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ABSTRACT Hybrid analog-digital signal processing (HSP) is an enabling technology to harvest the
potential of millimeter-wave (mmWave) massive-MIMO communications. In this paper, we present a
general deep learning (DL) framework for efficient design and implementation of HSP-based massive-
MIMO systems. Exploiting the fact that any complex matrix can be written as a scaled sum of two matrices
with unit-modulus entries, a novel analog deep neural network (ADNN) structure is first developed which
can be implemented with common radio frequency (RF) components. This structure is then embedded
into an extended hybrid analog-digital deep neural network (HDNN) architecture which facilitates the
implementation of mmWave massive-MIMO systems while improving their performance. In particular, the
proposed HDNN architecture enables HSP-based massive-MIMO transceivers to approximate any desired
transmitter and receiver mapping with arbitrary precision. To demonstrate the capabilities of the proposed
DL framework, we present a new HDNN-based beamformer design that can achieve the same performance
as fully-digital beamforming, with reduced number of RF chains. Finally, simulation results are presented
confirming the advantages of the proposed HDNN design over existing hybrid beamforming schemes.

INDEX TERMS Hybrid beamforming, deep learning, deep neural networks, hybrid analog-digital
beamforming, massive-MIMO, mmWave, beyond 5G (B5G), 6G.

I. INTRODUCTION
Multiple-input multiple-output (MIMO) technology has rev-
olutionized modern wireless communications by unveiling
its potential to increase transmission capacity through the
deployment of multiple antennas at the transmitter and
receiver sides of a communication link [1]. In recent years,
asymptotic analysis has revealed that massive-MIMO sys-
tems employing large scale antenna arrays, exhibit a linear
increase in capacity with the minimum number of anten-
nas employed at either the transmitter or receiver, even in

The associate editor coordinating the review of this manuscript and
approving it for publication was Tao Zhou.

sparse scattering environments [2], [3]. This property is of
crucial importance for extending the applications ofmmWave
communications, which until recently had been only con-
sidered for short-range indoor and fixed outdoor scenar-
ios, and enabling multi-Gbps data rates in future wireless
networks [4]–[6].

Indeed, mmWave signals experience severe path loss
(due to atmospheric absorption) and high penetration loss
compared with microwave signals, which has hindered their
use in wireless cellular and local area networks. However,
recent advances in mmWave hardware, combined with the
capabilities of massive-MIMO and the availability of spec-
trum above 6 GHz have revived mmWave communications.
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Especially, the highly selective beam steering capabilities
provided by large-scale antenna arrays and sophisticated
beamforming1 algorithms can mitigate the intrinsic limita-
tions of mmWave channels [7].

In the conventional fully-digital (FD) implementation of
MIMO systems, each antenna element is connected to a
dedicated radio frequency (RF) chain. While this approach is
suitable for commonly used small scale MIMO systems, it is
not suitable for mmWave massive-MIMO systems equipped
with large number of antenna elements due to the high pro-
duction costs and power consumption of the associated RF
circuitry. Therefore, although mmWave massive-MIMO is a
prime technology for future generations of wireless networks
(e.g., beyond 5G (B5G) and 6G), the implementation of such
systems still faces many technical challenges, and to date
remains a topic of ongoing research [8]–[11].

Hybrid analog-digital signal processing (HSP) is an inge-
nious and effective approach to facilitate the implementation
of mmWave massive-MIMO transceivers [12]–[26]. In an
HSP transmitter, which includes hybrid beamforming (HBF)
as a special case, a low-dimensional baseband signal
(e.g., precoder output) is converted to RF and then mapped
into a higher-dimensional signal for transmission by the
antennas, where the mapping is achieved by an analog pro-
cessing network comprised of basic RF components such as
phase-shifters, combiners and dividers; in an HSP receiver,
the dual operations are performed in reverse order. Con-
sequently, the HSP transmitter/receiver structure requires a
smaller number of RF chains for conversion between the
digital baseband and analog RF domains, compared to its
FD counterpart. In this work, our aim is to develop and val-
idate a novel deep learning (DL) framework for the efficient
design and implementation of HSP-based mmWave massive-
MIMO systems.

A. RELATED WORKS
One of the most prominent techniques for designing HSP sys-
tems consists in minimizing the Euclidean distance between
the desired FD processor and its hybrid counterpart, which
is the objective function used for HBF design in [15]–[22].
Particularly, in [15], [16], compressed sensing techniques are
employed to exploit sparse characteristics of the mmWave
channels while in [17], [18], a manifold optimization algo-
rithm and a simultaneous matrix diagonalization technique
are introduced, respectively, to solve the design problem.
Channel sparsity is also considered in [14], [27] where itera-
tive orthogonalization algorithms are proposed for designing
spectrally efficient HBF transceivers. Gram–Schmidt orthog-
onalization is used in [21] to design a robust hybrid com-
biner with low complexity for an uplink multi-user scenario.
The mean square error (MSE) is considered as the perfor-
mance metric in [10], where an alternating minimization

1In practice, beamforming can be employed at both the transmitter and
the receiver ends of a wireless link, where it is referred to as precoding and
combining, respectively.

technique is used to design the HBF matrices. Considering
that closed-form expressions with fixed amount of calcula-
tion are often more attractive in applications, non-iterative
design algorithms exploiting this type of solutions are pro-
posed in [28], [29]. The authors in [30] investigate the design
and implementation (using CMOS process technology) of
a low-complexity HBF based on orthogonal beamforming
codebooks and a local search scheme.

Recently, in light of the huge success of machine learn-
ing and particularly deep learning (DL) in various fields of
engineering, deep neural networks (DNNs) have attracted
considerable attention among researchers for designing com-
munication systems [31]–[40]. In [34], a DL model is pro-
posed for predicting the beamforming vectors at several
distributed and coordinated base stations (BSs) by using
received pilot signals. In particular, the signatures of the
signals jointly received at the BSs with omni/quasi-omni
directional beam patterns are used to learn and predict the
RF beamforming vectors. Another DL-based HBF approach
for mmWave massive-MIMO is presented in [35], where an
autoencoder is used to design the analog and digital precoders
based on geometric mean decomposition. In [36], the prob-
lem of maximizing spectral efficiency with hardware limita-
tion and imperfect channel state information (CSI) is tackled
by training a DNN to learn the optimum beamformers. Imper-
fect CSI is also considered in [37], where multi-user DNN-
based HBF design using codebooks is developed. Moreover,
in order to apply this scheme to situations where the CSI is
unknown, the concept of a reference RF beamformer is intro-
duced. DL is used in [41] to design a joint hybrid processing
framework that allows end-to-end optimization using back
propagation. In [40], an unsupervised deep learning method
is proposed for designing the synchronization signal in initial
access as well as a codebook for the analog precoding.

