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The fast Newton transversal filler (FNTF) family of adaptive filtering algorithms bridges the performance gap between the standard normalized
least-mean-square (NLMS) and fast recursive least-squares (FRLS) algorithms by allowing the use of linear predictors with variable orders. Recently,
it has been shown that the FNTF is an effective scheme for fullband acoustic echo cancellation (AEC) of short echo paths (e.g., mobile context). In
this paper, the merits of FNTF for subband AEC of the long echo paths typically associated with the use of hands-free audio terminals in offices (e.g.,
audioconferencing) are investigated. To this end, a stabilized version of FNTF is incorporated in an oversampied subband structure based on Weaver
single-sideband (SSB) modulation. The performance of the resulting subband AEC system is evaluated in terms of convergence speed and computational
complexity. The results point to some fundamental limitations of FNTF in this application.

Dans ia famille des algorithmes de filtres adaptatifs, le filtre de Newton transversal rapide (FNTR) comble I’écart de performance entre les algorithmes
de moindres carrés normalisés et les algorithmes de moindres camés récursifs en permettant 1'utilisation de prédicteurs linéaires d’ordre variable. Il a
été récemment démontré que le FNTR est une approche intéressante pour I'annulation des échos acoustiques sur des trajets d’échos courts (comme, par
exemple, dans un contexte de communications mobiles). Cet article présente le FNTR pour I'annulation des échos acoustiques dans les sous-bandes dans
un contexte des parcours longs typiques de Iutilisation de terminaux audio mains-libres dans les édifices. Dans ce contexte, une version stabilisée du FNTR
est ajoutée  une structure suréchantillonnée basée sur une modulation sideband de Weaver. Les performances du systéme obtenu sont mesurées selon des
critéres de vitesse de convergence et de complexité algorithmique. Les résultats montrent des limitations intrinséques du FNTR dans ce type d’application.

1. Introduction

Hands-free audio terminals are being increasingly used as speech in-
terfaces to the telephone network in various situations (e.g., audiocon-
ference, mobile-radio, etc.). As a result of the acoustic coupling that
exists between the loudspeaker and the microphone, these terminals
invariably introduce echoes in the return path. When combined with
the long processing/propagation delays of modern digital networks,
these acoustic echoes have a devastating impact on the perceived qual-
ity of the communications. The control of acoustic echoes generated
by hands-free terminals represents a challenging problem for signal-
processing engineers. Currently, acoustic echo cancellation (AEC) is
seen as the most effective solution for commercial applications [1]-[2].
AEC basically consists of using an adaptive filter to identify the un-
known acoustic echo path, and then subtracting the filter output from
the microphone signal in an attempt to cancel the echo (see Fig. 1).

AEC is particularly demanding from the viewpoint of adaptive fil-
tering since long, time-varying acoustic impulse responses must be
identified; furthermore, the excitation signal (i.e., speech) is coloured
and highly nonstationary. Even though recursive least-squares- (RLS)
based adaptive filtering algorithms are known to achieve the fastest
convergence for speech signal excitations, the normalized least-mean-
square (NLMS) algorithm is generally used in practical AEC systems,
mostly because of its low computational complexity of 2V multiply/
adds per iteration (mapi)’, where NV is the number of adaptive filter co-
efficients. In addition, while the use of a single transversal filter may be
adequate in the mobile context where the acoustic impulse responses

!In this paper, unless otherwise indicated, complexity figures will be implic-
itly expressed in real mapi.
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Figure 1: Adaptive identification applied to AEC.

are relatively short (e.g., 50 taps at 8-kHz sampling rate), low-cost
identification of the long impulse responses typical of audioconference
applications (e.g., 2000 taps at 8 kHz) necessitates the use of improved
filtering structures with reduced computational complexity. In this re-
spect, one of the most popular schemes is subband adaptive filtering, in
which multiple adaptive filters (ADFs) operate in parallel on subband,
decimated versions of the loudspeaker and microphone signals [3]-[4].

The fast Newton transversal filter (FNTF) family of adaptive filter-
ing algorithms was proposed in an attempt to bridge the performance
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gap between the NLMS and the fast RLS (FRLS) algorithms [5].
Based on the assumption that the filter input signal is an autoregres-
sive process of order M (i.e., AR(M)), where 0 < M < N, the
FNTF algorithms use extrapolation techniques to efficiently compute
the N-th-order linear prediction parameters generally associated with
FRLS algorithms. As a result, their computational complexity is only
2N + O(M), instead of the minimum of 7N for FRLS. Thus, by
allowing the AR order M to vary between 0 and N, FNTF offers a
trade-off between the low complexity of NLMS and the fast conver-
gence of FRLS.

In a recent study [6]), FNTF is shown to be an attractive candidate
for AEC applications in the mobile context, where a single fullband
transversal filter of short length may be used (i.e., N = 256). In-
deed, it is observed that FNTF leads to significant improvements in
convergence and tracking performance over NLMS even with smail
values of M, corresponding to a slight increase in computational com-
plexity. However, this conclusion does not hold for longer filters (e.g.,
N > 1024), where a loss of performance of FNTF has been re-
ported [7]. We point out that the investigation in [6] and [7] is limited
to the use of a single fullband FNTF adaptive filter. In the case of long
filters, FNTF might benefit from a subband implementation since the
downsampling of the subband signals immediately translates into an
equivalent reduction in the subband transversal filter length.

The main objective of this work is thus to investigate the perfor-
mance of FNTF in a subband adaptive filtering structure for the iden-
tification of long impulse responses, such as those typically associated
with the use of hands-free audio terminals in offices (e.g., audioconfer-
ence applications). To conduct this study, a stabilized version of FNTF
is incorporated in an oversampled subband identification structure with
analysis/synthesis filter banks based on Weaver single-sideband (SSB)
modulation. The performance of the resulting subband AEC system is
evaluated in terms of convergence speed and computational complex-
ity under varying conditions. The results point to some fundamental
limitations of FNTF in this application.

