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Abstract—This paper considers the uplink of large-scale
multiple-user multiple-input multiple-output millimeter wave
systems, where several mobile stations (MSs) communicate with
a single base station (BS) equipped with a large-scale antenna
array, for application to fifth generation wireless networks.
Within this context, the use of hybrid transceivers along with
antenna selection can significantly reduce the implementation
cost and energy consumption of analog phase shifters and low-
noise amplifiers. We aim to jointly design the MS beamforming
vectors, the hybrid receiving matrices (baseband and analog),
and the antenna selection matrix at the BS in order to maximize
the achievable system sum-rate under a set of constraints. The
corresponding optimization problem is nonconvex and difficult
to solve, mainly due to the receive antenna selection and constant
modulus constraints on the analog receiving matrix. By exploiting
the special structure of the problem and linear relaxation, we first
convert this problem into three subproblems, which are solved via
an alternating optimization method. The latter iteratively updates
the antenna selection matrix, the transmit beamforming vectors,
and the hybrid receiving matrices by sequentially addressing each
subproblem while keeping the other variables fixed. Specifically,
the antenna selection matrix is optimized via the concave—
convex procedure; the weighted mean-square error minimiza-
tion approach is used to find the solution for the transmit
beamformer; and the hybrid receiver is obtained via manifold
optimization. The convergence of the proposed algorithm is
analyzed and its effectiveness is verified by simulation.

Index Terms— Hybrid transceiver, millimeter-wave, antenna
selection, CCCP, manifold optimization.

I. INTRODUCTION
N ORDER to mitigate spectrum shortage and increase
transmission rates, millimeter wave (mmWave) communi-
cations are now considered as a key enabling technology for
the fifth generation (5G) wireless systems and beyond [1]-[4].
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Recently, mmWave systems (with operating frequency in the
range 30-300GHz) combined with large-scale multiple-input
multiple-output (MIMO) techniques have drawn significant
attention within the research community [5]-[8] as a means
to tremendously improve system capacity.

Nevertheless, mmWave-based large-scale MIMO will
increase fabrication cost and energy consumption of the radio
frequency (RF) chains as well as of the analog-to-digital (A/D)
converters. To address these issues, the use of a hybrid trans-
ceiver structure consisting of a baseband digital and RF analog
units has been considered as an attractive solution, since it
allows to employ a number of RF chains that is much smaller
than the number of antenna elements. Two basic kinds of RF
electronic modules have been considered for hybrid transceiver
implementation, namely: analog phase shifters and analog
switches. If analog phase shifters are used [9]-[12], a constant
modulus constraint on the elements of the analog transceiver
matrices will be imposed. If the simpler and less expensive
analog switches are used in the hybrid transceiver [13]-[15],
the latter cannot achieve full diversity gain in correlated
channels. A typical algorithm to design hybrid transceivers is
based on orthogonal matching pursuit (OMP) [10], [12], [15],
where the columns of the analog transceiver matrix can be
selected from certain candidate vectors, such as e.g., the array
response vectors of the channel matrices. To solve for the
analog transceivers under the constant modulus constraint, an
alternating algorithm based on manifold optimization (MO)
has been proposed in [16].

In large-scale MIMO mmWave systems with hybrid
transceivers, the numbers of analog phase shifters and
low-noise amplifiers (LNA) can be quite large and their
energy consumption is considerable. By employing antenna
selection, we can turn off some antennas, phase shifters
and LNAs, making the system more energy -efficient.
Therefore, it is of interest to consider transceiver design
with antenna selection. Optimal antenna selection requires
an exhaustive search whose complexity grows exponentially
with the number of antennas, which is computationally
prohibitive for massive MIMO systems. Reducing the
computational complexity of antenna selection in these
systems is therefore of great practical and theoretical interest,
as further discussed in [17] and [18]. For the traditional
MIMO spatial multiplexing systems, Gorokhov et al [19]
have provided a comprehensive study of antenna selection
algorithms and developed an efficient decremental algorithm
to this end. Specifically, it has been proved in [19] that
the sum-rate of the system with receive antenna selection
is statistically lower bounded by that of a set of parallel
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independent single-input multiple-output (SIMO) channels.
Receive antenna selection based on a maximum-norm
criterion for independent and identically distributed (i.i.d)
Rayleigh fading channels has been proposed in [20]. From the
optimization perspective, linear relaxation has been employed
in [21]-[23] to simplify the convex optimization problem
into a form that is solvable in polynomial time. For mmWave
systems, a new solution to minimize the side lobe levels for
antenna selection is developed in [24] based on compressed
sensing techniques and convex optimization relaxation. Joint
design of transceiver and antenna selection can significantly
enhance the utility of communication systems, which has
been studied in [25]-[27]. However, this type of optimization
problems are generally nonconvex and NP-hard, even in the
single-antenna case [28], while in the case of large-scale
MU-MIMO, the need for hybrid transceiver design renders
the corresponding problem even more challenging.

