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ABSTRACT The conventional fully-digital implementation ofmassive-MIMO systems is not efficient due to
the large required number of radio-frequency (RF) chains. To address this issue, hybrid analog/digital (A/D)
beamforming was proposed and to date remains a topic of ongoing research. In this paper, we explore the
hybrid A/D structure as a general framework for signal processing in massive and ultra-massive-MIMO sys-
tems. To exploit the full potential of the analog domain, we first focus on the analog signal processing (ASP)
network. We investigate a mathematical representation suitable for any arbitrarily connected feed-forward
ASP network comprised of the common RF hardware elements in the context of hybrid A/D systems, i.e.,
phase-shifter and power-divider/combiner. A novel ASP structure is then proposed which is not bound to the
unit modulus constraint, thereby facilitating the hybridA/D systems design.We then studyMIMO transmitter
and receiver designs to exploit the full potential of digital processing as well. It is shown that replacing the
linear transformation in the digital domain with a generic mapping can improve the system performance.
In some cases, the performance of optimal fully-digital MIMO systems can be achieved without extra
calculations compared to sub-optimal hybrid A/D techniques. An optimization model based on the proposed
structure is presented that can be used for hybrid A/D system design. Specifically, precoding and combining
designs under different conditions are discussed as examples. Finally, simulation results are presented which
illustrate the superiority of the proposed architecture to the conventional hybrid designs for massive-MIMO
systems.

INDEX TERMS Hybrid beamforming, hybrid analog and digital signal processing, ultra massive MIMO,
massive MIMO, precoding, combining, beamforming.

I. INTRODUCTION
Massive-multiple-input multiple-output (MIMO) and (ultra-
massive) UM-MIMO systems operating in millimeter
wave (mmW)/Terahertz (THz) bands are the prime can-
didates for fifth generation (5G) and beyond 5G cellular
networks [1]–[4]. In fact, base-stations (BS) with 64 antennas
have been recently deployed for commercial use in some
countries [5]. Moreover, an extensive theory for massive
MIMOhas been developed in recent years, including capacity

The associate editor coordinating the review of this manuscript and

approving it for publication was Miguel López-Benítez .

and spectral efficiency analysis, system design for high
energy efficiency, pilot contamination, etc. However, imple-
mentation of such systems faces many technical difficulties,
and to this day remains very challenging and costly [6], [7]. In
conventional fully-digital (FD)MIMO systems, each antenna
element requires a dedicated radio frequency (RF) chain. The
direct FD implementation for massive-MIMO/UM-MIMO
systems, however, is not practical and efficient due to the
ensuing high production costs and more importantly, huge
power consumption.

Hybrid analog/digital (A/D) signal processing (HSP) is an
effective approach to overcome this problem by cascading
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an analog signal processing (ASP) network to the base-
band digital signal processor [8], [9]. While in conventional
FD MIMO transmitters [10]–[12], each antenna element is
directly controlled by the digital processor, in an HSP-based
transmitter, the digital processor generates a low-dimensional
RF signal vector, whose size is then increased by analog
circuitry for driving the large-scale antenna array. Similarly,
in an HSP-based receiver, the size of the large-dimensional
vector of antenna signals is reduced by an ASP network,
whose outputs are then converted to the digital domain for
baseband processing by means of RF chains.

There are practical constraints in the implementation and
design of ASP networks and only a few types of RF
components are commonly used in practice. Specifically,
the power-divider (splitter), power-combiner (adder), and
phase-shifter are the key analog components of the ASP
design [13]–[22]. In the existing hybrid beamforming struc-
tures, due to the particular configuration of the aforemen-
tioned analog components, a constant modulus constraint is
imposed on the analog beamformer weights which turns the
beamforming design into an intractable non-convex optimiza-
tion problem [13], [14].

A. RELATED WORKS
In one of the earliest works in this field [8], it is shown
that for a single data stream, two RF chains are required to
achieve the performance of a FD combiner. This technique
was extended to multiple stream beamforming (i.e., precod-
ing/combining) where the required number of RF chains must
be twice the number of the data streams [14], [15]. In [23],
[24], we proposed a single RF chain FD precoding realiza-
tion. Many researchers, however, focused on developing the
hybrid beamformers directly by solving non-convex design
optimization problems [13]–[21].

In [13], the beamformer design was formulated as the
minimization of the Euclidean distance between the hybrid
beamformer and the FD one. Then, by taking into account
the sparse characteristics of the mmWave channels, com-
pressed sensing (CS) techniques were presented to solve
the underlying optimization problems. The same authors,
extended their results to wide-band systems in [25]. This
approach was later used in [21] and [16] where in the
latter, manifold optimization algorithms as well as other
low-complexity algorithms were used for hybrid beamformer
design. Directly tackling the non-convex design optimiza-
tion problems was attempted in [14] where the authors took
advantage of orthogonalization techniques and exploited the
sparsity of the channel for designing the hybrid beamform-
ers. These results were then extended to wide-band sys-
tems in [26]. In [27], the Gram-Schmidt method was used
specifically in uplink multi-user (MU) scenario for designing
robust low-complexity beamformers. Robust beamformers
for single-user (SU) were studied in [18] by minimizing
the sum-power of interfering signals. In [17], a simple
non-iterative algorithm was proposed for hybrid regular-
ized channel diagolnalization and in [27] the mean square

error (MSE) was chosen as the cost function for designing
the hybrid beamformers.

Themajority of the aboveworks consider a fully-connected
architecture, i.e., each RF chain is connected to all of the
antenna elements. Alternatively, in a sub-connected archi-
tecture, only a subset of RF chains are connected to each
antenna [16], [28], [29]. Recently, a dynamic sub-connected
hybrid architecture has been proposed in [29] for multi-user
equalization in wideband millimeter-wave massive MIMO
systems, based on the minimization of the sum of MSE over
multiple subcarriers. Although sub-connected designs require
less RF components, fully-connected ones can achieve
a superior performance in theory. Hence, in this study,
we investigate properties of fully-connected ASP networks.

B. CONTRIBUTIONS AND PAPER ORGANIZATION
In this paper, our goal is to investigate and exploit the full
potential of HSP in massive-MIMO systems. Aiming at this
challenge, we can summarize our contributions as follows

• We first explore the degrees of freedom in the analog
domain by developing a compact mathematical rep-
resentation for any given feed-forward ASP network
with arbitrary connections of any number of RF com-
ponents, i.e., phase-shifters, power dividers and power
combiners.

• Based on the above generalization, a simple and novel
ASP architecture is conceived out of the above RF com-
ponents, which is not bound to the constant modulus
constraint. Removing this constraint facilitates system
design as non-convex optimizations are difficult to solve
and global optimality of the solutions cannot usually be
guaranteed.

• The transmitter and receiver sides are then studied
separately by exploiting the newly proposed ASP archi-
tecture and generalizing generalizing the digital process-
ing. Specifically, the optimization problem for the HSP
beamformer is reformulated within the new represen-
tation framework, which facilitates its solution under a
variety of constraints and requirements for the massive
MIMO system.

• The realization of optimal FD by HSP and the problem
of RF chain minimization are presented as guideline
examples to illustrate potential applications of the pro-
posed theoretical framework.

• Simulation results of optimal beamformer designs with
the proposed architecture are finally presented. The
results demonstrate that the new designs can achieve
the same performance as the corresponding optimal FD
system and hence, outperform recently published hybrid
beamformer designs.

The paper is organized as follows. In Section II, the sys-
tem model is explained. We then study ASP networks in
Section III followed by transmitter and receiver design in
Sections IV. Simulation results are presented in Section V.
We then conclude the paper in Section VI.
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FIGURE 1. Conventional HSP architecture for single user massive-MIMO system.