II. On the use of FNTF in AEC

A. System-identification framework for AEC

The application of adaptive, discrete-time system identification to
AEC is illustrated in Fig. 1. The unknown system # is made up of a
cascade of the following subsystems: loudspeaker (including D/A con-
verter and analogue amplifier), acoustic echo paths within the room,
and microphone (including amplifier and A/D converter). Weak non-
linearities introduced by the electromechanical units are often ne-
glected in AEC applications. However, changes in the echo paths re-
sulting from the motion of persons and/or objects in the room may be
quite significant. Accordingly, it is common practice to assume that
# is a linear, time-varying, discrete-time system. The input to the
unknown system 7 is the signal u(n) from the far-end user, where
n € Z is the discrete-time index?, and its output is the microphone
signal d(n), which contains additive noise and possibly speech from
the near-end user.

For the purpose of system identification, the unknown system H is
modelled as an adaptive finite-impulse-response (FIR) transversal filter
operating on the input signal u(n) in parallel to # and producing an
output d(n). The time-varying coefficients of the modelling FIR filter
are represented by hx(n) (k =0,1,... , N — 1), where IV is the filter
length, and its output at time 7 is computed as

N-1
d(n) = Y ha(n)u(n — k) = h(n)"u(n), ()

k=0

2In this paper, discrete-time signals are assumed to be uniformly sampled,
ie., u(n) = ug(nTs), where uq(-) is the corresponding analogue signal and
T is the sampling period.
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where the following notation is assumed: h(n) =
[ho(n), ..., hv—1(n)]7, u(n) = [u(n), u(n—1),...,u(n— N+1)]7,
and the superscript T denotes transposition. An adaptive weight-
control algorithm recursively adjusts the filter weight vector in real
time, based on the available information, so as to minimize the power
of the residual signal, which is defined as

e(n) = d(n) — d(n). )]

Different power measures and minimization techniques can be used,
leading to different adaptation algorithms. Once the residual signal
power has reached a minimum level, the unknown system may be iden-
tified from the coefficients {kx(n)}. In AEC applications, one is not
directly interested in these coefficients; the aim is rather to transmit
the residual signal e(n), following echo removal in (2), to the far-end
user. When the microphone signal d(n) contains speech from the near-
end user, a situation referred to as double-talk, correct operation of the
adaptive filter requires that weight adjustment be interrupted; if not,
the adaptive filter will try to cancel the near-end signal. To avoid this
problem, practical AEC systems use double-talk detectors to control
the adaptation process. We shall not be concerned with these devices’
in our study.

B. The FNTF family of adaptive filters

The FNTF algorithms belong to a modified class of stochastic Newton
(SN) adaptive algorithms, whose general form may be expressed as
follows:

ex(n) = —3 Ry (n = Du(n), )
~(n) =1 - cx(n)u(n), @
e(n) = d(n) - h” (n)u(n), O]

_ &(n)
e(n) = )’ )
h(n + 1) = h(r) — e(n)en (n). Q)

In these equations, Rx (n) is an N x N data covariance matrix esti-
mate required to be symmetric and positive definite; A is a forgetting
factor, such that 0 < X < 1; en(n) is a generalized dual Kalman gain;
e(n) (same as (2)) is the a priori estimation error; €(n) is the a pos-
teriori estimation error; and -y(n) is a conversion factor between these
two forms of error.

Equations (5)—(7) are known as the filtering part; the associated
complexity of 2N defines a lower bound for the SN class. The two
major factors that distinguish the various SN algorithms in terms of
convergence speed and computational complexity are (a) the specific
choice made for Ry (n) in (3), and (b) the algorithmic scheme used to
realize (3) and (4) once this choice has been made. For instance, select-
ing Rn(n) equal to (02 /8)In, where o2 is an estimate of the input
power, & > 0 is 2 small constant (step size) and Iy is the identity ma-
trix, results in a normalized form of the LMS algorithm (NLMS). The
latter exhibits a low complexity of 2V, but its convergence is rather
slow for speech-like inputs. At the other end of the spectrum, selecting
Ry (n)equalto Y ;7 o A" *u(k)u(k)T leads to the RLS algorithm,
which is characterized by rapid initial convergence but high complex-
ity; i.e., O(IV?). In this case, it is actually possible to realize (3) and
(4) more efficiently by using forward and backward LS linear predic-
tors of order IV, leading to the so-called fast RLS (FRLS) algorithms,
including FAEST [8] and FTF [9], both with complexity of 7V.

One may observe that the choice of Rn(n) leading to the NLMS
algorithm is equivalent to the assumption that the input signal u(n)
is white noise, i.e., AR(0). Similarly, the choice of Ry (n) leading
to the FRLS algorithms may be interpreted as an AR(/V) assumption
for the input, since these algorithms use linear predictors of order N
in their formulation. In the derivation of the FNTF family of algo-
rithms [5], this idea is generalized by assuming that the input signal
can be modelled as an AR(M) process, where 0 < M < N. This
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is justified on the following grounds: (a) The use of AR(0) modelling
is inadequate for nonwhite signals, explaining the slow convergence
of the NLMS algorithm in this case. (b) For long adaptive filters (i.e.,
N > 1), the use of AR(IV) predictors is excessive, leading to unnec-
essary computations in FRLS algorithms. Thus, it is conjectured that
by allowing the prediction order M to vary between 0 and IV, and by
exploiting the AR(M) assumption in (3) and (4), it may be possible
to achieve a useful trade-off between computational complexity and
convergence speed, effectively bridging the performance gap between
NLMS and FRLS.

