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Abstract—In this paper, cooperative localization of mobile
nodes in non-line of sight (NLOS) situation is considered using a
constrained square root unscented Kalman filter (CSRUKF). The
NLOS measurements are used as quadratic constraints, which
form a convex feasible region inside which the positions of the
mobile nodes are supposed to be. The CSRUKF consists of two
main stages: square root unscented Kalman filter (SRUKF) and
sigma point projection. In the former, a conventional SRUKF
is used to estimate the state vector and the Cholesky factor of
the error covariance matrix. In the latter, a new set of sigma
points are generated, and the ones violating the constraints are
projected onto the feasible region by solving a set of convex
quadratically constrained quadratic programs (QCQP). Each
QCQP can be solved independently and in parallel for each
sigma point violating the constraint, thus the algorithm is suitable
for distributed processing. The simulation results show that our
algorithm can perform well in different NLOS scenarios.
Index Terms—Constrained Kalman filter, convex optimization,

cooperative localization, non-line of sight.

I. INTRODUCTION
The global positioning system (GPS) is a conventional

system for localization and navigation. However, GPS is not
a suitable technology for indoor places and dense urban areas
due to shadowing and multipath propagation. Furthermore, the
high battery consumption of the GPS devices is a limiting
factor. Therefore, a ground-based localization system which
can be used in indoor places offers a suitable alternative for
applications in healthcare, surveillance, military, and many
more [1]. In particular, the use of a low power and low cost
wireless sensor network (WSN), which consists of some fixed
anchor nodes at known location along with the mobile sensor
nodes being tracked, is of great interest for such applications.
Different types of measurements can be used for localization

purposes, including: time of arrival (TOA), time difference of
arrival (TDOA), angle of arrival (AOA) and received signal
strength (RSS). Accurate TOA measurements can be obtained
by employing ultra wide-band (UWB) technology due to its
fine timing resolution [2]. Accordingly, TOA is one of the
most popular types of measurements currently being used for
localization. Although TOA measurements between two nodes
require the latter to be time synchronized, the effects of clock
drift and offset can be mitigated using a two-way ranging
(TWR) protocol [1].
Localization with WSN can be divided into two cate-

gories, namely: non-cooperative and cooperative. In the non-
cooperative category, each sensor only uses the signals ob-
tained from its neighbouring anchors in order to be localized
or tracked. In practice, the number of anchors is limited and

may not be adequate to allow for accurate, non-ambiguous
localization. Cooperation between mobile nodes, by making
pairwise measurements and exchanging information, can result
in better localization performance. Therefore, the use of a
cooperative WSN has started to gain attention in recent years
[3], [4].
In practice however, the direct view between many pairs

of nodes (anchors or sensors) is blocked by objects in the
environment, resulting in a non-line of sight (NLOS) situation.
In NLOS, the received signal is obtained after reflection from
a scatterer or penetration through the blocking objects. Hence,
the travel time of the signal increases, resulting in positively
biased range measurements [5]. Localization in NLOS has
been studied extensively for non-cooperative networks, as
summarized in [6]. In case the sensor motion can be modelled
by a dynamic state equation, several techniques have been
proposed in [7], [8], [9]. More recently, the authors proposed
a constrained square root unscented Kalman filter (CSRUKF)
which can perform well in different NLOS scenarios [10].
Cooperative localization in NLOS has been considered for
static networks in [11], [12], [13]. However, to the best
knowledge of the authors, there is no work in the literature
which considers cooperative localization of mobile nodes
with dynamic equations in NLOS scenarios, and where prior
statistics about the NLOS biases are not assumed available.
In this paper, we extend the centralized CSRUKF proposed

in [10] to the cooperative localization scenario. The main idea
is based on projection of sigma points of an unscented Kalman
filter onto the feasible region, as first considered in [14].
The projection operation is a convex quadratically constrained
quadratic program (QCQP) which can be solved efficiently
in polynomial time. We show how the optimization problem
can be solved more efficiently by avoiding inverse operations
and by reducing its size. Furthermore, the resulting QCQP
problems are decoupled and their solutions can be obtained
in a distributed fashion; thus making our algorithm even more
interesting for practical applications. Through simulations, it
is shown that the proposed CSRUKF can perform well even
in severe NLOS situations.
The organization of the paper is as follows: The system

model and problem formulation are presented in Section
II. The proposed algorithm is described in Section III. Its
performance is compared to an existing technique through
simulations in Section IV. Finally, Section V concludes the
paper.
Notation: The identity matrix of size N is denoted by IN .



For i ≤ j, q(i :j) denotes a vector of size j − i+ 1 obtained
by extracting the i-th to j-th entries of vector q, inclusively.
(U)j denotes the j-th column of matrix U and U(i : j) is a
sub-matrix which includes rows i to j of matrix U .