Notations: Throughout this paper we use bold capital and
lowercase letters to represent matrices and vectors, respec-
tively. Superscripts (.)H , (.)t , and (.)∗ indicate Hermitian,
transpose, and complex conjugations, respectively. In denotes
an identity matrix of size n×nwhile 0n×m denotes an all zero
matrix with size n × m and 1n is an all one column vector
of size η. The element on the pth row and the qth column of
matrix A is denoted by Ap,q while the pth element of vector x
is denoted by xp. Tr(A) and ‖A‖F denote trace and Frobenius
norm of matrixA, respectively.A = bd(A1,A2, . . . ,An) rep-
resents a block-diagonal matrix, in whichA1,A2, . . . ,An are
the diagonal blocks of A. The Kronecker product is denoted
by ⊗. By x1

π
= x2, it is meant that there exist a permutation

matrix Pπ such that x1 = Pπx2. The greatest (least) integer
less (greater) than or equal to x is denoted by bxc (dxe).
Moreover, x = a mod n denotes the remainder of the division
of a by n. The absolute value and phase of a complex number
z = |z| exp(j6 z) are denoted by |z| and 6 z. C stands for the
complex field. A complex circular Gaussian random vector
x ∈ Cn with mean vector m = E{x} and covariance matrix
R = E{xxH } is denoted by CN(m,R) where E{} stands for
expectation.

II. SYSTEM MODEL
We consider a generic point-to-point massive-MIMO system
where the transmitter and receiver are equipped with NT and
NR antennas as well as MT and MR RF chains, respectively.
In the context of HSP, due to practical constraints, it is further
assumed that MT � NT and MR � NR.

A. CONVENTIONAL HYBRID BEAMFORMING
Fig. 1 illustrates a point-to-point massive-MIMO systemwith
conventional hybrid beamforming implemented at both ends.
The transmitted signal over one symbol duration Ts can be
formulated as

x =
√
ρ PAPDs, (1)

where s = [s1, s2, . . . , sK ]t is the symbol vector with
zero-mean random information symbols sk ’s taken from a
discrete constellation A (such as M-QAM or M-PSK), nor-
malized such that E{ssH } = IK and, ρ is the average transmit
power. Matrices PD ∈ CMT×K and PA ∈ UNT×MT are the

FIGURE 2. HSP-based massive-MIMO transmitter.

FIGURE 3. HSP-based massive-MIMO receiver.

digital and analog precoders, respectively, where U = {z ∈
C : |z| = 1} and for normalization purposes, it is further
assumed that ‖PAPD‖2F = 1.

The received signal can then be written as

y = Hx+ n, (2)

where H ∈ CNR×NT is the MIMO flat fading channel matrix
such that E{‖H‖2F } = NTNR and n ∼ CN(0, σ 2INR ) is an
additive white Gaussian noise (AWGN) vector. The decoded
symbols after hybrid processing can be expressed as

ŝ = DDDAy, (3)

where DD ∈ CK×MR and DA ∈ UMR×NR are the digital and
analog combiners, respectively.

B. GENERALIZED HSPSYSTEM FORMULATION
In this work, we consider a more general formulation for
HSP that extends the cascaded structure of analog and
digital linear transformations presented in Subsection II-A.
We will see that this formulation can in fact bring simplifica-
tions to the conventional linear MIMO precoding/combining
techniques.

In the generalized HSP-based massive-MIMO transmitter,
as shown in Fig. 2, the symbol vector s is first applied as input
to the digital signal processor, whose output is a baseband
signal vector expressed as

xBBT = FT (s) ∈ CMT , (4)

where FT : A K
→ CMT is the corresponding mapping

from A K to CMT . Then, MT parallel RF chains convert the
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FIGURE 4. Matrix representation of ASP components.

FIGURE 5. An example of an arbitrary ASP network.

baseband signal vector xBBT into a bandpass modulated RF
signal vector xRFT . The latter is next input to the ASP network
whose output is the transmit signal vector, which can be
expressed as

xT =
√
ρ GT (xRFT ) ∈ CNT , (5)

where GT : CMT → CNT is the corresponding mapping.
As shown in Fig. 3, the received RF signal y following from

the noisyMIMO transmission as in (2) is first applied as input
to the ASP network, yielding

xRFR = GR(y) ∈ CMR , (6)

where GR : CNR → CMR . The RF signal vector xRFR is next
converted to baseband vector xBBR by MR RF chains. Finally,
xBBR is processed in digital domain to obtain the decoded
symbols

ŝ = FR(xBBR ). (7)

where FR : CMR → A K .
While only a power constraint is imposed on the baseband

mappings FR and FT , the RF mappings GR and GT must
be implemented by RF analog components which constrain
these transformations as discussed in the following section.

III. ANALOG SIGNAL PROCESSING NETWORK
In this section, aiming at exploiting the full potential of the
analog domain, we develop a mathematical formulation for

the ASP network represented by the RF mappings GT and
GR in the previous section. Specifically, instead of focusing
on the conventional analog beamformer structure used in the
recent literature [13]–[21], we consider an arbitrarily con-
nected network of phase-shifters, power dividers and power
combiners. In our developments, signal-flow graph concepts
are used which provide valuable insights for analysis of linear
networks [30], [31].

Let us start by formally introducing the individual RF
components comprising the ASP networks. The input-output
(I/O) relationship of a phase-shifter is given by b = ejθa
where a, b ∈ C are the input and output, respectively, and
θ ∈ [0, 2π ] controls the phase difference between them. In
this work, in order to explore the performance limits of ASP
networks and find a compact representation for any arbitrarily
connected ASP with common RF components, we consider
infinite resolution phase shifters.1 The passive power com-
biner and power divider are implemented by the same RF
multi-port network but their port configuration is different.
For instance, the ideal µ-way Wilkinson power divider is an
µ+1 port RF network which can act as an equi-power divider
if the input signal is applied to its port 1 and the outputs are
taken from ports 2 to µ + 1 [32]. Conversely, it acts as a
combiner if the inputs are applied to port 2 to µ + 1 and the
output is taken from port 1.

To obtain a unified model for any possible ASP network
with M input ports and N output ports using primary mod-
ules (i.e., phase-shifter, power divider and power combiner),
we first present a convenient multi-port matrix representation
of each component. We also include a permutation opera-
tion which does not require additional hardware and is used
mainly for the sake of mathematical simplification. The I/O
relationship of the components are defined below in terms

1The proposed ASP architecture can still be applied with finite-precision
phase-shifters, but some of the results derived in the paper will become
approximative. This raises interesting questions from a theoretical perspec-
tive, e.g.: how to characterize the effect of phase-shifter quantization on the
performance of the overall ASP network, and how to select the quantization
levels of the phase-shifters to ensure a given accuracy in the final ASP
design? These questions remain of interest for future research.
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FIGURE 6. Applying Proposition 1 to the ASP network in Fig. 5.

of their input and outputs represented by vector a and b,
respectively.

• Single phase-shifter: As illustrated in Fig. 4, for vector
a,b ∈ Cη, the corresponding η×η matrix only changes
the phase of the γ th element of the RF input signal a,
which can be expressed as

b = 8(γ, φ, η)a, (8a)

8(γ, φ, η) = bd(Iγ−1, ejφ, Iη−γ ) ∈ Cη×η. (8b)

• Single power divider: For input vector a ∈ Cη and output
vector b ∈ Cη′ , the corresponding η′ × η matrix divides
the γ th element of the input RF signal intoµ equi-power
signals and the remaining RF branches are not altered,
and hence, η′ = η+µ−1. As illustrated in Fig. 4b, this
operation can be described by a block diagonal matrix

b = Q(γ, µ, η)a, (9a)

Q(γ, µ, η) = bd(Iγ−1,
1
√
µ
1µ, Iη−γ ). (9b)

• Single power combiner: This transformation can be rep-
resented by the transpose of the single power divider
matrix Q(γ, µ, η). Consequently, for input vector a ∈
Cη′ and output vector b ∈ Cη the corresponding matrix
combines µ adjacent RF signals into the γ th output
signal and the rest of the RF branches are not altered.
As seen from Fig. 4c, we can write

b = Qt (γ, µ, η)a. (10)

• Permutation matrix: This transformation shown in
Fig. 4d corresponds to rearrangement of the elements
of vector a ∈ Cη into vector b ∈ Cη according to a
permutation π : {1, . . . , µ} → {1, . . . , µ}. This can be
expressed as

b = Pπa, (11)

where Pπ = [eπ1 , . . . , eπM ]
t , and ei denotes a column

vector of zeros except for its ith element which is one
(see ).

