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ABSTRACT

A new beamforming algorithm, based on the eigende-
composion of the sample correlation matrix, has been
introduced. The beamformer uses a weighted linear
combination of the signal eigenvectors. Three versions
of the beamformer have been proposed. It is shown
that the proposed beamformer is a generalization of the
delay-and-sum and the minimum variance beamform-
ers. A linearly constrained minimum variance beam-
former has also been derived. It is shown that the pro-
posed approach induces robust beamformers.

1. INTRODUCTION

In various applications, one is concerned with ex-
tracting a desired signal immersed in noise and inter-
ference. Using an adaptive array, it is possible to avert
the effect of interference and noise by an elaborate se-
lection of array weights. Many algorithms maximize
the array output signal to interference ratio (SINR)
subject to knowing the direction of arrival (DOA) of
the desired signal. In these cases, the weight vector is
computed from the correlation matrix of interference
and noise . We call this the signal-free correlation ma-
trix (SFCM). However, if the desired signal DOA and
the array geometry are known, one can use the correla-
tion matrix of the received mixture of signal, noise, and
interference, and attain the same result. Small errors
in calibration and DOA estimation will cause signal
cancellation [1, 2].

For most practical situations, noise and interfer-
ence are mixed with signal, and the measurement of
SFCM is not a simple task. To compute a signal-free
correlation matrix, one can use the generalized side-
lobe canceller (GSC) [3]. However, in this method, the
calibration error or the desired signal DOA estimation
error will cause a leakage of signal component which
degrades the performance of method.

In many practical applications, the performance of
detection depends on signal-to-interference ratio (SIR).
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For instance, in spread spectrum communications, pen-
etration of a smart jammer into the system, may cause
a destructive effect on the system performance [4]. In
such cases, interference minimization, rather than noise
plus interference minimization, proves useful.

As a result of a higher resolution, much interest
has been given to beamforming based on eigendecom-
position [4, 5], and adaptive eigensubspace algorithms
[6, 7]. Usually, these methods are based on the eigen-
decomposition of SFCM.

Here, we introduce a beamforming method based
on the eigendecomposition of the received signal covari-
ance matrix. To apply this beamforming method, one
should know the DOA estimate of the desired signal,
the number of point jammers, and an estimate of the
received noise power. The introduced method, which
needs a relatively low computation, is able to produce
exact nulls in the direction of jammers . It is also able
to maximize the output SINR or SNR. Due to lack of
space, throughout, we omit the proof for the theorems.

2. SIGNAL MODEL

We assume an L-element array with arbitrary geometry
and p narrowband point sources. Let x(k) denote the
complex data vector received by the array elements at
the k’th sampling instant. Data vector x(k) can be
expressed as a superposition of the received signals and

noise as
x(k) = A(k)s(k) + n(k), (1)

where n(k) is the noise vector which is assumed to be
white, s(k) is the signal vector, and

A(k) = [a(01(k)), --- ,a(0p(k))], (2)

with a(f;) = a; being the array steering vector at the
direction 6;. Using (1), and assuming o? to be the
noise power , the autocorrelation matrix of the received
signal is obtained as

R(k) = E{x(k)x(k)¥} = A(k)TA(R)T + %1, (3)



where I’ = diag(v1,- -, 7p) is the signal correlation ma-
trix, E{.} represents the expected value, and super-
script H denotes Hermitian transposition. Diagonal
form of I' is a consequence of the fact that the received
signals are assumed to be uncorrelated with each other.

For the positive-definite correlation matrix R one
can find a set of eigenvalues (\;+02)’s and orthonormal
eigenvectors q;’s such that:

Rq; = (A + az)qi for 1<i<L.

We assume that \;’s are in decreasing order, i.e. (A\; +
0%) > -« > (AL +0?). It can be shown that \; = 0
for i > p.

Eigenvectors Q = [q; ‘- qz] can be divided into
two matrices as Q = [Q,|Qx] where the columns of Q,
and Q,, respectively, span the orthogonal signal and
noise subspaces. We can prove the following theorem.
Theorem 1: Defining A, = diag(A\; + 0% --- A\, +02),
the following equalities are valid

AQ,(A, - o?D)'QFA =T (4)

QIATAHQ, = (A, - o). (5)
3. REDUCED-RANK BEAMFORMER

To extract the n’th signal source (impinging on the ar-
ray from direction 6,,), we propose the following beam-
forming weight vector

P
Wn,e = E

i=1

q.q

N+ (l—eoz for

0<e<l.

(6)
This beamforming method, which needs the knowledge
of the desired signal DOA and the number of point
signal sources, has certain properties for various values
of e. We study this beamforming method for three
different values of € = 1, 0.5, 0, (noted by SC-1 ,SC-2
and SC-3, respectively).

3.1. Special Case-1 (SC-1)

For this case, we compute the weight vector w,, as

14
Wy, = E
i=1

Theorem 2: The pattern for the SC-1 beamformer
has null (exactly zero) in the direction of interferers,
i.e.

9qf’
/\'z a, = Qs(A, - 021)_1Qfan- (7
i

wHa;, =0 for i=1,---,p and i#n (8)
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Theorem 3: The output SINR of the SC-1 beam-
former is restricted to A1 /o? and \,/0?, i.e.