Convolutional neural networks (CNNs) have also been
investigated for HSP system design under various condi-
tions [42]–[46]. A CNN framework for the joint design of
precoder and combiner is proposed in [42] where the network
accepts channel matrices as input and produces analog and
baseband beamformers as output. In [43], three CNN archi-
tectures with different complexities are proposed to obtain
approximations to the singular value decomposition (SVD),
which are used in turn in the design of HBFs. In [44], a sim-
plified hybrid precoding scheme is developed by considering
the equivalent channel from the transmitter RF chains to the
receiver RF chains. Based on this precoding approach, a novel
CNN-based combiner architecture is proposed which can be
trained to optimize the spectral efficiency under hardware
limitations and imperfect CSI. Full-duplex mmWave systems
are considered in [46] where a learning schemes for designing
HBF via extreme learning machine and convolutional neural
networks.

B. MOTIVATIONS AND CONTRIBUTIONS
As mentioned above, the premise of HSP is achieving
the performance of FD systems with limited number of
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RF chains. However, this is not a trivial task mainly
because of the constant modulus constraint on the analog
beamformer entries, which causes the ensuing optimization
problems to be non-convex. Moreover, since in precursory
HBF works [15]–[22], the focus was placed on designing lin-
ear transformation matrices for the analog and digital beam-
formers, the recent DNN-based designs have followed the
same structural guideline [34]–[37], [42]–[44] which imposes
fundamental limits on system performance. In particular, the
minimum number of required RF chains must be greater or
equal to the number of transmitted/received symbols or the
rank of the FD matrix [13], [14]. However, some of these
limitations could potentially bemitigated by considering non-
linear transformations.

The so-called expressive power of DNNs makes it possible
to approximate continuous functions with arbitrary preci-
sion [47]. In the context of HSP, this property can thus be
exploited to obtain a non-linear transformation that ultimately
requires a smaller number of RF chains compared to the
linear case. This motivates us to propose a general DL frame-
work for efficient design and implementation of HSP-based
massive-MIMO systems. To this end, we first develop a novel
analog deep neural network (ADNN) structure using con-
ventional RF components as found in existing HBF systems,
i.e., [15]–[17]. The ADNN is then embedded in an extended
hybrid analog-digital deep neural network (HDNN) archi-
tecture with the goal of facilitating the implementation of
mmWavemassive-MIMO transceiver systems and improving
their performance. The proposed HDNN architecture allows
for accurate approximation of desired transmitter and receiver
mappings in HSP-based massive-MIMO systems. While the
proposed framework is quite general and can be used in
different applications, our main focus in this work lies on
the study of uplink and downlink beamforming in massive-
MIMO transmissions, for which we develop and investigate
new HSP-based transceiver designs. Specifically, our main
contributions can be summarized as follows:
• Considering the unit-modulus constraint of analog
beamformers and inspired by the seminal
works [12]–[14], we present a technique for decompos-
ing any given matrix with arbitrary complex entries into
a scaled sum of two matrices with unit-modulus entries.

• This decomposition is exploited to conceive an ADNN
structure comprised of common basic RF components,
i.e.: phase-shifters, rectifiers, combiners/dividers and
switches. This structure enables the efficient implemen-
tation of DNNs directly in the analog domain which
to the best of our knowledge, has not been previously
addressed in the literature.

• To reduce the number of required RF chains in HSP sys-
tems, a deep learning framework for HSP design is then
presented by introducing a novel HDNN architecture,
comprised of a baseband digital DNN and an ADNN
interconnected by means of RF chains.

• To demonstrate the capabilities of the proposed frame-
work, we present uplink and downlink beamformer

designs for mmWave massive-MIMO systems which
achieve FD beamforming performance with limited
number of RF chains. In particular, it is shown through
these designs that the proposed HDNN framework is
capable of reducing this number below the limits of
conventional and existing DNN-based HBF designs.

• Extensive simulation results are presented to demon-
strate the advantages of the proposed HDNN-based
beamfomer designs, which can achieve the same perfor-
mance as their FD counterparts with reduced number of
RF chains.

The paper is organized as follows. Section II, introduces
the extendedHSP-basedmassive-MIMO systemmodel under
consideration in this work. Section III develops the novel
ADNN structure which is based on a representation theorem
for complex matrices with unit-modulus entries. Our pro-
posed HDNN framework for HSP system design is presented
in Section IV while a supervised beamformer design based
on this structure is developed in Section V. Simulation results
are presented in Section VI and finally, Section VII concludes
the paper.
Notations: We use bold capital and lowercase letters to

represent matrices and vectors, respectively. Superscripts (.)H

and (.)T indicate Hermitian and transpose operations, respec-
tively, while ‖·‖F denotes the Frobenious norm of a matrix.
In and 1n denote an identity matrix of size n× n and a vector
of all ones with size n × 1, receptively. The element on the
pth row and qth column of matrix A is denoted by A(p, q).
A complex n× 1 Gaussian random vector xwith mean vector
m = E{x} and covariance matrix R = E{xHx} is denoted
by CN(m,R). The greatest integer less than or equal to x is
denoted by bxc. The fields of real and complex numbers are
denoted by R and C, respectively. The magnitude and phase
of a complex number z ∈ C are denoted by |z| and 6 z,
respectively. The function composition operation is denoted
by ◦, i.e., (f ◦ g)(x) = f (g(x)).

II. SYSTEM MODEL
In this section, we first review the conventional linear HBF
massive-MIMO structure and then introduce an extended sys-
tem formulation to support the development of our proposed
DL framework for HSP.