In [5], the AR(M) assumption is exploited indirectly by regarding
the definition of R (n) as an extension problem; namely, how to gen-
erate the complete N x N matrix Ry (n), given the entries of the di-
agonal and all entries of the M off-diagonals. By considering a game
theoretic formulation of this problem, an optimal solution is derived in
the form of simple time-and-order recursive formulas for the extension
of an inverse covariance matrix of order M + 1, say Ry}, ; (n), into the
desired N x N inverse covariance matrix, Ry’ (n). It turns out that the
extended matrix Ry (n) has all off-diagonals of order greater than M
equal to 0, a trait which is characteristic of AR(M) processes. The ex-
tension formulas are characterized by the use of quantities pertaining
to optimum forward and/or backward linear predictors of order M for
the associated matrix Ras+1(n). Assuming that the known entries of
Ras+1(n) are defined as standard exponentially weighted time aver-
ages, these predictors are LS optimum and can therefore be computed
using FRLS algorithms of order M.

The FNTF algorithms are finally obtained upon substitution of the
optimal extension formulas for R;,l (n) into (3). In effect, this leads
to various Levinson’s-like recursions with complexity 2M or 3M for
updating the dual-Kalman-gain vector cn (n). Thus, using FRLS to
realize the required linear predictors of order M, we find that the total
computational complexity of the FNTF family is 2N + O(M).

C. Using FNTF in AEC: Special considerations

In the context of AEC, one is interested in low-cost, real-time imple-
mentation of the adaptive filtering algorithms on a DSP platform, so
that the practical issues of memory and computational requirements
are of paramount importance. Following [6], we therefore chose FNTF
Version 1 in our work because of its minimum requirements in terms
of both memory and processing [5]. This version (simply referred to
as FNTF in the following) is summarized below:

(a) Using an FRLS forward predictor of order M with input u(n),
compute

Sue

el (n)

1
Aot (n—1) [—aM(n - 1)] ' ®

() Using an FRLS backward predictor of order M with delayed in-
put u(ng), where ng = n — N + M, compute

ey (na) [—bn«(nd - 1)]_ ©

sm+1(n) =

t ng)=— =
M+1(na) )\a?w(nd -1 1

(c) Update the dual-Kalman-gain vector cn (n) and the conversion
factor v(n):

en(n)f_ 0 _|sm+1(n) On-m
[ M e
y(n) = 7(n = 1) + sir41(n)el; (n)

~ th il (na)ebs(na). an

(d) Filtering part: Same as (5)~7) above.

Steps (a) and (b) of the algorithm require the use of FRLS linear pre-
diction error filters of order M [10]. More specifically, in step (a), a

forward prediction error filter is applied to the “head” (i.e., top M + 1
entries) of the data vector u(n) to generate the quantities needed in (8);
namely, the M-dimensional weight vector ap(n — 1), the residual
(a priori) error e, (n), and the error power a',fv, (n — 1). Similarly,
in step (b), a backward prediction error filter is applied to the “tail”
(i.e., bottom M + 1 entries) of the data vector u(n) to generate the
quantities needed in (9); namely, the M-dimensional weight vector
b (ng — 1), the residual (a priori) error b4 (nq), and the error power
abs(ng — 1). The vectors syr4+1(n) and tar+1(nq) computed in this
way are used in step (c) to update the dual-Kalman-gain vector ¢y (n)
and the conversion factor «v(n). To initialize the algorithm, [5] recom-
mends use of the soft constraint method as in [9].

FAEST [8] and FTF [9] are particularly attractive for the realization
of steps (a) and (b) since they explicitly compute the vector quantities
sar+1(n) (8) and tar+1(n) (9). However, these algorithms are known
to be numerically unstable: the accumulation of round-off errors in
their digital implementation leads to divergence of the internal vari-
ables. In real-time AEC applications, this behaviour is unacceptable
since the adaptive filter must operate correctly over long periods of
time. To overcome this problem, [6] recommends the use of a numeri-
cal stabilization mechanism proposed in [11]. If one assumes that this
mechanism is used in connection with FAEST or FTF in step (a) of the
FNTF, the computation of sar+1(n) requires 6M multiplies and three
divisions. The same stabilized FAEST or FTF may be used to compute
tar+1(n), which is then delayed by N — M samples as prescribed in
step (b). However, to minimize memory requirements in DSP imple-
mentations, it is preferable to use a second stabilized FAEST or FTF
running in parallel on the tail of the data vector u(n); this also re-
quires 6 multiplies and three divisions. In step (c), computation of
the updated gain vector cn (n) in (10) requires 2M additions, which
we count as mapi.3 Finally, step (d) (see (5)<(7)) requires 2N mapi
plus one division. Thus, the total complexity of FNTF Version 1 is
2N +14M + Tkq, where kq is the equivalent complexity of a division
expressed in mapi.

As pointed out in [6], even when the stabilization mechanism
of [11] is incorporated in FTF, the resulting FNTF algorithm may
be unstable unless large values of the forgetting factor are used;
ie., A>1—1/pN, where p > 1. Unfortunately, such large values of
) severely limit the capability of FNTF to track time-varying channels.
In AEC applications, where the unknown echo path is changing con-
tinually, this is clearly undesirable. In [6], the tracking performance
of FNTF is improved via the introduction of an acceleration mecha-
nism in the filtering part, i.e., step (d). Originally proposed in [12], this
mechanism amounts to replacing (6) by

where p is a control parameter less than 1. By properly adjusting p, the
tracking speed of FNTF may be improved without changing the value
of A in the prediction parts (i.e., steps (a) and (b)).

