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ABSTRACT

This paper presents a new approach to adaptive signal-
subspace processing of narrowband array data which is based on the
application of first-order perturbation analysis. In the proposed
approach, the correction term in the recursive estimate of the array
covariance matrix at time k is viewed as a perturbation of the esti-
mate at time k — 1. Following this interpretation, the theory of per-
turbation of Hermitian matrices is applied in order to obtain a new
recursion expressing the eigenstructure estimate of R, (k), the true
array covariance matrix at time k, in terms of the eigenstructure esti-
mate of R, (k - 1). This algorithm can be realized by means of L lin-
ear combiners with non-linear weight-vector adaptation equations,
where L is the signal-subspace dimensionality. These non-linear
adaptation equations appear to be substitutes for the orthonormal
weight constraints found in other algorithms. The results of prelimi-
nary simulations are discussed.

L INTRODUCTION

Most of the modem, high-resolution array processing tech-
niques are based on the application of so-called signal-subspace
algorithms, which use the eigenstructure of the array output sample
covariance matrix to obtain improved estimates of the directions of
arrival of multiple plane waves [1]. While originally intended for
narrowband applications, modified versions of these algorithms have
also been used successfully in broadband situations [2).

These algorithms are based on the assumption of (statistical)
stationarity of the observed data at the array output. In many appli-
cations, however, the sources under observation are moving and this
assumption is not satisfied. The application of signal-subspace algo-
rithms in time-varying environments therefore requires repeated
eigenstructure computations of an updated sample covariance matrix,
a task which is generally prohibitive.

Two different approaches have been suggested in the past for
time-varying, or adaptive, signal-subspace processing. In the first
approach (3], the determination of the signal-subspace is formulated
as a constrained optimization problem which is realized via a
stochastic gradient search based on a recursive estimation of the
array covariance matrix. In the second approach (4], variations of
Bunch’s rank one eigenstructure updating algorithm are used to
update the eigenstructure of the sample covariance matrix of the
array at each iteration. The updated eigenstructure is then used to
estimate the signal subspace.

In this paper, we present a new approach to narrowband adap-
tive signal-subspace processing which is based on the application of
first-order perturbation analysis. In the proposed approach, we view
the correction term in the recursive estimate of the sample covari-
ance matrix at time k as a perturbation of the estimate at time & — 1.
By applying the theory of perturbation of Hermitian matrices, we
obtain a recursion expressing the eigenstructure estimate of R (k),
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the true array covariance matrix at time &, in terms of the eigenstruc-
ture estimate of R,(k —1). This algorithm can be realized by means
of L linear combiners with non-linear weight vector adaptation equa-
tions, where L is the dimensionality of the signal-subspace. These
non-linear adaptation equations appear to be substitutes for orthonor-
mal constraints found in other algorithms. Preliminary simulation
results for two stationary, closely spaced sources in noise show
improved performance of the proposed algorithm when compared to
Yang and Kaveh’s instantaneous LMS-type signal-subspace algo-
rithm [3].

This paper is organized in the following way. In Section II, we
describe the observation model used for the sensor outputs and we
formulate the problem of updating the eigenstructure estimate of the
array output covariance matrix as a perturbation problem. In Section
111, we use the methods of perturbation theory to solve this problem.
Special attention is given to the difficulties posed by the degenerate
nature of the noise-subspace. In Section IV, we present the simula-
tion results and finally, in Section V, we comment on possible future
work.

II. PROBLEM FORMULATION

Consider an array of M sensors and let x(k) denote the com-
plex M-dimensional narrow-band output of the array at the kth sam-
pling interval, or snapshot. Denote the covariance matrix of x(k) by

Ro(k) = ELx(0)x" (k)] n)

where the superscript H denotes complex conjugate transposition.
Suppose that the observed wavefield consists of the superposition of
L distinct sources on a background noise. More presicely, let

x(k) = A(k)s(k) + n(k) ?2)
where s(k) is a complex L-dimensional signal process, A(k) is a
M X L transmission matrix, and n(k) is a complex M -dimensional
background noise process. We shall assume that s(k) and n(k) are

zero-mean, uncorrelated random processes with covariance matrices
at time & given by