A. CONVENTIONAL HBF STRUCTURE
Fig. 1 illustrates the typical downlink HBF configuration
considered for the efficient realization of massive-MIMO
BS transceivers in forthcoming wireless networks [15]–[22].
The transceiver system consists of a baseband processor with
K -dimensional input stream, a numberNRF of RF chains, and
an analog processor connected to N antennas. Unless other-
wise specified, we consider a multi-user scenario wherein the
BS transceiver provides services to L ≤ K user equipment
(UE), each being allocated a fixed subset of the available
data streams. For simplicity, we assume that the lth UE is
equippedwithMl antennas and the same number of RF chains
so that it is capable of FD processing, as our main focus lies

72350 VOLUME 10, 2022



A. Morsali et al.: Deep Learning-Based Hybrid Analog-Digital Signal Processing in mmWave Massive-MIMO Systems

FIGURE 1. Conventional HBF structure for massive-MIMO transceiver serving L UEs. The transceiver is equipped with NRF
RF chains and N antennas; in downlink operation, PD and PA are the digital and analog precoders, respectively.

on the design and realization of HSP-based massive-MIMO
transceivers at the BS. In the sequel, we let M =

∑L
l=1

Ml denote the total number of antenna elements employed
by the UEs. While Fig. 1 focuses on downlink transmission
for simplicity, we herein consider both downlink and uplink
connections, where the BS antennas are used for transmitting
to and receiving from theUEs, respectively. Below,we further
expand the corresponding signal models. For convenience,
the key parameters and notations are summarized in Table 1.

TABLE 1. Parameters and notations of the system model.

1) DOWNLINK
The signal vector transmitted by the BS over one symbol
duration Ts, denoted as x ∈ CN , is expressed as

x =
√
ρ PAPDs, (1)

where s = [s1, s2, . . . , sK ]T ∈ AK is the input sym-
bol vector, with zero-mean uncorrelated random information
symbols sk taken from a discrete constellation A ⊂ C
(e.g., M-QAM or M-PSK), while matrices PD ∈ CNRF×K

and PA ∈ UN×NRF represent the digital and analog precoders,

respectively, where U = {z ∈ C : |z| = 1}. For normalization
purposes, it is assumed that E{ssH } = IK and ‖PAPD‖

2
F = 1,

so that ρ is the average transmit power.
The received signals at the UEs are represented by a con-

catenated signal vector y ∈ CM which is written as

y = HDx+ n, (2)

where HD ∈ CM×N is a zero-mean random channel matrix
representing flat fading transmission between the BS and the
UE antennas, normalized such that E{‖H‖2F } = NM without
loss of generality, and n ∼ CN(0, σ 2IM ) is an additive noise
vector of size M . Each UE applies optimal FD linear pro-
cessing on its received signal prior to the decoding stage. The
linear processing performed by the multiple UEs is expressed
as

ŝ = Cy, (3)

where C ∈ CK×M is a block diagonal combiner matrix.

2) UPLINK
To simplify the presentation, we use similar notations as
in the donwlink case, with trivial modifications in vector
dimensions as needed. Specifically, the received signal vector
at the BS, denoted by y ∈ CN , is written as

y = HUx+ n, (4)

where x ∈ CM denotes the vector containing the concate-
nated transmitted signals from all UEs, HU ∈ CN×M is
the zero-mean transmission matrix between the UEs and the
BS antennas, normalized such that E{‖H‖2F } = NM , and
n ∼ CN(0, σ 2IN ) is an additive noise term of size N . In the
conventional uplink HBF structure, a constrained form of
linear processing is applied to the received signal, which is
expressed as

ŝ = CDCAy, (5)

where matrices CD ∈ CK×NRF and CA ∈ UNRF×N repre-
sent the digital and analog combiners, respectively. The final
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combiner output ŝ is then passed to a decoding stage, whose
details fall outside the scope of this work.

B. GENERALIZED HSP STRUCTURE
Here, we introduce an extended formulation for HSP2 that
generalizes the linear analog and digital transformations pre-
sented in Subsection II-A. This formulation provides an ade-
quate basis for the subsequent development of our proposed
DL-based HSP structures for massive MIMO transceivers.

1) DOWNLINK
In a more general setting, additional parameters are provided
along with the symbol vector s as input to the digital compo-
nent of the HSP-based massive MIMO transmitter. Depend-
ing on the chosen transmission scheme, this may include
for instance the channel matrix H or the average transmit
power ρ. The signal vector at the output of the baseband
processor is therefore expressed as

xBB = FT (zT ) ∈ CNRF , (6)

where zT is the input of appropriate size that includes the
additional parameters, i.e., zT = (s,H, . . . , ρ), and FT
is a generic mapping from zT to xBB ∈ CNRF . Then,
NRF parallel RF chains convert the baseband signal vector
xBB into a bandpass modulated RF signal vector xRF. Next,
the latter vector is used along with additional parameters as
input to the analog signal processing network whose output
is the transmit signal vector, which is expressed as

x =
√
ρ GT (zRFT ) ∈ CN , (7)

where zRFT is the input of appropriate size, i.e., zRFT =

(xRF,H, . . . , ρ) and GT is the corresponding mapping from
zRF to x ∈ CN . The received signal at the UE is given by (2)
and, in the case of FD linear combining, the demodulated
symbols are obtained as in (3).

We emphasize that in the above formulation, the mappings
FT and GT are no longer limited to the class of linear
transformations and could exhibit non-linear features, which
is necessary for the consideration of DNNs.

2) UPLINK
The received signal from the large scale antenna array at
the BS, which is given by (4), is fed along with additional
required parameters to the analog signal processing network,
whose output is represented by

xRF = GR(zRFR ) ∈ CNRF , (8)

where zRFR = (y,H, . . . , ρ) is the input of appropriate size
and GR is the corresponding mapping. Then, NRF parallel
RF chains convert the RF signal vector xRF into a digital
signal vector xBB which is subsequently passed through a
baseband processor, as represented by

ŝ = FR(zR) ∈ CK , (9)

2Although we focus on HSP at the BS to simplify presentation, similar
concepts can be applied to the UE transceivers.

where zR = (xBB,H, . . . , ρ) is the input and FR is the
corresponding digital mapping. Here again, we envisage a
general configuration where the mappings GR and FT could
be non-linear.

III. ANALOG (RF) DEEP NEURAL NETWORKS
In this section, we present a novel ADNN structure for effi-
cient implementation of DNNs directly in the analog domain.
We start by introducing an essential notations for the compact
description of DNN architectures. We then present the linear
and non-linear RF modules which will be needed to carry out
the necessary operations in DNNs. Finally, we present the
proposed ADNN structure.