Having introduced a matrix representation of the RF compo-
nents, we can now seek the mathematical formulation for any
given ASP in terms of these matrices.
Proposition 1: Any given RF network, with N input and

M output ports, implemented by arbitrary feed-forward con-
nections of T RF components (i.e., phase-shifters, power
combiners and power dividers) can be modeled as follows

b = AuT (θT )PπT . . .Au2 (θ2)Pπ2Au1 (θ1)Pπ1a

,
T∏
i=1

Aui (θi)Pπia,

Aui (θi) =


8(γ, φ, η), where θi ≡ (γ, φ, η) if ui = 1
Q(γ, µ, η), where θi ≡ (γ, µ, η) if ui = 2
Qt (γ, µ, η), where θi ≡ (γ, µ, η) if ui = 3,

(12)

where a ∈ CN and b ∈ CM are the input and output
RF signals, respectively, and θi is a 3-tuple containing the
parameters of the ith RF component.

Proof: See Appendix A.
To illustrate the application of this result, consider the

ASP network example in Fig. 5. By using the indexing
scheme introduced in the Proof of Proposition 1, this net-
work can be reorganized as a product of basic RF transfor-
mations as shown in Fig. 6. Note that in the latter figure,
permutation matrices only appear before the 7th and 15th

RF components; for the remaining components the permu-
tation is an identity matrix (not shown for simplicity). It is
worth mentioning that the indexing is not unique and parallel
components can be swapped, for instance, the order of u2,
u3 and u4 does not affect the I/O relationship of the ASP
network.

In the following theorem, we present five commuta-
tive properties of matrices 8(γ, φ, η), Pπ , Q(γ, µ, η), and
Qt (γ, µ, η) which later will be used to rearrange the RF
components for further simplifications.
Theorem 1: For each one of the following products of two

basic RF component matrices on the left, there exists an
equivalent matrix factorization as given on the right of the
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FIGURE 7. ASP sub-networks.

equality sign:

Q(γ, µ, η)Pπ = Pπ ′Q(π (γ ), µ, η), (13)

PπQt (γ, µ, η) = Qt (π (γ ), µ, η)Pπ ′ , (14)

Q(γ1, µ1, η1)Qt (γ2, µ2, η2) =
J ′∏
j=1

Qt (γ ′j , µ
′
j, η
′
j)Pπ ′

×

J ′′∏
j′=1

Q(γ ′′j′ , µ
′′

j′ , η
′′

j′ ),(15)

Q(γ1, µ, η1)8(γ2, φ, η2)=
J∏
j=1

8(γ ′j , φ
′
j, η
′
j)

×Q(γ ′, µ′, η′), (16)

8(γ1, φ, η1)Qt (γ2, µ, η2)=Qt (γ ′, µ′, η′)

×

J∏
j=1

8(γ ′j , φ
′
j, η
′
j). (17)

The definitions of the parameters appearing on the right hand
side of these identities are given in the proof.

Proof: See Appendix B.
Next, we introduce three ASP sub-networks and their com-

pact equivalent representations; these will play a key role in
establishing our main results in Theorems 2 and 3.
• Phase-shifter network: This sub-network is obtained by
cascading J basic phase shifter matrices (with accompa-
nying permutations) of common size Np, i.e.

J∏
j=1

8(γj, φj,Np)Pπj = EvPπ , (18)

where, as illustrated in Fig. 7

Ev = diag(v), (19)

with v = [ejφ1 , ejφ2 , . . . , ejφNp ]t ∈ UNp .

• Power divider network: By cascading J power divider
matrices of compatible sizes, we obtain

J∏
j=1

Q(γj, µj, ηj) = PπDdPπ ′ (20)

where, as illustrated in Fig. 7b,

Dd = bd(
1
√
δ1
1δ1 ,

1
√
δ2
1δ2 , . . . ,

1√
δNd

1δNd , I), (21)

with d = [δ1, δ2, . . . , δNd ]
t , and

∑Nd
i=1 δi = Md , which

is equivalent to an RF network that dividesNd RF signals
into a total of Md signals. The presence of the identity
matrix in (21) accounts for branches that are not divided.

• Power combiner network: By cascading J power com-
biner matrices, we obtain,

J∏
j=1

Qt (γj, µj, ηj)Pπj = PπCdPπ ′ (22)

where, as illustrated in Fig. 7c,

Cd = bd(
1
√
δ1
1tδ1 ,

1
√
δ2
1tδ2 , . . . ,

1√
δMc

1tδMc , I), (23)

with d = [δ1, δ2, . . . , δMc ] and
∑Mc

i=1 δi = Nc, which is
equivalent to anRF network that combinesNc RF signals
into Mc signals.

The validity of the identities in (18), (20) and (22) is
demonstrated in Appendix C. We can now derive a mathe-
matical expression for the representation of any given ASP
network.
Theorem 2: Any arbitrarily connected feed-forward ASP

network with M inputs and N outputs, implemented by a
total number of T phase-shifters, power dividers, and power
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FIGURE 8. ASP network equivalent to the ones in Figs. 5 and 6.

combiners can be modeled as

2 b =
1
√
MN

Aa, (24a)

A ∈ ŬN×M , (24b)

where a ∈ CM and b ∈ CN are the input and output signals,
respectively, and Ŭ = {z ∈ C : |z| ≤ 1}. That is, all the entries
of matrix A have magnitude less or equal to 1.

Proof: See Appendix D
Going back to our previous example in Fig. 5 and Fig. 6,

the ASP network in the latter figure can be transformed into
that of Fig. 8, for which the 2 × 2 transformation matrix A
satisfies the condition of the theorem. Now, we investigate
whether any matrix in the convex set ŬN×M can be realized
by an ASP.
Theorem 3: Any given matrix A ∈ ŬN×M can be realized

by an ASP network with a total number of T = 2MN +M +
N RF components, i.e., N dividers, M combiners, and 2NM
(unit-modulus) phase shifters, as shown in Fig. 9.

Proof: The output of the ASP in Fig. 9, corresponding
to the input vector a, can be expressed as

bi =
1
√
2M

M∑
k=1

( ak
√
2N

ejφ
1
k,i +

ak
√
2N

ejφ
2
k,i
)

(25a)

=
1
√
MN

M∑
k=1

ak
(1
2

2∑
l=1

ejφ
l
k,i
)
. (25b)

In (25a), since bi is the output of a 2M -way combiner, the
normalization factor 1

√
2M

appears from (9). Similarly, the k th

input, i.e., ak is divided into 2N branches which according to
(9) introduces a normalization factor of 1

√
2N

. Subsequently,

for a given A ∈ ŬN×M , we have Aki ≤ 1, and by invoking
Lemma 2, there exist angles φlk,i’s such Aki =

1
L

∑L
l=1 e

jφlk,i

where the minimum possible value of L is two, i.e., Aki =
1
2 (e

jφ1k,i + ejφ
2
k,i ). Therefore, we have:

bi =
1
√
MN

M∑
k=1

Akiak , (26)

whereA ∈ ŬN×M . Moreover, 2M phase-shifters are required
for each element of b and consequently, a minimum of 2MN
phase-shifters are needed.

FIGURE 9. Proposed ASP architecture.

Remark 1: The significant result of Theorem 3, is that any
A ∈ ŬN×M can be implemented with an ASP structure using
conventional RF components, i.e. combiners, dividers and
phase shifters, whose input-output relationship is not bound
to the unit modulus constraint. That is, while the individual
phase-shifter components satisfy this constraint, the overall
transformationmatrix implemented by the proposed structure
in Fig. 9 is no longer restricted to the unit modulus constraint.
Thus, the troubling non-convexity constraint found in the
literature on hybrid beamforming literature can be lifted from
the design optimization problems.
Remark 2: According to the above proof, non-unique

solutions for phase-shifter may exist. This additional degree
of freedom can be considered when designing the ASP net-
work based on the requirements and constraints of the analog
system. By writing Ap,q = |Ap,q| exp(j 6 Ap, q), one possible
solution for φ1k,i and φ

2
k,i is given by

φ1k,i =
6 Ap, q+ cos−1(|Ap, q|) (27a)

φ2k,i =
6 Ap, q− cos−1(|Ap, q|). (27b)

It is worth noting that in the conventional hybrid structure
T = MN +M+N RF components are required [13]–[21]. In
contrast, the proposed ASP structure requires MN additional
phase-shifters, for a total of T = 2MN + M + N RF
components. These additional components, when employed
as in Fig. 9, allow to lift the constant modulus constraint for
the overall transformation.
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Remark 3: It is worth mentioning that since for wide-band
systems it is desirable to have a common ASP network for the
entire band [25]–[27] the proposed structure can be used for
MIMO-OFDM systems. Particularly, since the proposed ASP
structure is not bound to constant modulus constraint, it sim-
plifies the design of hybrid MIMO-OFDM beamformers.