Ry(k) = E[stk)s" (k)] A)
Ry(k) = E(n(k)n (k)] = o2(k) Iy @

where o',f(k) is the noise variance at time k and 7, is the M x M
identity matrix. In this case, the array output covariance matrix satis-
fies

Ry (k) = A(k) Ry(k) AT (K) + a2(k) 1. ®

Suppose for the moment that the signal and noise are stationary
random processes and that the transmission matrix is constant over
time, so that the dependence on the time index  can be omitted tem-
porarily. If the rank of A is equal to L, the number of sources, it is
not difficult to prove the following: Let 4; and ¢;, i=1,..., M,
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denote the eigenvalues and corresponding eigenvectors of the covari-
ance matrix R,, with the eigenvalues arranged in descending order.
Then,

M2 A2 2AL> Ay == Ay = 0% ©)
A"0,=0 m

where O denotes the M X M zero matrix and
0, =1q101,qLs20-- - qu] ®

Hence, the number of sources L is given indirectly by the multiplic-
ity of the smallest eigenvalue of Ry, while the column span of A is
identical to that of the matrix

Q= [41-421---,41,] ©

Accordingly, the span of Q, and Q, are referred to as the signal-
subspace and the noise-subspace, respectively.

A problem of fundamental importance in array processing is
the joint estimation of the number of sources L, the signal subspace
Q, and the noise variance of A variety of algorithms, such as
MUSIC [1] for instance, use these parameters to generate high reso-
lution estimates of the angles of arrival of multiple plane waves
incoming on the array. Based on the above property of the covari-
ance matrix R,, such a joint estimate can be obtained quite naturally
by first constructing an estimate of R, say R, and then solving for
the eigenvalues and eigenvectors of R,. In this context, a typical
estimate of R, is given by

1 X
Re=— 3 x(b)x" (k). (10)
K =1
The crucial part of this approach is actually the determination of the
multiplicity of the smallest eigenvalue of Ry from the estimated
cigenvalues. Various criteria, such as the Akaike information crite-
rion (AIC) and the minimum description length (MDL) criterion, can
be used for this task. In a stationary environment, a good estimator
of R, can be obtained by averaging the outer product x(k)x" (k) in
(10) over a sufficiently large number of snapshots K. In this case, it
can be shown that the joint estimates of L (using the MDL criterion),
Q, and a,f are asymptotically consistent (convergence o the exact
values in the limit of large K) [5].

In many applications, however, R(k) can only be considered
stationary over a relatively small time interval which may not be suf-
ficient to get statistically reliable estimates of the desired parameters.
This may occur for instance when the bearing angles of the sources
under observation vary with time. In this case, one is constrained to
take into account the time-varying nature of the problem and to
explicitely specify the dependence in k of the eigenvalues and eigen-
vectors of R,(k), namely: 4;(k) and g;(k). Moreover, the application
of signal-subspace algorithms then requires repeated computation of
the eigenstructure of a time-varying sample covariance matrix R, (k),
a task which is usually prohibitive.

Two different approaches have been suggested for time-
varying, or adaptive, signal-subspace processing. In the first
approach [3], the determination of the signal subspace at time k is
formulated as a constrained optimization problem. The optimization
is carried out over time via a stochastic gradient scarch based on a
recursive estimation of the array covariance matrix R,(k). More pre-
cisely, denoting by U,(k) the estimate of Q,(k), the signal subspace
at time &, we have

Ulky=Uy(k—1) + p V(k) (11)
U,(k) = Gram — Schmidt orthonormalization of U k) (12)

where # is a convergence factor and V(k) is an estimate of the gradi-
ent of an appropriate cost function. Different gradient estimators
have been considered in [3]}, including
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V() =2 R (k) Us(k = 1) a3
where R, (k) is an estimate of R, (k) obtained recursively through
Bk = (1) Rylk—1) + e x(k) xH (k). 14)

In a second approach, proposed by Degroat and Robert [4], the
eigenstructure of K, (k) (14) is used to estimate the eigenstructure of
the true covariance matrix R (k). However, instead of recomputing
the eigenstructure of K, (k) at each iteration, the eigenstructure is
updated recursively using a “stabilized” version of Bunch'’s rank one
eigenstructure updating algorithm. It is important to note that in this
approach, the exact eigenstructure of R,(k) is sought at each time.
In principle, the exact updating algorithm requires the solution of a
non-linear equation. In practice, this equation is solved approxi-
mately through an iterative, finite steps algorithm.

