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ABSTRACT

This paper investigates the problem of direction of
arrival (DOA) estimation using the spatial response of a uni-
form line array of sensors at two distinct times, with the
emphasis given to the case of small KL product where X is the
spatial bandwidth of the signal and L is the array length. An
analogy is drawn between this problem and that of time delay
estimation (TDE) between shifted versions of a time signal. It
is seen that the condition of long observation time needed by
conventional asymptotic TDE techniques is violated when KL
is small. To overcome this difficulty, an exact maximum likeli-
hood (ML) estimator of the DOA is derived which does not
rely on any asymptotic conditions. Simulation results indicate
improved performance of this estimator when compared to an
approximate ML estimator based on large KL assumption. At
high signal-to-noise ratio, the proposed ML estimator is nearly
optimal and important simplifications are possible.

L. INTRODUCTION

Consider a plane wave signal incident on a continuous
line aperture of length L with extremities located at the points
(0,0) and (L,0) in 2-dimensional space. The direction of
arrival (DOA) of the plane wave, measured from endfire, is
denoted by . Under the assumption of a non-dispersive prop-
agation medium the corresponding pressure field is given by

px,t)=s(t-a-x), )

where s(t) is the unknown signal generated by the distant
source, X=(x, y) is the position vector, & =— (cos 8, sin 8)/c is
the slowness vector of the plane wave, and c is the propagation
velocity.

The continuous line aperture is modeled as an ideal
transducer with its response r(x, ¢) at position Xx=(x, 0) and at
time f given by

r(x,t) = s(t+(xcos 8)/c) + n(x,t), )

where n(x,t) is an additive noise term. Sources of noise
include the electronic circuitry used for the measurement as
well as unwanted propagating waves in the environment.

The response of the array along the x-axis is sampled at
two distinct time instants, i.e. t=¢; and t=t,, resulting in the
observed data

ri(x) = s(t, +(x cos @)fc) + m(x), 0<x<L,
ro(x) = (1, + (x cos 8)/c) + ny(x),

©)]

where r;(x)=r(x,1;) and n;(x)=n(x, ;). The problem of inter-
est in this paper is the estimation of the DOA parameter 6 from
a realization of the spatial waveforms r;(x), i=1,2, 0<Sx<L.
Most of the attention will be focussed on the maximum likeli-
hood (ML) estimator of 8.

To derive the ML estimator structure we make the fol-
lowing additional assumptions. The signals s(f), n,(x) and
ny(x) are modeled as uncorrelated Gaussian random processes
with zero-mean and stationary statistics. It is assumed that the
source signal s(f) has a rational power spectral density func-
tion. That is, let R,(z)= E[s(t + )s(2)] be the autocorrelation
function of s(f), where E[.] denotes statistical expectation.
Then, the power spectral density function of s(¢) takes the spe-
cial form )

N(a?)

DD’ o=jo, (4)

G )= J’ R(r)e ™ dr =
where N(.) and D(.) are irreducible, real coefficients polyno-
mials of degrees m and n, respectively, with m<n. These
polynomials satisfy standard conditions given in [1}.

The signals n;(x), i = 1,2, are modeled as white noise
processes with unit spectral height:

R(§)=6(8), Gu(x)=1 )
In this paper, the following convention is used: the variables ¢
and @ are used to denote time lag and temporal frequency,
while the variables £ and x are used to denote space lag and
spatial frequency, respectively.

An interesting analogy can be drawn between the prob-
lem of time delay estimation (TDE) and the above DOA esti-
mation problem. To this end, define a new random process
a(x; ) as follows:

a(x; @) = s(t, + (x cos 8)/c). (6)
In terms of this new process a(x; @), we have
rx)=a(x;0)+n(x), 0sxsL,
ry(x) = a(x +A; ) + ny(x),
where the shift parameter A is defined by
7 A=c(t, —1,)/ cos 8. ®)
Hence, 8 can be estimated by first estimating the space shift A
between 7,(x) and 7,(x) and then using the relation (8) to find
the corresponding angle. We note that the estimation of A in
(7) is structurally equivalent to a TDE problem between
delayed versions of a time signal. This analogy results from
the space-time duality associated with plane-wave signals of
the type (1).