In this paper, the transceiver design for the uplink of large-
scale multiple-user MIMO (MU-MIMO) mmWave systems
is investigated. In particular, to exploit the spatial diversity
and reduce the energy consumption at the BS, we study the
joint design of the hybrid transceiver matrices and receive
antenna selection scheme, where the goal is to maximize
the system sum-rate under constraints on the transmit power,
analog phase-shifter modulus, and receive antenna selection
matrix. We develop an efficient iterative algorithm based
on alternating optimization (AO) to address the resulting
nonconvex problem. By fixing the transceiver design, we
optimize the receive antenna selection matrix based on the
concave-convex procedure (CCCP) [29]. Then by fixing the
hybrid receiver and the receive antenna selection matrix,
we use the weighted minimum mean square error (WMMSE)
approach [30] to optimize the transmit beamforming matrices.
Finally, MO [16] is adopted to update the hybrid receiver while
fixing the remaining variables. The convergence and sum-rate
performance of the proposed algorithm is also investigated.

The contributions of this paper are summarized as follows:

1) We investigate hybrid transceiver design with antenna
selection for the uplink of large-scale MU-MIMO mmWave
systems, where the underlying objective is to maximize the
total sum-rate. To the best of our knowledge, there is currently
no work that considers the sum-rate maximization problem for
this system model.

2) We propose a CCCP-based method to optimize the
antenna selection matrix, which admits a binary solution
instead of a fractional solution following the linear relaxation.

3) We employ MO instead of the conventional relaxation
based on Frobenius norm [10], [16] to solve the original
sum-rate maximization problem. By using MO, the space of
feasible solutions for analog receiving matrix is not restricted
and the solution is guaranteed to converge to a stationary point.

4) We develop a low-complexity iterative algorithm that
approaches the performance of an exhaustive antenna selection
scheme, and the convergence of the proposed algorithm is
analysed.

This paper is organized as follows. In Section II, the system
model is introduced and the related optimization problem
is formulated. Then we describe the CCCP-based method for
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Fig. 1.

A mmWave uplink system.

antenna selection in Section III while the WMMSE and the
MO approaches for hybrid transceiver design are presented in
Section IV and Section V, respectively. The convergence of
the proposed algorithm is analyzed in Section VI. Simulation
results are presented in Section VII to demonstrate the perfor-
mance of the proposed algorithm. Finally, Section VIII draws
the conclusion.

Throughout this paper, we use bold upper-case letters for
matrices while keeping the bold lower-case for vectors and
small normal face for scalars. For a matrix A, [A];; is the
entry on the i’" row and j" column. The superscript A,
A*, AT and Af denote the Moore-Penrose pseudo inverse,
conjugate, transpose, and Hermitian transpose of A, respec-
tively. Furthermore, I is the identity matrix whose dimension
will be clear from the context, and C"™*" denotes the m by n
dimensional complex space. The notations E(-), Tr(-), det(-),
vec(-) and R(-) represent the expectation, trace, determinant,
vectorization and real part, respectively. o is the Hadamard
product between two matrices. The complex circular-normal
distribution is denoted by CAL(:, -).

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the mmWave uplink
system model and then formulate the problem under study.

A. System Model

We consider the uplink of a large-scale MU-MIMO
mmWave system as shown in Fig. 1, where K mobile sta-
tions (MSs) indexed with k € X £ {1,2,..., K} and each
equipped with 7' antennas, simultaneously communicate with
a common base station (BS) through a mmWave channel.
The BS is equipped with R receive antenna elements that are
individually fed to LNAs. In the envisaged 5G application, the
MS is equipped with a small number of antennas while this
number for the BS is much larger, that is, we assume R > T
and R > TK. Hence, a fully digital transmit beamformer is
assumed at the MS, while a hybrid structure with Ngr < R
chains along with antenna selection is used at the BS.