In [6], the use of FNTF (with the above-mentioned stabilization
and acceleration mechanisms) is investigated in the context of full-
band AEC for mobile-radio applications. The latter are characterized
by moderate filter lengths, typically N = 256 at 8-kHz sampling rate,
corresponding to an acoustic echo path of duration 32 ms. In particu-
lar, it is demonstrated experimentally that FNTF yields close-to-FRLS
performance with M equal to only 16, corresponding to a complex-
ity about 1.4 times that of NLMS (as compared to 4 times for a sta-
bilized FTF). However, it is noted in [7] that FNTF shows a loss of
performance in the audioconference context where large values of ¥
are needed; e.g., N > 1000 for a fullband system. We provide results
supporting this observation in Section IV.

3We shall neglect the 2 mapi required for (11) in our count.



124

CAN. J. ELECT. & COMP. ENG., VOL. 25, NO. 3, JULY 2000

o Analysis bank

sisbank

Synthesis bunk:

_C
e/

Figure 2: Generic subband adaptive filtering structure for AEC.

III. Subband FNTF structure based on Weaver SSB modulation

In this section, we describe the subband adaptive filtering structure
used in our investigation. It consists of multiple FNTFs operating in
subbands at a reduced sampling rate, with analysis/synthesis (A/S) fil-
ter banks derived from Weaver SSB modulators/demodulators.

A. Subband AEC: Structure and motivation

Subband adaptive filtering [3}-{4] is one of the most popular ap-
proaches for the efficient implementation of the long adaptive filters
needed for AEC in audioconference applications. It has been studied
extensively in recent years (e.g., [1]-[2]) and is now used in commer-
cial products [13].

In subband AEC (see Fig. 2), both the loudspeaker and microphone
signals, respectively u(n) and d(n) with sampling rate Fy, are decom-
posed into B subband signals by so-called analysis filter banks. Each
of these banks may be viewed as a set of B bandpass filters followed
by decimators: the filters split the spectrum of interest into B adja-
cent, non-overlapping frequency bands, while the decimators reduce
the sampling rate of the filtered signals by an integer factor K < B.
The subband loudspeaker and microphone signals are denoted here by
up(m) and dy(m), where b = 0,... , B — 1, and the integer m is the
sampling-time index at the lower rate F,=F,/K.

In each subband, an adaptive filter operating at the rate F! is used
to identify the corresponding subband component of the acoustic echo
path H. Specifically, the ADF in the b-th subband uses uy(m) as in-
put and d»(m) as reference, and produces an output d(m); the lat-
ter is subtracted from dj(m) to produce a subband error e;(m) =
dy(m) — ds(m). Each ADF operates independently of the others, try-
ing to minimize its own residual ep(m), so that after convergence
dy(m) provides an estimate of the acoustic echo in that subband. Fol-
lowing the ADF, the subband error signals ey(m) (¢ =0, ... ,B—1)
are recombined by a synthesis bank to produce a fullband error sig-
nal e(n), at the original rate F;. In the synthesis bank, the subband
signals ep(m) are first upsampled by a factor K, then passed through
narrowband anti-imaging filters, and then summed.

In the context of AEC, subband adaptive filtering offers several ad-
vantages over a conventional fullband approach [3]: (a) As a result of
signal downsampling in the subbands, a reduction of the total system
complexity by a factor of about K 2 | B may be achieved. (b) For highly
correlated input signals, faster convergence of stochastic gradient al-
gorithms such as NLMS is usually observed due to the decorrelation
effect of the downsampling. (c) Processing in individual subbands may
be tailored to the specific needs of an application (e.g., longer ADFs
in certain subbands), adding considerable flexibility to system design
and implementation.

—N—

Figure 3: Subband configuration for Weaver SSB structure.

B. Bandpass A/S filtering via Weaver SSB modulation

The design of A/S filter banks for subband AEC applications is a com-
plex problem involving several trade-offs. Specific requirements in-
clude the following (see [14]-[15] for additional details):

Near-perfect reconstruction (NPR): This is required to avoid audi-
ble distortion of the near-end user’s signal, which goes through a
cascade of the A/S banks prior to its transmission (see Fig. 2).

Low processing delay: In audioconference applications over digital
networks, the extra processing delay incurred by the near-end
user’s speech through the A/S banks must be kept Jow.?

Flexibility in oversampling: With critical downsampling, i.e., K =
B, large, audible peaks occur at the subband boundaries in the
power spectrum of e(n), as a result of subband aliasing with
non-ideal bandpass filters [3]. To avoid this problem, the most
efficient approach remains oversampling, i.e., K < B. The A/S
bank design/structure should allow arbitrary integer choices of
K, so that this parameter may be maximized subject to the con-
straint of no audible aliasing.

Low computational complexity: The extra computational load re-
sulting from A/S processing should be small. For ease of im-
plementation, it may also be desirable that the subband signals
be real. These considerations generally lead to the use of over-
sampled uniform filter banks in subband AEC, with A/S filters
derived from modulation of a low-pass prototype (e.g., [16]—
[19]). The selection of the filter-bank parameters (number of
subbands, downsampling factor and prototype filter) remains a
difficult problem and is most often based on analytical approxi-
mations and/or empirical guidelines, rather than on optimal de-
sign approaches (e.g. [14)-{15], [201). Various techniques may
be used for the realization/implementation of these filter banks,
as described in [21] and [22].

In our study of subband FNTF, we have found it convenient to
use a Weaver SSB subband structure similar to that in [13]. In addi-
tion to satisfying the above requirements for AEC applications, this
structure produces purely real subband signals, a result which greatly
simplifies the implementation and use of adaptive filtering algorithms
in subbands. In the Weaver SSB structure, the subband configuration
is derived from cosine modulation of a low-pass prototype. However,
to avoid decimation aliasing between negative and positive frequency
bands, which is present with cosine-modulated banks even in the over-
sampling scheme, A/S filtering is achieved via a special form of SSB
modulation, known as Weaver modulation. Efficient realizations exist
for Weaver SSB subband structures based on polyphase decomposition
and weighted overlap-add methods [21], although this is not a critical
issue here.