A. DEEP NEURAL NETWORKS
We consider complex-valued DNNs since in communication
systems, complex numbers are used for the representation of
the transmitted/received bandpass signals.3 The mathemat-
ical expression of a complex-valued multi-layer perceptron
(MLP), or artificial neural network, with one hidden layer,
d neurons and a linear layer at its output, is given by

0(x; θ ) =Wψd (A (x)), (10)

where x ∈ Cn is the input vector, A : Cn
→ Cd is an

affine transformation, ψd is a non-linear activation function
and W ∈ Cm×d is the weight matrix of the output layer.
Specifically, A (x) = Ax + b where A ∈ Cd×n, b ∈ Cd are
the weight matrix and bias vector of the hidden layer, respec-
tively. Moreover, for a given scalar activation function ψ :
C→ C, the element-wise activation functionψd : Cd

→ Cd

is defined as ψd (ξ ) = [ψ(ξ1), ψ(ξ2), . . . , ψ(ξd )]T . where
ξ ∈ Cd . Consequently, the set of parameters characterizing
the MLP can be written as θ = {W,A,b}. A common
practice for simplifying the implementation of DNN algo-
rithms is to remove the bias term by adding an additional unit
element to x and a column to A. Consequently, by defining
Ab = [A,b] and xb = [x, 1]T , we can rewrite (10) as

0(x; θ ) =Wψd (Abxb). (11)

To simplify the presentation, we focus on feed-forward
DNN constructed fromMLP with multiple hidden layers, but
extensions to other types of networks are possible. Let us
consider a DNN comprised of L ∈ N hidden layers indexed
by l ∈ {1, 2, . . . ,L}, nl ∈ N neurons at the l-th hidden layer,
and one output layer indexed by l = L + 1, with input vector
x ∈ CN0 and output vector y ∈ CnL+1 . The mathematical
representation of such DNN is given by

y=�(x; θ )= (AL+1 ◦ ψnL ◦AL ◦ · · · ◦ ψn1 ◦A1)(x) (12)

where Al : Cnl−1 → Cnl is the affine transformation
used at the l-th layer, i.e., Al(x) = Alx + bl , with
Al ∈ Cnl×nl−1 and bl ∈ Cnl representing the weights and

3In a practical implementation of a transceiver system the required opera-
tions between complex signal values and parameters can be realized through
manipulation of the in-phase (I) and quadrature (Q) components.
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FIGURE 2. Block diagram of the analog ReLU activation function. The
input is applied to L1, the carrier is applied to L2, and the output is
obtained from Lo.

biases of the l-th layer. The ordered set of all parameters
characterizing the DNN in (12) can be written as θ =
{A1,b1,A2,b2, . . . ,AL+1,bL+1}.

B. LINEAR RF MODULES
As discussed above, two different types of operations are
required for calculating the output of each DNN layer, i.e., for
the l-th layer, a linear transformation Al and an elementwise
non-linear function ψnl . Let us first focus on the implemen-
tation of the linear transformation, which is not an immediate
taskwhen using phase-shifters and power-combiners/dividers
in RF domain. In fact, most of the literature on hybrid
beamforming is dedicated to this issue, and especially the
non-convexity of design problems involving transformation
matrices with unit-modulus entries. Motivated by hybrid
designs in [12]–[14], we present below a first proposition
which paves the way for developing an analog structure con-
sisting of phase-shifters and power-combiners/dividers, that
can perform an arbitrary linear transformation.
Theorem 1: Any given complex matrix A ∈ Cκ×n can be

written as a scaled sum of two matrices R(1),R(2)
∈ Uκ×m,

with unit-modulus entries, i.e.,

A = c(R(1)
+ R(2)), (13)

for some positive constant c ≥ 1
2‖vec(A)‖∞.

Proof: It is sufficient to show that for all p = 1, 2, . . . , κ
and q = 1, 2, . . . , n, we have

A(p, q) = c
(
R(1)(p, q)+ R(2)(p, q)

)
. (14)

Since R(1),R(2)
∈ UNR×K , the above equation can be further

written as

A(p, q) = c
(
ejθ

(1)
p,q + ejθ

(2)
p,q
)
, (15)

where ejθ
(1)
p,q and ejθ

(2)
p,q represent the entries on the pth row and

qth column of R(1) and R(2), respectively. Since 2c is greater
than the absolute value of all the entries ofA, from Theorem 1
in [12], there exist non-unique θ (1)p,q and θ

(2)
p,q such that (15)

holds which proves the theorem.
Note that for a given matrix A, the matrices R(1) and R(2)

such that A = c(R(1)
+ R(2)) holds are non-unique; below,

we present a simpleway to constructR(1),R(2). By expressing
the elements ofA in polar form as A(p, q) = |Ap,q| exp(jϑp,q),

FIGURE 3. Block diagram of the analog PReLU activation function. The
input is applied to L1, the carrier is applied to L2, and the output is
obtained from Lo.

we first compute

c =
1
2
max
p,q
|Ap,q|. (16)

We then calculate the entries of R(1) and R(2) as

R(1)(p, q) = ej
(
ϑp,q+cos−1(

|Ap,q|
2c )

)
(17a)

R(2)(p, q) = ej
(
ϑp,q−cos−1(

|Ap,q|
2c )

)
. (17b)

By simple mathematical manipulations one can easily ver-
ify the validity of the presented solutions in (16) and (17)
(see also [14]).

C. NONLINEAR RF MODULES
Next, we discuss possible structures for the realization of
non-linear activation functions in the analog domain with
common RF modules.

In [48], it is shown that an arbitrarily wide MLP with one
hidden layer is a universal approximator due to the presence
of the non-linear activation function. Different conditions
for the activation function ψ : R → R have been pre-
sented under which the universality property of DNNs is
satisfied [48]–[52]. In [48], the required conditions for ψ are
given as being continuous, bounded and non-constant, while
these conditions are simplified to non-polynomiality in [50].
Universality of DNNs is studied in [53], [54] for the rectified
linear unit (ReLU) activation function [55], i.e.,

ReLU(x) = x+ = max(0, x), x ∈ R. (18)

Since the introduction of ReLU, several variations have
been proposed among witch the leacky-ReLU and parametric
ReLU (PReLU) have attracted considerable attention [56],
[57]. In PReLU the vanishing part of the response is replaced
by a nonzero linear section, i.e.,

PReLU(x) =

{
ax if x < 0
x if x ≥ 0

(19)

where the linear slope a > 0 can be learned along with other
DNN parameters.

