
Parchami et al. EURASIP Journal on Advances in Signal
Processing  (2015) 2015:87 
DOI 10.1186/s13634-015-0270-6

RESEARCH Open Access

Bayesian STSA estimation using masking
properties and generalized Gamma prior for
speech enhancement
Mahdi Parchami1*, Wei-Ping Zhu1, Benoit Champagne2 and Eric Plourde3

Abstract

We consider the estimation of the speech short-time spectral amplitude (STSA) using a parametric Bayesian cost
function and speech prior distribution. First, new schemes are proposed for the estimation of the cost function
parameters, using an initial estimate of the speech STSA along with the noise masking feature of the human auditory
system. This information is further employed to derive a new technique for the gain flooring of the STSA estimator.
Next, to achieve better compliance with the noisy speech in the estimator’s gain function, we take advantage of the
generalized Gamma distribution in order to model the STSA prior and propose an SNR-based scheme for the
estimation of its corresponding parameters. It is shown that in Bayesian STSA estimators, the exploitation of a rough
STSA estimate in the parameter selection for the cost function and the speech prior leads to more efficient control on
the gain function values. Performance evaluation in different noisy scenarios demonstrates the superiority of the
proposed methods over the existing parametric STSA estimators in terms of the achieved noise reduction and
introduced speech distortion.

Keywords: Generalized Gamma distribution (GGD); Masking; Noise reduction; Short-time spectral amplitude (STSA);
Speech enhancement

1 Introduction
Speech enhancement aims at the reduction of corrupt-
ing noise in speech signals while keeping the introduced
speech distortion at the minimum possible level. In this
respect, considerable interest has been directed toward
the estimation of the speech spectral amplitude, due
to its perceptual importance in the frequency domain
approaches [1, 2].
Within this framework, the general goal is to provide

an estimate of the short-time spectral amplitude (STSA)
of the clean speech using statistical models for the noise
and speech spectral components. In [3], Ephraim and
Malah proposed to estimate the speech signal amplitude
through the minimization of a Bayesian cost function
which measures the mean square error between the clean
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and estimated STSA; accordingly, the resulting estima-
tor was called the minimum mean square error (MMSE)
spectral amplitude estimator. Later in [4], a logarithmic
version of the proposed estimator, i.e., the Log-MMSE,
was introduced by considering that the logarithm of the
STSA is perceptually more relevant to the human auditory
system. Even though alternatives to the Bayesian STSA
estimators were proposed, e.g., in [5], due to the satisfying
performance of the latter, they are still found to be appeal-
ing in the literature. More recently, further modifications
to the STSA Bayesian cost functions were suggested by
Loizou in [6] by taking advantage of the psycho-acoustical
models initially employed for speech enhancement pur-
poses in [7, 8]. Therein, it was shown that the estimator
emphasizing the spectral valleys (minima) of the speech
STSA, namely the weighted Euclidean (WE) estimator,
achieves the best overall performance. Along the same line
of thought, You et al. [9] proposed to use the β power of
the STSA term in the Bayesian cost function, in order to
obtain further flexibility in the corresponding STSA gain
function. These authors investigated the performance of
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the so-called β-order MMSE estimator for different val-
ues of β and found that it is moderately better than the
MMSE and Log-MMSE estimators proposed earlier. In
that work, an adaptive scheme based on the frame SNR
was also suggested to determine β .
Plourde and Champagne in [10] suggested to take

advantage of STSA power weightings (as used in the
WE estimator) in the β-order MMSE cost function and
introduced the parameter α as the power of their new
weighting. They further proposed to select the two esti-
mator parameters as functions of frequency, according
to the psycho-acoustical properties of the human audi-
tory system and showed a better quality in the enhanced
speech in most of the input SNR range. Yet, at high input
SNRs, the performance of the developed estimator may
not be appealing due to the undesired distortion in the
enhanced speech. Further in [11], the same authors intro-
duced a generalized version of the Wβ-SA estimator by
including a new weighting term in the Bayesian cost func-
tion which provides additional flexibility in the estimator’s
gain. However, apart from the mathematically tedious
solution for the gain function, the corresponding estima-
tor does not provide further noticeable improvement in
the enhanced speech quality.
Overall, the parametric Bayesian cost functions as those

in [6, 9, 10] can provide further noise reduction over the
previous estimators, thanks to the additional gain control
obtained by the appropriate choice of the cost function
parameters. In [6], fixed values were used for the STSA
weighting parameter, whereas in [9], an experimental
scheme was proposed in order to adapt β to the estimated
frame SNR. In the latter, the adaptive selection of the cost
function parameters has been proved to be advantageous
over fixed parameter settings in most of the tested scenar-
ios. To make use of the noise masking properties as in [8],
it was suggested in [12] to select the power β as a linear
combination of both the frame SNR and the noisemasking
threshold; subsequently, improvements with respect to
the previous schemes were reported. In [10], rather than
an adaptive scheme, the values of the estimator parame-
ters are chosen only based on the perceptual properties of
human auditory system. Whereas this scheme is in accor-
dance with the spectral psycho-acoustical models of the
hearing system in neural science [13], it does not take
into account the noisy speech features in updating the
parameters.
In the aforementioned works, since the complex Gaus-

sian probability distribution function (PDF) is considered
for the speech short-time Fourier transform (STFT) coef-
ficients, the speech STSA actually takes the Rayleigh PDF.
However, as it was indicated in [14], parametric non-
Gaussian (super-Gaussian) PDFs are able to better model
the speech STSA prior. In [15], the Chi PDF with fixed
parameter settings was used as the speech STSA prior for