We now present a new formulation of the eigenstructure updat-
ing problem which differs substantially from those described above.
This formulation is based on the application of first-order perturba-
tion analysis. To begin, we rewrite the updating equation (14) for
R (k) as follows:

Ro(k) = Bk~ 1) + e [x()x" () = Ro(k = 1)) 15)
where ¢ is a small positive parameter that admits the following inter-
pretation: 1/e can be viewed as the effective number of samples x(k)
used in the determination of K, (this can be shown by solving the
difference equation (15) for B,(k)). We note that the correction term
£[x(k)xH (k)= R, (k- 1)] in (15) can be viewed as a perturbation of
R (k). Because this pertubative term is linear in ¢, it is referred to as
a first-order perturbation.

Let 7,(k) and u;(k) denote the desired estimates of the true
eigenvalues 4;(k) and corresponding eigenvectors qi(k) of Ry(k).
Rather than seeking estimates which are exact eigenvalues and”
eigenvectors of R (k) (15), we shall require that

Ry (Ruik) = 7(kuik) + O(e?) (16)
u By (k) = 65 + () an

for all k, where &j; is the Kronecker delta. That is, %;(k) and u;(k) are
eigenvalues and eigenvectors of R;(k) up to error terms of order e,
The main justification for seeking estimates satisfying (16)-(17) is
the possibility of applying the theory of perturbation of Hermitian
matrices to construct recursive equations expressing the estimates at
time k in terms of those at time k — 1. Indeed, because the correction
term e[x(k)x" (k) — R;(k —1)] in (15) can be viewed as a first-order
perturbation of R, (k — 1), the proper application of the theory should
lead to perturbative series in & expressing (k) and u;(k) in terms of
yitk—1) and u(k— 1), j=1,...,M. The recursive equations so
obtained would enable us to adapt our estimates of the eigenstructure
of R,(k) as the time index  is incremented, without having to com-
pletely recompute these estimates.

In the next section, a first-order perturbation analysis is carried
out in order to obtain the desired recursions.

III. FIRST-ORDER PERTURBATION ANALYSIS

Among all possible solutions 4;(k) and u;(k) to (16)-(17), we
shall be secking those satisfying recursive equations of the type

70 = 70w + 1O®e, 7O =nk-1)
wi(k) = 6OK) + uO e, w0 = uik - 1).

18)
19)

Since B, (k) (15) is a convergent power series in £ around R (k - 1),
the theory of perturbation of Hemnitian matrices [6] asserts that the -
eigenvalues and eigenvectors of R, (k) if properly selected) can be
expanded in power series of the same type, convergent for & small,
around the eigenvalues and eigenvectors of R (k—1). This theory



also provides methods for determining these power series. Although
%:(k — 1) and u;(k ~ 1) are not exact eigenvalues and eigenvectors of
the unperturbed matrix £,(k - 1), but rather approximations of order
€2, it is still possible to apply the theory in order to determine the
correction tems 7(k) and u{"’(k) in the finite expansions (18)-(19).
The general approach is described below.

To simplify the notations, we define

F=R.k-1 20)
G =x()x" (k) - R, (k- 1), 1)

so that
R.(k)=F +¢G, (22)

and we temporarily write n(j)(k) and ufj)(k) as ;',U) and u?), respec-
tively. Substituting (18), ( 19) and (22) in (16), and multiplying term
by term, we get

Ful + (Fu® + Gu®)e =
23)

But according to (16), Ful” = yOu® + 0(¢?). Substituting in (23)

and requiring that the resulting equation be satisfied for all ¢ in the
neighborhood of 0, we obtain

72U + GOU® + yOuUD)e + 0(e?).