In complex-valued DNNs, the activation function must
also be complex-valued. Based on [58], the definition of
ReLU can be extended to complex numbers as

ReLU(z) = ReLU(R(z))+ jReLU(I(z)), z ∈ C, (20)
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FIGURE 4. Analog MLP (NLAF = non-linear activation function, i.e. ReLU or PReLU).

with similar extension for PReLU. Since the baseband sig-
nals (i.e., the individual elements of the signal vector xBB)
are modulated on a sinusoidal carrier, both the in-phase (I)
and quadrature (Q) components of the RF signals oscillate
between a negative and positive peak value, regardless of
the sign of the baseband signals. Consequently, unlike the
baseband case, ReLU cannot be directly implemented with
a single rectifier (e.g., diode). Herein, we therefore present a
novel analog ReLU module which can realize (20) in the RF
domain using basic circuit components.

The conceptual block diagram of the proposed analog
ReLUmodule is shown in Fig. 2. For complex-valued signals,
this module is in effect applied to both the I and Q compo-
nents. The modulated signal is fed to L1 and the carrier is fed
to L2 as a reference. The output Lo is equal to the input signal
L1 when the baseband signal is positive and zero otherwise.
Indeed, when the modulated signal L1 and the carrier L2 are
in phase, corresponding to a positive value of the baseband
component, B1 and B2 are equal and the energy of their sum
is non-zero. Consequently, the output of the energy detector
B3 = 1 which can be used to activate (i.e., close) the switch.
When the modulated signal L1 and the carrier L2 are out
of phase (corresponding to a negative value of the baseband
component), we have B2 = −B1. Consequently, the energy
of their sum is zero and the output of energy detector B3 = 0,
which opens the switch. Similarly, an analog PReLU module
can be designed as shown in Fig. 3 where the attenuator is
a passive component which is designed based on the learned
value of a in (19).

D. ANALOG DEEP NEURAL NETWORK (ADNN)
The RF modules conceived in the previous two subsections
can now be used to achieve our main objective, which is to
design an analog DNN structure, i.e. ADNN, such that

GT (xRF) = �T (xRF; θAT )

GR(y) = �R(y; θAR),
(21)

where�T and�R represent DNNs with respective parameter
sets θAT and θAR. As discussed in Subsection III-A, DNNs
are formed by concatenating several MLPs. Consequently,
we first focus on the RF implementation of an MLP with
single hidden layer as in (11). For developing the ADNN,
we consider commonly used RF components in existing HSP,
i.e., phase-shifters, and power-dividers (which also work as
combiners), along with the simple analog ReLU or PReLuU
modules introduced previously.
Theorem 2: A given MLP 0(x; θ ) with one hidden layer

and non-linear activation function ψd (either ReLU or
PReLU) can be realized by the RF structure shown in Fig. 4.

Proof: As discussed earlier an MPL is defined by
matrices Ab and W which are used to calculate 0(x; θ ) =
Wψd (Abxb) where here, ψd (x) = ReLU(x) or PReLU(x).
Using Theorem 1, there exist matrices R(1)

Ab
, R(2)

Ab
, R(1)

W and

R(2)
W with constant-modulus entries, and positive scalars cA,

cW , such that

Ab = cA(R
(1)
Ab
+ R(2)

Ab
) (22a)

W = cW (R(1)
W + R(2)

W ). (22b)

As can be seen from Fig. 4, xb first goes through dividers
which feed the analog subnetworks R(1)

Ab
, and R(2)

Ab
, whose

output are finally combined to produce vector r. Since we
operate in the analog domain, the power of the signal is split
between each branch, so that only xb√

2
is effectively applied

on each branch; Similar, a factor of 1
√
2
must be included

in the ouput of the combiner to account for properties of
the corresponding S-matrix [59]. Consequently, the vector of
input signals to the ReLUs can be written as

r =
1
√
2
(R(1)

Ab

xb
√
2
+ R(2)

Ab

xb
√
2
) =

1
2
(R(1)

Ab
+ R(2)

Ab
)xb. (23)

By substituting (22a) in (23), we arrive at

r =
1
cA

Abxb. (24)
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FIGURE 5. HDNN-based massive-MIMO transceiver.

After passing through the ReLU and performing similar steps
as above forW, the output of the analog MLP can be written
as

0(x; θ ) =
1

cAcW
Wψd (Abxb) =Wψd (Ab

1
cAcW

xb), (25)

where the second equality is due to the positive homogeneity
of ReLU i.e., cReLU(x) = ReLU(cx) for any positive c
(c ∈ R+).
Corollary 1: Any given DNN�(x; θ ) (12) can be realized

in the RF domain by concatenating several analog MLPs,
as presented in Theorem 2.

IV. DEEP LEARNING FRAMEWORK FOR HSP
In this section, by taking advantage of the proposed ADNN
structure, we present a general DL framework for HSP which
enables hybrid systems to exhibit similar performance as
FD systems with limited number of RF chains. These results
are in contrast with conventional hybrid systems where, due
to non-convex constraints imposed on the RF beamfomer,
degraded performance must be accepted for reducing the
number of RF chains. Moreover, by introducing ADNN, our
approach enables further improvements over existing DNN-
based HSP designs, which face the same limitations as the
conventional hybrid design, i.e., the minimum number of
required RF chains is equal to the number of symbol streams.
The proposed HDNN, however, is not bound to this con-
straint: indeed, as will be demonstrated for selected cases, the
number of RF chains can be further reduced while maintain-
ing the same performance as the FD systems.

A. PROPOSED DL FRAMEWORK FOR HSP
1) DOWNLINK
Let us consider the downlink signal model introduced in
Section II-B for the generalized HSP structure. In the pro-
posed HDNN framework, the non-linear digital processor
in (6) indeed corresponds to a first DNN, whose output is the

baseband signal vector xBB i.e.,

xBB = FT (zT ) = �D
T (zT ; θ

D
T ), (26)

where θDT is the parameter set of this digital DNN. The
baseband output of this DNN is then converted to the
RF domain where it is represented by xRF. Subsequently,
the non-linear operator in (7) is realized by means of a second
ADNN structure, whose output (up to a scale factor) is the
desired transmit signal vector x, i.e.,

x =
√
ρ GT (zRFT ) = �A

T (z
RF
T ; θ

A
T ), (27)

where θAT is the parameter set of the ADNN.
To simplify the training process, we can consider the

ADNN as additional layers to the digital DNN, i.e.,

x = �A
T

((
�D
T (zT ; θ

D
T )
)
; θAT

)
. (28)

In light of (12) and (10), we can write the above equation as

x = �H
T (zT ; θT ), (29)

where θT = {θAT , θ
D
T } is the composite parameter set of the

resulting downlink HDNN.