a group of perceptually motivated STSA estimators. Use
of Chi and Gamma speech priors was further studied in
[16] and training-based procedures using the histograms
of clean speech data were proposed for the estimation
of the speech STSA prior parameters. Yet, apart from
being computationally tedious, training-based methods
depend largely on the test data, and unless a very lengthy
set of training data is used, their performance may not
be reliable. Within the same line of work, the general-
ized Gamma distribution (GGD) has also been taken into
account, which includes some other non-Gaussian PDFs
as a special case. In [17, 18], it was confirmed that themost
suitable PDF for themodeling of speech STSA priors is the
GGD, given that the corresponding parameters are esti-
mated properly. Two mathematical approaches, i.e., the
maximum likelihood and the method-of-moments, have
been used in [18] for the estimation of the GGD parame-
ters. However, as the evaluations showed in [19] and our
experiments proved, these two approaches do not lead
to acceptable results, due to the coarse approximations
involved in their derivation. Other major studies within
this field such as those in [20, 21], use either fixed or
experimentally set values for the GGD model parame-
ters, lacking the adaptation with the noisy speech data.
Hence, an adaptive scheme to estimate the STSA prior
parameters with moderate computational burden and fast
adaptability with the noisy speech samples is further
needed.
In this work, by taking into account the parametric

Wβ-SA estimator, we first propose novel schemes for the
parameter selection of the cost function as well as the
gain flooring. The new schemes make use of the prior
information available through a preliminary estimate of
the speech STSA, noise masking threshold, and the com-
pression property of the human auditory system. Next, a
generalization of this estimator by employing the GGD
prior model is derived and an efficient yet low-complexity
scheme is introduced for the estimation of its parameters.
We assess the performance of the proposed methods in
terms of speech quality and the amount of noise reduc-
tion and demonstrate their advantage with respect to the
previous STSA estimators. In particular, through a series
of controlled experiments, we demonstrate the incremen-
tal advantages brought about by each one of the newly
proposed modifications to the original Wβ-SA estimator.
The remainder of this paper is organized as follows. In

Section 2, a brief overview of the auditory-based Wβ-SA
estimator is presented. Section 3 proposes new schemes
for the parameter selection of the Bayesian cost function
as well as a new gain flooring scheme for STSA estima-
tors. Section 4 exploits the application of the GGD prior
to the proposed STSA estimator and discusses an efficient
method for the estimation of its parameters. Performance
of the proposed STSA estimation schemes is evaluated
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in Section 5 in terms of objective performance measures.
Conclusions are drawn in Section 6.

2 Background: parametric STSA estimation
In this section, a brief overview of a generic STSA estima-
tion method, namely the Wβ-SA estimator, is presented.
This estimator will be used as a basis for further devel-
opments in the next sections. Suppose that the noisy
speech signal, y(t), consists of a clean speech, x(t), and
the additive noise signal, v(t), that is statistically indepen-
dent of x(t). After sampling and taking STFT with analysis
window of length K , by denoting the frequency bin and
time frame indices as k ∈ {0, 1, . . . ,K − 1} and l ∈ N,
respectively, it follows that

Y (k, l) = X(k, l) + V (k, l) (1)

where Y (k, l), X(k, l), and V (k, l) are the STFTs of
the noisy observation, clean speech and noise, respec-
tively. Expressing the complex-valued speech coefficients,
X(k, l), as χ(k, l)ej�(k,l) with χ and � as the amplitude
and phase in respect, the purpose of speech STSA esti-
mation is to estimate the speech amplitude, χ(k, l), given
the noisy observations, Y (k, l). The estimated amplitude
will then be combined with the noisy phase of Y (k, l) to
provide an estimate of the speech Fourier coefficients. For
sake of brevity, we may discard the indices k and l in the
following.
The Bayesian STSA estimation problem can be formu-

lated as the minimization of the expectation of a cost
function that represents a measure of distance between
the true and estimated speech STSAs, denoted respec-
tively by χ and χ̂ . This problem can be expressed as

χ̂ (o) = argmin
χ̂

E
{
C(χ , χ̂)

}
(2)

where C(.) is the Bayesian cost function, E{.} denotes sta-
tistical expectation and χ̂ (o) is the optimal speech STSA
estimate in a Bayesian sense. Following a Bayesian frame-
work, the expected value of the cost function in (2) can be
written as [6]

E
{
C(χ , χ̂)

} =
∫ ∫

C(χ , χ̂)p (χ ,Y ) dχdY (3)

=
∫ [∫

C(χ , χ̂)p (χ |Y ) dχ

]
p (Y ) dY

with p (χ ,Y ) and p (χ |Y ) being the joint and conditional
PDFs of the speech STSA and observation Y respectively.
Note that in order to derive the optimum STSA esti-
mator in (2), it suffices to minimize the inner integral
in (3) with respect to χ̂ . As discussed in Section 1, the
weighted version of the β-SA, i.e., the Wβ-SA estimator,
has been found to be advantageous with respect to the
other Bayesian estimators. In fact, previously proposed

Bayesian cost functions can be expressed as a special case
of the underlying Wβ-SA cost function, which is defined
as [10]

C(χ , χ̂) = χα
(
χβ − χ̂β

)2 (4)

with α and β being the corresponding cost function
parameters. Note that, for notational ease, compared to
[10], a slight modification is done in (4) by replacing −2α
in Eq. (10) in [10] by α. Substituting (4) into (3) and
minimizing the expectation results in [10]

χ̂ (Wβ−SA) =
(
E{χβ+α|Y }
E{χα|Y }

)1/β
(5)

The conditional moments of the form E{χm|Y } appear-
ing in (5) can be obtained as

