarm in the k-th subband, P kf is given by

P kf (γk) = Pr(B̂ML
k ≥ γk|Bk = 0)

= Q

(
γk − E[Zk|Bk = 0]√
V ar[Zk|Bk = 0]

)
, (8)
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Using (3) and (4), and with some mathematical manipulations,
the conditional mean and variance of Zk given Bk = 0 are
obtained as

E[Zk|Bk = 0] = 0, (9)

V ar(Zk|Bk = 0) =
σ4
v

MG2
k

. (10)

Under the constraint P kf (γk) = εk, where 0 < εk ≤ 1, the
optimum threshold is given by

γoptk = Q−1(εk)

√
σ4
v

MG2
k

, (11)

and consequently, the optimum probability of detection is
derived as follows

P kd (γoptk ) = Pr(B̂ML
k ≥ γoptk |Bk = 1)

= Q

(
γoptk − E[Zk|Bk = 1]√

V ar[Zk|bk = 1]

)
. (12)

Similar to (9) and (10), the mean and variance of Zk condi-
tioned on Bk = 1 are given by

E[Zk|Bk = 1] = 1, (13)

V ar(Zk|Bk = 1) =
(Gk + σ2

v)2

MG2
k

. (14)

Fig. 1 presents the receiver operating characteristic (ROC)
curve of the proposed ML-based detector and the traditional
energy detector [6] for M = 100 and Gk = 0.25 for all
k. The detection threshold of both detectors are derived based
on Neyman-Pearson condition. The results show that the ROC
curve of the ML detector achieves a perfect match with the
performance of the energy detector. We also note that the ML-
based detection amounts to energy detection based on the ML
estimate of the transmitted PU energy over each subband.
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Fig. 1. ROC curve of ML-based spectrum sensing

IV. EM-BASED SPECTRUM SENSING

In this part, we propose an iterative spectrum sensing
technique based on the EM algorithm. In our investigation,
we consider two scenarios: in the first scenario, we assume a
perfect knowledge of the channel between the PU and the
SU, and the noise variance at the SU side. In this case,
the EM-based detector provides an iterative estimation of the
transmitted PU energy. We also prove that the EM estimate
of this energy converges to the ML solution in (6) with
few iterations. In the second scenario, the SU has no prior
knowledge of the channel coefficients and noise variance.
This case results in a multidimensional optimization problem,
where the ML solution is not feasible because of its high
computational complexity. In the literature, the EM algorithm
is known to achieve the ML solution with low computation
complexity. Therefore, we propose an iterative joint channel
and noise variance estimation, and PU signal detection based
on the EM algorithm. Since we assume independent subband
occupancy over the wideband spectrum, the estimation process
is only presented for one subband. In other words, the same
procedure of estimating the unknown parameters is applied in
each subband.

A. Both Hk and σ2
v are known

In this case, the only unknown parameter is Bk, and vector
Rk is defined as the incomplete data according to the EM
terminology [14]. Let Sk = [Sk(0), . . . , Sk(M − 1)]T , then
the so-called complete data are defined as Yk = [RT

k ,S
T
k ]T .

The complete data log-likelihood function is given by

LYk|Bk
(yk|bk) = LRk|Sk,Bk

(rk|sk, bk) + LSk|Bk
(sk|bk)

= −M ln(σ2
v)−M ln(bk)− 1

bk

M−1∑
m=0

|sk(m)|2

− 1

σ2
v

M−1∑
m=0

|rk(m)−Hksk(m)|2 (15)

where sk = [sk(0), . . . , sk(M − 1)]T , yk =
[yk(0), . . . , yk(M − 1)]T , and yk(m) = [rk(m), sk(m)]T . In
the E-step of the EM algorithm, we estimate the conditional
expectation of (15) given Rk = rk and Bk = b̂

(i)
k , where b̂(i)k

is the EM estimate of bk at the i-th iteration. By neglecting
the terms independent of bk, we obtain

∆(bk|b̂(i)k ) = E[LYk|Bk
(Yk|bk)|Rk = rk, Bk = b̂

(i)
k ]

