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ABSTRACT 

In this paper, we develop and evaluate a new algorithm 
for tracking the eigenvalue decomposition (EVD) of a 
time-varying data covariance matrix. The EVD track­
ing problem is first formulated as a normalized rank­
one EVD update problem. An approximate solution to 
the latter is obtained using a modified linearization ap­
proach which maintains the constraint of orthonormal­
ity on the updated eigenvectors. The new EVD track­
ing algorithm has several interesting features. In par­
ticular, the eigenvalue update is non-iterative and the 
matrix of eigenvectors is updated via a finite sequence 
of Givens rotations. The algorithm is also well suited 
for implementation on parallel processors. Computer 
experiments are presented that demonstrate the appli­
cability of the new algorithm in array processing. 

1. INTRODUCTION 

In recent years, several new algorithms have been devel­
oped for efficiently estimating and tracking the eigen­
value decomposition (EVD) of a time-varying data co­
variance matrix (e.g., [2, 3, 4] and references therein). 
This problem finds its origin in the application of high­
resolution subspace-based signal analysis methods such 
as MUSIC to non-stationary data sequences. One im­
portant example of this is the estimation of the direction 
of arrivals (DOA's) of multiple moving sources with an 
array of sensors. 

In this paper, we propose a new algorithm for es­
timating and tracking the EVD of a time-varying data 
covariance matrix. In Section 2, we first formulate EVD 
tracking as a normalized rank-one EVD update problem. 
In Section 3, an approximate solution to the latter is ob­
tained using a modified linearization approach in which 
a constraint of orthonormality is imposed on the up­
dated eigenvectors through an appropriate parametriza­
tion. In Section 4, further approximations to this solu­
tion lead to the new algorithm in which the matrix of 
eigenvectors is updated via a finite sequence of Givens 
rotations. Section 5 presents the results of computer 
experiments that demonstrate the applicability of this 
algorithm in array processing. 
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2. THE EVD TRACKING PROBLEM 

2.1. Formulation 

Let x(k) E CL 
x I denote a random column vector of L 

complex observations made at the kth sampling instant. 
In a typical narrow-band array processing application, 
the elements of x(k) are the Fourier coefficients of the 
outputs of an L-sensor array at a particular frequency 
during the kth integration interval, or snapshot. The 
sequence of random vectors x(k) is modeled as a zero­
mean stochastic process with covariance matrix 

R(k) = E[x(k)x(k)H], (1) 

where E[l denotes statistical expectation and the su­
perscript denotes conjugate transposition. It is im­
plicitely assumed in (1) that the process x( k) can be 
non-stationary. We denote by ~i (k) and qi (k), i = 
1, ... , L, the eigenvalues and corresponding orthonormal­
ized eigenvectors of the matrix R(k). That is, 

R(k) = Q(k)1\(k)Q(k)H, (2) 

where 
1\(k) = diag(~l (k), ... , ~L(k)), (3) 

Q(k) = [ql(k), ... ,qL(k)]. (4) 

It will be convenient to assume that the eigenvalues are 
arranged in non-increasing order, i.e.: ~dk) ;::: ~2(k) ;::: 
"';:::~L(k);:::O. 

The EVD tracking problem can be formulated as fol­
lows: for time k = 0,1, ... , we want to compute estimates 
of the true EVD of the covariance matrix R(k), i.e. es­
timates of Q(k) and 1\(k), which are functions of the 
sequence of observation vectors x(l), from time I = 0 up 
to time 1= k, and possibly some initial conditions. Let 

f( k) = diag(-yl (k), ... , "YL( k)), (5) 

U(k) = [ul(k), ... ,uL(k)], (6) 

denote the desired estimates of 1\(k) and Q( k), respec­
tively. In this paper, we shall seek estimates which ap­
proximately satisfy the recursive relation: 

U(k)f(k)U(k)H = crU(k - l)f(k -1)U(k - I)H 
(7)

+ (1 - cr)x(k)x(k)H, 

where cr is a. forgetting factor with 0 < cr < 1. In addi­
tion to (7), we shall further require that the structure of 
the matrices f(k) and U(k) be the same as that of 1\(k) 
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and Q(k), respectively. In the case of r(k), this implies 
that 

while fo
'n (k) 

r U(k), w
~ 12(k) ~ ... 
e have the fo

~ 

llo
{L(k) ~ 

wing constraint: 
0, (8) 

U(k)HU(k) = h, (9) 

where h denotes the Lx L identity matrix. In this way, 
U(k) and f(k) provide a legitimate EVD at all time. 