There are however some fundamental differences

between a conventional TDE problem and the estimation of A.

To see this, consider the autocorrelation and power spectral
density functions of the process a(x; 8):

R,(£; 8) = R,(( cos 8)/c), ®

m

~272 ~



_KC
m). (10)
Using these expressions, we can investigate the spatial coun-
terparts of two fundamental quantities occurring in the TDE
problem, fiamely: the time bandwidth product (I'B) and the
ratio of delay to observation time (D/T).

The spatial equivalent of the TB product is the product
of array length L and spatial bandwidth K. Denoting by B the
bandwidth of G,(w), we see from (10) that the spatial band-
width of a(x; 8) is K =(B cos 8)/c, so that

KL = (BL cos 8)/c. (11)

We note that XKL decreases as 8 increases from 0 to 90°. Simi-
larly, the spatial counterpart of the D/T ratio is the ratio of
space shift to array length

A/L = c(ty~ t,)/(L cos 8). (12)
This ratio increases with the angle 6.

Conventional asymptotic TDE techniques are based on
the assumption of long observation time, i.e. TB>»> 1 and
DIT « 1. These conditions are satisfied in many applications,
and several estimator structures are known to perform nearly
optimally in this case [2]. In the present context, however, we
cannot guarantee that the equivalent conditions KL > 1 and
A/L < 1 remain satisfied as the angle 8 increases. Indeed, as
seen from (11)-(12), a value of @ is eventually reached were
these asymptotic conditions are no longer valid. Moreover,
there are situations where the product KL is intrinsically small,
even for §=0. This occurs for instance in the detection and
DOA estimation problems for high-energy transient signals of
short duration.

c
G.(x;0)= Toosdl G,(

In the case of TDE over short observation intervals, it
has been shown that the use of an asymptotic estimator can
introduce large estimation errors, but that an exact implemen-
tation of the ML estimator is nearly optimal {3]. To estimate
the DOA parameter when KL is small, or to extend the range
of @-values over which estimation is possible in general, it also
appears necessary to consider the effects of small KL product
and large A/L ratio on the estimation of the DOA parameter 6.
In this paper, we derive the exact ML estimator of 8 using an
approach similar to {3] and we investigate the performance of
this estimator via computer simulations.

. ML INSTRUMENTATION

By definition, the maximum likelihood (ML) estimator
of the DOA parameter 8 in (3) is obtained by maximizing the
log-likelihood function (LLF) of the observed data with respect
0 8. Let

r(x) = [ry(x), r2(0I" (13)

represent the observed data, with the superscript T denoting
transposition. For the observation model under consideration,
i.e. Gaussian signal in Gaussian noise, the LLF is given by

InA(r(.); 8) = 3 [1(r(.); 8) - 1,(8)}, (14

L

= 2

o (Jowrmar a3
i= ia

1,(8) = iln(l + ;). (16)
i=1

The parameters A; and the corresponding vector functions
#;(x) are the eigenvalues and normalized eigenfunctions of the
vector process

8(x) = [s(t, + (x cos B)/c), s(t, + (x cos B)e)IT.  (1T)
They are obtained as the solutions of the integral equations

L
[ Rix-o0de =200 05x<L, (®)
0

L
[ #1 e max = 5, a9
0

Although not specified explicitly, the eigenvalues 4; and eigen-
functions ¢,;(x) depend on the unknown parameter 6.

The vector integral equations (18)-(19) can be solved in
two steps by using the general approach presented in [4]. The
first step consists of transforming these equations into equiva-
lent scalar integral equations. The second step consists of
solving the resulting *“reduced” integral equations, either by an
exact or approximate method. Additional details are given
below. To simplify the discussion, it is assumed that
0<é@<arccos(c(t —t,)/L), or equivalently, c(t — ;) SA < L.
When A> L, there is no direct correlation between r,(x) and
r,(x) and the estimation of A is dominated by large errors.

The dimensionality reduction of (18)-(19) can be
achieved by applying the general property 2.1° of [4] to the
model equation (3). After some manipulations, the following
result is obtained: the eigenfunctions ¢;(x) are given by

$:(x) = [m(x), m(x +A), (20)

and for 0SA<L, the functions 7;(x) and the eigenvalues 1;
satisfy the following scalar integral equations:

Lva w
- L]
[ REE2 0 @perae = amin. @V
0
L+a
[ mmxperas = 8y, @)
o
where
1, 0<x<A,
p(x)=42, A<x<L, (23)

1, L<x<L+A.

