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Abstract—In this paper, we investigate the effect of adaptation
step-sizes on the tracking performance of diffusion least-mean
squares (DLMS) algorithms in networks under non-stationary
signal conditions. We assume that the network parameter vector
being estimated varies over time according to a first-order ran-
dom walk model. To find the optimal adaptation step-sizes over
the network, we formulate a constrained nonlinear optimization
problem and solve it through a log-barrier Newton algorithm
in an iterative manner. Our studies reveal that the optimal
step-size of each node in the network not only depends on
the statistics of the random walk and the energy profile of the
node itself, but also on the energy and statistical profile of its
neighboring nodes. The results show that the optimal step-sizes
can substantially improve the performance of DLMS algorithms
in tracking time-varying parameters over networks. We also
find that the DLMS algorithms have faster tracking ability and
superior steady-state mean-square deviation (MSD) performance
than the DLMS in non-corporative mode since with the diffusion
mode of cooperation, each node at each iteration can take a larger
step toward the network optimal parameters.

Index Terms—Diffusion adaptation, sensor networks, LMS
algorithms, time-varying parameters, distributed estimation.

I. INTRODUCTION

IN-NETWORK distributed adaptive signal processing is
emerging as a key enabling technology for sensor networks

to support the implementation of flexible cooperative learning
and information processing schemes [1], [2]. This type of
processing and learning mechanism, in which nearby nodes
cooperate over wired or wireless links in the achievement of
network-wide computational and control objectives without
using a fusion center, will probably form one of the cor-
nerstones of the future generation of data communications
and control networks [3]–[9]. The potential applications of
distributed adaptive processing are diverse, and currently,
they are being considered in several areas, including factory
automation, robotics, intelligent transportation, health care
monitoring, precision agriculture, smart spaces and telecom-
munications [10]–[15], [37].

There are several variant forms of distributed adaptive algo-
rithms for parameter estimation over networks, including the
two well-known types of techniques, i.e., consensus [16]–[28]
and diffusion [29]–[33]. It was shown in [34] that for constant
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step-size adaptation, network states can grow unbounded due
to an inherent asymmetry in the consensus dynamics. The
same problem does not occur for diffusion strategies [34],
and for this reason, we focus on these algorithms in this
work. The diffusion least mean-squares (DLMS) algorithm is
one of the efficient algorithms in the diffusion class, besides
the diffusion recursive least-squares (DRLS) [35], [36], that
can demonstrate an excellent performance in the estimation
of time-varying parameters over networks [34], [37]. This
algorithm operates using a simple mode of cooperation, endow
the network with adaptive and learning abilities and can exhibit
agile tracking performance [29], [30], [37].

The mean and mean-square convergence behavior of DLMS
algorithms in stationary signal environments have been exten-
sively investigated in many previous works, including [30],
[37], [38]. However, there are only a few studies that examined
the performance of this algorithm in non-stationary signal
environments. The latest works on this topic are [34] and
[39], where the authors have compared the performance of
DLMS with distributed consensus algorithms in time-varying
environments. The results reported in these references con-
firmed that the DLMS algorithms outperform the consensus
ones and exhibit a superior tracking performance under such
conditions. Nevertheless these works only used some arbitrary
adaptation step-sizes that satisfy the mean and mean-square
stability conditions of the algorithms. So far however, the
critically important effects of the step-size parameters on the
convergence and tracking properties of the DLMS algorithms
in non-stationary signal environments have not been thor-
oughly investigated. Furthermore, the link between the choice
of optimal step-sizes and the dynamic model characterizing
the time evolution of the underlying parameter vector subject
to adaptive estimation has not been explored.

A. Contributions

In this paper, we study the tracking performance of DLMS
algorithms in non-stationary signal environments, where the
underlying parameter vector of interest evolves according to a
first-order random walk model. To the best of our knowledge,
such a key study of the DLMS algorithm along with the
interpretation of the results from the perspective of control
and networking engineering has not been attempted before
in the literature. In particular, our main contributions can be
summarized as follows in terms of novelty and importance:
• Investigating the effects of adaptation step-sizes on track-

ing performance of DLMS algorithms in networks with
non-stationary signal conditions.
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• Formulating a constrained nonlinear optimization prob-
lem to find nearly optimal step-size parameter vector
within the stability range of DLMS algorithms.

• Finding the effect of the network energy profile on the
network optimal adaptation step-size parameter.

• Implementing a log-barrier interior point method and
gradient projection algorithm to find adaptation step-sizes
in adaptive networks for time-varying model parameters.

To be more specific, we first show how an improper choice
of adaptation step-sizes can substantially degrade the steady-
state and tracking performance of DLMS algorithms. We then
examine the mean-square error (MSE) performance of these
algorithms with respect to changes in the adaptation step-sizes,
and formulate an optimization problem to find their optimal
values over the network, which enhance MSE performance of
the algorithms in the steady-state. Furthermore, we learn that,
similar to a stand-alone LMS algorithm in a non-stationary
environment, the steady-state performance of DLMS does not
continue to improve by decreasing the adaptation step-sizes,
but instead starts deteriorating past a certain point. In addition,
we find that compared to LMS, DLMS algorithms demonstrate
faster tracking ability and superior performance in the steady-
state mean-square deviation (MSD) and excess mean-square
deviation (EMSE). According to our results, this is because
with the diffusion mode of cooperation, each node at each
iteration can take a larger step-size toward the network optimal
point. Our analysis and simulation results also indicate that by
using the optimal step-size at each node, we can substantially
improve the steady-state MSE performance of the DLMS
algorithms, and enhance their tracking speed.