In the Weaver SSB subband structure under consideration, the dig-
ital spectrum —7 < w < , where w denotes the normalized angular
frequency, is divided into B real subbands with bandwidth ws = 7/ B,
as shown in Fig. 3. The centre frequency of the b-th subband (positive
sideband) is given by wy = (b + 1/2)ws, withb =0, 1,... ,B—-1.

4In videoconference applications, processing delay is dictated mainly by
the image-compression algorithms, so that delay through the A/S banks is not
as critical.
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d(n)—>

dy(m)—»

Figure 4: Schematic representation of Weaver SSB modulator (top) and corresponding
demodulator (bottom).

Each narrowband filter in the analysis bank is in effect a Weaver mod-
ulator with centre frequency wp; a corresponding Weaver demodulator
is used in the synthesis bank. Block diagrams of the Weaver modulator
and demodulator subsystems for the b-th subband are shown in Fig. 4.
In the modulator, the quadrature components of the input d(n) are first
computed via real modulation and low-pass filtering; i.e.,

ap(n) = [d(n) cos(wpn)] * h(n),

Bu(n) = [d(n) sin(wm)] * h(m), 4
where * denotes discrete-time convolution and h(n) is the impulse
response of an ideal low-pass filter with cut-off at ws /2. The quadra-
ture components ap(n) and (3,(n) are then downsampled by a factor
K < B, modulated by /2, and summed to produce the subband out-
put dp(m):

dy(m) = ap(Km) cos (%) + By (K'm)sin (122) .

14
The Weaver demodulator simply performs the reverse (i.e., dual) op-
erations, restoring the subband spectrum to its original shape and po-
sition via a combination of quadrature modulation and upsampling. In
the synthesis bank, a reconstructed version of the input d(n) is finally

obtained via summation of all the demodulator outputs, i.¢., dy(n) for
b=0,1,...,B— L.

The net effect of the Weaver modulation scheme in the frequency
domain is illustrated in Fig. 5, where D(w) and Dy(w) denote the
Fourier transforms® of d(n) and d,(m), respectively. Equations (13)-
(14) in effect correspond to an SSB modulation of d(n), shifting the
positive sideband from ws to 7/(2K), followed by decimation by K
(see [21], Section 2.4, for details). In practice, a non-ideal low-pass
filter h(n) must be used, instead of the ideal one. As can be seen from
Fig. 5, oversampling (i.e., K < B) in Weaver modulation makes it
possible to avoid aliasing between positive and negative sidebands by
introducing guard bands.

5The Fourier transform of a discrete-time signal d(n), n € Z, is defined as
Dw) =32 d(n)e=Ivm.

n=—0oc

D(w)

- N Va
T3 (I (5
2 2U7E 2 2U7B
Figure 5: Freq domain interp of Weaver SSB modulation.

In our application, where the sampling rate is F; = 8 kHz, the fre-
quency spectrum from O to Fs/2 = 4 kHz is divided into B =16
real subbands with bandwidth 250 Hz, or equivalently ws = 0.0625w
in the normalized angular frequency domain. The downsampling fac-
tor is set to K = B/2 = 8&: this practically eliminates subband
aliasing and also simplifies the design of the prototype low-pass fil-
ter h(n), which is carried out with the window method. Specifically,
a Hamming window of length L = 128 is applied to an ideal low-
pass impulse response with cut-off we = 0.03777. Note that to op-
timize the resulting A/S bank, i.e., to further reduce amplitude dis-
tortion, we is taken to be slightly larger than the required value of
ws/2 = w/(2B) = 0.031257. The resulting Weaver SSB subband
structure (i.e., cascade of A/S banks) has the following properties: am-
plitude distortion flat within about 3:0.025 dB; linear phase response
(exactly); processing delay of about 16 ms (i.c., (2L — 1)/2 samples).
Informal listening tests of a speech signal going through a cascade of
the A/S banks do not reveal any perceptible distortion.

C. Using FNTF in subbands
We finally discuss specific issues related to the use of FNTF in a sub-
band structure based on Weaver SSB modulation.

In our implementation of this scheme, we use B copies of FNTF
Version 1, as described in Section ILC, including the acceleration
mechanism (12). These FNTFs run independently of each other on
their respective subband signals. To simplify the study, the same pa-
rameter values (e.g., IV and M) are used in all the subbands.® In each
subband, two independent stabilized FTF algorithms, as described in
(6], are used to compute the saz+1(n) (8) and tar+1(na) (9) values
needed in FNTE. The value of the forgetting factor Ais setto 1—1/pN,
where p > 1 (typically between 2 and 5); such a large value of Ais
necessary to extend the stable life of the algorithm [6]. Even in its sta-
bilized form, practical operation of FTF with speech input over long
periods of time generally requires either conditional or periodic reini-
tialization to avoid locking or numerical error buildup. However, with
the above choice of )\, the use of reinitialization was not necessary over
the time span of our experiments.

For the above settings, the total computational complexity of the B
subband FNTF algorithms, expressed in mapi at the original sampling

6The use of different parameter values in different subbands may indeed
result in improved AEC performance. However, selecting the subband param-
eters independently (and possibly adaptively) so as to optimize the overall sys-
tem performance under a constraint of fixed complexity remains a challenging
probiem.
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rate Fy, is given by

g[st + 14M, + Tkd), (15)

where N, denotes the transversal filter length (i.e., number of adap-
tive coefficients) and M denotes the prediction order of the subband
FNTFs. Note that the value of N, required to match a fullband filter of
length N is Ny = N/K = 2N/B. Formally, a similar relation may be
given for the prediction order, i.e., Ms = M/K = 2N/B. However,
as we will see in Section IV, the effects of varying the prediction order
on the convergence behaviour are different for the fullband and sub-
band FNTFs. The value of kg (i.e., complexity of a division in mapi)
in (15) is implementation-dependent, but typical values for commer-
cial DSPs are on the order of 10 or more.