E{χm|Y } =
∫ ∞
0

∫ 2π
0 χmp(Y |χ ,�)p(χ ,�)d�dχ∫ ∞

0
∫ 2π
0 p(Y |χ ,�)p(χ ,�)d�dχ

(6)

with p(Y |χ ,�) and p(χ ,�) being respectively the condi-
tional PDF of the noisy observation given the clean speech
and the joint PDF for the speech amplitude and phase.
In the relevant literature, the speech phase � is consid-
ered to be independent of the speech amplitude χ and also
uniformly distributed over [0,2π ). Also, due to complex
zero-mean Gaussian PDF assumed for the noise spec-
tral coefficients, the conditional PDF p(Y |χ ,�) takes a
Gaussian form. Thus, it follows that

p(Y |χ ,�) = 1
πσ 2

v
exp

(
−

∣∣Y − χej�
∣∣2

σ 2
v

)
(7)

p(χ ,�) = p(χ) p(�) = χ

πσ 2
χ

exp
(

−χ2

σ 2
χ

)

where σ 2
v and σ 2

χ , respectively, denote the noise and
speech spectral variances and a Rayleigh PDF has been
assumed for the speech STSA PDF p(χ) as in [3]. By inser-
tion of (7) into (6), the STSAmoment E{χm|Y } is obtained
and using this moment in (5) leads to the following gain
function for the Wβ-SA estimator [10]

G(Wβ−SA) � χ̂ (Wβ−SA)

|Y |

=
√

ν

γ

⎛
⎝


(
α+β
2 + 1

)
M

(
−α+β

2 , 1;−ν
)



(

α
2 + 1

)
M

(−α
2 , 1;−ν

)
⎞
⎠

1/β

(8)

where 
(.) and M(., .; .) denote the Gamma and confluent
hypergeometric functions [22], respectively, and the gain
parameters γ and ν are defined as

γ = |Y |2
σ 2
v
, ν = ζ

1 + ζ
γ , ζ = σ 2

χ

σ 2
v

(9)
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where ζ and γ are called the a priori and a posteriori
SNRs, respectively. Figure 1 shows theoretical gain curves
of the estimator in (8) for different values of the parame-
ters α and β . Herein, the fixed values ζ = 0 dB and γ = 0
dB are considered to account for a highly noisy scenario. It
is observed that the STSA gain function can be controlled
by the selection of its two parameters and an increment
in either of the two, especially α, would result in an incre-
ment in the gain function values. This realization will be
used in the following sections to propose new schemes for
the choice of these parameters.

3 Proposed noisemasking-based STSA estimator
In this section, we propose a new parametric STSA esti-
mator with a focus on its parameter selection and gain
flooring using the noise masking property of the human
auditory system. Figure 2 shows a block diagram of the
proposed algorithm for the STSA estimation that is based
on the noise masking threshold. As indicated, an initial
estimate of the speech STSA is first obtained to calculate
the noise masking threshold and the estimator parame-
ters. This preliminary estimate can be obtained through
a basic STSA estimator, e.g., the MMSE estimator in [3],
as only a rough estimate of the speech STSA is needed
at this step. As the experiments revealed, use of more
accurate estimates of the speech STSA, either in the calcu-
lation of the noise masking threshold or in the parameters
of the STSA estimator, do not result in any considerable
improvements in the performance of the entire algo-
rithm. Next, the STSA estimator parameters, α and β ,
are estimated using both the noise masking threshold and
the available initial estimate of the speech STSA. These
two parameters along with the noisy speech are fed into
the STSA gain calculation block. Note that noise-related

Fig. 1 STSA gain function curves in (8) versus β for different values of
α (ζ = 0 dB and γ = 0 dB)

parameters, i.e., the noise spectral variance and the a pri-
ori SNR, should be estimated within this block in order
to achieve the gain function value. This gain function is
further thresholded and modified by the proposed gain
flooring scheme. This modified gain is the ultimate form
of the gain function being applied on the STSA of the
noisy speech and leading to the enhanced STSA in the out-
put. The enhanced STSA is to be combined with the phase
of the noisy speech to generate the STFT of the enhanced
speech. The following subsections describe the proposed
block diagrams for the STSA estimation method in detail.

3.1 Selection of parameter α

In the original proposition of the Wβ-SA estimator [10],
the parameter α was selected as an increasing piecewise-
linear function of frequency, in order to increase the
contribution of high-frequency components of the speech
STSA in the Bayesian cost function. This is because these
frequencies often include small speech STSAs that can be
easily masked by stronger noise components. However,
increasing the values of this parameter monotonically
with the frequency without considering the estimated
speech STSA values results in over-amplification of high-
frequency components, and therefore, large amount of
distortion may appear in the enhanced speech. This will
be further investigated in Section 5. We here employ the
available initial estimate for the speech STSA, denoted
by χ̂0(k, l) (the one used to calculate the noise masking
threshold), to propose a new scheme for the selection of
α. Specifically, we propose to select α according to the
following scheme

α(k, l) =
{
cα χ̂0(k,l)

χ̂0,max(l) , if χ̂0(k, l) ≥ χ̂0,max(l)
4

0 , otherwise
(10)

where χ̂0,max(l) is the maximum value of the initial STSA
estimate over the frequency bins at frame l and cα , which
determines the maximum value taken by α, is experimen-
tally fixed at 0.55 to avoid excessively large α values. The
major reasoning for the proposed frequency-based selec-
tion of the parameter α is to emphasize the weighting
term χα in (10) for larger speech spectral components,
while avoiding the use of such weighting for smaller com-
ponents within each time frame. This further helps to
distinguish the speech STSA components from the noise
components of the same frequency at each time frame. In
fact, if the speech STSA, χ̂0(k, l), falls above the thresh-
old χ̂0,max(l)/4, increasing α results in the magnification
of the weight χα in (4), provided that the speech STSA, χ ,
is large enough to be greater than unity. In contrast, for the
speech STSA values smaller than the threshold, α is sim-
ply set to zero implying no further emphasis on the speech
STSA component. In this case, theWβ-SA estimator actu-
ally turns into the β-SA estimator in [9]. It should be noted
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Fig. 2 Block diagram of the proposed algorithm for speech STSA estimation

that the threshold χ̂0,max(l)/4 was selected as a means to
compare the relative intensity of the speech STSA compo-
nents within the same time frame. Also, the normalization
with respect to χ̂0,max ensures that the resulting value of
α will not be increased excessively in time frames where
many frequency bins reach large values. Note that the
magnification of strong speech components through the
suggested selection of α can also be justified by consider-
ing the increment of the gain function through increasing
α in the gain curves plotted in Fig. 1. In Fig. 3, the choice
of the parameter α versus lower frequency bins for one
sample time frame of the noisy speech along with the cor-
responding initial estimate of the speech STSA have been

illustrated. In Section 5, it will be shown that the undesir-
able distortion resulting from the original selection of α as
in [10] is compensated by using the proposed scheme.