2) UPLINK
In this case, the non-linear digital processor in (8)
corresponds to a first ADNN, whose output is the RF signal
vector xRF, i.e.,

xRF = GR(zR) = �A
R(zR; θ

A
R), (30)

where θAR is the parameter set of the ADNN. The RF output
of this ADNN is then converted to the baseband where it
is represented by xBB. Subsequently, the non-linear operator
in (9) is realized by means of a digital DNN to produce the
desired output vector ŝ, i.e.,

ŝ = FR(zRFR ) = �D
R (z

RF
R ; θ

D
R ), (31)

VOLUME 10, 2022 72355



A. Morsali et al.: Deep Learning-Based Hybrid Analog-Digital Signal Processing in mmWave Massive-MIMO Systems

where θDR = {θ
A
R, θ

D
R } is the complete parameter set of

the DNN. Hence, proceeding as in the downlink case, we can
write

ŝ = �H
R (zR; θR) = �

A
R

((
�D
R (zR; θ

D
R )
)
; θAR

)
, (32)

where θR is the parameter set of the resulting uplink HDNN.
The proposed HDNN architecture is depicted in Fig. 5

where the forward propagation is shown for both downlink
and uplink scenarios. Here we considered regular DNNs,
although different network structures and DL techniques
such as CNNs, RNNs, etc. can also be employed in the
proposed framework. Due to production cost and power con-
sumption, it is desirable to use as few RF chains as possi-
ble. In conventional HSP systems the minimum number of
RF chains is equal to the number of transmitted symbols
because digital and particularly analog beamformers are lin-
ear transformations.

B. DL-BASED TRANSCEIVER DESIGN
In the following, we briefly discuss how the proposed frame-
work can be used for HSP-based massive-MIMO transceiver
design. For the sake of brevity, we only discuss the downlink
problem formulation but the uplink problem can be also
formulated in a similar way.

The HDNN can be trained to learn an arbitrary transmis-
sion scheme, as defined by the mappings FT (·) and GT (·)
in (6) and (7). This can be done by training the HDNN using
the following loss function,

L(θT ) =
∥∥∥�H

T (zT ; θT )− GT ◦FT (s)
∥∥∥
2
. (33)

This approach can be applied in principle to a variety
of non-linear beamforming techniques such as vector per-
turbation [60], Tomlinson-Harashima precoding [61], [62],
robust beamformer design under imperfect CSI [20], and
space-time coding [63]. In the next section, we design
and train HDNNs with FT (s) selected as the eigen-mode
beamforming.

When the HDNN is trained using (33), the output of
the HDNN ideally appropriates the selected transmission
scheme, i.e., FT (s). However, taking a step further and
exploiting the power of the machine learning paradigm,
it is possible to let the transmitter learn the optimal trans-
mission scheme without explicitly specifying its structure
a priori. To be more specific, the loss function for training
the HDNN can be a performance measure of the overall
communication link, i.e., taking the transmitter and receiver
into account, as well as other constraints and system require-
ments. For instance, in the case of a massive-MIMO BS
with a single UE employing a fixed combiner matrix C
known at the transmitter side, the HDNN can be trained
using,

L(θT ) =
∥∥∥CHD�

H
T (zT ; θT )− s

∥∥∥
2
. (34)

For a multi-user scenario, the signal-to-interference-plus-
noise (SINR) can be used instead of the above symbol error.

C. DISCUSSION
In this subsection, we provide further discussion regarding
the implementation aspects and computational complexity of
the proposed design.

1) IMPLEMENTATION
Except for the nonlinear RF modules, the proposed scheme
is characterized by an HADP architecture similar to [8]–[22].
Still, certain important considerations should be noted. In par-
ticular, since the linear modules in ADNN are comprised of
phase-shifters, as the number of layers (and/or width of the
layers) grow larger, the number of required phase-shifters
also increases. However, recent advances in RF semicon-
ductor and mmWave hardware will allow for deployment
of a larger number of RF components [64], [65]. Direct
implementation of DNNs at higher frequencies as well as
in the optical domain has been recently attracting con-
siderable attention [66]–[68]; these works pave the way
towards design and fabrication of low-cost RF components
for HDNNs.

2) COMPUTATIONAL COMPLEXITY
At the inference level, the proposed HSP framework design
does not introduce any major additional complexity com-
pared to the existing learning-based ones. In particular, the
computational complexity is similar (if not lower) as the
HDNN is directly used to generate the transmitted signal
and decode the received signal, whereas in most existing
works (e.g. [31]–[40]), DNN are used to calculate the coeffi-
cients of the beamformer matrices which in turn are applied
in subsequent beamforming computations. At the training
level, complexity of for the proposed HDNN depends on the
design and constraints of the system. In general, since in
the proposed framework the HDNN directly generates the
beamformed signals, complexity of the training is compa-
rable to the existing DL-based techniques. In the context of
HBF, one common issue faced by existing DNN-based tech-
niques is how to handle channel variations in the inference
and training processes. One possible approach, suitable for
static or slowly time-varying channels, consists in training
the DNN for each channel coherence time interval. This sim-
plified approach, employed in our simulation study, has the
advantage of reducing the on-line training time. For rapidly
varying channel environments however, the short coherence
time makes it necessary to constantly retrain the network,
which eventually become impractical. In such scenarios,
more efficient techniques could be used by leveraging transfer
learning to facilitate the training process [69]. Alternatively,
one could enrich the training data with channel information
and training the DNN off-line to allow generalization over
an ensemble of channel realizations. How to optimally con-
sider rapidly time-varying channels in the design and imple-
mentation of DL-based HBF remains an open avenue for
research.
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V. SUPERVISED LEARNING-BASED HBF WITH
FD PERFORMANCE
In this section, to illustrate the potential advantages of the
proposed DL framework for HSP, we apply it to design
supervised learning-based hybrid beamformers that achieve
the performance of FD beamforming with limited number
of RF chains. We focus on the single user scenario although
extension to multi-user is possible.

A. BEAMFORMING WITH NRF ≥ K
As discussed above, by using the proposed framework, it is
possible to closely approximate any mapping form symbol
vector s to the desired transmitted signal x. Consequently,
we can use supervised learning to train the DNN such that the
hybrid system generates the output of the FD beamforming
with limited number of RF chains.