To the above figure, we must add the operation count of the subband
processing, i.e., two analysis banks and one synthesis bank. Assuming
that the proposed subband structure, which is based on Weaver SSB
modulation, is implemented via the- WOA approach [21], its computa-
tional complexity is about

%[L+Blong+B]. (16)

This represents a lower bound for the proposed subband FNTF
scheme, regardless of the value of the subband filter length NV;. In the
following sections, we refer to this scheme as the Weaver SSB subband
FNTF algorithm.

IV. Computer experiments and results

The convergence performance of the Weaver SSB subband FNTF algo-
rithm was investigated in the context of audioconference applications
(i.e., long echo paths) via computer experiments. Below, we briefly
describe the experimental methodology and then proceed with the pre-
sentation and discussion of the results.

A. Methodology

As our interest lies in speech communications over the telephone band-
width, the sampling rate was set to F; = 8 kHz. Different source sig-
nals u(n) were tried in the experiments, including noise-like signals,
a composite source signal (CSS) and recorded speech. Here, we show
results for CSS: a speech-like signal originally proposed for determin-
ing the transfer characteristics of hands-free phones [23], but also used
as a test signal by ITU Study Group 12 [24] for evaluating the conver-
gence behaviour of AEC systems. The CSS used in this study consists
of a succession of identical bursts with reverse polarity, each burst be-
ing made up of three sections; namely, voice sound, pseudonoise and
pause (see Fig. 6).

To simulate the acoustic echo path # between the loudspeaker and
the microphone in Fig. 1, a fixed impulse response of duration 3200
samples was generated with the image method [25]. The geometric and
acoustic parameters of the room were adjusted to match certain spec-
ifications given in [26] for audioconference applications: room vol-
ume of 90 m® and reverberation time of about 400 ms. The impulse
response was truncated to a desired length IV (same as the fullband
adaptive filter length) and convolved with u(n) to produce the echo
signal; independent Gaussian white noise was added to the echo to
obtain the microphone signal. In our experiments, the noise level was
usually set to —30 dB, a level which is representative of audioconfer-
ence applications.

The signals u(n) and d(n) were used as input and reference sig-
nals, respectively, to various FNTF-based AEC algorithms to study
their convergence performance. The latter was evaluated in terms of
the short-term power of the (fuliband) residual echo at the output of
the AEC system:
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Figure 6: The CSS signal: Time plot (top) and amplitude spectrum (bottom).

J(n)=T1{- R OR an

=n—-K+1

Here, J(n) is expressed in decibels, with reference to the echo level at
the microphone, and the window length is set to K = 256 (32 ms).

Both the fullband FNTF algorithm (as in [6]) and the Weaver SSB
subband FNTF algorithm (as described in Section III) were consid-
ered. As indicated earlier, the soft constraint approach was used for
FNTF initialization. Following a common practice [5]-[6], the filter-
ing part of FNTF (either fullband or subband) was frozen during the
first 0.5 s (i.e., from time —0.5 s to 0 s) to eliminate the influence of
FTF initialization on the convergence results. During this period, the
FIR filter coefficients are null and J(n) yields the power of the mi-
crophone signal, i.e., echo plus additive noise. Different values of the
prediction order M (or M, for the subband FNTF) were tried in the
experiments. In this respect, recall that M = N corresponds to FTF, or
more generally FRLS, while M = 0 corresponds to a form of NLMS.

B. Results

In [6], it is demonstrated that in a mobile-radio context with N = 256,
the use of fullband FNTF with M as small as 16 may yield greatly
enhanced (i.e., close to FRLS) performance as compared to NLMS,
with very few extra computations (about 40% more). In [7], the same
authors note that they have observed a loss of performance of this al-
gorithm in the audioconference context with larger values of NV, but no
specific results are given. We first present a series of experimental re-
sults for the fullband FNTF that corroborate and clarify this statement.

Convergence curves (i.e., J(n) versus time) for the fullband FNTF
algorithm are shown in Fig. 7 for a filter length N = 256 and various
prediction orders M = 0, 16, 256. The short time power of the addi-
tive noise is also included in the figure (bottom curve at —30 dB) as it
represents a lower bound for any adaptive algorithm. It can be seen that
for the CSS signal, significant convergence improvements may be ob-
tained with M = 16. Fig. 8 shows convergence curves for the fullband
FNTF algorithm in the case of a filter length N = 2048 and for predic-
tion orders M = 0, 16, 1024, 2048. Here, while the choice M = 16
does result in faster convergence than M = 0 (i.e., NLMS), it is nec-
essary to use much larger prediction orders, say M = 512 or more, to
get performance comparable to the case M = 2048 (i.e., FRLS). For
such large values of M, FNTF is no longer a computationally attrac-
tive solution.

We next investigate the behaviour of the subband FNTF algorithm
for the case N, = 256, corresponding to a fullband filter length of
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J(n) (dB)

. Figure 7: Convergence curves for fullband FNTF (N = 256, p = S and p = 0.75).
From top to bottom: FNTF with M = 0, 16, 256, and noise floor.
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Figure 9: Convergence curves for subband FNTF (N, = 256 (i.e. N = 2048), p = 2.5
and p = 0.80). From top to bottom: subband FNTF with M, = 0,2,4,8,16, and
noise floor.
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Figure 8: Convergence curves for fullband FNTF (N = 2048, p = 2.5 and p = 0.80).
From top to bottom: FNTF with M = 0, 16, 1024, 2048, and noise floor.