= −M ln(bk)− 1

bk

M−1∑
m=0

E[|Sk(m)|2|rk, b̂(i)k ],

(16)

and E[|Sk(m)|2|rk, b̂(i)k ] = |E[Sk(m)|rk, b̂(i)k ]|2 +

V ar[Sk(m)|rk, b̂(i)k ]. Since Rk and Sk are jointly gaussian,
the conditional mean and variance of Sk(m) given rk and
b̂
(i)
k are given respectively by [16]

E[Sk(m)|rk, b̂(i)k ] =
b̂
(i)
k H∗k

b̂
(i)
k Gk + σ2

v

rk(m), (17)
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V ar[Sk(m)|rk, b̂(i)k ] =
b̂
(i)
k σ2

v

b̂
(i)
k Gk + σ2

v

, (18)

where ∗ denotes the complex conjugate operation. Now, the
M-step of the EM algorithm is performed by maximizing (16)
with respect to bk, which results in

b̂
(i+1)
k =

1

M

M−1∑
m=0

E[|Sk(m)|2|rk, b̂(i)k ]. (19)

The convergence of the EM estimate of bk, b̂(i+1)
k , to the ML

solution is proven as follows. Let b̂infk = limi→∞ b̂
(i)
k . Then,

by substituting b̂infk = b̂
(i+1)
k = b̂

(i)
k in (17)-(19), we have

b̂infk =

∣∣∣∣∣ b̂infk H∗k
b̂infk Gk + σ2

v

∣∣∣∣∣
2

1

M

M−1∑
m=0

|rk(m)|2

+
b̂infk σ2

v

b̂infk Gk + σ2
v

. (20)

By solving this equation, we obtain b̂infk ∈{
0, 1

MGk

(∑M−1
m=0 |rk(m)|2 −Mσ2

v

)}
, which is the ML

estimate of Bk.

B. Both Hk and σ2
v are unknown

In this case, the unknown parameter vector is define as ξk =
[bk, σ

2
v , Hk]. Here, we use the same definition of the complete

data in Section IV-A. Assume that σ̂2(i)

v and Ĥ(i)
k are the EM

estimates of σ2
v and Hk at the i-th iteration respectively. By

taking the conditional expectation of (15) given Rk = rk and
ξk = ξ̂

(i)

k , where ξ̂
(i)

k = [b̂
(i)
k , σ̂2(i)

v , Ĥ
(i)
k ], we obtain

∆(ξk|ξ̂
(i)

k ) = −M ln(bk)− 1

bk

M−1∑
m=0

E[|Sk(m)|2|rk, ξ̂
(i)

k ]

−M ln(σ2
v)− 1

σ2
v

M−1∑
m=0

E[|rk(m)−HkSk(m)|2|rk, ξ̂
(i)

k ].

(21)

By taking the derivative of (21) with respect to bk and solving
the resultant equation, we obtain

b̂
(i+1)
k =

1

M

M−1∑
m=0

E[|Sk(m)|2|rk, ξ̂
(i)

k ], (22)

where E[|Sk(m)|2|rk, ξ̂
(i)

k ] = |E[Sk(m)|rk, ξ̂
(i)

k ]|2 +

V ar[Sk(m)|rk, ξ̂
(i)

k ]. Similar to (17) and (18), the conditional
mean and variance of Sk(m) given rk and ξ̂

(i)

k are given by

E[Sk(m)|rk, ξ̂
(i)

k ] =
b̂
(i)
k Ĥ

(i)∗
k

b̂
(i)
k Ĝ

(i)
k + σ̂2(i)

v

rk(m),

V ar[Sk(m)|rk, ξ̂
(i)

k ] =
b̂
(i)
k σ̂2(i)

v

b̂
(i)
k Ĝ

(i)
k + σ̂2(i)

v

. (23)