In the downlink, the optimal eigen-mode precoding is
obtained by solving the following problem:

max
P

log2 det(IN +HDPPHHH
D ), (35a)

s.t. Tr(PPH ) ≤ 1. (35b)

The solution to the above problem is given by P = VDϒD,
where the diagonal weight matrix ϒD is calculated via water
filling [6] andVD is a unitary matrix obtained from the singu-
lar value decomposition of the channel matrix, represented in
standard form as,HD = UD6DVD

H . Thus, the desired output
of the HDNN for symbol vector s is given by x = Ps and
using (29), we wish to find θT such that �H

T (zT ; θT ) = Ps.
We use an HDNN where the digital DNN has L(1)D hidden

layers of size Kc1 and the ADNN has L(1)A hidden layer of
size Nc2. These hyperparameters (which control the depth of
the network and width of the hidden layers) may vary based
on the number of antennas and the number of RF chains and
can be obtained by cross referencing. In practice, as will be
illustrated in Section VI, we find that a single analog layer,
i.e. L(1)A = 1, is adequate to emulate the performance of the
FD optimal eigen-mode HBF system in the case NRF ≥ K .
For each channel instance HD, the network is trained by
generating random symbol vectors and the corresponding
desired transmitted signals, as represented by the dataset
DH = {(s(i),Ps(i))}

ND
i=1. Since the DNNs must be trained

for regression, selecting the right loss function is crucial,
especially in mmWave HBF where a slight deviation from
optimality can cause large performance degradation. From an
optimization perspective, the `1 norm results in a sparser error
vector which compared to the `2 norm, which is more suitable
for our purpose. Consequently, we propose to use the mean
absolute error loss function, expressed as

L(θ ) =
1
ND

∑
s∈Bj

|�H
T (zT ; θT )− Ps|, (36)

for training within each mini-batch Bj. Finally, using an
optimization method such as adaptive moment estima-
tion (Adam) the weights and biases of the network are
updated during the backpropagation phase.

FIGURE 6. BER versus SNR of proposed HDNN designs and FD
beamforming for downlink connection in 64× 4 and 128× 8 MIMO
systems.

FIGURE 7. BER versus SNR of proposed HDNN designs and FD
beamforming for uplink connection in 64 × 4 and 128 × 8 MIMO systems.

For the uplink beamfomer (combiner), a similar network
structure with the same hyperparameters as the downlink case
can be used, as previously shown in Fig. 5. The optimal FD
combiner matrix C can be obtained from

max
C

log2 det
(
IK + ρ(CCH )−1CHUHH

UC
H ). (37)

By writing the singular value decomposition of the uplink
channel as HU = UU6UVU

H , we find, CH
= Ua

U , where
UU = [Ua

U ,U
b
U ] and Ua

U contains the first K columns
of UU , corresponding to the K dominant singular values.
Training the DNN for uplink is not as straightforward as for
the downlink because the received signal is contaminated by
noise, which must be accounted for. Consequently, we let

y = ρz+ n, (38)
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FIGURE 8. Spectral efficiency versus SNR of different methods for
downlink connection from a N = 128 massive-MIMO BS to a UE with
M = 8 antennas.

where z ∼ CN(0, IN ) is a Gaussian random vector. Our goal
is to find θR such that �H

R (y; θR) = Cy, i.e., the network is
trained for the datasetDH = {(y(i),Cy(i))}

ND
i=1. The same loss

function and optimizer as in the downlink can be used for
learning the network parameters.

B. DOWNLINK BEAMFORMING WITH NRF < K
To illustrate the potential of the proposed framework, in this
subsection we present a hybrid precoder which can achieve
the same performance as the FD beamforming with less
than K RF chains. From (1), we can see that to achieve the
same performance as the FD beamforming in conventional
HSP, i.e., PFD = PAPD, the minimum number of required
RF chains must be equal to rank(PFD), where PFD ∈ CN×K .
In practice, we usually have rank(PFD) = K , which is why
in the HBF literature it is assumed that NRF ≥ K . Even
with this assumption achieving the same performance as the
FD beamforming is generally not possible [15]–[22], except
under certain conditions [23]–[25].

Using the proposed framework, we design an HDNN in
which a digital DNNwith L(2)D layers of sizeKc3 is connected
via K/2 RF chains to an ADNN with L(2)A hidden layer of
sizeNc4, where c3 and c4 are network parameters that control
the width of hidden layers in baseband and analog neural
networks, respectively.

The same training procedure as discussed in the previous
subsection is used to update the network parameters. The
proposed HBF with K/2 RF chains can achieve the same
performance as a FD system as will be shown in the next
section. In this case, however, a larger number of analog lay-
ers is needed to achieve the desired degree of approximation
with the HDNN, i.e. L(2)A > 1.
It is possible to design a similar HDNN for the uplink

beamforming, however, in order to achieve the same

FIGURE 9. Spectral efficiency versus SNR of different methods for uplink
connection from a UE with M = 8 to a massive-MIMO BS with N = 128.

TABLE 2. Simulation parameters.

performance as the FD combiner, due to presence of noise,
a more intricate DNN architecture and training process is
required which remains a topic for future studies.

C. DISCUSSION
Here, we briefly discuss how the proposed framework can be
leveraged for achieving performance of the FD systems.

The proposed HDNN takes advantage of the universality
of DNNs [48]–[51] which allows for reduction in the number
of RF chains. In effect, this is similar to the ability of autoen-
coders to outperform principal component analysis (PCA) in
dimensionality reduction [70]. However, depending on the
specific task the HDNN may suffer from a bottle necking
effect in the flow of information from the digital DNN to
the ADNN and vice versa. This problem can be remedied by
increasing the width and depth of the ADNN or the digital
DNN, as it has been shown that ReLU deep neural net-
works are universal approximators [51]–[54]. Consequently,
by properly designing the HDNN structure, any continuous
function from s to x and from y to ŝ can be approximated
by the HDNN, thus, driving the loss function (36) arbitrar-
ily close to zero. Simulation results in subsequent section
verifies that the presented HDNN in this section can in
fact achieve FD performance both in uplink and downlink
connections.
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FIGURE 10. Spectral efficiency versus SNR of different methods for
downlink connection of N = 64 massive-MIMO BS and a UE with
M = 4 antennas.

VI. SIMULATION RESULTS
In this section, simulation results are presented to illustrate
the merits of the proposed HDNN introduced in Section V.
Comparisons with FD beamforming, as well as benchmark
hybrid designs from the literature are included.