Referring to Fig. 1, the transmitted signal by the k' MS is
given by

(1

where sy € C is the transmitted symbol and v, € CT*!
denotes the corresponding transmit beamforming vector.

Xk = UkSk,
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For convenience, we assume that E(|s;|?) = %, i.e., the

original symbol power in the system is constant, although this
condition is not essential and can be relaxed.! A constraint on
the total transmit power for each MS is enforced by setting
Tr(vkka) <1, fork € K.

In this work, as further discussed below, we consider a
narrowband frequency-flat channel model. Accordingly, the
received signal vector at the BS is given by

K

y=p > Hivisi +n, 2

k=1
where Hy € CR*T is a normalized random channel matrix
with E [Tr(HkH,fI )] = TR, p represents the maximum average
received power and n denotes the additive white Gaussian
noise (AWGN) vector at the BS with distribution cA((0, 021).
If we denote

s
v

T
[s1,82,...,5x]

[Hivi, Hyvy, ..

>

(1>

., Hgogl,

then (2) can be compactly written as

y=.pVs+n. (3)

In order to reduce the energy consumption and the compu-
tational complexity in optimizing the beamformers while still
exploiting spatial diversity for the BS with large-scale receive
antenna arrays, antenna selection is invoked. Specifically, we
select K; out of R antennas at the receiver side, where we
assume Nrr < K; < R. This is conveniently expressed by
means of a diagonal antenna selection matrix A € CR*R  with

entries [A];; = 1 if the i"" antenna is selected and [A];; = 0
otherwise, where ZiR:l[A],-,- = K. Then the corresponding
received signal vector after antenna selection will be

ya £ Ay =/pAVs + na, “4)

where np = An.

To reduce the hardware complexity at the BS, only Ngr RF
chains are used with analog phase shifters, where we assume
that K < Nrr < R. We denote by Ugr € CR*NrF the
corresponding analog receiving matrix, whose entries have
constant modulus, i.e. [[Ugrlij| = 1, for 1 < i < R,
1 < j < Npgrr. The hybrid beamformer output signal
after analog phase shifting and baseband processing can be
expressed as

§ = UL Ul ya, )

Here we remark that our proposed approach can be extended to the case
where the different users have their own power constraints. For example,
i 12y — : L e o .7
by assuming E(|sx|?) = pr and defining s = [s1,s2,...,5x]", we have

K K

E(Tr(ss™)) = > py. Further, if we define p’ £ p/ > py., then Eq. (3) can
k=1 k=1

be rewritten as y = \/F Vs + n. As a result, the corresponding problem has

the same form as that of problem (8) and thus it can be solved by using our

proposed algorithm.
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where Ugp € CNrFXK denotes the baseband processing
matrix.

Under the above processing assumptions, the sum-rate of
the hybrid beamforming system in Fig. 1 will be given
by Eq. (6), as shown at the bottom of this page, [10].

B. Channel Model

Within the context of narrow-band bandpass transmission,
there is only limited spatial selectivity [10] due to the high path
loss at mmWave frequencies and the high antenna correlation
of tightly packed arrays. Based on the Saleh Valenzuela
model [31]-[33], the channel matrix can be expressed as”

TR <&
H=\/== 2w GDA @ha @a@h™, )
=1

where L is the number of rays, a; ~ CA((0, 1) is the complex
gain of the I'" ray, and o (¢l’ ) represents its azimuth angles
of arrival (departure) (AoA and AoD). The functions A" (¢;)
and A’(¢]) represent the directivity gains for the receive and
transmit antenna elements at the corresponding AOA and AoD.
The receive and transmit array response vectors are denoted by
ar(¢]) and a;(¢]), respectively, whose mathematical expres-
sions depend on the particular antenna array geometries.

C. Problem Formulation

In this work, we aim to select the receive antennas at the
BS, A, the transmit beamforming vectors at the MSs, vy, for
k € %, and the hybrid receiving matrices, Urr and Upp, in
order to maximize the uplink system sum-rate in (6) under
the constant modulus constraints on Ugr and the transmit
power constraints on vx. Mathematically, the problem can be
formulated as

max R
A, v, Urr,Upp
s.t. Tr(vkv,f’) <1, kexk,
[Urrlijl =1, 1<i <R, 1< j<Ngr,
[Ali €{0,1}, i=1,2,...,R,
R
> [ALi = K. ®)

i=1

Note that problem (8) is nonconvex and difficult to solve due
to the constant modulus and the antenna selection constraints.
Even if we fix Ugp, UgFp, and vg, there is still no simple
approach to obtain the optimal antenna selection matrix A
unless an exhaustive search is performed. To address the
optimization problem in (8), we exploit the special structure
of the problem and convert it into three subproblems. We then
resort to an AO method that iteratively updates the antenna

2For simplicity, a planar propagation geometry is assumed, but extension
to three-dimensional space is possible.