3.2 Selection of parameter β

The adaptive selection of parameter β was primarily sug-
gested in [9] as a linear function of frame SNR. Later in
[12], it was suggested to choose this parameter as a lin-
ear function of both the frame SNR and noise masking
threshold, as

β(1)(k, l)=d0+d1SNR(l) + d2T(k, l) (11)
+ d3 max{SNR(l)−d4, 0}T(k, l)

Fig. 3 Variation of the proposed choice of α versus frequency compared to that of initial speech STSA estimate for one sample time frame of the
noisy speech
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where SNR(l) is the frame SNR in dB, T(k, l) is the nor-
malized noise masking threshold [8] and di’s are empirical
numerical values. T(k, l) represents the threshold below
which the human auditory system cannot recognize the
noise component and its calculation, which requires an
initial estimate of the speech STSA, say χ̂0(k, l), involves a
multiple-step algorithm detailed in [12]. The motivation
for the choice of β in (11) is to increase the gain function
values in frames/frequencies with higher frame SNRs or
noise masking thresholds, given that the β-SA gain is a
monotonically increasing function of β . The correspond-
ing observations Y (k, l) are dominated by strong speech
components and it is hence desirable to employ a larger
gain value in the enhancement process. In [10], however,
from a psycho-acoustical point of view, it was suggested
to choose β based on the compression rate between the
sound intensity and perceptual loudness in the human
ear. The suggested β therein takes the following form

β(2)(k) = log10
(
g1k + g2

)
log10

(
g1 K2 + g2

) (βmax − βmin)+βmin (12)

where K is the number of STFT frequency bins, g1 and g2
are two constants depending on the physiology of human
ear [23] and βmax and βmin are set to 1 and 0.2, respec-
tively. However, since β is chosen only as a function of the
frequency, it is not adapted to the noisy speech. Further-
more, as experiments show, there may appear excessive
distortion in the enhanced speech using the STSA estima-
tor with this parameter choice, especially at high SNRs.
Hence, we propose to use the adaptive approach in (11)
as the basis for the selection of β , but to further apply the
scheme in (12) as a form of frequency weighting to take
into account the psycho-acoustics of the human auditory
system within each time frame. Specifically, the following
approach is proposed for the selection of β :

β(k, l) = Cβ β(1)(k, l) β(2)(k) (13)

where the purpose of the constant Cβ = 1/0.6 is to scale
up to one the median value of the frequency weighting
parameter β(2)(k) in (12).

3.3 Proposed gain flooring scheme
In frequency bins characterized by weak speech com-
ponents, the gain function of STSA estimators often
approaches very small, near zero values, implying too
much attenuation on the speech signal. To avoid the
resulting speech distortion, various flooring schemes have
been applied on the gain function values in these esti-
mators. In [12], it is suggested to make use of the noise
masking threshold in the spectral flooring scheme by

employing a modification of the generalized spectral sub-
traction method in [8], namely,

GM(k, l) =
{
G(k, l), if γ (k, l) > ρ1(k, l)√

ρ2(k,l)
γ (k,l) , otherwise

(14)

where G(k, l) and GM(k, l) are the original and modified
(thresholded) gain functions, respectively, and ρ1(k, l) and
ρ2(k, l) are given by [12]

ρ1(k, l) = 5.28 T(k,l)−Tmin(l)
Tmax(l)−Tmin(l) + 1

ρ2(k, l) = 0.015 T(k,l)−Tmin(l)
Tmax(l)−Tmin(l)

(15)

withTmin(l) andTmax(l) denoting theminimum andmax-
imum of T(k, l) at the lth time frame. The a posteriori
SNR, γ (k, l), is used in the top branch of (14) as an indi-
cator of the speech signal intensity while the term

√
ρ2(k,l)
γ (k,l)

in the bottom branch determines the thresholded value
of the gain function. Still, (14) is characterized by a num-
ber of limitations. As originally proposed by Cohen in
[24], the gain function itself is a more relevant indicator of
speech signal intensity and is therefore more appropriate
for use in the thresholding test than γ (k, l). Another prob-
lem with (14) is that the thresholded value may increase
uncontrollably at very low values of γ (k, l). Rather than
relying on γ (k, l), it was suggested in [25] to make use of
the estimated speech STSA in the thresholded value, as in
the following

G′
M(k, l) =

{
G(k, l), if G(k, l) > μ0
1
2

μ0|Y (k,l)|+χ̂(k,l−1)
|Y (k,l)| , otherwise (16)

where μ0 is a fixed threshold taken between 0.05 and
0.22. Our experimentations, however, provided different
proper values for μ0 in various noise scenarios and input
SNRs. Hence, considering the wide range of values for
the gain function and also the variations in speech STSA,
it is appropriate for the threshold μ0 to be selected as a
function of the time frame and frequency bin. Herein, by
employing the adaptive threshold ρ1(k, l) in (15) and using
a variable recursive smoothing for the thresholded value,
we propose the following alternative flooring scheme

G′′
M(k, l) ={

G(k, l), if G(k, l) > ρ1(k, l)
p(k,l)χ̂0(k,l)+[1−p(k,l)]χ̂(k,l−1)

|Y (k,l)| , otherwise

(17)

where p(k, l) is the speech presence probability which
can be estimated through a soft-decision noise PSD esti-
mation method. Using the popular improved minima
controlled recursive averaging (IMCRA) in [26] provides
enough precision for the estimation of this parameter in
the proposed gain flooring scheme. According to (17),
for higher speech presence probabilities or equivalently
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in frames/frequencies with stronger speech components,
the contribution of the current frame in the recursive
smoothing through the term χ̂0(k, l) will be larger than
that of the previous frame χ̂(k, l − 1). Conversely, in
case of a weak speech component in the current frame,
the smoothing gives more weight to the previous frame.
Hence, this choice of the flooring value favors the speech
component over the noise component in adverse noisy
conditions where the gain function is mainly determined
by the second branch in (17).