In the area of matrix analysis, the computational 
problem specified by (7)-(9) is known as a rank-one EVD 
update. An algorithm which can provide an exact so­
lution to to this problem has been presented in [1). Its 
use in signal procesing as a means to solve the EVD 
tracking problem has been proposed in [4, 3]. However, 
this approach is computationnaly expensive and suffers 
form several drawbacks. 

For these reasons, new EVD tracking algo;ithms have 
been proposed recently in which (7) is only approxi­
mately satisfied at each iteration [2]. The underlying 
motivation for this approach follows from the observa­
tion that (7) is generally not an optimal EVD estimator. 
Hence, seeking modifications to (7) which may result in 
more efficient EVD tracking algorithms without affect­
ing significantly the quality of the estimation is perfectly 
legitimate. This is the general philosophy that we follow 
in this paper to derive a new EVD tracking algorithm. 
However, before proceeding with the derivation, we need 
to recast the updating problem (7)-(9) in a normalized 
form which will simplify our work. We refer to this as 
the "preprocessing". 

2.2. Preprocessing 

To simplify the notations, we first make the following 
identifications: 

U == U(k - 1), f == r(k - 1), x == x(k), (10) 

and we denote by F(U, f, x) the right-hand-side of (7): 

F(U, f, x) = aUfUH + (1- a)xxH. (11) 

We now describe four simplification steps. The ith step 
(i = 1, ... ,4) consists in expressing F(.) in the form 

F(U,f,x) = Ui[fi +~i~f]UiH, (12) 

where the unitary matrix Ui, the diagonal matrix L 
and the vector ~i are appropriately defined, so that the 
modified rank-one EVD problem which appears within 
brackets in (12) is simplified at each step. 

1.	 Diagonalization and scaling: Transform (7)-(9) 
into the equivalent rank-one EVD update of a di­
agonal matrix. This is achieved by using 

6	 = ~UHX, UI = U, f l = af. 
(13) 

2.	 Mapping into real vector space: Map 6 E cL xI 
into 6 EnLxI so that the updating problem only 
involves real quantities. To this end, define 

D = diag(~I,i/16,d) (14) 

where 6,i denotes the ith entry of ~J, and let 

6	 = DH~I, U2 = UID, f2 = fl. (15) 

I Step I Operation 

1 ~<- (1 - a)UHx 
f <- af 

2 D = diag(~i/I~d) 
~ <- DH~ 
U <- UD 

3 H = block Householder matrix 
~ <- HT~ 
U <- UH 

4 PI = permutation matrix 
~ <- pt~ 
U <- UPI 
f <- PtfPI 

Table 1: Summary of preprocessing steps. 

3.	 Deflation: Reduce the dimensionality of the prob­
lem whenever some of the eigenvalues li(k) are 
repeated. Scecifically, assume that the number 
of distinct eigenvalues is K :::; L. Then, by us­
ing an appropriate block Householder matrix H = 
diag(HI , ... , HK) (see [1]) it is possible to zero out 
L - K components of the vector 6 without affect­
ing the diagonal matrix f 2. Thus, we have 

where the superscript T denotes transposition. 

4.	 Reordering: Using an appropriate permutation 
matrix PI, let 

~4 = pt6, U4 = U3 PI , f 1 = Ptf 3 PI , 
(17) 

so that the last L - K components of ~1 are zero, 
while the first K components of f 1 are in decreas­
ing order. 

These steps are summarized in Table 1 where the 
notation ~ <- f(~) is used to indicate that the result of 
some operation f(~) is overwritten on ~. 

3. SOLUTION VIA CONSTRAINED 
LINEARIZATION 

Let ~, fans U respectively denote the transformed data 
vector, diagonal eigenvalue matrix and unitary eigenvec­
tor matrix following the application of steps 1 to 4 in 
Table 1. Observe that ~ and f can be partitionned as 

where ~u = [6, ... , ~Kf with ~i > 0, f u = diag( 'n, ,"(K) 
with 'YI > 12 > ... > IK ~ 0, f l = diag('YK+I, ,'YL) 
with Ii E {II, ... , "(K) for i = K + 1, ... , L. With this 
partitionning of ~ and f, F(U, r,~) (12) (after step 4) 
can now be written as 