IV. TRANSMITTER AND RECEIVER DESIGN WITH
GENERALIZED HSP
While the previous section focused on the realization of the
RF mappings GR and GT , as defined in (5) and (6), using
basic RF components, in this section we turn our attention
to the baseband mappings FR and FT as defined in (7) and
(4), respectively. To this end, we consider the ASP network
in Fig. 9 for GT and GR and consequently, (5) and (6) are
replaced by:

GT (xRFT ) = AT xRFT , (28a)

GR(y) = ARy, (28b)

where AT ∈ ŬNT×MT and AR ∈ ŬMR×NR . We first focus on
the transmitter and then on the receiver design.

A. HSPDESIGN AT THE TRANSMITTER
Considering (4), (5), and (28a), the transmitted signal of the
generalized HSP can be written as follows:

xT =
√
ρATFT (s). (29)

In the literature on hybrid beamforming, FT is usually a lin-
ear transformation, i.e., xT =

√
ρATPs, where P ∈ CMT×K

is the precoding matrix. We first explore the properties and
implementation of FT , and then discuss the design of FT
and AT at the HSP-based transmitter.
Let DT (s) denote the transformation that generates the

desired transmitted signal from the given vector symbol s.
In effect, this function can represent a generic communication
techniques at the transmitter side. For instance, the optimal
eigen-mode precoding is obtained by solving the following
problem:

max
P

log2 det(INR +HPPHHH ), (30a)

s.t. Tr(PPH ) ≤ PT . (30b)

The solution is given by

P = Vϒ, (31)

where the diagonal weight matrix ϒ is calculated via water
filling [33] and V is a unitary matrix obtained from singular
value decomposition of the channel matrix, i.e.,

H = U6VH . (32)

Consequently, for this particular precoding scheme we have

DT (s) = Vϒs. (33)

Note that nonlinear beaforming, channel estimation,
space-time coding and many other techniques can also be
represented by DT (s).

From (29), in order to generate the same transmit signal as
a given DT (s) via an HSP-based transmitter, we need to find
AT and FT (.) such that

ATFT (s) = DT (s), (34)

holds for all symbol vectors s. Hence, since DT (s) is given,
FT (s) can be defined as the following set set, or multi-valued
function:

FT (s) , {x ∈ CK
: AT x = DT (s)}. (35)

Note that while it might be very difficult to explicitly con-
struct the mapping FT (.), obtaining its output, i.e., FT (s) is
simple because the value ofDT (s) is available. In other words,
since the output of the HSP-based transmitter is given, i.e.
DT (s), it is sufficient to calculate the desired output of FT (.)
rather than implementing the mapping itself.
From (4) and (35), we can rewrite (34) as

AT xBBT = DT (s) (36)

which means that in general the HSP objective is to find
AT and xBBT such that (36) is satisfied for the given DT (s).
This objective guarantees that theHSP-based system achieves
the same performance as the FD one, i.e., DT (s). However,
many variations can be derived according to the conditions
and constraints of the system, which opens new avenues for
investigation in this area.
In practice, depending on the system constraints, one

may wish to design AT , xBBT and possibly some other sys-
tem parameters represented by vector p on the basis of
some optimization criterion. For instance, the following
generic optimization problem can be used for obtaining the
HSP parameters,

min
AT ,xBBT ,p

E{‖AT xBBT −DT (s)‖2}, (37a)

s.t. C(AT , xBBT ,p), (37b)

whereC(AT , xBBT ,p) represents the system constraints. Alter-
natively, this could be formulated as

optimize
AT ,xBBT ,p

f (AT , xBBT ,p), (38a)

s.t. AT xBBT = DT (s). (38b)

where f (.) is the chosen cost function based on the objectives
of the system. Note that the power constraint is not necessary
as it can be taken into account when designing DT (s). One
obvious choice is f (AT , xBBT ,p) = 1, in which case AT must
be designed such that for some set S ⊂ A K , we haveDT (s) ∈
span(AT ),∀s ∈ S, where span(AT ) denotes the span of AT .
Consequently, the baseband signal is obtained from xBBT =
A†
TDT (s) where A†

T is the Moore Penrose inverse of matrix
AT . In what follows, we present different cost functions for
designing precoding matrices with HSP.
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1) UNCONSTRAINED FD PRECODING FOR MT ≥ K
For MT ≥ K it is possible to realize any given FD precoder.
As an example, we explore optimal eigen-mode precoding,
although any other precoding matrix can be obtained in the
same fashion. We first consider the case MT = K and
subsequently discuss the modifications needed for MT ≥ K .
From (33) and (36), both AT and xBBT must be designed

such that

AT xBBT = Vϒs. (39)

Since AT is of size NT ×MT , this problem for MT = K has
the following simple solution

AT =
1
p0

Vϒ, (40a)

xBBT = p0s, (40b)

where p0 = ‖vec(Vϒ)‖∞.
In the caseMT > K , one possible solution that achieves the

same performance as the FD precoding is to appendMT −K
zeros to the solution xBBT in (40b) and set the corresponding
columns of AT in (40a) to zero.
Note that no constraint is enforced on the system and sim-

ilar to existing hybrid solutions in the literature, AT must be
updated according to the channel coherence time, denoted as
Tc in the sequel. Since s changes after every symbol duration
Ts, xBBT is also updated every Ts.

2) UNCONSTRAINED FD PRECODING FOR MT < K
In this case, from using either (38) or (38), it is possible
to obtain various hybrid beamformer designs depending on
the system requirements. Here, we aim at minimizing the
Euclidean distance between the eigen-mode FD precoder in
(31) and the hybrid beamforming matrix AT . However, since
the former has size NT ×MT while the latter has size NT ×K ,
we first find a beamforming matrix ÂT of size NT × MT
subject to a rank MT constraint, i.e.,

min
ÂT
‖ÂT − Vϒ‖2 (41a)

s.t. rank(ÂT ) = MT . (41b)

Since here ϒ = [diag(υ1, υ2, . . . , υK ), 0K×(NT−K )]t , we can
write the solution for the above problem as

ÂT = V
[
diag(υ1, υ2, . . . , υMT , 0, . . . , 0)

0(NT−K )×K

]
. (42)

Now by defining

AT = V
[
diag(υ1, υ2, . . . , υMT )

0(NT−MT )×MT

]
, (43)

we can obtain xBBT by solving

min
xBBT

‖AT xBBT − Vϒs‖2, (44)

which yields

xBBT = [IMT , 0MT×(K−MT )]s. (45)

3) MINIMUM NUMBER OF RF CHAINS WITH FAST
PHASE-SHIFTERS
If we do not have a constraint on the update rate of the analog
components, we can reduce the number of RF chains by
solving the following problem

min
AT ,xBBT

MT , (46a)

s.t. AT xBBT = DT (s). (46b)

This problem is shown to have non-unique solution forMT =

1 where DT (s) = Vϒs in [23] but essentially the same
solution is valid for any other transmit function DT (s). Note
that in this case the ASP must be updated after every symbol
duration Ts.

B. HSPDESIGN AT THE RECEIVER
Similar to the previous subsection, let us assume that the
ideal FD decoder that maps the received RF signal y into
the detected symbols ŝ, represented by the mapping DR(y),
is known. Since inmassive-MIMO systems beamforming and
multiplexing are key techniques, linear detection is of great
interest due to its simplicity. In this case, which is considered
in our discussion, DR(y) = Zy where Z ∈ CK×NR is
the FD combiner matrix. However, at the price of increased
computational complexity, DR(y) can be extended to more
sophisticated detectors such asmaximum likelihood or sphere
decoding.
By substituting (6) and (28b) in (7), the estimated signal at

the receiver is written as:

ŝ = FR
(
AR(HxT + n)

)
. (47)

Clearly, the same approach used in Subsection IV-A for
realizing the transformation FT (.) cannot be applied here
because the desired output ofFR(.) is unknown, i.e., we need
this mapping to implement the decoding function. Ideally,
we want to find a mapping FR(·) and AR such that

FR
(
ARy

)
= DR(y), (48)

or all y. Similar to the HSP literature [13]–[21], we con-
sider linear transformation for the baseband processing, i.e.,
FR(xBBR ) = WxBBR where W ∈ CK×MR is the corresponding
transformation matrix; however, extension to types of trans-
formations is straightforward by using (48). Consequently,
the following generic optimization problem can be consid-
ered for obtaining the HSP parameters:

min
AR,W,p

E{‖WAR − Z‖2F }, (49a)

s.t. C(AR,W,p), (49b)

where C(AR,W,p) represents the system constraints. Alter-
natively, this could be formulated as

optimize
AR,W,p

f (AR,W,p), (50a)

s.t.WAR = Z, (50b)
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where f (.) is a cost function designed to satisfy the require-
ments of the system. In what follows, FD combining for
point-to-point MIMO is presented as an example.