A. METHODOLOGY
We use the following mmWave massive-MIMO channel
model [10], [14],

H =

√
NM
NcNray

Nc∑
i=1

Nray∑
j=1

αijar(θ rij)at(θ
t
ij)
H
, (39)

where Nc = 5 is the number of clusters, and Nray = 10 is the
number of rays in each cluster. Similar to [10], [14], the path
gains are independently generated as αij ∼ CN(0, 1). The
transmit and receive antenna responses are denoted by ar(θ rij)
and at(θ tij) respectively. For simplicity, a uniform linear array
of size N with half-wavelength spacing is employed,4 where,

a(φ) =
1
√
N
[1, ejπ sin(φ), . . . , ej(N−1)π sin(φ)]. (40)

The angles of arrival θ rij and departure θ tij are indepen-
dently generated according to the Laplacian distribution
with mean cluster angles θ̄ rij and θ̄

t
ij, uniformly distributed

in [0, 2π ], while the angular spread is set to 10 degrees
within each cluster [14]. We further assume that the chan-
nel estimation and system synchronization are perfect. For
convenience, the simulation parameters are summarized
in Table 2.

4Other structures such as uniform rectangular array can be also deployed
as the proposed method does not depend on the antenna configuration of the
system.

TABLE 3. Implementation details of the HDNN with N antennas for the
two cases NRF = K and NRF = K/2.

FIGURE 11. Spectral efficiency versus SNR of different methods for uplink
connection a UE with M = 4 and a massive-MIMO BS with N = 64.

The parameters of the proposed HDNN are set as follows:
For the case NRF = K , the layer configuration parameters
are set to L(1)D = 5, L(1)A = 1 and c1 = 2, c2 = 3. For the
case NRF = K/2, the model parameters are set to L(2)D = 4,
L(2)A = 4, c3 = 2 and c4 = 6. The HDNN implementation
details are summarized in Table 3.

For each channel coherence time interval TC , the downlink
HDNN is trained with DH = {(s(i),Ps(i))}

ND
i=1 where s(i) are

the actual transmitted symbol vectors with duration TS and
integer ND is such that NDTS ≤ TC . We find that for the
downlink, the network can be trained with a small of symbol
vectors. Specifically, for the presented results below, we set
ND = 10. Training is performed using the Adam optimizer
with learning rate 0.001 for 500 epochs with mini-batch size
of 5. For uplink however, since the goal is to decode the
transmitted signal vectors in the presence of noise, a larger
data set must be employed. Fortunately, this data can be easily
generated under the Gaussian assumption for the signal and
noise using (38). In our experiments, 5000 random vectors
y(i) are hence generated as synthetic combiner inputs and used
along the corresponding combiner outputs Cy(i) in the train-
ing phase. Training is performed using the Adam optimizer
with learning rate 0.001 for 5 epochs with mini-batch size
of 50.

VOLUME 10, 2022 72359



A. Morsali et al.: Deep Learning-Based Hybrid Analog-Digital Signal Processing in mmWave Massive-MIMO Systems

B. RESULTS AND DISCUSSION
In this part, we investigate the spectral efficiency (SE) and
bit error rate (BER) performance for the proposed HDNN
design and the optimal FD beamforming. Since both schemes
achieve the same performance, as will be shown, further
comparisons between our proposed approach and existing
hybrid designs follow directly by consulting the correspond-
ing studies where FD beamforming is used as a benchmark,
e.g., [10], [14], [17], [19], [34]–[37].

The BER performance versus signal-to-noise ratio (SNR)
(which corresponds to parameter ρ in (1) under normalization
of the additive noise) for 64 × 4 and 128 × 8 point-to-
point MIMO setups is illustrated for uplink and downlink
connections in Fig. 6 and 7, respectively. In both cases the
multi-antenna UE performs FD beamforming, 4-QAM con-
stellation is used and the number of transmitted symbols is
equal to the number of UE’s antennas, i.e., K = M . It can
be observed that the proposed HDNN design matches the
performance of the FD system with only K RF chains. More-
over, for downlink beamforming, our proposed design in
Subsection V-B achieves the same performance with NRF =
K/2 RF chains which to the best of our knowledge has not
been reported in the literature before. This possibility appears
to be a consequence of the universal approximation property
of DNNs [48]–[54].

Next, we compare the SE of our proposed HDNN design
in Subsection V-A to FD beamforming as well as benchmark
HBF designs in, [10], [14], [17], [19] and [36]. The massive-
MIMO BS, which is equipped with N = 128 antennas,
serves a single UE equipped with M = 8 antennas; K = 8
data streams are employed. While the FD system requires
NRF = 128 RF chains, hybrid beamforming techniques only
use NRF = 8 RF chains. The SE of the downlink and uplink
connections for the various schemes are plotted in Fig. 8
and Fig. 9, respectively. As shown in the figures, for HBF
designs [10], [14], [17], [19] and [36] the cost of using less
RF chains is degraded performance compared to FD sys-
tems, whereas, the proposed HDNN matches the rate of the
FD beamforming with the same number of RF chains as the
existing hybrid designs.

Fig. 10 illustrates the downlink SE of a massive-MIMOBS
equipped with N = 64 antennas and serving a UE with
M = 4 antennas by means of K = 4 substreams. It can
be observed that the proposed HDNN matches the SE of
the FD beamforming while outperforming the benchmark
HBF designs. The SE of the uplink connection for the same
system configuration used in reverse (i.e., uplink) direction
is depicted in Fig. 11. As in the downlink case, the proposed
HDNN design achieves the same rate as the FD system, and
hence a higher rate than the existing hybrid designs.

VII. CONCLUSION
In this paper, we presented a general DL framework for
efficient design and implementation of HSP in massive-
MIMO systems. By exploiting the fact that any complex

matrix can be written as a scaled sum of two matrices with
unit-modulus entries, we first presented a novel ADNNwhich
can be implemented with common RF. This structure was
subsequently embedded into an extended HDNN architec-
ture to facilitate the implementation of mmWave massive-
MIMO systems and improving their performance. Since the
proposed HDNN architecture enables HSP-based massive-
MIMO transceivers to approximate any desired transmitter
and receiver mapping with arbitrary precision, we were able
to present a new HDNN-based beamformer design that can
achieve the same performance as FD beamforming, with
reduced number of RF chains. Simulation results were finally
presented which confirmed that our design can achieve the
same performance as the FD systems.
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