R £ logdet(I + #UQ’BU};’FAVV”A”URFUBB(Ug’BUg’FURFUBB)*‘) (6)
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selection matrix, the transmit beamformers, and the hybrid
receiving matrices by sequentially addressing each subproblem
while keeping the other variables fixed. In the following
sections, the antenna selection matrix is first derived via the
CCCP-based method. Then, a non-iterative WMMSE approach
is proposed to find the transmit beamformers. Finally, the
hybrid receiver is obtained by using MO.

III. ANTENNA SELECTION

In this section, we optimize the antenna selection matrix A
via the CCCP-based method while fixing the transmit beam-
formers and hybrid receiver. To this end, we first reformulate
problem (8) into a more tractable form with respect to A.

Specifically, we abstract the BS hybrid receiver operation
by assuming ideal multi-user MMSE decoding, and focus
on optimizing the antenna selection matrix. As a result, the
original problem in (8) can be simplified into the following
approximate problem [10]:

P HAH
logdetd+ ——AVV7A
mﬁix ogdet(I + ) )

st. [Alii €{0,1}, i=1,2,...,R,
R
> 1AL = K. ©
i=1

According to the Sylvester’s determinant theorem in Eq. (24)
of [35], we obtain

log det(I + -2~ AVVH AH)
Ko?
= logdet(I + -2V AHAV),
Ko?
Then problem (9) can be rewritten as
P vHAH
logdet(I+ — V7 A" AV
mﬁlX ogdet(I + Ko2 )
s.t. [Al;; €{0,1}, i=1,2,..., R,

R
> (Al = K.
i=1

Furthermore, since each [A];; is either O or 1 and A is a
diagonal matrix, we have [A]izi = [A];;, implying ATA =A

R
and Z[A]izi =

i=1
Therlefore, problem (10) can be converted to

(10)

K (due to the second equality constraint).

R
P vH 2
max log det(I + K—02V AYV) +ﬂ(;[A]ii - Ky)
s.t. [A];; €{0,1}, i=1,2,...,R,
R

> [Ali = K,

i=1

Y

where S is a positive constant. Note that the second term
in the objective function of the above problem is strongly
convex while the Hessian of the first term in the objective
function is bounded over the compact constraint set. Thus,
it can be shown that there exists a sufficiently large f such
that the objective of problem (11) is convex. Since maximizing
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a convex function over a simplex must yields solution at the
vertex of the simplex, problem (11) is equivalent to
R
p
maxlog det(I + K—O'ZVH AV)+ B IAL — Ky)
i=1
st. 0<[Ali<1, i=1,2,...,R,
R

> [ALi = K,

i=1

(12)

which is obtained by relaxing the binary constraints, i.e., linear
relaxation [21], [34].

From the above discussion, it is important to determine S,
which is explained in the following Theorem 1, whose proof
is presented in Appendix A.

RTheorem 1: Let a be the second-order derivative of
> [A]izi — K, with respect to [A]; and let b represent

i=1
an upper bound on the absolute value of the second-order

derivative of logdet(I + KLanH AV) with respect to [A];;.
Then, problem (12) admits a binary solution for [A];; when
p=bja.

Now we are ready to solve the convex problem (12). Since
the objective of the problem is to maximize a convex function
with a special constraint (which is a simplex), we can apply
the CCCP-based method [29] to it. To illustrate this approach,
let us define

p

R
~5VIAV) + B IAT; — Ky), (13)

i=1

f(A) £ logdet(I +
and
R
SE(A|0<[Al; <1,ie{l,2,...,R}, D [Ali = K}
i=1

(14)

Since f(A) is convex, according to Appendix A, the following
inequality always holds at the given point Ajp;,

R
F(A) = f(Aim) + D gi([ALi — [Awilid), A€, (15)
i=1
where
of (A)
O[A];
2
Ko?

(1>

8i

A=Ajni
va -+ KLUzVHAmiV)_lVH]ii + 2B[Ainilii-
(16)

Hence we can maximize the tight lower bound of f(A),
i.e. the right side of (15), leading to the following problem?