1) UNCONSTRAINED FD COMBINING FOR MR ≥ K
We first consider the case where MR = K and subsequently
discuss the case MR > K . The optimal FD combiner for a
point-to-point MIMO can be obtained from

max
Z

log2 det
(
IK + ρ(ZZH )−1ZHHHZH

)
. (51)

From (32), the solution is given by

ZH = Ua. (52)

where U = [Ua,Ub] and Ua contains the first K columns of
U, corresponding to the K dominant singular values of the
channel matrix H. Thus, AR andW must be jointly designed
such that

WAR = Z, (53)

where AR ∈ ŬMR×NR . Note that if MT = K , for any
FD combiner Z ∈ CK×NR , this problem has the following
solution

AR =
1
p1

Z, (54a)

W = p1IK , (54b)

where p1 = ‖vec(Z)‖∞.
The above design can be extended to the case MR > K ,

although here including more RF chains adds to the cost and
complexity of the system while no improvement is gained.
One trivial solution that guarantees the same performance as
the FD solution is to set the additional MR − K columns of
W to 0, i.e., using W = p1[IK , 0K×(MR−K )].

The FD realization for the multi-user case can be similarly
obtained. First (51) must be replaced by the desired optimiza-
tion problem for finding the FD combiner. Analog and digital
combiners are then calculated by (54).

2) FD COMBINING FOR MT < K
In the case of linear decoding, there must be at least K inde-
pendent equations to recover K transmitted symbols. Hence,
the minimum number of required RF chains is MR = K .
Consequently, combiner design for MR < K is not practical
in this case.

3) MINIMUM NUMBER OF RF CHAINS WITH FAST
PHASE-SHIFTERS
Even with the same assumption as in Subsection IV-A.3, i.e.
the phase-shifters can be updated every Ts, at least K RF
chains are required. Since only the channel matrix is known
at the receiver which changes each Tc, a faster update rate
of the phase-shifters does not provide any extra degrees of
freedom and hence does not help in reducing the number
of RF chains at the receiver. Consequently, the minimum
number of possible RF chains for digital linear combining is
M = K .

V. SIMULATION RESULTS
In this section, we present simulation results for different
scenarios and compare the FD system with our proposed
hybrid architecture as well as existing hybrid designs in the
literature.

The following channel models is used for all the
simulations,

H =

√
NTNR
NcNray

Nc∑
i=1

Nray∑
j=1

αijar(θ rij)at(θ
t
ij)
H
, (55)

where Nc = 5 is the number of clusters, and Nray = 10 is
the number of rays in each cluster. Similar to [14], [27], the
path gains are independently generated as αij ∼ CN(0, 1).
The transmit and receive antenna responses are denoted by
ar(θ rij) and at(θ tij) respectively, where

a(φ) =
1
√
N
[1, ejπ sin(φ), . . . , ej(N−1)π sin(φ)], (56)

for uniform linear arrays of size N . The angles of arrival θ rij
and departure θ tij are independently generated according to
the Laplacian distribution with the mean cluster angles θ̄ rij
and θ̄ tij, uniformly distributed in [0, 2π ]. The angular spread
is 10 degrees within each cluster. We further assume that the
channel estimation and system synchronization are perfect.

For the massive MIMO simulations, the number of anten-
nas NT and NR vary between 2 and 64; larger values are used
for UM-MIMO, larger number of antennas are used, as later
indicated. For the proposed and existing hybrid designs, the
number of RF chains and transmitted symbols are set as
MT = MR = K . Unless otherwise indicated, we set K = 2
and 64-QAM modulation is used for all the simulations. For
the FD systems, we set MT = NT and MR = NR, while the
same value as for the hybrid designs is used.

Simulation results are presented for the optimal FD pre-
coder and combiner, our proposed hybrid precoder and com-
biner realization of FD in Subsections IV-A.1 and IV-B.1,
as well as selected hybrid designs from [14], [27]. For M
RF chains andN antennas, the proposed and the conventional
structures require T = 2MN+M+N and T = MN+M+N
RF components, respectively.

A. BIT ERROR RATE (BER) PERFORMANCE
BER performance versus SNR (SNR= ρ/σ 2) for three dif-
ferent setups is shown in Fig. 10 to 12. Fig. 10 presents the
results for a massive-MIMO system with NT = NR = 64
antennas (andMT = MR = 2 RF chains). The downlink BER
performance of a massive-MIMO BS with NT = 64 antennas
transmitting to a single user with NR = 2 antenna is shown
in Fig. 11, while the uplink BER performance for the system
is shown in Fig. 12. It can be seen that in all the simulated
scenarios the proposed hybrid realization matches the perfor-
mance of the FD systems while outperforming the existing
hybrid designs. The FD systems require MT = MR = 64 RF
chains whereas the proposed design achieves the same per-
formance with only 2 RF chains. Consequently, the proposed
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FIGURE 10. BER versus SNR of different methods for a point-to-point
massive-MIMO system with NT = NR = 64.

FIGURE 11. BER versus SNR of different methods for a downlink
connection with NT = 64 antenna massive-MIMO BS and a single user
with NR = 2 antennas.

FIGURE 12. BER versus SNR of different methods for an uplink connection
with NR = 64 antenna massive-MIMO BS and a single user with NT = 2.

design outperforms the existing hybrid designs with the same
number of RF chains. As discussed in Subsections IV-A.1
and IV-B.1, the proposed hybrid design generates the same

FIGURE 13. Spectral efficiency versus SNR of different methods for a
point-to-point massive-MIMO system with NT = NR = 64.

FIGURE 14. Spectral efficiency versus SNR of different methods for an
uplink connection with NR = 64 antenna massive-MIMO BS and a single
user with NT = 16 antennas.

signals as the FD system with limited number of RF chains
by employing the proposed ASP network. In particular, since
the RF output of the proposed structure is identical to that of
the desired FD system, the same performance as the optimal
FD beamforming can be achieved.

B. SPECTRAL EFFICIENCY
The spectral efficiency (in bits/s/Hz) of optimal FD beam-
forming, proposed hybrid realizations of FD as well as the
hybrid designs from [14], [22], [27] for massive-MIMO sys-
tem with NT = NR = 64 antennas is shown in Fig. 13. The
spectral efficiency of an uplink connection for a single user
with NT = 16 antennas and a massive-MIMO BS with NR =
64 antennas is presented in Fig. 14. Furthermore, Fig. 15
shows the spectral efficiency of a downlink connection for a
massive-MIMO BS with NT = 64 antennas and a single user
withNR = 4 antennas. As expected, the proposed ASP-based
realizations achieve the same rate as their FD counterparts
and and therefore outperform existing hybrid designs.
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FIGURE 15. Spectral efficiency versus SNR of different methods for an
downlink connection with NT = 64 antenna massive-MIMO BS and a
single user with NR = 4.

In order to evaluate the performance of the proposed ASP
structure when number of antennas grows larger, simulations
are performed for ultra-massive MIMO system configura-
tions. Spectral efficiency versus number of transmitter anten-
nas NT is plotted in Fig. 16 for different number of receive
antennas. For the FD system the number of RF chains is
equal to the number of transmitter antennas, i.e., MT = NT
whereas for the proposed hybrid structure the number of
antennas is kept equal to the number of transmitted symbols,
i.e., MT = K . It can be seen that in all cases, the hybrid
design with the proposed ASP architecture achieves the same
performance as the corresponding FD system. For instance,
for an ultra-massive MIMO transmitter with NT = 1024
antennas and receiver with MT = 2 antennas, the FD struc-
ture requires NR = 1024 RF chains while the proposed
structure guarantees the same performance with MT = 2 RF
chains.