When s(¢) has a rational power spectral density function as in
(4), the analytical solution of (21)-(22) can be obtained by
using the solution technique developed in [3] for the problem
of TDE over short observation interval; only trivial modifica-
tions are necessary. Alternatively, it is possible to obtain an
approximate solution to (21)-(22) by sampling the various
functions in the spatial domain and using a general computer
routine for eigenvalue decomposition.

Upon substitution of (20) in (15), we obtain

heCx0)=F

Lia
2
E1+4 { '! ni(x)u(x)dx}”, (24)

~273 ~



where
u(x)=ri(x)+ry(x-4), 0<x<L+4, (25)

with 7,(x)=0 for x <0 and x > L. From these equations, we
see that the LLF can be decomposed into two functionally dis-
tinct components: a shift-and-sum beamformer (25) followed
by a log-likelihood type energy detector (24).
At high signal-to-noise ratio (SNR), the following
approximation can be obtained for the energy detector (24):
LA

ALST TN

o

u¥(x)
p(x)

dx (26)

The detector (26) has two important advantages over (24).
From a computational viewpoint, (25) is considerably simpler
since it does not require the calculation and the use of the
eigenfunctions 7;(x). From a statistical viewpoint, (26) is
more robust than (24) since it does not require any knowledge
of the source signal statistics.

III. IMPLEMENTATION DETAILS

In practice, a continuous line aperture can be realized as
a uniform line array of omnidirectional sensors. Let L denote
the array length and N, the number of sensors. For a uniform
line array, the sensor locations are given by

x=(0-1L, I=1,...,Ns, @n

where L,=L/N, is the sensor spacing. To minimize spatial
aliasing, the sensor spacing is usually taken as L,=c/(2fo.,)
where f,,, is the maximum frequency of interest.

Spatial sampling as in (27) is also used for the digital
implementation of the data-dependent term I,(r(.); 8) (24)
used for ML estimation. In this respect, note that 7,(x) satis-
fies a symmetry relation that can be used to reduce the amount
of computation required. Indeed, it can be shown that

ni(x) = gn(L+A-x), (28)

where £;=1 for i odd and -1 for i even. As a result, it is only
necessary to evaluate 7,(x;) for 0< x; < (L +A)/2, where x, is
given by (27).

For the evaluation of A; and 7;(x;), we can use one of
the approaches indicated in the previous section. In practice,
only a finite number of terms N; can be included in the sum-
mations over i in (16) and (24). Based on experimental con-
siderations, we have found that it is sufficient to include
Ni=fuaxL/c terms. The quantiies A; and 7;(%) ,
i=1,..., N, are precomputed and stored for subsequent use by
the ML estimator. This is done for every possible value of 8
included in the search range.

The calculation of 2; and 7;(x;) is done on the basis of a
unit signal power, i.e. R,(0)=1. For an arbitrary signal power
R,(0)=P, it is necessary to scale the eigenvalues by the same
factor P; the eigenfunctions 7; remain unchanged. Once the
eigenvalues are properly scaled, the data-independent term
1,(8) (16) is calculated, with the summation now extending
fromi=1toi=N,.

The spatial beamforming operation (25) can be realized
easily if the values of @ used for the search are taken as
6 = arccos(c(t, —t,)/k L,) where k is an integer. In this case,
A=k L, and the digital implementation poses no problem. For
other values of 8, (corresponding to non-integer values of k), it

is first necessary to interpolate the data prior to the beamform-
ing operation.

The beamformed sequence u(x;,) is used to evaluate the
data-dependent term I,(r(: ); ) (24). Again, it is possible to
reduce the computation load by a factor 2 by using the symme-
try of n;(x). Invoking (28), we have

gHh+]

L N, 4102
ﬁmmmd.gmww» @9)
) 2

us(l) = u(x) & WXy, 1g01-2)- G0

The implementation of the high-SNR approximation (26) to
the data-dependent term I, (r(. ); 9) is straightforward.