4 Incorporation of GGD as speech prior
As mentioned in Section 1, use of the parametric GGD
model as the STSA prior, due to providing further flexi-
bility in the resulting gain function, is advantageous com-
pared to the conventional Rayleigh prior. In this section,
we first derive an extended Wβ-SA estimator under the
GGD speech prior and then propose an efficient method
to estimate its corresponding parameters.

4.1 ExtendedWβ-SA estimator with GGD prior
The GGD model can be expressed as

p(χ) = abc


(c)
χac−1 exp(−bχa); χ ≥ 0, a, b, c > 0

(18)

with a and c as the shape parameters and b as the scaling
parameter [21]. To obtain a solution to the Wβ-SA esti-
mator as in (5), we consider the moment term E{χm|Y }
based on the above PDF for the speech STSA. In view
of the comprehensive experimental results in [14, 20] for

different values of a and in order to arrive at a closed-form
solution in the Bayesian sense, we choose a = 2 in our
work. For this choice of a, the GGD prior is actually sim-
plified into a generalized form of the Chi distribution with
2c degrees of freedom and 1/

√
2b as the scale parameter

[27]. Based on the second moment of the derived Chi dis-
tribution, it can be deduced that the two parameters b and
c satisfy the relation c/b = σ 2

χ [28]. Therefore, the scale
parameter b has to be chosen as c/σ 2

χ , given an estimate of
the speech STSA variance, σ 2

χ , and the shape parameter c.
Using an estimate of the noise variance, σ 2

v , and the a pri-
ori SNR, ζ , we can obtain an estimate of the speech STSA
variance as σ 2

χ = ζσ 2
v . The selection of the shape param-

eter c will be discussed in the next subsection. Taking this
into consideration, the following expression for the STSA
moment can be derived (see Appendix for details):

E{χm|Y } = 

(m+2c

2
)
M

( 2−m−2c
2 , 1;−ν′)


(c)λm/2M (1 − c, 1;−ν′)
(19)

where

λ = c
σ 2

χ

+ 1
σ 2
v
, ν′ = ζ

c + ζ
γ (20)

Now, by using (19) into (5) we can derive

G(MWβ−SA) =
√

ν′
γ

⎛
⎝


(
α+β+2c

2

)
M

(
2−α−β−2c

2 , 1;−ν′
)



(

α
2 + c

)
M

( 2−α−2c
2 , 1;−ν′)

⎞
⎠

1/β

(21)

Fig. 4 Gain function of the modified Wβ-SA estimator in (21) versus the GGD shape parameter c for different values of γ (ζ = − 5 dB)
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where the notation MWβ-SA is used to denote the modi-
fied Wβ-SA estimator. It is obvious that, for c = 1 where
the Rayleigh prior is obtained as a special case, (21) degen-
erates to the original Wβ-SA. In the following, we present
a simple approach for the selection of the GGD parameter
c for the proposed STSA estimator.

4.2 Selection of the GGD shape parameter
In [14, 20], experimental fixed values in the range of [0,2]
have been used for the GGD shape parameter c in different
noisy scenarios. Rather than using experimental values,
we here take advantage of the behavior of the proposed
gain function in (21) with respect to the shape parameter

Fig. 5 Spectrograms of (a) input noisy speech, (b) clean speech, (c) enhanced speech by the original Wβ-SA estimator, and (d) enhanced speech by
the proposed Wβ-SA estimator, in case of babble noise (Input SNR = 5 dB)
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c and propose an adaptive scheme for the determination
of this parameter. Figure 4 depicts curves of the pro-
posed gain function in (21) versus the shape parameter
c for different a posteriori SNRs. As observed, increasing
the shape parameter leads to a monotonic increase of the
gain function for all considered values of SNR. Note that
for stronger speech STSA components (or equivalently
weaker noise components) a larger gain function value is

desirable in general. Therefore, we suggest to choose the
shape parameter as a linear function of the SNR values at
each time frame, namely,

c(l) = cmin + (cmax − cmin) ζnorm(l) (22)

where, based on the comprehensive experimentations in
[21], cmin and cmax are chosen as 1 and 3, respectively and

Fig. 6 LLR versus global SNR for different Wβ-SA estimators, (a) white noise, (b) babble noise, and (c) car noise
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0 < ζnorm(l) < 1 is the normalized a priori SNR. The
latter is obtained as

ζnorm(l) = ζav(l) − ζmin(l)
ζmax(l) − ζmin(l)

(23)

with ζav(l) as the a priori SNR being averaged over the
frequency bins of the lth frame, and ζmin(l) and ζmax(l)
as the minimum and maximum of the a priori SNR at
the same time frame, respectively. According to (22), the

shape parameter c takes on its values as a linearly increas-
ing function of the SNR in its possible range between cmin
and cmax, leading to the appropriate adjustment of the esti-
mator gain function based on the average power of the
speech STSA components at each frame.