C. COMPUTATIONAL COMPLEXITY
The proposed ASP architecture is implemented with the
same RF components as the conventional hybrid structures
[13]–[21]. Moreover, since the constant unit modulus is not
imposed on the entries for the resulting analog transformation
matrix with our approach, the computational complexity of
designing the analog and digital beamformers can be reduced.
Compared to the FD system design, the additional compu-
tations required for the proposed ASP approach lie in the
calculation of the phase-shifter parameters as given in (27).
In the case of an eigen-mode FD beamformer for instance,
the calculations in (27), in terms of complexity order, are
dominated by the SVD and water filling algorithm needed
for FD design, as represented by (31). Moreover, existing
hybrid designs use sophisticated optimization or reconstruc-
tion techniques to handle the constant modulus constraint.
For instance, the iterative algorithms in [14] and [27] require
matrix inversion in each iteration. Consequently, the compu-
tational complexity of the proposed FD realizations with ASP
is less than each iteration in these hybrid designs.

FIGURE 16. Spectral efficiency versus number of transmitter antennas for
proposed and FD beamforming, with different numbers of receive
antennas.

for proposed and FD, with different numbers of rece. . .

VI. CONCLUSION
In this paper, we investigated the hybrid A/D structure as
a general framework for signal processing in massive and
ultra-massive-MIMO systems. We first explored the ASP
network in details by developing a mathematical represen-
tation for any arbitrarily connected feed-forward ASP net-
work comprised of phase-shifters, power-dividers and power
combiners. Then, a novel ASP structure was proposed which
is not bound to the unit modulus constraint. Subsequently,
we focused on the transmitter and receiver sides by exploit-
ing the newly proposed ASP architecture and generalizing
generalizing the digital processing. Specifically, the opti-
mization problem for the HSP beamformer was reformulated
within the new representation framework, which facilitates its
solution under a variety of constraints and requirements for
the massive MIMO system. Finally simulation results were
presented illustrating the superiority of the proposed archi-
tecture to the conventional hybrid designs for massive-MIMO
systems.

APPENDIX A
Proof of Proposition 1:

The matrix representation of the RF components
in (8)-(10) are introduced such that the input and output
signals can be of any size and thus can include RF branches
that are not affected by the RF component. Consequently,
we can sort the RF components such that the input of each RF
component is the output of another RF component except for
the first component. Let us denote the input and output of the
ith RF component as ai and bi, respectively. Consequently,
we have bi−1 = ai, a1 = a and b = bT . To be more
precise the following algorithm is used to assign the index
i for i = 1, 2, . . . ,T to each RF element:
Note that step 1 has always an answer because of how

ai and bi are defined. Moreover, it is possible that more
than one RF component satisfy the condition in step 1.
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for i← 1 to T do
1. Find an RF component whose input is ai;
2. Assign index i to that RF component;
3. Denote the output as bi;
4. ai+1 = bi;

end

In these cases, the components are parallel, i.e, the signals
are simultaneously entering them and any ordering of these
components is acceptable. Now, for i = 1, 2, . . . ,T we can
write bi in terms of ai. If the ith RF component is a phase-
shifter, a power divider, or a power combiner, then we have
bi = 8(γ, φ, η)Pπai, bi = Q(γ, µ, η)Pπai, or bi =
Qt (γ, µ, η)tPπai, respectively. Note that, if the order of the
signals is not changed before the ith component, we have
Pπ = I. Hence, the given ASP can be expressed as in (12).�

APPENDIX B
Proof of Theorem 1: By transposing (14) and (17), and the
fact that the transpose of a permutation matrix is also a
permutation matrix, we arrive at (13) and (16). The proofs
for the remaining properties are presented below:

1) PROOF OF (13)
We show that for any vector x there exist π ′ such that, if we
have x̂(1) = Q(γ, µ, η)Pπx and x̂(2) = Pπ ′Q(π (γ ), µ, η)x
then x̂(1) = x̂(2). By denoting x(π ) = Pπx, we can write

x̂(1) π= [x(π )
t
, x(π )γ 1tµ−1]

t , (57)

since x(π )γ = xπ (γ ) we can further write

x̂(1) π= [xt , xπ (γ )1tµ−1]
t . (58)

On the other hand we can write

Q
(
π (γ ), µ, η

)
x π
= [xt , xπ (γ )1tµ−1]

t , (59)

thus, we can conclude x̂(1) π
= Q

(
π (γ ), µ, η

)
x; therefore,

there exist Pπ ′ such that x̂(1) = x̂(2). �

2) PROOF OF (15)
For γ1 < γ2 and γ1 > γ2, we show that J = J ′ = 1 and for
γ1 = γ2 it will be shown that J = µ1 and J ′ = µ2. First,
considering γ1 > γ2, we can write

Q(γ1, µ1, η)Qt (γ2, µ2, η)

= bd(Iγ1−1,
1
√
µ1

1µ1 , Iη−γ1 )bd(Iγ2−1,
1
√
µ2

1tµ2
, Iη−γ2 ).

(60)

With simple matrix manipulation, we have

bd(Iγ1−1,
1
√
µ1

1µ1 , Iη−γ1 )bd(Iγ2−1,
1
√
µ2

1tµ2
, Iη−γ2 )

= bd(Iγ2−1,
1
√
µ2

1tµ2
, Iη−γ2+µ1−1)bd

× (Iγ1−2+µ2 ,
1
√
µ1

1µ1 , Iη−γ1 ), (61)

we can further write

bd(Iγ2−1,
1
√
µ2

1tµ2
, Iη−γ2+µ1−1)bd

× (Iγ1−2+µ2 ,
1
√
µ1

1µ1 , Iη−γ1 )

= Qt (γ2, µ2, η + µ1 − 1)

×Q(γ1 + µ2 − 1, µ1, η + µ2 − 1). (62)

In case of γ1 < γ2, we can accordingly write

Q(γ1, µ1, η)Qt (γ2, µ2, η)

= bd(Iγ1−1,
1
√
µ1

1µ1 , Iη−γ1 )bd(Iγ2−1,
1
√
µ2

1tµ2
, Iη−γ2 ).

(63)

Similar to (61), we have

bd(Iγ1−1,
1
√
µ1

1µ1 , Iη−γ1 )bd(Iγ2−1,
1
√
µ2

1tµ2
, Iη−γ2 )

= bd(Iγ2+µ1−1,
1
√
µ2

1tµ2
, Iη+µ1−1)bd

× (Iγ1−1,
1
√
µ1

1µ1 , Iη+µ2−1). (64)

We can then write

bd(Iγ2+µ1−1,
1
√
µ2

1tµ2
, Iη+µ1−1)bd

× (Iγ1−1,
1
√
µ1

1µ1 , Iη+µ2−1)

= Qt (γ2 + µ1 − 1, µ2, η+µ1 − 1)Q(γ1, µ1, η + µ2 − 1).

(65)

For γ1 = γ2, without loss of generality, we only provide the
proof for γ1 = γ2 = 1 and η = 1, extending to other values
of γ1,γ2 and η straightforward but tedious. Hence, we show

Q(1, µ1, 1)Qt (1, µ2, 1) =
µ1∏
j=1

Qt (γ ′j , µ
′
j, η
′
j)Pπ

×

µ2∏
j′=1

Q(γ ′′j′ , µ
′′

j′ , η
′′

j′ ) (66)

The left hand side can be written as

Q(1, µ1, 1)Qt (1, µ2, 1) =
1

√
µ1µ2

1µ1×µ2 . (67)
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Now, by letting γ ′′j′ = (j′ − 1)µ1 + 1, µ′′j′ = µ1 and η′′j′ =
(j′ − 1)µ1 + µ2 − j′ + 1, we have

µ2∏
j′=1

Q
(
(j′ − 1)µ1 + 1, µ1, (j′ − 1)µ1 + µ2 − j′ + 1

)
= Iµ2 ⊗

1
√
µ1

1µ1 . (68)

We can then form the permutation matrix Pπ with

πi = di/µ1e + µ2
(
(i− 1) mod (µ1)

)
, (69)

which results in

Pπi
(
Iµ2 ⊗ 1µ1

)
= 1µ1 ⊗ Iµ2 . (70)