The paper is organized as follows. In Section II, we briefly
review DLMS algorithms and explain their operation in the
estimation of time-varying parameters over networks. In Sec-
tion III, we characterize the performance of these algorithms in
time-varying signal environments. In Section IV, we examine
the tracking performance of DLMS algorithms with respect to
the choice of step-size parameters. We present our numerical
results in Section V, and conclude the paper in Section VI.

Notation: We use boldface letters for random variables and
normal letters for deterministic variables. Symbol (·)T denotes
transposition for real vectors and matrices, and (·)∗ denotes
conjugate transposition for complex vectors and matrices. We
show the trace operator with Tr(·), the spectral radius of a
matrix with ρ(·) and the expectation by E[·]. We use diag{·}
to extract the diagonal entries of a matrix, or to construct a
diagonal matrix from a vector. The vec(·) operator vectorizes
a matrix by stacking its columns on top of each other and
bvec(·) is the block-vectorization operator [29]. We denote the
Kronecker products by ⊗, and block Kronecker products by
⊗b.

II. DIFFUSION LMS STRATEGIES

We consider a collection of N nodes which are distributed
over a geographical area to estimate the unknown time-varying
parameter vector wo

i ∈ CM×1 where i is the time index. Each
node k ∈ {1, 2, · · · , N} at time instant i ∈ N collects the
measurement sample dk(i) that is related to the time-varying

parameter vector through the following regression model:

dk(i) = uk,iw
o
i + vk,i (1)

where uk,i ∈ C1×M represents the regression data and vk,i ∈
C represents the output measurement noise. We assume that
wo
i varies over time according to a first-order random walk

model [40]:

wo
i = wo

i−1 + qi (2)

where qi ∈ CM×1 introduces a random perturbation to the
parameter vector at time i. In this model, the random-walk
sequence, {qi}, is assumed to be zero-mean independent and
identically distributed (i.i.d.) with positive-definite covariance
matrix Q = E[qiq

∗
i ]. Considering these properties of the

random sequence {qi} and relation (2), we observe that wo
i

has a constant mean and hence E[wo
i ] = E[wo

i−1]. We assume
that the regression data uk,i at each node k are zero-mean
wide-sense stationary with covariance Ru,k = E[u∗k,iuk,i]. For
this model, however, the cross-covariance vector at each node
k is time-varying and we, therefore, denote it by rdu,k,i =
E[u∗k,idk(i)]. For mathematical tractability, in our analysis,
we assume that {uk,i} are i.i.d over time and independent
over space with positive definite covariance matrices. The
measurement noises {vk(i)} are zero-mean random processes,
i.i.d over time and independent over space with variances
{σ2

v,k}. The noise {vk(i)} are independent of the regressors
{um,j} for all i, j and k,m. These are customary assumptions
that have been normally used in the context of distributed
adaptive filtering [29], [30], [34], [37], [38].

It can be verified that if the moments Ru,k and rdu,k,i
are available at the fusion center, the minimum mean square
error (MMSE) estimate of the parameter vector through a
centralized solution, at each time instance i, will be:

wo
i =

( N∑
k=1

Ru,k

)−1 N∑
k=1

rdu,k,i (3)

If we assume that the parameter vector wo
i varies slowly, the

following centralized LMS algorithm can be used to estimate
and track its value:

wi = wi−1 + µ
N∑
k=1

u∗k,i
(
dk(i)− uk,iwi−1

)
(4)

where µ > 0 is the step-size parameter.

Motivated by the advantages of distributed algorithm such
as energy and communication bandwidth efficiency, the DLMS
algorithms [30], [37], [38] can be used to estimate and track
the parameter vector wo

i over the network. The Adapt-then-
Combine(ATC) variant of DLMS algorithm will take a similar
form to that for the estimation of time-invariant parameters,
i.e.:

ψk,i = wk,i−1 + µk
∑
`∈Nk

c`,ku
∗
`,i

(
d`(i)− u`,iwk,i−1

)
(5)

wk,i =
∑
`∈Nk

a`,kψ`,i (6)

where µk > 0 is the local step-size, the vectors ψk,i and wk,i
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are the intermediate estimates of wo
i at node k, and Nk is

the set of neighboring nodes (including node k itself) with
which node k can share information. In (5) coefficients c`,k
are non-negatives entries of the right-stochastic matrix C ∈
RN×N where c`,k = 0 if ` /∈ Nk, and

∑N
k=1 c`,k = 1.

In (6), a`,k are nonnegative coefficients of a left-stochastic
matrix A ∈ RN×N , which satisfy the following conditions:
a`,k = 0 if ` /∈ Nk, and

∑
l∈Nk

a`,k = 1. There are various
methods to obtain matrices C and A [30].

The Combine-then-Adapt (CTA) forms of DLMS [30], [37],
[38] can be obtained by reversing the order of adapt and
combine steps in (5) and (6) and can be written as:

ψk,i−1 =
∑
`∈Nk

a`,kw`,i−1 (7)

wk,i = ψk,i−1 − µk
∑
`∈Nk

c`,ku
∗
`,i

(
d`(i)− u`,iψk,i−1

)
(8)

Detailed information about the operation and computational
complexity of these algorithms can be found in previous
studies, including [30], [34], [37], [38].