5 Performance evaluation
In this section, we evaluate the performance of the pro-
posed STSA estimation methods using objective speech

Fig. 7 PESQ versus global SNR for different Wβ-SA estimators, (a) white noise, (b) babble noise, and (c) car noise
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quality measures. First, the performance of the proposed
STSA parameter selection and gain flooring schemes are
compared to the previous methods. Next, the proposed
GGD-based estimator is compared to the estimators using
the conventional Rayleigh prior. Due to the performance
advantage of the genericWβ-SA estimator over the previ-
ous versions of STSA estimators, it is used throughout the
following simulations.
Various types of noise from NOISEX-92 database [29]

were considered for the evaluations, out of which, the

results are presented for three noise types, i.e., white, bab-
ble, and car noises. Speech utterances including 10 male
and 10 female speakers are used from the TIMIT speech
database [30]. The sampling rate is set to 16 kHz and a
Hamming window with length 20 ms and overlap of 75 %
between consecutive frames is used for STFT analysis and
overlap-add synthesis. In all simulations, the noise vari-
ance is estimated by the soft-decision IMCRA method
[26] eliminating the need to use a hard-decision voice
activity detector (VAD). Also, the decision-directed (DD)

Fig. 8 Segmental SNR versus global SNR for different Wβ-SA estimators, (a) white noise, (b) babble noise, and (c) car noise
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approach [3] is used to estimate the a priori SNR. Even
though more accurate methods of noise and SNR estima-
tion exist, use of the aforementioned approaches provided
enough accuracy for our purpose.
As for the assessment of the enhanced speech qual-

ity, various objective measures have been employed in
the literature. In order to obtain a measure of the over-
all quality of the enhanced speech, we use the Perceptual
Evaluation of Speech Quality (PESQ) scores. Nowadays,
PESQ is a widely accepted industrial standard for objec-
tive voice quality evaluation and is standardized as ITU-T
recommendation P.862 [31]. Since PESQ measurements
principally model the Mean Opinion Scores (MOS), it
has a close connection to subjective performance tests
performed by a human. On the other hand, the log-
likelihood ratio (LLR) score which measures a logarithmic
distance between the linear prediction coefficients (LPC)
of the enhanced and clean speech utterances, is more
related to the introduced distortion in the clean speech
signal [32]. Whereas PESQ takes values between 1 (worst)
and 4.5 (best), the lower the LLR the less distorted the
speech signal. To have a more complete evaluation of
the noise reduction performance, we also consider the
segmental SNR which correlates well with the level of
noise reduction regardless of the existing distortion in the
speech [32].
To illustrate graphically the advantage achieved by the

proposed parameter selection scheme, first we plot the
speech spectrograms for the noisy, clean, and enhanced
speech signals for the case of babble noise in Fig. 5. We
considered the original frequency-based scheme in [10]
and compared it to the suggested scheme in Section 3
where, for both schemes, the gain flooring in (17) is used.
It is observed that, particularly at low frequencies, the esti-
mator with the original scheme cannot preserve the clean
speech component satisfactorily, whereas it over-amplifies
other parts of the speech spectrum. The disappearance
of the very low-frequency portion of the spectral content
is mainly due to the too small values of the parameter
α given by this scheme. However, the proposed parame-
ter selection scheme is capable of retaining most of the
strong components of the clean speech spectrum, espe-
cially in the low frequencies. Further noise reduction can
also be observed through the use of the proposed selection
schemes for α and β .
To evaluate the efficiency of the proposed selection of

the estimator parameters as well as the proposed gain
flooring scheme, we herein present the performance mea-
sures for Wβ-SA estimator with the parameter scheme
in [10], Wβ-SA estimator using the proposed parame-
ter selection in Section 3 and also the same estimators
with the proposed gain flooring in (17). We employed
the gain flooring scheme in (16) in cases where the pro-
posed gain flooring is not used, since the closest results to

Table 1 PESQ values for the Wβ-SA estimator with different
schemes of parameter α, case of white noise

Input SNR (dB) −10 −5 0 5 10

Input noisy speech 1.13 1.26 1.47 1.75 2.06

Choice of α = 0 1.49 1.70 2.03 2.39 2.72

Choice of α = 0.22 1.49 1.73 2.06 2.41 2.76

Original choice of α 1.50 1.73 2.08 2.44 2.78

Proposed choice of α 1.54 1.77 2.14 2.49 2.81

the proposed flooring were obtained under this scheme.
The LLR results for the three noise types in the range of
input global SNR between −10 and 10 dB are presented
in Fig. 6. As stated in Section 3, the original choice of the
parameters of Wβ-SA estimator results in an excessive
distortion in the enhanced speech, which is observable
through the LLR values in Fig. 6. Yet, the suggested adap-
tive parameter selection completely resolves this problem
and is also able to yield further improvement. Moreover,
the use of the recursive smoothing-based gain flooring
in (17) is able to remove further speech distortion com-
pared to the gain flooring scheme in [25] as given by (16),
especially at higher SNRs. This is due to the incorpora-
tion of the estimated speech, that is strongly present at
high SNRs, in the flooring value instead of using the noise
masking threshold-based method. The result is that the
gain floor is kept at more moderate levels in order not
to distort the existing speech components. Similar trends
can be observed in Figs. 7 and 8 in terms of the speech
quality determined by PESQ and noise reduction evalu-
ated by segmental SNR measurements, respectively. As it
is observed, in cases where the proposed parameter set-
ting is able to provide only minor improvements over the
original method, the combination of the proposed param-
eters with the gain flooring improves the performance to
a considerable degree.
To have a more detailed evaluation of each of the sug-

gested schemes, we present the results obtained by indi-
vidually applying each of them to theWβ-SA estimator. In
Tables 1, 2, and 3, PESQ results for the Wβ-SA estimator
considering α = 0 (corresponding to the β-SA estima-
tor), α = 0.22 (an empirically fixed choice of α), original

Table 2 PESQ values for the Wβ-SA estimator with different
schemes of parameter α, case of babble noise

Input SNR (dB) −10 −5 0 5 10

Input noisy speech 1.31 1.56 1.83 2.14 2.43

Choice of α = 0 1.48 1.71 2.03 2.40 2.73

Choice of α = 0.22 1.51 1.82 2.14 2.42 2.77

Original choice of α 1.54 1.86 2.16 2.45 2.79

Proposed choice of α 1.58 1.91 2.23 2.51 2.82
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Table 3 PESQ values for the Wβ-SA estimator with different
schemes of parameter α, case of car noise