Then by letting γ ′j = j, µ′j = µ1 and η′j = (µ2 − j)µ1 + j,
we arrive at

µ1∏
j=1

Q
(
j, µ2, (µ1 − j)µ2 + j

)
= Iµ1 ⊗

1
√
µ2

1tµ2
. (71)

From the above equation, (68) and (70), we can write

µ1∏
j=1

Qt (γ ′j , µ
′
j, η
′
j)Pπ

µ2∏
j′=1

Q(γ ′′j′ , µ
′′

j′ , η
′′

j′ )

=
1

√
µ1µ2

(
Iµ1 ⊗ 1tµ2

)(
1µ1 ⊗ Iµ2

)
. (72)

The right hand side of the above equation can be further
simplified as(

Iµ1 ⊗ 1tµ2

)(
1µ1 ⊗ Iµ2

)
= 1µ1×µ2 , (73)

which can be easily verified by invoking the mixed-product
property.2 Consequently, using the above equation,(72) and
(67), we showed (66) is held which concludes the proof. �

3) PROOF OF (16)
For γ1 > γ2, and γ1 < γ2,

J∏
j=1

8(γ ′j , φ
′
j, η
′
j)Q(γ1, µ, η) = Q(γ1, µ, η)8(γ2, φ, η),

(74)

is actually simplified to the case where J is equal to one.
Thus, for γ1 > γ2 one can easily check

8(γ2, φ, η + µ− 1)Q(γ1, µ, η) = Q(γ1, µ, η)8(γ2, φ, η).

(75)

Similarly, for γ1 < γ2, we can write

8(γ2, φ, η + µ− 1)Q(γ1, µ, η) = Q(γ1, µ, η)8(γ2, φ, η).

(76)

2IfA,B,C andD are matrices of appropriate sizes, then
(
A⊗b

)(
C⊗D

)
=(

AC
)
⊗
(
BD

)
.

In case of γ1 = γ2, J = µ and we can write
µ∏
j=1

8(γ1 + j− 1, φ, η + µ− 1)Q(γ1, µ, η)

= Q(γ1, µ, η)8(γ1, φ, η). (77)

which can be easily verified by matrix manipulations. �

APPENDIX C
4) PROOF OF (18)
To show that Ev is a diagonal matrix, we can use induction
and the fact that for a diagonal matrix D and permutation
matrix Pπ , the matrix D̂ = PπDPπ t is also a diagonal matrix.
For J = 1 the statement is true, and we must prove for
J = K + 1 we have:

ÊvP̂π =
K+1∏
j=1

8(γj, φj,Np)Pπj . (78)

By assuming for J = K , matrix Ev is diagonal and Pπ is a
permutation matrix, we can rewrite the above equation as

ÊvP̂π = EvPπ8(γK+1, φK+1,Np)PπK+1 . (79)

We can therefore write

ÊvP̂π = EvPπ8(γK+1, φK+1,Np)PtπPπPπK+1 . (80)

Using the aforementioned property of permutation matrices,
we know 8̂ = Pπ8(γK+1, φK+1,Np)Ptπ is a diagonalmatrix.
We further know that P̂π = PπPπK+1 is a permutation matrix
thus we can write:

ÊvP̂π = Ev8̂P̂π . (81)

SinceEv and 8̂ are both diagonal so is Êv. Furthermore, since
all the diagonal entries are unit modulo complex numbers
their products are also on the unit circle and thus v =
[ejφ1 , ejφ2 , . . . , ejφNp ]t ∈ UNφ . �

5) PROOF OF (20)
Induction can be used to prove this statement. For J = 1, one
can easily find Pπ ′1 such that

Pt
π ′1
bd(Iγ−1,

1
√
µ
1µ, Iη−γ ) =

 0
1
√
µ
1µ 0

Iγ−1 0 0
0 0 Iη−γ

 , (82)

accordingly there exist Pπ ′2 such that

Pt
π ′1
bd(Iγ−1,

1
√
µ
1µ, Iη−γ )Ptπ ′2

=


1
√
µ
1µ 0 0

0 Iγ−1 0
0 0 Iη−γ

 ,
(83)

using the fact that permutation matrices are orthogonal,
we can write Q(1, µ, η) = Pπ ′1bd(

1
√
µ
1µ, Iη)Pπ ′2 . Now, let
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us assume for J = K we have:

K∏
j=1

Q(γj, µj, ηj) = PπDdPπ ′ , (84)

We can thus write the following for J = K + 1

K+1∏
j=1

Q(γj, µj, ηj) = PπDdPπ ′Q(γK+1, µK+1, ηK+1). (85)

According to the J = 1 case, there exist Pπ ′3 and Pπ ′4 such
that

Q(γK+1, µK+1, ηK+1) = Pπ ′3bd(
1

√
µK+1

1µK+1 , I)Pπ ′4 ,

(86)

thus,

K+1∏
j=1

Q(γj, µj, ηj) = PπDdPπ ′Pπ ′3bd(
1

√
µK+1

1µK+1 , I)Pπ ′4 .

(87)

Let us first define Pπ ′5 = Pπ ′Pπ ′3 , then by consideringDdPπ ′5 ,
the permutation matrix Pπ ′5 rearranges the columns of Dd.
Therefore, there exist permutation matrix Pπ ′6 that rearranges
the rows of DdPπ ′5 to make a block diagonal matrix

Pt
π ′6
DdPπ ′5 = Dd′ , (88)

whereDd′ = bd( 1√
δ′1
1δ′1 ,

1√
δ′2
1δ′2 , . . . ,

1√
δ′Nd

1δ′Nd
). It is possi-

ble that δ′i = 1 for individual i or some consecutive number
indices which result it diagonal block of identity matrices I.
From (87) and (88), we arrive at

PπDdPπ ′Q(γK+1,µK+1,ηK+1)

= PπPπ ′6Dd′bd(
1

√
µK+1

1µK+1, I)Pπ ′4 . (89)

The above equation can be further simplified as
Dd′bd( 1

√
µK+1

1µK+1 , I) = Dd′′ where Dd′′ =

bd( 1√
δ′1+µK+1

1δ′1+µK+1 ,
1√
δ′2
1δ′2 , . . . ,

1√
δ′Nd

1δ′Nd
). Therefore

by defining Pπ ′7 = PπPπ ′6 , and from (85) and (89) we have

K+1∏
j=1

Q(γj, µj, ηj) = Pπ ′7Dd′′Pπ ′4 , (90)

which proves the statement. �

6) PROOF OF (22)
For J = 1, we have to show that Cd has the block
diagonal structure of (23) in PπCdPπ ′ = Qt (γ, µ, η)Pπ1 .
According to (83), we can write Qt (γ, µ, η)Pπ1 =

Pπbd( 1
√
µ
1µ, I)Pπ ′Pπ1 . Since the product of two

permutationmatrices is also a permutation matrix, we have:

Pπ ′ = Pπ ′Pπ1 . To continue the proof with induction,
we assume that for J = K there exist Pπ ,Pπ ′ and Cd such
that PπCdPπ ′ =

∏J
j=1Q

t (γj, µj, ηj)Pπj . Now, for J = K +1
we can write:
K+1∏
j=1

Qt (γj, µj, ηj)Pπj = Qt (γ1, µ1, η1)Pπ1PπCdPπ ′ . (91)

According to the J = 1 case, there exist Pπ ′1 and Pπ ′2 such
that

Qt (γ1, µ1, η1) = Pπ ′1bd(
1
√
µ1

1µ1 , I)Pπ ′2 , (92)

Be defining a new permutation matrix Pπ ′3 = Pπ̂2Pπ1Pπ ,
we can write the left hand-side of (91) as:

Qt (γ1, µ1, η1)Pπ1PπCdPπ ′=Pπ ′1bd(
1
√
µ1

1µ1 , I)Pπ ′3CdPπ ′ .