III. NETWORK PERFORMANCE CHARACTERIZATION

In this section, we derive expressions to characterize the
network MSD and EMSE of the DLMS algorithms in rapidly
time-varying model parameter vector. We will apply the same
analysis strategy as used in [30], [38]. The new expressions are
however different from those in previous works in that they
can characterize the network MSE for relatively large step-
size values. As it will be explained in the sequel, the use of
large step-sizes in DLMS algorithms is sometimes necessary
in order to maintain fast tracking ability should the parameter
vector of interest changes quickly.

The general form of DLMS algorithms for time-varying
parameter can be written as:

φk,i−1 =
∑
`∈Nk

a
(1)
`,kw`,i−1 (9)

ψk,i = φk,i−1 + µk
∑
`∈Nk

c`,k u
∗
`,i

(
d`(i)− u`,iφk,i−1

)
(10)

wk,i =
∑
`∈Nk

a
(2)
`,kψ`,i (11)

where a(1)
`,k and a

(2)
`,k are the (`, k) element of left-stochastic

combination matrices A1 and A2, respectively. We use the
general form of DLMS since it includes the CTA and ATC
algorithms as special cases. In particular, once the analytical
expressions are obtained for all A1 and A2, setting A1 = I
and A2 = A yields the analysis results for ATC and A1 = A
and A2 = I gives the results for CTA algorithm. In addition,
setting A1 = A2 = C = I generates the analysis results for
DLMS networks in non-cooperative mode.

We begin by introducing the local error vectors at node
k, i.e., w̃k,i , wo

i − wk,i, ψ̃k,i , wo
i − ψk,i and

φ̃k,i , wo
i − φk,i. These are used to define the global

error vectors of the network, i.e., φ̃i , col{φ̃1,i, · · · , φ̃N,i},
ψ̃i , col{ψ̃1,i · · · , ψ̃N,i}, and w̃i , col{w̃1,i, · · · , w̃N,i}.
We further define the extended weighting matrices A2 ,

A2⊗IM A1 , A1⊗IM and C , C⊗IM . Next, we introduce
the following matrices and vectors:

Ri ,
N∑
`=1

diag
{
c`,1 u

∗
`,iu`,i, · · · , c`,N u∗`,iu`,i

}
(12)

M , diag
{
µ1IM , · · · , µNIM

}
(13)

gi , CT col
{
u∗1,iv1(i), · · · ,u∗N,ivN (i)

}
(14)

pi , 1N ⊗ qi (15)

where 1N is a column vector with size N and unit entries.
Using these definitions and subtracting wo

i from both sides
(9)-(11), we then arrive at:

w̃i =AT2 (I −MRi)AT1 w̃i−1 −AT2Mgi

+AT2 (I −MRi)AT1 pi (16)

which shows the evolution of the network error vector over
time. We note that the instantaneous network error vector
(16) has one additional error term compared with the standard
DLMS that was reported in [30], [38], i.e., ei = AT2 (I −
MRi)AT1 pi. Under previous assumption that qi and vk(i)
are zero-mean and independent of uk,i for all k, we obtain
E[pi] = E[ei] = E[gi] = 0. Considering these equalities and
taking the expectation of the global error vector w̃i in (16),
we arrive at:

E[w̃i] = AT2 (I −MR)AT1 E[w̃i−1] (17)

where R , E[Ri] =
∑N
`=1 diag

{
c`,1Ru,`, . . . , c`,N Ru,`

}
.

The expression (17) is similar to the expression of the mean
error vector of standard DLMS. Therefore, the mean stability
condition of standard DLMS algorithm, as developed in [30],
[38], remains valid under the non-stationary condition consid-
ered in this work. Therefore, for the algorithm to be stable in
the mean, the step-size at each node k must satisfy

0 < µk <
2

ρ
(∑

` c`,kRu,`

) k ∈ {1, . . . , N} (18)

We will use (18) to find the optimal step-size parameters of
the network in the following section.

A. Steady-State Mean-Square Performance

To characterize the mean-square performance of the DLMS
algorithms in non-stationary signal environments, we use (16)
and form the variance relation by computing the weighted-
squared norm of (16). Then, taking the expectations on both
sides:

E‖w̃i‖2Σ =E‖w̃i−1‖2Σ′ + E‖pi‖2Σ′

+ E[g∗iMTA2ΣAT2Mgi] (19)

where Σ > 0 is a weighting matrix with com-
patible dimension that we are free to choose and
Σ′ = A1(I −MRi)

∗A2ΣAT2 (I −MRi)AT1 , E‖pi‖2Σ′ =
E[p∗iΣ

′pi] = Tr(Σ′P), Σ′ = E[Σ′] and P = E[pip
∗
i ]. We

obtain (19) by using the fact that w̃i−1 is independent of gi
and pi, and E[gi] = E[pi] = 0 according to the network data
statistic presented in Section II. Relation (19) can be written
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as:

E‖w̃i‖2Σ = E‖w̃i−1‖2Σ′ + Tr(ΣAT2MGMA2) + Tr(Σ′P)
(20)

where G , E[g∗i gi] which can be written as
G = CT diag

{
σ2
v,1Ru,1, . . . , σ

2
v,NRu,N

}
C. Introducing

σ , bvec(Σ), and σ′ , bvec(Σ′), the variance relation in
(20), becomes:

E‖w̃i‖2σ =E‖w̃i−1‖2σ′ +
[
bvec(AT2MGMA2)

]T
σ

+
[
bvec(PT )

]T
σ′ (21)

where σ′ = Fσ and F is computed below for two special
cases: small step-size approximation and exact closed-form
evaluation using Gaussian distribution assumption. For the first
case, using the property of conditional expectation together
with the independence of w̃i−1 and Ri, we can extend the
multiplication terms in Σ′ to obtain:

E[Σ′] = A1A2ΣAT2AT1 −A1RMA2ΣAT2AT1
−A1A2ΣAT2MRAT1 +O(M2) (22)

where

O(M2) = E[A1RiMA2ΣAT2MRiAT1 ] (23)

For small step-sizes this term can be neglected, since it
depends on {µ2

k}. Considering this and using σ′ = Fσ, we
obtain:

F ≈ (A1 ⊗b A1)(I − I ⊗b RM−RTM⊗b I)(A2 ⊗b A2)
(24)

As will be demonstrated below, however, this approximation
causes large errors if relatively large step-sizes are chosen. In
what follows, to circumvent this limitation, we derive an exact
closed-form expression for F that is required to characterize
the network behavior in the estimation and tracking of rapidly
varying parameter vectors. To make the derivation simpler
we assume that the distribution of the regression data uk,i
is Gaussian.

Remark 1. In the estimation of time-invariant parameters in
adaptive networks, it has been shown that the MSD decreases
as the optimization step-size parameters become smaller [30],
[38]. Moreover, choosing small step-sizes will only lead to a
lower convergence speed. The situation is however different if
the the parameter vector of interest varies over time. In this
case, the step-sizes cannot be chosen arbitrarily small. This
can be explained using the adaptation step (10) in general
DLMS algorithms. If at each node k, the step-size µk is chosen

to be very small then the innovation term

∆φk,i = µk
∑
`∈Nk

c`,k u
∗
`,i

(
d`(i)− u`,iφk,i−1

)
(25)

which is used to update φk,i in (10) also becomes very small.
In turn, this adversely affects the tracking performance of the
algorithm when the perturbation term qi in (2) is relatively
large. This is because if the change from wi−1 to wi is
large due to large random walk qi, the DLMS algorithms will
need to proportionally add large ∆φk,i to track the change.
However, when the step-sizes µk are chosen very small, the
innovation term, ∆φk,i, become small and the algorithms
fail to track changes. Therefore, in the estimation of time-
varying parameters in adaptive networks, the step-sizes of
DLMS algorithms cannot be chosen arbitrarily small such
that term O(M2) in (22) can be neglected. This motivates
the derivation of an exact closed-form expression for F to
properly characterize the MSE of DLMS algorithms in tracking
time-varying parameters.

To find an exact closed-form expression to evaluate F , we
need to compute the term given in (23). As shown in Appendix
A, if we assume that the regressors uk,i are zero-mean circular
complex Gaussian random vectors, F will be:

F =(A1 ⊗b A1)
(
I − I ⊗b RM−RTM⊗b I

)
× (A2 ⊗b A2) + ∆F (26)

where ∆F is given in (27). In this expression, β = 2 for
the real-valued data, while β = 1 for the complex-valued
data. Now the steady-state MSD and EMSE expressions of the
network can be obtained from (21) as follows. By definition,
the MSD at node k is: η(k) = limi→∞ E‖w̃k,i‖2, which
alternatively, can be retrieved from the global error vector w̃i

as

η(k) = lim
i→∞

E‖w̃i‖2diag(ek)⊗IM
(28)

where ek ∈ ZN×1 is a column vector with one at position k
and zeros elsewhere. We use (20) to write:

lim
i→∞

E‖w̃i‖2(I−F)σ =([
bvec(AT

2 MGTMA2)
]T

+
[
bvec(PT )

]TF)
σ (29)

Using (28) and (29), we obtain:

η(k) =
(

bvec(AT2MGTMA2)T + bvec(PT )TF
)
σmsdk

(30)

where σmsdk
= (I − F)−1bvec(diag(ek) ⊗ IM ). Note that

(I − F) is nonsingular since ρ(F) < 1. In the same way,
we can compute the EMSE for each node k, starting from its

∆F = (A1 ⊗b A1)

{
(RT ⊗b R) +

N∑
m=1

[
diag{vec(Cm1N×NCm)}

]
⊗
[
(β − 1)(RTu,m ⊗Ru,m) + rmr

∗
m

]}
(M⊗bM)(A2 ⊗b A2) (27)
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definition, i.e., ζ(k) = limi→∞ E‖w̃i‖2diag(ek)⊗Ru,k
, which

finally lead us to

ζ(k) =
(

bvec(AT2MGTMA2)T + bvec(PT )TF
)
σemsek

(31)

with σemsek = (I −F)−1bvec(diag(ek)⊗Ru,k).

B. Mean-Square Transient Analysis

Starting from (21) we obtain the following expression to
characterize the mean-square behavior of the algorithm in
transient-state:

E‖w̃i‖2σ = E‖w̃i−1‖2σ + ‖wo−1‖2Fi(I−F)σ + sTF iσ. (32)

where s =
[
bvec(AT2MGTMA)

]
+ FT

[
bvec(PT )

]
. By,

respectively, replacing σ with bvec
(
diag(ek ⊗ Im)

)
and

bvec
(
diag(ek ⊗ Ru,k)

)
into (32), we then arrive at two

expressions for the evolution of MSD and EMSE, at each
node k. Note that to obtain these expressions, we consider zero
initialization at each node over the network, i.e., wk,−1 = 0
for all k. The steady-state and transient network MSD are,
respectively, defined as the average of the steady-state and
transient MSD of the nodes. The same holds for the network
steady-state and transient EMSE. These results will be used
in Section V to demonstrate the transient MSD and EMSE
performance of diffusion-LMS networks.