¥<(r5n).

o2 ~
and for the case of only one signal source (p = 1) the
output SNR is equal to A\; /o2,

S5
T+N

A
P

(9)

3.2. Special Case-2 (SC-2)

For this case, we compute the weight vector w,, as

m=3

i=1

qQ.q”

Ai pe an = QsAa—IQfan-

: (10)

It can be shown that here, w, = R~!a,, which is
the MV solution for the array weight vector — the
MYV beamformer maximizes the array output signal to
interference and noise ratio (SINR) [5].

A shortcoming of the MV beamformer is its sensi-
tivity to signal DOA uncertainty and array calibration
error — this causes signal cancellation [8]. Define the
output SINR sensitivity with respect to the steering
vector error (Aa =& — a) as

|ASINR, |
[[Aal

SSINR, .0 = (11)

where

ASINR, = SINR,|a=a+aa — SINR,|a=a (12)
It can be shown that the SC-2 beamformer is less sen-
sitive to the steering vector error (due to DOA uncer-
tainty or uncalibrated array) when compared to the
MV method — the sensitivity of MV beamformer in-
creases rapidly with input SNR.

3.3. Special Case-3 (SC-3)

For this reduced-rank beamformer, the weight vector,
Wy, is

alf 1
qogl an = ;QOQfan- (13)

14
wa=D_
i=1

Using Q;QY =1- Q,QF and noting that the signal
steering vector is orthogonal to the noise subspace, (13)
can be written as

1

W, = -—2-8.".
o

(14)

If the true a,, is known, the weight vector (14) produces
the well-known delay-and-sum beamformer.



Definition: For an array with w as a weight vector,
we define the sensitivity of an array output SNR with
respect to the array steering vector error (Aa = a —a)
as

ASNR,
SSNRo,a ' ||Aa||2 I (15)
where
ASNR, = SNR,|smatrsa — SNRo|Jsa .  (16)

It can be proved that the output SNR for the SC-3
beamformer is less sensitive to the array steering vector
error than the delay-and-sum beamformer.

For SC-3, the array output SNR is

So S)

2o (=

N, (N

We have proved that the maximum output SNR for an
array with L elements is L times the input SNR. Thus,
SC-3 maximizes the output SNR.

(17)

3.4. Improved LCMV method

As mentioned earlier, the SC-2 beamformer has the
properties of MV method with a smaller sensitivity. In
the MV method, the weight vector is the solution of
the following minimization

min{w7Rw} subjectto wHFa(f;)=g (18)

w

where ¢ is a constant. By the method of Lagrange
multipliers, the solution to this minimization is

Rla

W= g .
ga”R—la

(19)
The single linear constraint in (18) can be generalized
to a multiple linear constraint. For instance, to pro-
duce a beampattern with a unit gain in the direction
of sources, 8; and #,, the desired constraint may be

o [wtos [»=[3]

If there are m < L linear constraints on w, it is possible
to write them in the matrix form CHw = f, where the
L x m matrix C and the m-dimensional vector f are
the constraint matrix and the response vector, respec-
tively. It is assumed that the constraints are linearly
independent — the constraint matrix has rank m. The
solution of (18) is then

1
1

a’(6,)

a (6,) 20)

w=R7IC[CHR"IC|!f (21)
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which is called the linear constraint minimum variance
(LCMV) weight vector. Similar to (6), we define the
following weight vector which satisfies the constraint
CHw =f,

w = HC[CHHC]!f , (22)
where H is defined as
dEf quz
Z e+ (1 - 6)0'2 (23)

€=0.5

We call this technique, the improved LCMV (ILCMV)
algorithm. Replacing Karhunen-Loeve expansion in
(21), it is straightforward to prove that when the columns
of C are a subset of the columns of A, the weight vector
(21) is the same as w in (22). However, the simulation
results show an improvement for ILCMV when com-
pared to LCMV.

4. SIMULATION RESULTS

In the following examples, we use a uniform circular
array (UCA) with L omnidirectional antenna elements.
The interelement spacing is assumed to be A/2 where
A is the received signal wavelength. Three stationary
point signal sources with the same power are used in
simulations.

The effect of € in (6) on the produced pattern for
€ =0,0.2,0.4,0.6,0.8 is shown in Fig. 1, for the desired
source at 180°, and interfering sources at 125°, and
280° (L = 8). The figure shows that as € increases, the
two relative nulls of the beampattern move towards the
jammers and become deeper.

In the second example, we choose a random DOA
for signal and jammers. Fig. 2 shows the average out-
put SIR, SINR, and SNR as a function of ¢ for the
proposed beamformer choosing a random DOA for sig-
nals. The input SNR is assumed to be 3dB and L = 8
is considered. The curves show that the output SIR de-
creases rapidly with decreasing e, however, the changes
in SNR and SINR are not substantial.

In Fig. 3, the produced beampatterns with LCMV
and ILCMV methods are compared (for L = 15). Here,
the signal source DOAs are at 80° and 240°, and an
interferer is located at 160°. The results clearly show
the robustness of the proposed method against DOA
uncertainty and array calibration error.
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Figure 1: The effect of € on the produced pattern for
e = 0,0.2,0.4,0.6,0.8. The desired source is located
at 180°, and interfering sources are at 125°, and 280°
(L =8).
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Figure 2: The average output SIR, SINR, and SNR as
a function of ¢ for an 8-element UCA.
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Figure 3: Beampattern for the LCMV (top) and the
ILCMV (bottom) algorithms.