(93)

Considering Pπ ′3Cd, permutation matrix Pπ ′3 rearranges the
rows ofCd. Therefore, there exist permutationmatrixPπ ′4 that
rearranges the columns of Pπ ′3Cd to make a block diagonal
matrix

Pπ ′3CdPπ ′4 = Cd′ , (94)

where Cd′ = bd( 1√
δ′1
1t
δ′1
, 1√

δ′2
1t
δ′2
, . . . , 1√

δ′Mc

1t
δ′Mc

). Note that

it is possible that δ′i = 1 for individual i or some consecutive
number indices which result it diagonal block of identity
matrices I. From (93), (94) and the fact that Pπ ′4P

t
π ′4
, we can

write

Pπ ′1bd(
1
√
µ1

1µ1 , I)Pπ ′3CdPπ ′

= Pπ ′1bd(
1
√
µ1

1µ1 , I)Cd′Ptπ ′4
Pπ ′ . (95)

To further simplify the above equation, we can write
bd( 1
√
µ1
1µ1 , I)Cd′ = Cd′′ where

δ′′i =

{∑µ1

j=1
δ′j, i = 1

δ′(i−1+µ1), otherwise
. (96)

To take the last step, there exist permutation matrices Pπ ′5 and
Pπ ′6 such that Pt

π ′5
Cd′′Ptπ ′6

= Cd′′′ where for some L, we can
have

Cd′′′ = bd(
1
√
δ1
1tδ1 ,

1
√
δ2
1tδ2 , . . . ,

1
√
δL

1tδL , I). (97)

From the above equation and (95) we have

Pπ ′1bd(
1
√
µ1

1µ1 , I)Pπ ′3CdPπ ′ = Pπ ′1Pπ ′5Cd′′′Pπ ′6P
t
π ′4
Pπ ′ .

(98)

Now by defining permutation matrices Pπ ′7 = Pπ ′1Pπ ′5 , Pπ ′8 =
Pπ ′6P

t
π ′4
Pπ ′ and from (91) to (98), we arrive at

K+1∏
j=1

Qt (γj, µj, ηj)Pπj = Pπ ′7Cd′′′Pπ ′8 , (99)

which proves the statement. �
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APPENDIX D
Proof of Theorem 2:Without loss of generality, let us assume
there are a total of T RF components, i.e., P combiners,
R dividers repectively, and Q phase-shifters, so that T =
P + Q + R. According to properties (14), (15) and (17) in
Theorem 1, we can rewrite (12) as follows by commuting the
combiner matrices to the left hand side, i.e,

T∏
i=1

Aui (θi) =
P∏
j=1

Qt (θj)
T ′∏
i=1

Aui (θi), (100)

where T ′ = T − P. Similarly, the divider matrices can be
moved to the right hand side using properties (13), (15) and
(17), thus,

T∏
i=1

Aui (θi) =
P∏
j=1

Qt (θj)
T ′′∏
i=1

Aui (θi)
R∏
k=1

Q(θk ), (101)

where T ′′ = T−P−R. In (101) only the permutation and sin-
gle phase-shifter matrices are in the middle of the expression.
Therefore, without loss of generality and due to the fact that
permutation and single phase-shifter matrices can be identity
matrices we can write:

∏T ′′
i=1 Aui (θi) =

∏J
i=18(γi, φi, ηi)Pπi ,

hence,

T∏
i=1

Aui (θi)=
P∏
j=1

Qt (θj)
Q∏
i=1

8(γi, φi, ηi)Pπi

R∏
j=k

Q(θk ).

(102)

Now, using (18), (20), (22), and the fact that product of
permutation matrices is another permutation matrix, we have

T∏
i=1

Aui (θi) = Pπ1CdPπ2EvPπ3Dd̂Pπ4 , (103)

which follows,

b = Pπ1CdPπ2EvPπ3Dd̂Pπ4a. (104)

By defining

b = Pπ1h
(1), h(1) = Cdh(2), h(2) = Pπ2h

(3),

h(3) = Evh(4), h(4) = Pπ3h
(5), h(5) = Dv̂h

(6),

h(6) = Pπ4a, (105)

we can further have

bi = h(1)
π−11 (i)

, h(1)i =
1
√
δi

ψδ(i)∑
j=ψδ(i−1)+1

h(2)j ,

h(2)i = h(3)
π−12 (i)

, h(3)i = ejφih(4)i

h(4)i = h(5)
π3−1(i)

, h(5)i =
1√
δ̂ϕ

δ̂
(i)

h(6)ϕ
δ̂
(i),

h(6)i = aπ4−1(i), (106)

where ψδ(i) =
∑i

k=1 δk and ϕδ̂(i) = {j ∈ N|ψ
δ̂
(j− 1) ≤ i ≤

ψ
δ̂
(j)}. Consequently, we arrive at (107) presented at the top

of the next page, where by defining

ui,j = π
−1
2

(
ψδ
(
π−11 (i)− 1

)
+ j
)
, (108)

v̇(n) = ϕ
δ̂

(
π−13 (n)

)
, (109)

v̈(n) = π−14 (v̇(n)), (110)

we can write

bi =
1√
δ
π−11 (i)

δ
π
−1
1 (i)∑
j=1

av̈(v̇(u(i,j)))√
δ̂v̇(u(i,j))

exp{jφu(i,j)}. (111)

Without loss of generality, we can further have

bi=
1√
δ
π−11 (i)

M∑
k=1

ak
( 1√

δ̂k ′

( ∑
<v̇(u(i,j))=k ′>

ejφu(i,j)
))
, (112)

for v̈(k ′) = k . By defining δ̂′k = δ̂k ′ and φ′k,l = φu(i,j) for
v̈(v̇(u(i,j))) = k we can write

bi =
1√
δ
π−11 (i)

M∑
k=1

1√
δ̂′k

ak
( Lk∑
l=1

ejφ
′
k,l
)
. (113)

Since in
∑Lk

l=1 e
jφ′k,l by adding even number of phase-shifters

which can cancel each other (ej2π and ejπ ) the sum remains
the same, we can have Lk = L. Furthermore, we can write

δ
π−11 (i) = LM ,

δ̂′k = LN , (114)

hence,

bi =
1
√
MN

M∑
k=1

ak
( L∑
l=1

ejφ
′
k,l

L

)
. (115)

From Lemma 1 in Appendix E we can write:

bi =
1
√
MN

M∑
k=1

zk,iak . (116)

Thus, we arrive at

b =
1
√
MN

Aa. (117)

APPENDIX E
Lemma 1: For arbitrary θl ∈ [0, 2π ] where l =

1, 2, . . . ,L, if we have z =
∑L

l=1
ejθl
L , then 0 ≤ |z| ≤ 1.

Proof: The proof follows from successive applica-
tions of the triangle inequality in complex plane as 0 ≤
|
∑L

l=1 e
jθl | ≤ L.

Lemma 2: Any complex number z where 0 ≤ |z| ≤ L for
L ≥ 2 can be written as: z =

∑L̄
l=1 e

jθl where L̄ = L +
(L mod 2), θl ∈ [0, 2π ] and θl’s may be non-unique.
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bi = δ
−1/2
π−11 (i)

ψδ(π
−1
1 (i))∑

j=ψδ(π
−1
1 (i)−1)+1

δ̂
−1/2
ϕ
δ̂
(π−13 (π−12 (j)))

exp{jφ
π−12 (j)}aπ−14 (ϕ

δ̂
(π−13 (π−12 (j)))), (107)

Proof: The proof for L = 2 is presented in [15], thus,
for a given 0 ≤ |z′| ≤ 2 we have z′ = ejθ1 + ejθ2 . Thus,
it is sufficient to provide the proof for L = 2L ′ and then L =
2L ′ + 1 when L ≥ 2.
For L = 2L ′: We have L̄ = 2L ′, thus, we can write

z = L ′z′ where 0 ≤ |z′| ≤ 2. Therefore, we can similarly
write z = L ′(ejθ1 + ejθ2 ) = L ′ejθ1 + L ′ejθ2 . Then by writing

L ′ejθ1 =
∑L ′

l=1 e
jθ1 and L ′ejθ2 =

∑L ′
l=1 e

jθ2 we can write z =∑L ′
l=1 e

jθ1 +
∑L ′

l=1 e
jθ2 which follows z =

∑2L ′
l=1 e

jθ ′l where

θ ′l = θ1 for l = 1, 2, . . . ,L ′ and θ ′l = θ2 for l = L ′+1, . . . ,L.
For L = 2L ′ + 1: We have L̄ = 2(L ′ + 1), thus from the

above case there exist θ ′l ’s such that z =
∑2(L ′+1)

l=1 ejθ
′
l .
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