IV. TRACKING PERFORMANCE AND OPTIMAL STEP-SIZES

In this section, we examine the tracking performance of
DLMS algorithms in non-stationary signal environments for
both cooperative and non-cooperative networks. We also inves-
tigate how an optimal choice of step-size parameter vector can
enhance the tracking ability of these algorithms and minimize
their steady-state MSD performance. In particular, we obtain
optimal step-sizes of the DLMS algorithms by defining a
constrained nonlinear optimization problem and solving it
through a log-barrier Newton algorithm.

A. Optimal Step-Size in a Non-cooperative Network

The MSD and EMSE of each node k in a non-cooperative
network can be obtained from (30) and (31) by setting

A1 = A2 = C = IN (33)

For this scenario, these expressions more explicitly can be
rewritten as:

η(k) =
(
µ2
k σ

2
v,k r

∗
k + b∗F̄k

)
(I − F̄k)−1mk (34)

ζ(k) =
(
µ2
k σ

2
v,k r

∗
k + b∗F̄k

)
(I − F̄k)−1rk (35)

where b = vec(Q), rk = vec(Ru,k), mk = vec(IM ) and

F̄k = I − 2µk R
T
u,k ⊗ IM + µ2

k

[
β(RTu,k ⊗Ru,k) + rkr

∗
k

]
(36)

We call signal dk(i) slowly time-varying if σ2
q � σ2

v,k

otherwise refer to it rapidly time-varying.
We now proceed to explain why the exact closed-form

expression (26) needs to be taken into account in finding the
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optimal value of the step-sizes over networks with rapidly
time-varying signals. For simplicity, we only present the MSD
performance results for a single node over the network. To
perform these numerical experiments, we use the DLMS algo-
rithm in the non-cooperative mode (i.e., A1 = A2 = C = I).
The regression data and the measurement noise are circular
complex-valued Gaussian. Fig. 1 and 2 show the steady-state
MSD of node k after 6000 iteration against the step-size µk.
For small step-size approximation, we have

F̄k ≈ I − 2µk R
T
u,k ⊗ IM (37)

while the exact F̄k value is given by (36). As it is shown
in Fig. 1, in slowly time-varying signal environment where
Tr(Q) = Mσ2

q = 0.005σ2
v,k, the optimal values of the step-

size that give the minimum MSD at node k are identical for
the exact value and small step-size approximations of F̄k. This
will be also the case for the optimal choice of the step-size
in the steady-state EMSE curve which is not shown here. In
contrast, as shown in Fig. 2, in the rapidly time-varying signal
environment where Tr(Q) = Mσ2

q = 0.5σ2
v,k, the optimal

values of the step-sizes obtained from the small step-size
approximation are far away from the correct values. Therefore,
to compute the optimal step-size parameters µk in rapidly
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varying signal environments, the terms depending on µ2
k in

F̄k cannot be ignored.
As it is seen from (34) and (35), in fast non-stationary signal

environments, the random walk qi and ∆F depend on µ2
k in

F̄k, which make the MSD and EMSE of each node k nonlinear
functions of the step-sizes µk1. Therefore, unlike the stationary
signal environment, the MSD and EMSE performance does not
improve as step-sizes approach zero. In fact, in non-stationary
scenario, there exists an optimal step-size in the stability range
of the algorithm for which the MSD and EMSE are minimized.
The optimal step-size that minimizes the MSD of each node
can be found by solving the following optimization problem:

µomsdk
= arg min

µk

η(k, µ)

s.t 0 < µk <
2

Tr
(∑

`∈Nk
c`,kRu,`

) (38)

The constraint in (38) is obtained from the DLMS stability
range (18). For slowly time-varying signals, a closed-form
solution can be obtained by using the small step-size approx-
imation in the evaluation of F̄k. To this end, we use (34) and
(35) to obtain:

η(k) = µk σ
2
v,k r

∗
k

(
RTu,k ⊗Ru,k

)−1
mk/2

+ b∗F̄k
(
RTu,k ⊗Ru,k

)−1
mk/2µk (39)

ζ(k) = µk σ
2
v,k r

∗
k

(
RTu,k ⊗Ru,k

)−1
rk/2

+ b∗F̄k
(
RTu,k ⊗Ru,k

)−1
rk/2µk (40)

It can be verified that (39) and (40) are convex with respect
to µk ∈ {µ1, . . . , µN}2. Therefore, computing the derivatives
of MSD and EMSE with respect to µk and forcing them to
zero yields, respectively:

µomsdk
=

√
b∗(RTu,k ⊗ IM )−1mk

σ2
v,kr

∗
k(RTu,k ⊗ IM )−1mk

(41)

µoemsek
=

√
b∗(RTu,k ⊗ IM )−1rk

σ2
v,kr

∗
k(RTu,k ⊗ IM )−1rk

(42)

These expressions give the optimal step-size values that lead
to minimum steady-state MSD and EMSE at a given node
k in slowly-varying signal environments in non-cooperative
mode. These results are in agreement with the optimal step-
size parameter obtained for the stand-alone LMS filter in
[41]. In rapidly varying signal environments, these expressions
are invalid as explained. Alternatively, we propose to use a
constrained iterative optimization method, specifically, the log-
barrier Newton method [42], to obtain the local optimal step-
sizes over the network.

B. Optimal Step-Sizes of DLMS Algorithms

We now propose an algorithm to obtain the optimal step-
sizes of DLMS algorithms that leads to lower estimation error

1It can be verified that if we ignore µ2k in Fk , the MSD and EMSE will be
linear functions of µk whose value monotonically decreases as µk become
smaller.