N = 2048 as in Fig. 8. Convergence curves for the Weaver SSB sub-
band FNTF scheme are shown in Fig. 9 for subband prediction orders
M, = 0,2,4,8,16, and in Fig. 10 for M, = 16,32, 64, 128, 256.
Comparing the curves M, = 0 in Fig. 9 and M = 0 in Fig. 8, both of
which correspond to NLMS, we first note that the subband algorithm
converges faster than its fullband counterpart. A similar observation
can be made for the curves M, = 256 in Fig. 10 and M = 2048
in Fig. 8, which correspond to the FRLS. These observations are con-
sistent with commonly established knowledge that subband process-
ing increases the convergence speed of NLMS and, to some extent,
FRLS algorithms.

Next, and more importantly, we note that the effects of increasing
the FNTF’s prediction order on the convergence speed are quite dif-
ferent in the subband case than in the fullband case. While a signifi-
cant gain in convergence speed is achieved by increasing M, from 0
to 2 in Fig. 9, further increases in M in this figure do not yield sig-
nificant additional improvements. Indeed, not much difference can be
seen among the curves for M, = 16 to M, = 128 in Fig. 10, Thus,
it appears that the ratio of M. /N, required in the subband case to
achieve a convergence speed comparable to FRLS is even larger than
the corresponding ratio of M /N needed in the fullband case.

Figure 10: Convergence curves for subband FNTF (N, = 256(i.e, N = 2048),p = 2.5
and p = 0.80). From top 10 bottom: subband FNTF with M, = 16,32, 64, 128,256, and
noise floor.

To illustrate this last point, we look at the results from a different
perspective. Define the convergence time of an AEC algorithm as the
time interval it requires to achieve an echo cancellation of 20 dB. De-
fine the normalized convergence time (NCT) of a fullband (subband)
algorithm as the ratio of its convergence time to that of the fullband
(subband, respectively) stabilized FRLS having the same length. In a
similar way, define the normalized computational complexity (NCC)
of a fullband (subband) algorithm as the ratio of its complexity in mapi,
to that of the fullband (subband) NLMS of the same length. Fig. 11
shows plots of NCT versus NCC for the following cases: (a) full-
band FNTF for N = 256 (f6256); (b) fullband FNTF for N = 2048
(fb2048); (c) subband FNTF for N; = 256 (sb256). Each plot is ob-
tained by varying the prediction order M (M; for subband algorithms)
over the range of permissible values, i.., from O to 256 in cases (a) and
(¢) and from O to 2048 in case (b). In particular, M = 0 (or M, =0
in subband) corresponds to NLMS and thus NCC = 1, while M = N
(or M = N in subband) corresponds to FRLS and thus NCT=1.

The problems identified previously are clearly visible from Fig. 11.
In the 5256 case, an NCC of 2 (obtained with M = 32) yields a con-
vergence performance almost identical to that of FRLS, whose NCCis
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Figure 11: Normalized convergence time versus normalized computational complexity for
fullband FNTF with N = 256 and N = 2048, and for subband FNTF with Ns = 256.

actually about 4.” In the 62048 case, while an NCC of 2 (obtained with
M = 256) yields a significant improvement in convergence speed,
the corresponding NCT of 1.7 leaves significant room for improve-
ment. To significantly reduce this value, we need to further increase
the prediction order M, but then FNTF is no longer attractive since its
NCC will exceed that of FRLS (i.e., NCC > 4). Finally, in the sb256
case, the situation is even worse since an NCT of 2 or less can only be
achieved for NCC larger than 4 (the corresponding value of M must
exceed 128).

C. Discussion

The results presented above, and those of several other computer ex-
periments that we have run with different types of signals and operat-
ing conditions, seem to support the following general conclusions and
statements:

1. Contrary to the basic assumptions made in the derivation of
FNTF [5], the selection of the parameter M cannot be based
strictly on the necessary AR modelling order of the source signal
u(n); it is also strongly dependent (increasing function) on the
filter length N. A possible explanation for this effect is the inad-
equacy of the extrapolation procedure in FNTF when N > M
and the signal is nonstationary, as is the case with CSS or speech.
Indeed, referring to (8)—(10), we find that it takes IV — M samples
for the predictor coefficients ay (n — 1) to affect all the entries
of the gain vector c(n). This procedure for building c(n) may
be effective only if the signal remains stationary over N — M
samples; if not, even the interpretation of ¢(n) as a form of dual-
Kalman-gain vector is questionable.

2. Although the performance of the subband FNTF is generally bet-
ter than that of its fullband counterpart, the use of subband pro-
cessing is not effective in reducing the normalized prediction or-
der, i.e., the ratio M /N necessary for achieving FRLS-like per-
formance with FNTF. In fact, to achieve a similar gain in con-
vergence speed, a ratio of M, /Ns must be used with subband
FNTF that is larger than the value of M /N required for the full-
band FNTF. As a possible explanation for this behaviour, we note
that the correlation time of the decimated subband components
us(m) may be longer than that of the original signal u(n), due
to the spectral shaping that results from narrowband filtering and
oversampling. Further explanations and related comments may
be found in Section IV.D below.

7For a transversal adaptive filter of length N, the computational complex-
ity of NLMS is about 2N, while that of a stabilized FRLS is about 8N, thus
yielding an NCC of 4 for FRLS.
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3. In the case of long adaptive filters, such as those typically em-
ployed in audioconference applications of AEC, the use of FNTF
in the subband adaptive filtering scheme appears to be of limited
practical value. Indeed, the large values of M needed to achieve
significant improvement in convergence speed, i.e., comparable
to an FRLS approach, render this algorithm non-attractive from
a computational viewpoint. In addition, FNTF suffers from the
following practical difficulties: numerical instability of the FRLS
predictors (even with the so-called stabilized versions), requiring
periodic restart; sensitivity of convergence and tracking perfor-
mance to the parameters A and p; and difficulty in optimizing
the latter.