Ful® + Gu® = yOu® 4 5O, 4)
Proceeding in a similar manner with (17), we obtain
P u?) + Wy =0 @5)

where (u,v)=uy denotes the scalar product between M-
components column vectors. The desired correction terms ri(l) and
u,(-l) can be found as the solutions to (24) and (25). As such, we note
that y,-(]) and u?) depend only on the new data vector x(k) and the old
estimates R, (k — 1), 7(k — 1) and u;(k — 1),

If all the eigenvalue estimates ¥:(k ~ 1) where distinct, the solu-
tion of (24)-(25) would be relatively straightforward. However,
because of the particular structure of the array covariance matrix
R (k) (5) whose M — L smallest eigenvalues are degenerate, any rea-
sonable estimation procedure  should eventually result in
Y1k, ..., yae(k) clustering together as k increases. In tumn, this
would make the recursion obtained under the assumption of distinct
7:(k - 1) unstable. One way out of this dilemma is to further impose
the following condition on the M — L smallest eigenvalue estimates:

Tenk) = = 7y (k). (26)

That is, we construct the recursive eigenvalue estimates in such a
way that the smallest one has the proper multiplicity. Of course, this
requires that the signal-subspace dimensionality L be known in
advance.

A similar problem occurs if some of the eigenvalues Ai(k) of
R, (k) are degenerate for 1<i< L. In principle, this problem can be
handled in the same way as above. However, to simplify the presen-
tation, we shall assume that

nk) > - >y (k). @7
We refer to (27) as the non-degenerate signal-subspace assumption.
Further comments will be made in the conclusion concerning the
question of adaptive determination of eigenvalue multiplicities.

The solution of (24)-(25) under the assumption (26)-(27) is car-
ried out in [7]. One important caracteristic of the resulting correction
terms is that they depend only on the new data vector x(k) and the
previous estimates %(k — 1) and ui(k—1), and not on the estimate
R (k-1) of the aray covariance matrix, as suggested by (24)-(25).
Once the correction terms are available, the formulation of a
com- plete eigenstructure updating algorithm based on the recursive
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equations (18)-(19) is straightforward. This algorithm is stated
below.

Data needed at time k:
x(k)
uik=-1), i=1,...,L
Yilk=1), i=1,...,L+1

Compuitation of correction terms:

yilk)= ik = 1), x(k)), i=1,...,L (28)
70 =y R - k=1, i=1,....L 29)
(1) — 1 _ L 2y _ 30
7L+1(k)———(M_ %) { (x(k), x(k)) Elyl(kﬂ } = rmk=1) (30)
vitk) = yi(R)uik - 1), i=1,...,L @31
1, =i
bjitk) =1 y;(k~1) =y (k= 1) jai (32)
k=1 -yk-1) ’
Oy = i) 0= 3 bk ik 33
4B = T ey 0 B 69
Updating eigenstructure:
YR =7k=D+eyP%), i=1,...,L+1 (34)
uik) = witk =) + eu®Pk), i=1,...,L 35)

The dimensionality of the signal subspace, L, and the initial values
7(0),i=1,...,L+1 and u(0),i=1,..., L are needed to start the
recursion. They can be obtained for example by performing an
eigendecomposition of an initial estimate 13,(0) of the array covari-
ance matrix.

Equation (28) can be realized by means of L linear combiners,
with the complex weight vector of the ith combiner given by
u;(k~1). The output y,(k) of the ith combiner is used to evaluate
the correction term n(l)(k) (29). To evaluate the correction term
7+1(k) (30), we must further evaluate (x(k), x(k)), the energy of
x(k). In this respect, we note that the term between brackets in (30)
can be interpreted as an estimate of the energy of x(k) along the
noise subspace. The quantity v;(k) (31) is the projection of x(k)
along u;(k ~ 1) (assuming u;(k — 1) has unit lenght, which is true to
the first order in £). The coefficients b ji(k) (32) are computed from
the previous eigenvalues ¥;(k - 1). The correction term u?l)(k) is
obtained by substracting a linear combination of the v (k) (using the
bji(k) as coefficients) from x(k), and then scaling the result. In
(34)~(35), the correction terms are used to form the estimates at time

We note that the above recursion is non-linear, that is: the
updated eigenvalues (k) and corresponding eigenvectors u;(k) at
time & depend non-linearly on the eigenvalues ¥;(k ~ 1) and u;(k - 1)
at time £~ 1. In particular, equation (33), which can be interpreted
as a weight-vector adaptation equation for the ith linear combiner, is
non-linear in u;(k — 1). This non-linearity appears to be a substitute
for the orthonormal weight constraints found in other algorithms (see
12)).