Input SNR (dB) −10 −5 0 5 10

Input noisy speech 1.41 1.54 1.71 2.01 2.32

Choice of α = 0 1.57 1.76 2.06 2.40 2.75

Choice of α = 0.22 1.58 1.78 2.11 2.46 2.77

Original choice of α 1.60 1.81 2.15 2.50 2.79

Proposed choice of α 1.66 1.88 2.20 2.54 2.84

scheme for α as in [10] and the proposed scheme for α in
(10). In all cases, the proposed scheme for β and so for
the gain flooring have been employed. It is observed that,
whereas the employment of the STSA weighting through
the parameter α results in a considerable improvement
compared to the β-SA estimator, the suggested scheme
represented in the last row attains the best results. Within
the same line, Tables 4, 5, and 6 are representative of the
evaluations performed on the Wβ-SA estimator by using
β = 1.82 (an empirically fixed value), β given by (11), β
given by (12), and the proposed choice of β as in (13). In
all cases, we employed α as proposed in (10) and the gain
flooring proposed in (17). It can be deduced that, apart
from the benefit obtained by the frequency-dependent
choices of β through (11) and (12) over the fixed choice
of this parameter, the suggested scheme in (13) is able to
achieve notable improvements compared to the others.
To investigate the performance improvement attained

by the proposed gain flooring scheme in (17) individually,
we implemented the Wβ-SA estimator in Section 3 using
different gain flooring schemes. In Fig. 9, PESQ results
have been shown for this estimator using the developed
gain flooring in (17), those given by (14) and (16), as well as
a fixed gain thresholding withμ0=0.08. It is observed that,
whereas the gain flooring in (16) leads to improvements
with respect to the conventional fixed thresholding, the
one in (14) only slightly outperforms the employed fixed
flooring. This shows that the gain function itself, as used
in (16), is a better measure for gain flooring compared
to the a posteriori SNR used in (14). This is the reason
we based our gain flooring scheme on (16) but further
employed the noise masking concept to threshold the gain

Table 4 PESQ values for the Wβ-SA estimator with different
schemes of parameter β , case of white noise

Input SNR (dB) −10 −5 0 5 10

Input noisy speech 1.13 1.26 1.47 1.75 2.06

Choice of β = 1.82 1.48 1.69 2.00 2.32 2.68

Choice of β by (11) 1.53 1.74 2.08 2.39 2.72

Choice of β by (12) 1.52 1.74 2.06 2.42 2.75

Proposed choice of β 1.54 1.77 2.14 2.49 2.81

Table 5 PESQ values for the Wβ-SA estimator with different
schemes of parameter β , case of babble noise

Input SNR (dB) −10 −5 0 5 10

Input noisy speech 1.31 1.56 1.83 2.14 2.43

Choice of β = 1.82 1.49 1.73 2.04 2.42 2.73

Choice of β by (11) 1.55 1.88 2.18 2.46 2.76

Choice of β by (12) 1.55 1.88 2.17 2.47 2.79

Proposed choice of β 1.58 1.91 2.23 2.51 2.82

function values. As illustrated, the proposed gain floor-
ing outperforms the scheme in (16) considerably even in
the higher range of the input SNR. This is due to the fact
that, even at such SNRs, there are frequencies in which the
gain function decays abruptly below the threshold value,
requiring an appropriate flooring value to keep the speech
components.
Next, we investigated the performance advantage

obtained by the proposed GGD-based estimator in
Section 4 over the original Rayleigh-based estimator [10].
Also, to illustrate the superiority of the proposed scheme
for the selection of the GGD parameter c in Section 4.2
with respect to the employed fixed values as in [21], we
considered the same GGD-based estimator with different
choices of the parameter c. In Fig. 10, PESQ results are
plotted for the original and suggested Wβ-SA estimators
as well as two fixed choices of the parameter c in the range
of [ cmin, cmax] as in Section 4.2. As it is observed, whereas
the use of GGD speech prior with fixed choices of c results
in improvements with respect to the Rayleigh speech prior
in most of the cases, the suggested SNR-based scheme for
choosing c is capable of providing further enhancement
compared to different fixed c choices. Other choices of the
parameter c did not result in further improvements than
those considered herein.
To evaluate the performance of the proposed GGD-

based Wβ-SA estimator in Section 4 with respect to the
recent STSA estimators using super-Gaussian priors, we
considered the STSA estimation methods proposed in
[33, 34]. In [33], the GGD model with a few choices of
fixed parameters is applied as the STSA prior using the
Log-MMSE estimator, whereas in [34], WE and WCOSH

Table 6 PESQ values for the Wβ-SA estimator with different
schemes of parameter β , case of car noise

Input SNR (dB) −10 −5 0 5 10

Input noisy speech 1.13 1.26 1.47 1.75 2.06

Choice of β = 1.82 1.60 1.81 2.09 2.43 2.76

Choice of β by (11) 1.63 1.84 2.14 2.49 2.78

Choice of β by (12) 1.62 1.83 2.14 2.51 2.80

Proposed Choice of β 1.66 1.88 2.20 2.54 2.84
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Fig. 9 PESQ versus global SNR for Wβ-SA estimator with the proposed parameters in Section 3 using different gain flooring schemes, (a) white
noise, (b) babble noise, and (c) car noise

estimators (originally introduced in [6]) are developed
exploiting Chi PDF with fixed parameters as the STSA
prior. Figure 11 illustrates speech spectrograms for the
aforementioned STSA estimators in case of babble noise.
Through careful inspection of the speech spectrograms,
it is observed that the proposed estimator is capable of
maintaining clean speech components at least as much
as the other estimators whereas further noise reduction,