2In general, η(k) and ζ(k) may not be convex for all network topologies
and signal conditions.
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Fig. 3: Steady-State MSD performance of a two-node network
as a function of µ1 and µ2.

and faster tracking ability in the network. We begin this part
by illustrating the MSD performance of a simple network with
N = 2 against variation of the step-size parameters (see Fig.
3). As shown in this figure, there exists an optimal step-size
parameter vector at which DLMS algorithm attains its min-
imum MSD. Similar to the non-cooperative LMS algorithm,
in non-stationary signal environments, the steady-state MSD
and EMSE of DLMS algorithms increase as the step-sizes
move away from their optimal points. A similar behavior is
seen in network with multiple nodes. We can find the optimal
adaptation step-size vector of the network by solving the
following optimization problem:

(µo1, · · · , µoN ) = arg min
(µ1,··· ,µN )

{
(γ + αF)

1

N

N∑
k=1

σmsdk

}
s.t 0 < µk <

2

Tr
(∑

`∈Nk
c`,kRu,`

) (43)

where k = {1, 2, . . . , N}, α = bvec(PT )T , and γ =
bvec(AT2MGTMA2)T . Note that the constraint in (43) guar-
antees that the obtained solution will satisfy the stability
condition (18). A similar optimization problem can be formed
for minimization of the EMSE over the network. The non-
linear constrained optimization problem (43) can be converted
to an unconstrained optimization problem by adding a log-
barrier function to the objective, i.e.,

(µo1, · · · , µoN ) = arg min
(µ1,··· ,µN )

L(µ) (44)

where

L(µ) =(γ + αF)
1

N

N∑
k=1

σmsdk

− 1

t

N∑
k=1

[
log(µk) + log(

2

Tr
∑
`∈Nk

c`,kRu,`
− µk)

]
(45)

and t > 0 controls the accuracy of the solution. The solution
of the log-barrier method, denoted by µ, is suboptimal and it
is away from the optimal point by N

t . Therefore, as t→∞, it
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approaches the solution1 of the original problem (43) denoted
by µo = (µo1, . . . , µ

o
N ). Here, we introduce the threshold ε as a

desired stoping criterion of the following interior point method
optimization algorithm to find the solution. The nominal values
for ε and t are, respectively, 10−7 and 0.01. In this approach,
summarized under Algorithm 1, f(µ, t) can be any iterative
gradient algorithms, such as the steepest descent or the Newton
algorithm. In our implementation of Algorithm 1, we employ

Algorithm 1 : Step-size optimization

while
N

t
> ε

µi = f(µi−1, t) (Update the estimated step-size)

t = 2t (Increase the threshold)

Newton algorithm as it offers a fast convergence speed. Note
that at each iteration i the solution is away from the optimal
point by N

t . We double the value of t at each iteration
and use the previous solution of the Newton algorithm to
eventually approach the optimal step-size parameters. In this
implementation, for each i, several Newton iterations, denoted
by j, are performed before doubling the value of t. The
criterion to exit Newton iteration will be given at the end of
this section. The iterative Newton algorithm can be represented
as:

µj = µj−1 − α
(
∇2
µL(µj−1)

)−1

∇µL(µj−1) (46)

where α > 0 is the Newton step-size, and ∇µL(µj−1)
and ∇2

µL(µj−1), respectively, are the gradient and Hessian
matrices of the the augmented MSD function, L(µ), with
respect to µ:

∇µL(µ) , [
∂L(µ)

∂µ1
,
∂L(µ)

∂µ2
, · · · , ∂L(µ)

∂µN
]T (47)

∇2
µL(µ) ,



∂2L(µ)
∂2µ1

∂2L(µ)
∂µ1∂µ2

· · · ∂2L(µ)
∂µ1∂µN

∂2L(µ)
∂µ2µ1

∂2L(µ)
∂2µ2

· · · ∂2L(µ)
∂µ2∂µN

... · · · · · ·
...

∂2L(µ)
∂µNµ1

∂2L(µ)
∂µN∂µ1

· · · ∂2L(µ)
∂2µN

 (48)

To improve the convergence speed of the Newton algorithm,
a line search algorithm such as Armigo rule [43] can be
implemented to compute the value of α at each iteration. Nev-
ertheless, implementing a line search algorithm will be more
useful for algorithms with slow convergence speed such as the
gradient descent. Introducing lk , 2/(Tr

∑
`∈Nk

c`,kRu,`),
the enteries of the first order gradient are computed as:

∂L(µ)

∂µn
=

1

N

{
%
∂F(µ)

∂µn
+
∂γ(µ)

∂µn

} N∑
k=1

σmsdk

− 1

t

( 1

µn
− 1

ln − µn
)

(49)

1The optimization problem (43) is not convex in general. The term
“solution” is used to refer to one of the local stationary point of this function
within the stability range of DLMS that leads to a lower MSD.

where % = α+ (αF +γ)(I−F)−1 and the partial derivatives
are:

∂F(µ)

∂µn
= −(A1 ⊗b A1)

[
(RT ∂M(µ)

∂µn
)⊗b (I −RM)

+ (I −RTM)⊗b R
∂M(µ)

∂µn

]
(A⊗b A) (50)

∂γ(µ)

∂µn
=
[
bvec(AT2

∂M(µ)

∂µn
GTMA)

+ bvec(AT2MGT
∂M(µ)

∂µn
A2)

]T
(51)

∂M(µ)