IV. SIMULATIONS

Computer simulations were used to compare the new adaptive
signal-subspace algorithm presented in this paper to the instanta-
neous LMS-type algorithm proposed in [3]. The purpose of this pre-
liminary study was to investigate the convergence properties of the
two algorithms when operating on stationary data, and to compare



the relative accuracy of the resulting eigenstructure estimates. The
simulations are described below.

The scenario considered is identical to that of [3]. A uniform
linear array of M =8 sensors is used to monitor L=2 uncorrelated
plane waves of common frequency incoming from directions 8, =9°
and 6, =12°. The intersensor spacing is equal to half of the wave-
length. The plane waves are monitored in the presence of uncorre-
lated background noise as described in Section II. The signal-to-
noise ratios of the two plane wave signals at the sensor outputs are
given by SNR; =SNR; = 20dB .

The initial values needed to implement the first-order perturba-
tive algorithm were obtained as follows. A sequence of 10 indepen-
dent array output vectors x(k), with the proper statistical characteris-
tics, was used to form an initial estimate R, of the true array covari-
ance matrix as in (10). The 2 largest eigenvalues of R,, arranged in
descending order, were used as the initial values 7(0) and %(0),
respectively. The corresponding eigenvectors were used as the initial
estimates #;(0) and u(0), respectively. The initial value 3(0) was
obtained by averaging the remaining 6 smallest eigenvalues of R;.
The same vectors u#;(0) and u,(0) were used to initialize the instanta-
neous LMS-type algorithm.

Once initialized, both algorithms were applied to the same ,

sequence of independent array output vectors x(k), k=1,...,400.
The performance of each algorithm was evaluated in terms of the fol-
lowing measure:

1
I = =0 (0~ s 4l
wherel.lldenotes the Euclidean norm of a matrix. The quantity J(k),
also referred to as a leaming curve, measures the normalized error
between the projector on the true signal subspace, ie 0,0, and an
estimate of this projector at time & given by U, ,(k)Uf (k). An aver-
age learning curve was finally obtained by performing 40 indepen-
dent experiments as above and averaging J(k) (36) over these exper-
iments (we note that the same initial values were used for all of the
40 independent experiments).

Fig. 1 shows the average leaming curves of the two algorithms
for £=.02 and u=.00025, where ¢ is the perturbation parameter
introduced in this paper and g is the convergence factor used in [3].
With this choice of parameters, both algorithms yield similar steady
state normalized error. In this case, however, the new algorithm con-
verges about twice as fast as the LMS-type algorithm. Fig. 2 shows
the average learning curves for £=.02 and #=.001. In this case,
the convergence rate of the two algorithms is similar. However, the
steady state normalized error of the new algorithm is about half that
of the LMS-type algorithm.

(36)

V. CONCLUSION

We have presented a new algorithm for adaptive signal-
subspace processing which is based on the application of first-order
perturbation analysis. Preliminary simulation results indicate that
this algorithm can achieve substantially better performance than
Yang and Kaveh’s instantaneous LMS-type algorithm [3].

A final comment is in order conceming the non-degenerate sig-
nal-subspace assumption made in Section HI. This assumption
requires that the number of sources L be known, and that the L
largest eigenvalues of the true array covariance matrix remain non-
degenerate at all time. In practice, the number of sources L must be
estimated from the data. Moreover, the multiplicity of the L largest
cigenvalues may change as the sources move in time. As a remedy
to these potential problems, we note that it is possible to develop 2
first-order perturbative version of the AIC criterion for the adaptive
determination of L. Moreover, it is possible to extend the approach
proposed in this paper to the case of degenerate signal-subsapce
eigenvalues. These questions will be addressed in the future.
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Fig. 1. Avercage leaming curves of the first-order perturbative
signal-subspace algorithm (continuous curve) and the instantaneous
LMS-type algorithm (dashed curve): £=.02, y#=. 00025.
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Fig. 2. Avereage leamning curves of the first-order perturbative
signal-subspace algorithm (continuous curve) and the instantaneous
LMS-type algorithm (dashed curve): £=. 02, u=.001