For small values of M, it appears that the performance improve-
ments resulting from the use of FNTF might be obtained via alterna-
tive and simpler approaches, such as the use of an adaptive step-size
strategy in NLMS. With respect to the performance improvements ob-
served for larger values of M, we point out that other families of fast
algorithms have appeared recently that offer a gradual trade-off be-
tween the performance of NLMS and FRLS via the selection of an
additional prediction parameter M. Among these, the fast affine pro-
jection (FAP) [27] appears to be of particular interest for subband AEC
in audioconference applications (i.e., for long impulse responses), for
it can achieve FRLS-like performance with relatively small values of
M [19], [28].

D. Further notes on the decorrelating effects of the subband
decomposition®

Some readers might argue that the lack of significant performance im-
provements in the subband FNTF scheme with increasing prediction
order M might have been anticipated on the basis that the subband de-
composition provides the bulk of the decorrelation that would normally
have been provided by the FNTF predictors in a fullband scheme.
However, as explained below, this “subband decorrelation viewpoint”
is inaccurate.

While it is true that subband processing provides decorrelation of
the input signal in the critical sampling case (i.e., K = B) with ideal
analysis bandpass filters, the situation is not so straightforward in the
practical oversampling scheme (i.e., K’ < B) with non-ideal realizable
analysis filters. For simplicity, first consider the case of a white-noise
input signal. Assume that a non-ideal analysis filter h(n) is used in the
Weaver SSB modulator of Fig. 4, and that K < B, corresponding to
oversampling. Then, as can be easily inferred from Fig. 5, the result-
ing signal at the modulator output will have a non-flat power spectral
density, with deep notches at w = 0 and +m, whose specific shapes
depend on the characteristics of the analysis filter (transition band and
stopband attenuation) as well as the downsampling factor K. Corre-
sponding to these spectral variations, the correlation matrix of the sub-
band output signal will exhibit a large eigenvalue spread (ie., > 1).
Thus, even with a white-noise input signal, the subband decomposition
process (with non-ideal h(n) and K < B) will in fact introduce cor-
relation in the subband signals at the output of the analysis bank. As a
result, a subband NLMS adaptive filter operating in the oversampling
scheme on a white-noise input will converge more slowly than its full-
band counterpart, as experimentally evidenced in, for example, [19].
In the case of a more complex signal like CSS or speech, it is very
difficult, if not impossible, to predict the combined effects of in-band
decorrelation due to subband processing and induced correlation due
to non-ideal analysis bandpass filter characteristics in the oversampling
scheme. As a result, we believe that the behaviour of the oversampled
subband FNTF algorithm could not have been anticipated on the basis
of subband decorrelation alone.

To further support this claim, we refer the reader to [28] and [19],
where a counter-example of the subband decorrelation viewpoint is
provided by the FAP algorithm, which is a computationally fast ver-
sion of the affine projection algorithm (APA) [27]. The FAP algorithm

8The discussion below was motivated by comments from one of the anony-
mous reviewers.
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is characterized by an integer parameter p, a so-called projection order,
which plays a role somewhat similar to that of M in the FNTF algo-
rithm. By varying p between 1 and N, FAP offers a trade-off between
the low complexity of NLMS and the fast convergence of FRLS. In
fact, the affine orthogonal projection mechanism inherent in FAP may
be viewed as a kind of decorrelation process, with the projection or-
der p controlling the degree of decorrelation (see also [29]). It turns
out that with the oversampled subband FAP scheme, and under oper-
ating conditions similar to the ones in this study, a small increase in
the projection order p (say from 1 to 8) results in significantly faster
convergence of the subband algorithm. This indeed shows that a sig-
nificant level of decorrelation may be achieved with the internal FAP
prediction scheme, or equivalently, that there remains significant cor-
relation after the subband decomposition.

The results of an independent investigation conducted in our labo-
ratory seem to indicate that the FNTF predictors are not as effective as
the FAP predictors in removing the remaining subband correlation in
the case of CSS and speech signals [30].

V. Conclusions

In this work, we investigated the performance of a so-called Weaver
SSB subband FNTF algorithm for AEC of the long echo paths that
are typically associated with the use of hands-free audio terminals in
offices (e.g., audioconferencing). Based on numerous computer exper-
iments with various types of signals, we have come to the conclusion
that the practical merits of this scheme are apparently extremely lim-
ited. Indeed, to achieve significant gains in convergence and tracking
speed of the subband FNTF algorithm, as compared to a conventional
subband NLMS approach, large values of the FNTF prediction order
M must be used, thereby making the algorithm uncompetitive from a
computational viewpoint.

Of course, we do not claim that our study is exhaustive in the sense
that all possibilities for making FNTF work properly in the subband
scheme have been explored. Indeed, there may be some clever and in-
genious way of using, modifying and/orimplementing FNTF so that its
apparent limitations are overcome, at least partially. We do not discard
such possibilities, nor do we discourage further research in this direc-
tion; however, based on our investigation and our working experience
with FNTF, we tend to believe that such possibilities are remote. Thus,
in the absence of further theoretical knowledge, we conclude that the
use of the subband FNTF algorithm is apparently not the most com-
putationally efficient way to improve the convergence performance of
subband adaptive filtering in AEC of long echo paths. There seem to
be more promising alternatives, such as the subband FAP algorithms
described in [19], [28] and [31].
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