F(U,f,x) = U [ f u+~u~J OKx(L-K) ] UN (19)
 
O(L-K)xK f l
 



Hence, the general rank-one EVD update problem (7)­
(9) over CL x L has been simplified to the rank-one EVD 
update of a diagonal matrix over nLx L, namely: 

vr- u V
T 

== r u + ~u~u 
T , (20) 

t u == diag("h, ... , 'YK), (21) 

VTV = IK. (22) 

As explained earlier, our interest in this paper lies 
in approximate solutions to the simplified EVD update 
problem (20)-(22) which naturally lend themselves to 
efficient numerical implementations. In this section, as 
a first step towards this goal, we use a constrained lin­
earization approach to derive an approximate solution 
to (21 )-(23). In the next section, further simplifications 
to this "generic" solution will provide us with a new 
EVD tracking algorithm with interesting properties. 

At the basis of our derivation is the observation that 
in most practical applications of EVD tracking, the for­
getting parameter Q' is close to one. If we further note 
that in the limit Q' -+ 1, one has t u -+ r u and V -+ I K 

and that for 1 - Q' sufficiently small, the modified EVD 
can be anaJytically connected to the unmodified one [2], 
we are lead to conclude that when Q' is close to one, the 
modifications to the EVD must be small. 

To emphasize this point, let us write t u in the form 

t u == r u(h + n), (23) 

n==diag(wI, ... ,wK). (24) 

The unknown parameter Wj (i = 1, ... , K) represents the 
relative variation in the ith modified eigenvalue and is 
expected to be small when Q' is close to 1. 

The introduction of a similar representation for V in 
terms of small parameters requires additional care be­
cause of the orthogonality constraint (22). To derive 
such a representation, we first note that det(V) == ±1 
as a result of (22), where det(.) denotes the determi­
nant of its matrix argument. Without loss of generality, 
we shall assume that det(V) = +1. This amounts to 
multiplying one of the modified eigenvectors (i.e., any 
column of V) by -1. With this additional restriction, 
V now belongs to the group of unimodular orthogonal 
matrices, also known as proper rotations. An important 
result in group theory states that any proper rotation 
V can be expressed as 

V == exp(0) (25) 

where 0 == (Bi)) is a skew-symmetric matrix in nKXK 

(i.e., 0 T == -0, or equivalently, B)i == -Bi)), and exp(.) 
is the matrix exponential function, defined as 

(26) 

The above parametrization of V in terms of K(K -1)/2 
real parameters is of particular interest to us. Indeed, 
when 0 is small, so is V - IK and in particular, when 
0== OKxK, then V == h<. Using this parametrization 
in connection with (20), we thus expect the matrix 0 to 
be small whenever Q' is close to 1. 

Within the framework of the above parametrization, 
the proposed constrained linearization approach amounts 

to the following steps: (i) substitute (23) and (25) in 
(20), perform the necessary expansions and retain only 
linear terms (i.e., degree equal zero or one) in nand 0; 
(ii) solve for nand 0; and (iii) substitute the solutions 
in (23) and (25), respectively. The resulting matices t u 
and V so obtained are the desired approximate solu­
tions to the simplified rank-one EVD update problem 
(20)-(22). 

The first step leads to the following equation: 

run + 0ru + r u0 == [~u~~ - ruJ (27) 

Note that this equation is linear in nand 0. By con­
sidering independently the diagonal and off-diagonal en­
tries in (27), we easily arrive at 

'YiWi == W- 'Yi), i == 1, ... , K, (28) 

Bi) = ~j~j/(-y) - 'Yi), 1 S; i < j S; K. (29) 

Note that Bji == 0 while the remaining elements of 0 are 
obtained by symmetry. Also note that in the simplified 
EVD update problem (20), the original eigenvalues are 
distinct so that division by 'Y) - 'Yi is permitted. Upon 
substitution of (28) in (23)-(24), we obtain: 

tu==ru+diag(~i,... ,~~). (30) 

Similarly, knowledge of the parameters Bi) from (29) can 
be used in (25)-(26) to construct the matrix of mod­
ified eigenvectors V. In the next section, we propose 
a computationally efficient approach for implementing 
this computation. 