∂µn
= diag{0, · · · , IM , · · · ,0} (52)

The elements of the Hessian matrix are computed as:

∂2L(µ)

∂µm∂µn
=
{∂%(µ)

∂µm

∂F(µ)

∂µn
+ %

∂2F(µ)

∂µmµn
+
∂2γ(µ)

∂µmµn

− (%
∂F(µ)

∂µn
+
∂γ(µ)

∂µn
)(I −F)−1 ∂F(µ)

∂µm

} 1

N

N∑
k=1

σmsdk

+ δnm
1

t

( l
µ2
n

− 1

(ln − µn)2

)
(53)

where
∂%(µ)

∂µm
= (α

∂F(µ)

∂µm
+
∂γ(µ)

∂µm
)(I −F)−1

− (αF + γ)(I −F)−1 ∂F(µ)

∂µm
(I −F)−1 (54)

∂2F(µ)

∂µmµn
= (A1 ⊗b A1)

[
(RT ∂M(µ)

∂µn
)⊗b (R∂M(µ)

∂µm
)

+ (R∂M(µ)

∂µm
)⊗b R

∂M(µ)

∂µn

]
(A⊗b A) (55)

∂2γ(µ)

∂µmµn
=
[
bvec(AT2

∂M(µ)

∂µn
GT ∂M(µ)

∂µm
A)+

bvec(AT2
∂M(µ)

∂µm
GT ∂M(µ)

∂µn
A2)

]T
(56)

The stopping criterion for the Newton iteration will be

∇µL(µj)∇2
µL(µj)∇µL(µj) < ε (57)

As shown, the optimal step-size of each node not only depends
on the energy profile of the node itself but also on that
of its neighbors. The initial value of the parameter vector
i.e., µk(−1) can impact the final value of the converging
point of Algorithms 1 if chosen arbitrarily. Specifically, our
experiments suggest that these initial values should be chosen
within the stability range (18). In particular, the following
nominal choice is recommended:

µk(−1) =
1

5Tr(
∑N
k=1 c`,kRu,`)

(58)

V. NUMERICAL RESULTS

In this section, we present the results of our computer
simulations to demonstrate the tracking performance of DLMS
algorithms and to verify the theoretical findings. We consider
a connected network with N = 10 nodes that are placed
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randomly on a unit square area (x, y) ∈ [0 1] × [0 1],
as shown in Fig. 4. The maximum communication range of
each node is 0.4 unit length, i.e., two nodes are considered
as neighbors if their distance is less than 0.4. The network
energy profile is shown in Fig. 5. The objective of the
network is to cooperatively estimate and track a time-varying
parameter vector wo

i of size M = 2 that evolves with time
according to the first order random walk model given in (2).
For this model, we consider both rapidly and slowly time-
varying parameters. In this simulation, we choose Tr(Q) =
0.0025 min(σ2

v,1, · · · , σ2
v,N ) for slowly varying parameters.

We set A1 = I , compute matrix C according to metropolis
rule [29] and obtain the combination matrix A2 according to
the relative degree criterion [30]. In the results, we use CMet
and ARel to denote Metropolis and relative degree combination
matrices, respectively. We use Algorithm 1 to find the optimal
step-sizes of the network. For this algorithm, we use ε = 10−7,
and initialize t at 0.01. We choose the initial value µk(−1)
according to (58) for all k.

Figs. 6 and 7 show that the algorithm finds the nodes’
optimal step sizes after about 30 iterations. These figures also
shows how the steady-state MSD and EMSE of the network
improve at each iteration of this algorithm.

Fig. 8 shows the MSD of the network versus the mean of
the step-sizes, at each iteration j, for cooperative and non-
cooperative networks. These results indicate that the network
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Fig. 6: Network performance improvement in terms of MSD
and EMSE versus iteration number in step-size optimization.
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TABLE I: Performance comparison of the step-size optimiza-
tion methods for slowly-varying network environments.

Method
Step-size Formula (41) Algorithm 1
µo1 0.00905 0.00918
µo2 0.00900 0.00910
µo3 0.01739 0.01760
µo4 0.01946 0.01967
µo5 0.01355 0.01373
µo6 0.04472 0.04780
µo7 0.01471 0.01510
µo8 0.00715 0.00724
µo9 0.01678 0.01748
µo10 0.00667 0.00675

with DLMS algorithms has higher tracking agility than the
network with non-cooperative LMS.

In Table (I), we compare the results of Algorithm 1 and the
closed form expression (41) in finding the optimal step-sizes
of the network in the non-cooperative mode where the signal is
slowly time-varying. We observe that the numerical difference
between the results of these two methods is insignificant and
the Algorithm 1 performs well.

In Fig. 9, we evaluate the performance of DLMS algorithms
in tracking time-varying parameters and examine the impact
of step-size parameters on their performance. We observe that
the network estimates the underlying parameters of interest
after few samples and keeps tracking the parameter changes
over time.

Figs. 10 and 11 show the steady-state and transient behavior
of DLMS algorithms in terms of MSD with optimal and non-
optimal step sizes. We use the optimal step-sizes obtained
from previous simulations and use equal step-sizes within
the stability range of the algorithm as non-optimal step-size
values. For this simulation, the non-optimal values are chosen
as µk = 0.01 for all k. The algorithm is tested for two network
modes, i.e, cooperative and non-cooperative. As these results
indicate, the network in the cooperative mode with ARel and
CMet outperforms the network in non-cooperative case. We
also observe that the MSD performance of all nodes over
the network is almost identical in cooperative mode while
in the non-cooperative mode, the performance discrepancy
between nodes is more than 5dB. This implies that nodes
reach a consensus on the estimated system parameters despite
having different energy and noise profile. In all scenarios, the
simulations and analysis results coincide well.