II. PROBLEM STATEMENT

We consider a 2-dimensional (2D) WSN (the extension to
3D is straightforward) comprised of N sensor nodes with
unknown locations xi

k ∈ R
2 and unknown speeds ẋi

k ∈ R
2 for

i = {1, . . . , N} at discrete time instant k, and of M anchors
with known and fixed locations ai for i = {N + 1, . . . , N +
M}. The sensors move according to a random acceleration
model as

xi
k+1 = xi

k + ẋi
kδt+wi

k

δt2

2
, i = 1, . . . , N (1)

where δt is the time step duration andwi
k ∈ R

2 is a zero-mean
white Gaussian random process.
Pairwise range measurements between neighbouring nodes

are obtained either by one way ranging and prior network
synchronization, or through TWR, modelled as

r
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(2)

where

La : {(i, j) : LOS link between i-th sensor and j-th anchor}
Ls : {(i, j) : LOS link between i-th and j-th sensors}
Na : {(i, j) : NLOS link between i-th sensor and j-th anchor}
Ns : {(i, j) : NLOS link between i-th and j-th sensors}
In (2), nij

k is a zero-mean Gaussian noise with known variance
σ2
n, and b

ij
k is the NLOS bias which is a positive random

variable and has been modelled as exponential, uniform,
shifted Gaussian and other distributions in different works [5],
[15]. Prior knowledge about the distribution of NLOS may not
be easy to obtain beforehand for practical online applications;
hence we assume that we do not have any information about
the statistics of bijk including its mean and variance. We only
assume that the NLOS links are identified accurately for every
time instant as done in may works [16], [17].
The NLOS biases are large random variables and for UWB

applications it can be assumed that bijk + n
ij
k ≥ 0, which is

equivalent to stating that for all the NLOS measurements

‖xi
k − aj‖ ≤ r

ij
k , (i, j) ∈ Na (3)

‖xi
k − x

j
k‖ ≤ r

ij
k , (i, j) ∈ Ns (4)

In order to increase the robustness against large noise samples
we use the following constraints instead

‖xi
k − aj‖ ≤ r

ij
k + εσn, (i, j) ∈ Na (5)

‖xi
k − x

j
k‖ ≤ r

ij
k + εσn, (i, j) ∈ Ns (6)

where ε ≥ 0 is a tuning parameter which increases the chance
that the inequalities hold true. Note that the new inequalities in
(5)-(6) might also hold true for LOS measurements; therefore,
if a link is LOS but wrongly identified as being NLOS, the
inequalities in (5)-(6) have a higher chance to be satisfied
compared to the ones in (3)-(4).
In some works, the NLOS biases have been modelled by

the random walk model, and therefore, they are included in
the state vector and estimated together with other unknowns
[7], [9]. However, random walk approximately models the
relationship between b

ij
k and b

ij
k+1, and selecting a suitable

variance for the increment of the random walk is not easy for
dynamic environments. We therefore, avoid including them
in the state vector and estimating them, however, we remove
the NLOS measurements from the observation vector and
instead use these measurements to impose the constraints
in (5) and (6) on the positions of sensors. The measure-
ment vector zk is obtained by stacking together all the
LOS measurements r

ij
k for (i, j) ∈ La ∪ Ls. The state of

all the sensors can also be expressed in a vector form as
sk = [x1

k,x
2
k, . . . ,x

N
k , ẋ1

k, ẋ
2
k, . . . , ẋ

N
k ]T ∈ R

4N . We can
finally formulate the constrained state space model as

zk = h(sk) + nk (7)
sk = Fsk−1 +Gwk (8)
s.t. ‖xi

k − aj‖ ≤ r
ij
k + εσn, (i, j) ∈ Na (9)

‖xi
k − x

j
k‖ ≤ r

ij
k + εσn, (i, j) ∈ Ns (10)

where h(sk) is the vector of true ranges, nk is the vector
of measurement errors with zero-mean and covariance matrix
R = σ2

nI, wk = [(w1
k)

T , (w2
k)

T , . . . , (wN
k )T ]T is a zero-

mean Gaussian vector with covariance matrix Q and

F =

[
I2N δtI2N

02N I2N

]
∈ R

4N×4N , G =

[
δt2

2 I2N

δtI2N

]
∈ R

4N×2N

(11)
In the following, we show how to estimate sk based on the

history of the range measurements and the constraints.

III. PROPOSED CENTRALIZED ALGORITHM

The proposed CSRUKF consists of two main stages: uncon-
strained nonlinear Kalman filter (SRUKF [18]), and projection
of the sigma points violating the constraints.