Following the same procedure as above, we can derive the EM
estimates of Hk and σ2

v at the (i+1)-iteration. By maximizing
(21) with respect to Hk, we obtain

Ĥ
(i+1)
k =

∑M−1
m=0 rk(m)E[Sk(m)|rk, ξ̂

(i)

k ]∗∑M−1
m=0 E[|Sk(m)|2|rk, ξ̂

(i)

k ]
, (24)

Subsequently, we substitute Hk by Ĥ
(i+1)
k in (21), which is

maximized with respect to σ2
v , yielding

σ̂2(i+1)

v =
1

M

M−1∑
m=0

X̂k(m) (25)

where

X̂k(m) = |rk(m)|2 − r∗k(m)Ĥ
(i+1)
k E[Sk(m)|rk, ξ̂

(i)

k ]

− rk(m)(Ĥ
(i+1)
k )∗E[Sk(m)|rk, ξ̂

(i)

k ]∗ + |Ĥ(i+1)
k |2

× E[|Sk(m)|2|rk, ξ̂
(i)

k ]. (26)

V. INITIALIZATION

Since the EM algorithm is sensitive to the initialization
of the parameters to be estimated [17], we assume that our
proposed EM-based JED is initialized by reliable estimates of
the unknown parameters. This guarantees that the performance
of our proposed scheme converges to the ML solution with few
iterations. In our case, we assume that the SU receives a short
training sequence from a CR in the vicinity of the PU, which is
used to give an initial estimate of Hk, Ĥ(0)

k , e.g., based on the
minimum-mean square error (MMSE) estimation technique.
Assuming that the SU has a priori knowledge about the history
of the PU activities, the initialization of σ2

v , σ̂2(0)

v , is performed
by estimating the sample variance of the observations when
the PU is absent, i.e., Rk(m) = Vk(m). Finally, each bk is
initialized by γk, i.e., b̂(0)k = γk.

VI. SIMULATION RESULTS

In this part, the performance of the proposed spectrum
sensing scheme based on the EM algorithm is evaluated
through its ROC curve, considering the two scenarios intro-
duced in Section IV-A and IV-B. Throughout our simulations,
we assume that M = 150 and σ2

v = 1. Also, 105 trials
are performed for each choice of γk, and the performance
of the EM-based JED is evaluated after 3 iterations. Since
the estimation of the unknown parameters of each subband is
performed independently from other subbands, our results are
presented only for one subband.

Fig. 2 plots the ROC for both the ML-based spectrum
sensing and the EM-based spectrum sensing schemes assum-
ing that Hk and σ2

v are perfectly known by the SU. The
simulations are performed for a time-invariant channel with
Gk=0.25. The results show that the performance of the EM-
based detector achieves a perfect match with the ML solution
after 3 iterations.

In Fig. 3, we evaluate the performance of the proposed
EM-based JED over a Rayleigh fading channel, where Hk

or σ2
v is assumed unknown by the SU. In the simulations,
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Hk is modeled as a complex Gaussian random variable with
zero mean and variance 1. We also assume that Hk is
constant during a block interval of M frames and changes
independently from one block to another. As a reference, we
plot the performance of the EM-based detector assuming a
perfect estimation of Hk and σ2

v . The estimation quality of
the proposed JED is examined assuming different scenarios:
(i) Hk is unknown while σ2

v is known (ii) Hk is known while
σ2
v is unknown (iii) Both Hk and σ2

v are unknown. Compared
to the perfect estimation case, the EM-based JED achieves a
reliable estimation of the channel while it is sensitive to the
error in the noise variance estimation.
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Fig. 2. ROC of ML and EM-based spectrum sensing schemes (M=150,
3-iteration)
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VII. CONCLUSION

We developed an iterative EM-based spectrum sensing
scheme for cognitive radios. Assuming perfect knowledge of
the channel coefficients and noise variance, we showed that

the performance of the EM-based spectrum sensing scheme
converged iteratively to the ML solution within few iterations.
Then, we extended our work to the problem of channel and
noise variance estimation, where we proposed an iterative JED
scheme based on the EM algorithm. The simulation results
showed that the joint estimation of the unknown parameters
using the EM algorithm enhanced the detection process.
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