From Figs. 10 and 11, we also observe that the optimal step-
size parameters, {µok}, significantly increase the convergence
speed of the algorithm and enhance the accuracy of the
estimation.

Fig. 12 shows the performance of DLMS [5] with fixed
step-sizes and with the optimal step-sizes proposed in rapidly
varying signal environment. For this simulation, we increase
the value of Tr(Q) by 10 times to model the fast-varying signal
condition. All the other parameters are chosen the same as the
previous case. The nearly optimal step-sizes were obtained
using the proposed interior point method. The computed values
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are µ1 = 0.0542, µ2 = 0.0440, µ3 = 0.0583, µ4 = 0.1630
µ5 = 0.1099, µ6 = 0.2445, µ7 = 0.0566, µ8 = 0.0419, µ9 =
0.0917, and µ10 = 0.0279. As expected, for the fast-varying
case, the computed step-sizes are larger than the ones obtained
for the slow-varying case. As shown in Fig. 12, the DLMS
algorithm with the optimal step-sizes not only converges faster
but also achieves a lower error rate that the DLMS with non-
optimal step-size values. We also note that the theory and
simulation results coincide well for all cases.

To find the optimal step-size values, we have also implem-
neted the gradient projection method, also refered to as pro-
jected gradient (PG) algorithm. The numerical results for this
algorithm and the interior point method (IPM) with Newton
iterations are presented in Figs. 13 and 14. Fig. 13 shows
the convergence bahavior of the PG algorithm and compare it
with that of the IPM algorithm. As illustrated in this figure,
both algorithms take almost similar trajectory for

∑N
k=1 µk to

reach the desired step-size parameter vector. However, as Fig.
14 shows the IPM converges after 35 iterations whereas PG
algorithm takes about 2000 iterations. It should be noted that
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Fig. 14: The MSD and EMSE convergence bahvior versus
iterations with PG and IPM with Newton.

the PG algorithm has lower computational complexity than the
IPM. Our numerical simulation reveals that the performance
of the PG algorithm highly depends on the step-size it uses.
Therefore, a line search algorithm should be implemented
along with it. In contrast, the performance of IPM with Newton
algorithm is satisfactory even with no line search algorithm.

VI. CONCLUSIONS

We examined the performance of DLMS algorithms in non-
stationary signal environment where the underlying model
parameters of interest vary over time. We showed that there
exists an optimal step-size parameter vector by which the
DLMS algorithms reach their minimum MSE in the steady-
state. We found this optimal step-size parameter vector by
formulating a constrained nonlinear optimization problem and
solving it through a log-barrier Newton algorithm. Our studies
show that the optimal step-size parameter at each node in the
network not only depends on the statistics of the random walk
and the energy profile of the node itself but that is also depends
on the energy and statistical profile of neighboring nodes. The
results show that the optimal step-size parameters obtained
through constrained optimization can substantially improve
the performance of DLMS algorithms in tracking time-varying
parameters over networks.

APPENDIX A
DERIVATION OF (27)

We first note that when uk,i are zero mean circular complex-
valued Gaussian random vectors, then for any Hermitian
matrix Γ of compatible dimensions it holds that [41]:

E[u∗k,iuk,iΓu
∗
k,iuk,i] = β(Ru,kΓRu,k) +Ru,kTr(ΓRu,k)

(59)
where β = 1 for complex regressors and β = 2 when the
regressors are real. Based on this result, we obtain:

E[u∗k,iuk,iΓu
∗
`,iu`,i] = Ru,kΓRu,` + δkl(β − 1)Ru,kΓRu,k

+ δklRu,kTr(ΓRu,k) (60)
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δkl is Kronecker delta function. We now proceed to compute F
using this result. The block vectorization of the first three terms
in (22) is straightforward. We only present the computation of
the fourth term. Tacking the block vectorization of the fourth
term yields:

bvec(E[A1R∗iQRiAT1 ]) =(A1 ⊗b A1)bvec(Π), (61)

where here Q = MAΣATM, and Π = E[R∗iQRi]. The
[k, l]-th block of Π is given by:

Πk,l =
∑
m

∑
n

cm,kcn,`E[u∗m,ium,iQk,lun,iu
∗
n,i]

=
∑
m

cm,kcm,`E[u∗m,ium,iQk,lum,iu
∗
m,i]

+
∑
m

∑
n

(1− δmn)cm,kcn,`E[u∗m,ium,iQk,lun,iu
∗
n,i]

(62)

Using this expression, we obtain:

Πk,l =
∑
m

cm,kcm,`
[
(β − 1)Ru,mQk,lRu,m

+Ru,mTr(Qk,lRu,m)
]

+
∑
m

∑
n

cm,kcn,`[Ru,mQk,lRu,n]

(63)

Some algebra and data rearrangement then give:

bvec(Π) =
N∑
m=1

[
diag{vec(Cm1N×NCm)}

]
⊗
[
(β − 1)(RTu,m ⊗Ru,m) + rmr

∗
m

]
bvec(Q)

+ (RT ⊗b R)bvec(Q) (64)

where in this relation Cm = diag(eTmC), rm = vec(Ru,m)
and 1N×N is the N ×N matrix with unit entries. Finally, by
computing the block vectorization of the first three terms in
(22) and using (64), we arrive at (26).
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