A. Unconstrained SRUKF

If there are no constraints on the state vector, then a nonlin-
ear Kalman filter can be used for the a posteriori estimation
of state and the corresponding error covariance matrix, i.e.,
sk|k and Σk|k, respectively. We use a SRUKF for this aim,
as proposed in [18], and find sk|k and the Cholesky factor of
the error covariance matrix denoted by Uk|k, as described in
Algorithm 1, where L = 4N . A detailed explanation about
selection of parameters ηα and ε and their relation with the
weights w(l) can be found in [10].



Algorithm 1 SRUKF
1: Initialize s0|0 and set Σ0|0 to a large symmetric positive-
definite (SPD) diagonal matrix.

2: Set ηα and ε

3: for k = 1, . . . ,K do
4: Prediction

sk|k−1 = Fsk−1|k−1 (12)

Uk|k−1 = qr
{[

Uk−1|k−1F
T

Q1/2G

]}
(13)

5: Correction

s
(l)
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⎧⎪⎨
⎪⎩
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√
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(14)
z
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T k = Σ
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sk|k = sk|k−1 + T kU
−T
zk (zk − ẑk|k−1) (20)

Uk|k = cholupdate{Uk|k−1,T k,−1} (21)

6: end for

B. Projection of Sigma Points

Assume that the a posteriori state estimate and the Cholesky
factor of the a posteriori error covariance matrix have been
obtained using a SRUKF without taking the constraints into
account. To impose the constraints on the estimated state and
error covariance matrix, similar to [14], a new set of sigma
points are generated according to

s
(l)
k|k =

⎧⎪⎨
⎪⎩
sk|k, l = 0,

sk|k +
√
ηα(U

T
k|k)l, l = 1, . . . , L,

sk|k −√
ηα(U

T
k|k)l−L, l = L+ 1, . . . , 2L.

(22)

The generated sigma points form an uncertainty ellipsoid with
sk|k at its centre as illustrated in Fig. 1 for the simple case of
L = 2, i.e., one sensor with only position coordinates as the
state vector. After the generation of sigma points s(l)k|k , those
which violate the constraints are projected onto the convex

Fig. 1: The sigma points before and after projection are
illustrated with red and green circles, respectively for a single
node. The weighted average falls inside the feasible region.

feasible region through

P(s
(l)
k|k) = argmin

q

{
(q − s

(l)
k|k)

TW k(q − s
(l)
k|k)

}
, (23)

s.t. ‖q(2i− 1:2i)− aj
∥∥ ≤ r

ij
k + εσn, (i, j) ∈ Na

‖q(2i− 1:2i)− q(2j − 1:2j)
∥∥ ≤ r

ij
k + εσn, (i, j) ∈ Ns

where W k is a SPD weighting matrix [19], [20]. One rea-
sonable choice is W k = Σ

−1
k|k, which gives the smallest

estimation error covariance matrix when a linear KF is applied
to a system with linear dynamic equations and with zero-mean
Gaussian observation and excitation noises [20].
The optimization problem in (23) is a QCQP, which is

convex since W k is SPD and the constraints are convex [21,
p.153]. As the constraints are only on the first 2N elements
of the state vector, i.e., the position coordinates, it is possible
to reduce the size of the QCQP problem.
Recalling that Σk|k = UT

k|kUk|k, the objective function in
(23) can be expressed as (q− s

(l)
k|k)

TU−1
k|kU

−T
k|k (q− s

(l)
k|k). To

avoid the inverse operation, we define

u = U−T
k|k (s

(l)
k|k − q). (24)

Then it follows that

q = s
(l)
k|k −UT

k|ku. (25)

We partition the lower triangular matrix UT
k|k as follows:

UT
k|k =

[
L11 0

L21 L22

]
, (26)

where L11 ∈ R
2N×2N and L22 ∈ R

2N×2N are lower
triangular. Then from (25) we have

q(1 :2N) = s
(l)
k|k(1 :2N)−L11u(1 :2N). (27)

Using (25) and (27), and noting that the optimal u(2N + 1 :
4N) = 0 (since the constraints only depend on u(1 :2N)) we
can reformulate the QCQP problem (23) as (28). This convex



min
u(1:2N)

{
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}
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s.t.
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∥∥ ≤ r
ij
k + εσn, (i, j) ∈ Ns

QCQP problem can now be solved efficiently using iterative
techniques [21]. After finding the optimal u(1 : 2N), we can
compute the optimal q using (25) and the fact that the optimal
u(2N + 1:4N) = 0 as follows:

P(s
(l)
k|k) � q = s

(l)
k|k −

[
L11

L21

]
u(1 :2N). (29)

After finding the projected sigma points through (29), the state
and the Cholesky factor of the error covariance matrix may be
estimated through weighted averaging and QR factorization,
respectively as

sPk|k =

2L∑
l=0

w(l)P(s
(l)
k|k), (30)

UP
k|k = qr

{
[e

(0)
P , e

(1)
P , . . . , e

(2L)
P ]T

}
, (31)

where

e
(l)
P =

√
w(l)(P(s

(l)
k|k)− sPk|k)), l = 0, . . . , 2L.