4. ALGORITHMIC REALIZATION BASED 
ON PLANAR ROTATIONS 

Recall the mathematical derivation in Section III is based 
on the assumption that the matrices of rotation and 
scaling parameters, i.e. nand 0, respectively, are small. 
In this section, the assumption of a small 0 matrix will 
be further exploited to derive a computationally effi­
cient approximation for the updated eigenvector matrix 
V == exp(0) (25) as a sequence of small planar rotations. 
When used in connection with (19) and (20), this will 
result in a new EVD tracking algorithm with interesting 
properties. 

To begin with, let Wij denote the K x K matrix 
obtained from 0 by setting all its entries to zero, except 
for the ij-element and the ji-element, which are left 
unchanged. It is then possible to express 0 in terms of 
the Wi) as 

0== L:»iWi) (31) 

Assuming that the matrix 0 is small, It IS possible to 
arrive at the following approximation for V (25): 

(32) 

Hence, the matrix V has been expressed has a product 
of simpler orthogonal matrices. 

Now consider the matrix exp(Wij), which is the basic 
building block in the product (32). Using the definition 
(26) of the matrix exponential function, one can verify 
that 

(33) 



Step Operation 

1 x ....... x(k) 
U ....... U(k-1) 
r ....... r(k-1) 

2 Preprocessing (see Table 2) 
for i = 1 : K - 1 

for j = i + 1: K 
0 ....... eiej/(Ij -Ii) 

U ....... U[ Gij(O) OKxCL-K) ]°CL-K)xK) h-K 

end 
end 
r <- r + diag(C) 
P2 = permutation matrix 

3 

4 
5 

U <- UP2 
r <­ p!rp2 

6 U(k) ....... U 
r(k) ....... r 

Table 2: The new EVD tracking algorihtm. 

E n KxKwhere Gij(O) is the well known planar (or 
Givens) rotation. Combining (33) and (34), we obtain 

(34) 

where the rotation parameters Oij can be easily com­
puted from (29). Note that these parameters are pro­
portional to 1 - CI' and are thus relatively small in most 
practical applications. In summary, we have shown that 
for CI' close to one, the orthogonal matrix V, as given by 
(25) and (29), can be approximated as the product of 
K(K - 1)/2 small planar rotations. Furthermore, to 
the first degree of approximation in the rotation param­
eters Oi), the order in which these rotations are applied 
is totally arbitrary. 

A complete EVD tracking algorithm based on the 
above approximation of the modified eigenvector ma­
trix V is described in Table 2. In the absence of a pri­
ori knowledge, the algorithm can be initialized by using 
U(O) = reO) = h. Other initialization approach are 
also possible, such as using the EVD of an initial esti­
mate of the covariance matrix R(k) (2). The new algo­
rithm requires 12L3 + 0(L2 

) flops per iteration. How­
ever, for applications in which only a signal or noise­
subspace of dimension M < L is needed, modifications 
can be easily made to the algorithm so as to reduce the 
complexity to 12LM2 + O(LM) flops. 

5. COMPUTER EXPERIMENTS 

Due to lack of space, we only describe a limited set of ex­
periments aimed at evaluating the convergence behavior 
of the new algorithm in a stationary environments. We 
consider a uniform linear array of L = 8 sensors with 
half-wavelength spacing. The wavefield consists of two 
narrow-band plane wave signals with DOAs of 9° and 
12° (w.r.t. broadside) in white background noise. The 
SNR of each source at the sensor level is 20dB. The new 
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Figure 1: (a) Distance between estimated and true 
signal-subspace; (b) Orthonormality of signal-subspace 
eigenvectors. 

algorithm is applied to the data so generated and rele­
vant performance measures are computed. For the sake 
of comparaison, exact EVD of the recursive exponential 
covariance matrix estimate is also computed. 

Fig. 1(a) (top) shows the distance between the signal­
subspace estimated with the new algorithm and the true 
signal-subspace as a function of time, averaged over 50 
runs. Results for the exact EVD approach (not shown) 
are identical. Thus, the new algorihtm exhibits the same 
convergence behavior as the much more costly "exact 
EVD approach". This provides a practicle justification 
for the constrained linearization approach used here. 
Fig. l(b) shows the quantity IIUs(k)HUs(k) - hl12 ver­
sus time for a single run, where Us(k) = [udk), u2(k)] 
contains the estimated signal-subspace eigenvectors. The 
dashed curve in the figure represents the relative accu­
racy of numbers on our computer system. These results 
indicate that the new algorithm is very effective in pre­
serving the orthogonality of the estimated eigenvectors. 
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