especially in the lower frequency range, is clearly obtained
by using the proposed estimator. In Figs. 12, 13, and 14,
performance comparisons for the same estimators are
depicted in terms of LLR, PESQ, and segmental SNR,
respectively. We used the gain flooring scheme proposed
in Section 3.3 for all of the estimators. It is observed that,
while the estimators suggested in [34] perform better than
the one in [33] in most of the cases, the proposed STSA
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Fig. 10 PESQ versus global SNR for the Rayleigh-based estimator in Section 3, the GGD-based estimator in Section 4 with c = 1.5, 2.5 and the
proposed choice of c in Section 4.2, (a) white noise, (b) babble noise, and (c) car noise

estimator in Section 4 is able to achieve superior perfor-
mance especially at the lower SNR. This is mainly due
to the further contribution of the speech STSA in the
Bayesian cost function parameters through (10) as well as
properly selecting the STSA prior shape parameter using
(22) to adjust the gain function values. Whereas the lat-
ter is assigned a fixed value in the two previous STSA

estimation methods, careful selection of this parameter
based on the estimated a priori SNR leads to a more
accurate model for the speech STSA prior.

6 Conclusions
In this work, we presented new schemes for the selection
of Bayesian cost function parameters in parametric STSA
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Fig. 11 Spectrograms of (a) input noisy speech, (b) clean speech, (c) enhanced speech by WE estimator with Chi prior in [34], (d) enhanced speech
by WCOSH estimator with Chi prior in [34], (e) enhanced speech by Log-MMSE estimator with GGD prior in [33], and (f) enhanced speech by the
proposed Wβ-SA estimator with GGD prior in Section 4, in case of babble noise (Input SNR = 5 dB)

estimators, based on an initial estimate of the speech
and the properties of human audition. We further used
these quantities to design an efficient flooring scheme

for the estimator’s gain function, which employs recur-
sive smoothing of the speech initial estimate. Next, we
applied the GGD model as the speech STSA prior to the
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Fig. 12 LLR versus global SNR for the STSA estimators in [33, 34] and the proposed STSA estimator in Section 4, (a) white noise, (b) babble noise,
and (c) car noise

Wβ-SA estimator and proposed to choose its parameters
using the noise spectral variance and the a priori SNR.
Due to the more efficient adjustment of the estimator’s
gain function by the suggested parameter choice and also
further keeping the speech strong components from being
distorted through the gain flooring scheme, our STSA
estimation schemes are able to provide better noise reduc-
tion as well as less speech distortion compared to the

previous methods. Also, by taking into account a more
precise modeling of the speech STSA prior through using
the GGD function with the suggested adaptive parame-
ter selection, improvements were achieved with respect
to the recent speech STSA estimators. Quality and noise
reduction performance evaluations indicated the supe-
riority of the proposed speech STSA estimation with
respect to the previous estimators.
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Fig. 13 PESQ versus global SNR for the STSA estimators in [33, 34] and the proposed STSA estimator in Section 4, (a) white noise, (b) babble noise,
and (c) car noise

Appendix: Derivation of Eq. (19)
Based on (6), we obtain

E{χm|Y } =
∫ ∞
0

∫ 2π
0 χmp(Y |χ ,�)p(χ ,�)d�dχ∫ ∞

0
∫ 2π
0 p(Y |χ ,�)p(χ ,�)d�dχ

� NUM
DEN
(24)

Obviously, it suffices to derive the numerator in (24) and
then obtain the denominator as a special case where m =

0. Using the GGDmodel in (18) with a = 2 for the speech
STSA and the uniform PDF for the speech phase, it follows

p(χ ,�) = 1
2π

2bc


(c)
χ2c−1 exp(−bχ2) (25)

Substitution of (25) and also p(Y |χ ,�) from (7) into the
numerator of (24) results in
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Fig. 14 Segmental SNR versus global SNR for the STSA estimators in [33, 34] and the proposed STSA estimator in Section 4, (a) white noise, (b)
babble noise, and (c) car noise

NUM = 2bc

2π
(c)
1

πσ 2
v︸ ︷︷ ︸

K1

∫ ∞

0

∫ 2π

0
χm+2c−1 exp

(−bχ2)

× exp
(

1
σ 2
v

(|Y |2 + χ2 − 2|Y |χ cos (ψ − �)
))

d�dχ

(26)

with ψ as the phase of the complex observation Y . To
further progress with (26), the integration with respect

to � should be performed first. To this end, we may
write

NUM = K1 exp
(

−|Y |2
σ 2
v

)
︸ ︷︷ ︸

K2

∫ ∞

0
χm+2c−1 exp

(−bχ2)

× exp
(

−χ2

σ 2
v

)
�1dχ

(27)
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with

�1 =
∫ 2π

0
exp

(
χ |Y | cos (ψ − �)

σ 2
v

)
d� (28)

Further manipulation of �1 results in

�1 = πI0
(
2χ |Y |

σ 2
v

)
(29)

with I0(.) as the zero-ordermodified Bessel function of the
first kind [22]. Now, by inserting (29) into (27) and using
Equation (6.631-1) in [22] to solve the resulting integral, it
follows

NUM = πK2



(m+2c
2

)
(
b + 1

σ 2
v

)m+2c
2

M
(
m + 2c

2
, 1; ν′

)
(30)

with ν′ as defined in (20). Using the following property of
the confluent hypergeometric function,

M (x, y; z) = ezM (y − x, y;−z) (31)

we further obtain

NUM = πK2eν
′ 


(m+2c
2

)
(
b + 1

σ 2
v

)m+2c
2

M
(
2 − m − 2c

2
, 1;−ν′

)

(32)

where, according to Section 4.1, we have b = c/σ 2
χ . Now,

by considering m = 0 in the above, a similar expres-
sion is derived for DEN in (24). Division of the obtained
expression of NUM by that of DEN results in Eq. (19).
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