Finally, in the next iteration of the unconstrained SRUKF, the
constrained a posteriori state estimate sPk|k and the Cholesky
factor of the corresponding error covariance matrix UP

k|k

replace sk|k and Uk|k, respectively as

sk|k = sPk|k, (32)

Uk|k = UP
k|k. (33)

C. Centralized Algorithm Summary

The proposed two stage CSRUKF is summarized in Algo-
rithm 2.

Algorithm 2 CSRUKF
1: Initialize s0|0 and set Σ0|0 to a large SPD diagonal matrix
2: Set ηα and ε

3: for k = 1, . . . ,K do
4: Estimate sk|k and Uk|k using a conventional SRUKF

as described in Algorithm 1 [18].
5: Generate the sigma points using (22).
6: For every sigma point whose first two elements fall

outside the feasible region solve (28) and find the
projected point (29).

7: Estimate sPk|k using (30) and UP
k|k using (31).

8: Update the a posteriori estimates, i.e., (32) and (33).
9: end for

IV. SIMULATION RESULTS

To evaluate the performance of the proposed technique, we
consider a 2D area with M = 4 anchors and N = 5 mobile
sensors. The sensors are initially place uniformly on the plane,
and move independently accordingly to the considered motion
model in (1) with δt = 0.2 for 100 time steps. The anchors
are located at positions a6 = [0, 0], a7 = [0, 10], a8 = [10, 0],
and a9 = [10, 10]. We assume that if the distance between the
nodes is less than 10m then they are regarded as neighbours
and they obtain pairwise range measurements. The true range
between neighbouring nodes is disturbed with a Gaussian
noise with zero-mean and standard deviation σn = 0.1m
in order to model the range measurement. Ranging with
centimetres accuracy is in accordance with IEEE 802.15.4a
in indoor environments with LOS connection [22]. For the
NLOS links, a positive exponential random variable with mean
and standard deviation of 5m is also added to the obtained
ranges. The tuning parameters in CSRUKF are set as ε = 3
and ηα = 0.8. The convex QCQP problems are solved using
Sedumi solver [23] and Yalmip optimization package [24].
To test the algorithm, we consider three different NLOS

scenarios where the probability of a link being NLOS, denoted
as PN varies from a low to a high value, as follows:

• Small ratio of NLOS to LOS links: PN = 0.05
• Moderate ratio of NLOS to LOS links: PN = 0.5
• Large ratio of NLOS to LOS links: PN = 0.95

For comparison purposes, we consider an unconstrained
SRUKF with rejection of NLOS links, denoted by ”SRUKF
Outlier Rejection”. If there are enough LOS measurements
available for each node, then outlier rejection is the right
strategy, but in the absence of enough LOS nodes the per-
formance of this method might be severely degraded. As
a performance metric, the cumulative distribution function
(CDF) of the network positioning error, defined as

CDF(ek) = Pr
{ 1

N

N∑
i=1

‖sk|k(2i−1:2i)−sk(2i−1:2i)‖ ≤ ek

}

is evaluated empirically for different values of PN .
As observed in Fig. 2, for low ratio of NLOS to LOS links,

the SRUKF with outlier rejection performs almost the same
as our proposed CSRUKF. This confirms that using a few
NLOS links as constraints might not improve the localization
performance. However, for PN = 0.5, the performance of
Kalman filtering with outlier rejection is degraded noticeably
(it sometimes even diverges) while that of the proposed
CSRUKF is less than 1m with 90% chance. For large ratios of
NLOS to LOS links, the outlier rejection technique diverges
because it essentially uses the prediction step of the SRUKF
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Fig. 2: CDFs of the network positioning error in different scenarios: (a) PN = 0.05; (b) PN = 0.5; (c) PN = 0.95.

(the measurement vector zk is empty most of the times), while
the proposed technique has a decent performance.

V. CONCLUSION AND FUTURE WORK

A two-stage CSRUKF was considered in this work for
cooperative localization in NLOS scenarios. In the first step,
only the LOS measurements are considered in the obser-
vation vector and an unconstrained SRUKF is applied to
the considered state space model. Then, a set of sigma
points are generated and the ones violating the constraints
are projected onto the convex feasible region. The constraints
are obtained by using the NLOS measurements as quadratic
constraints. The projection operation becomes a convex QCQP,
and by reducing its size it is solved efficiently using convex
optimization packages. The simulation results showed that
the proposed CSRUKF could perform robustly under severe
NLOS conditions. Solving the QCQPs might have a relatively
high computational cost for a large WSN, however, due to
their independence from each other they could be solved in
parallel over multiple processors. Future work will focus on
implementing a distributed CSRUKF.
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