IV. SIMULATION RESULTS

Simulation experiments on a digital computer were used
to investigate the performance of the ML estimator of the DOA
parameter 8. Other estimators were also considered for the
purpose of comparison. For the simulations, s(z) was modeled
as a first-order Gauss-Markov process with

P

2
= G

- 61

Here, P = R,(0) represents the mean-square value of s(f) and a
is a measure of its bandwidth (-3dB point of G,(®)).

A uniform line array of N, =32 sensors was considered,
with the array length set to L=1. The time interval T, =t, -1,
between the two successive observations of the array response
was taken as a multiple L,/c. Furthermore, to simplify the
simulations, the true DOA parameter 8° was always chosen so
that the corresponding shift A" is a multiple of L,.

The signal components a(x;;8") and a(x;+A";8°) at
time ¢ =, and ¢ =t,, respectively, were generated by passing a
Gaussian white noise sequence through an appropriate first-
order TR filter depending on 8°. The noise sequences n;(x;)
and ny(x;) were simulated by adding Gaussian white noise
sequences with variance 1/L,. The resulting signal-to-noise
ratio at the sensor outputis SNR=PL, .

Four different methods were used to estimate the spatial
shift A from the synthetic signals r,(x;) and r,(x;), namely:
maximum likelihood (ML); high-SNR version of the ML esti-
mator (HML); asymptotic maximum likelihood (AML) [2];
and maximization of tapered cross-correlation (MTCC) [3].
For each method, an initial estimate of A was obtained by max-
imizing the corresponding likelihood function over a discrete
set of values of A defined by A=A’ +5L, . (By considering a
search region of this type, we limit our attention to the small-
error behavior of the estimators.) This initial estimate was
then refined by means of a three point quadratic interpolation
scheme. The resulting estimate A was finally converted to a
DOA estimate § by inverting the transformation (8).

For each set of system parameters, 500 independent sim-
ulations were performed. After these simulations, the sample
mean and the sample variance of the estimates were evaluated.
We now present some of the simulation results corresponding
to the following values of the system parameters: a = 2xc/L;
ty~t;=4Ljc; A" = k'L, where k' =5, 6,7, 8,9, 10, 12, 14,
16, 18, 20 ; and SNR = 10, 20 and 30 dB.
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Fig. 1 and 2 show the bias of the various estimators as a
function of the true value of the DOA pafameter, ° , for SNR
= 10 and 20dB, respectively. For SNR 2 20dB, both ML and
HML estimators are practically unbiased. In contrast, the
MTCC aid AML estimators até stiongly biased, regardiess of
the SNR value.

Fig. 3 to 5 show the standard deviation of the various
estimators as a function of 8°, for SNR = 10, 20 and 30 dB
respectively. The Cramer-Rao lower bound (CRLB) is also
shown for comparison. The CRLB was evaluated via a statisti-
cal approach, using the sample mean of the Fisher information
matrix (FIM) instead of its statistical expectation in the calcu-
lation of the bound. Note that the CRLB tends to oo in the
limit @ — 0. This is due to the non-linear relation (8) between
6 and A: for @ close to zero, a small error in A will induce a
very large error in 8. Also note that the CRLB tends to 0 in the
limit & — #/2. In practice, for 8 close to x/2, the estimation of
8 is dominated by large errors.

As can be seen from Fig. 3 to 5, the standard deviation
of both ML and HML estimators is comparable to the CRLB
when SNR >20dB. However, the MTCC and AML estimators
show a level of estimation error which is considerably larger
than the CRLB and independent of the SNR.

These results clearly indicate that the ML and HML esti-
mators are efficient at high SNR, and that any significant
improvement in performance is not possible.
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Fig. 1. Bias of DOA estimates as a function of true DOA 8" for SNR
=10dB.
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Fig. 2. Bias of DOA estimates as a function of true DOA ¢ for SNR
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Fig. 3. Standard deviation of DOA estimates as a function of true
DOA 6" for SNR = 10dB.
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Fig. 4. Standard deviation of DOA estimates as a function of true
DOA 6" for SNR = 20dB.
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Fig. 5. Standard deviation of DOA estimates as a function of true
DOA ¢° for SNR = 30dB.
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