R

Acccp =argmax > gilAlii (17)
i=1

31t is worth mentioning that problem (17) can be also viewed as a
subproblem of the Frank-Wolfe method [36, pp. 262-266] as applied to (12).
However, since we are maximizing a convex function, it is not necessary
to further update the initial value of A used for the next iteration as in the
Frank-Wolfe method. Hence, although the CCCP method shares the same
subproblem with the Frank-Wolfe method, these two methods are essentially
different when applied to problem (12).
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TABLE I
PSEUDO CODE OF THE CCCP-BASED METHOD FOR OPTIMIZING A

1 Initialize Aj,; such that Ay € S;

2 Determine 3 according to Theorem 1;
3 Solve problem (17);

4 Return Acccp.

Since problem (17) is a linear program with constraint set (14),
its solution has a special structure. Specifically, for the indices
of the K largest values of g;, the corresponding entries of the
optimal A are 1 while the remaining entries are 0. This implies
that problem (17) automatically admits a closed-form binary
solution. Thus the CCCP-based method applied to (12) can be
efficiently implemented; the detailed procedure is summarized
in Table L.

IV. OPTIMIZING BEAMFORMER

In this section, we optimize the transmit beamformers vy,
given the antenna selection matrix and the hybrid beamformer
at the BS receiver. As mentioned earlier, it is difficult to
optimize the v on the basis of the complete sum-rate objective
in (8). Here, we use the WMMSE approach to transform
the sum-rate maximization problem into a weighted MSE
minimization problem, which is easier to solve.

To obtain sub-optimal beamformers vx, we focus on the
following optimization problem,

max logdet(I + -2 AVVH A¥)
vk Ko

st Tr(wevf) <1, kex. (18)

The WMMSE approach can obtain a stationary solution to
this problem [30] by using an iterative block coordinate
descent (BCD) method. However, in our proposed approach,
we do not really need to find a stationary point of (18). Instead,
to reduce the computational complexity, we propose to use a
simplified, non-iterative form of weighted MSE reduction that
leads to improved beamforming vectors, as explained below.

We first reformulate the sum-rate maximization prob-
lem (18) into an equivalent problem involving weighted MSE
minimization. The MSE matrix of the received signal vector
at the BS can be expressed as

E(U,V) 2 E[G—9)G — )]
_ %(I — JPUH AV — J/pUH AVYH

+o2Ufy, 19)

where § = U yp and U is an abstract fully digital receiver.
At this time, U only serves as an intermediate variable in the
update of the beamformers vy but it will be further decom-
posed into an hybrid product Ug rUpp later in Section V. The
corresponding MSE minimization problem can then be written
as

min Tr(E(U, V))
v, U

st Tr(wevf) < 1, ke X. (20)

2089

By fixing vy, solution of the above problem leads to the
well-known MMSE receiver
ymmse — %(%AVVHAH +o2)TAV. 2D

Substituting (21) into (19), the corresponding MSE matrix
reduces to

1
Emmse a P VH A H(P AVVHAH 021)—1 AV).
(22)

Directly following the proof in [30], we have the following
theorem which establishes the equivalence between the
sum-rate maximization problem and the weighted MSE
minimization problem.

Theorem 2: Let W > 0 be a weighting matrix. The problem

in Tr(WE) — log det(W
min r(WE) — log det(W)

st Tr(wevf) <1, kex, (23)
is equivalent to problem (18), in the sense that they share the
same KKT solution set.

It can be observed that the weighted MSE cost function
in (23) is convex in each block of the optimization variables,
that is U, W, and vx. Moreover, the constraints are separable
across the block variables. Therefore, the BCD method
[36, pp. 323-330] applies to problem (23). Specifically, we
minimize the weighted-MSE cost function with respect to
one block of variables while fixing the other blocks, hence
leading to the following three steps.

i) Update U while fixing vy and W: this step yields the
MMSE receiver U™™¢ given by (21).
ii) Update W while fixing U and the wvy: this step yields a
closed-form solution as follows
WOpt — (Emmse)—l. (24)
iii) Update vy while fixing W and U: in this step, we solve
the following problem for k = 1,2, ..., K,

min Tr[%W(I — JpU AV T — /pUH AV)H]
vk

st Tr(wevf) < 1, ke X. (25)

The above is a convex quadratic optimization problem
with K separable constraints; accordingly, it can be
solved by Lagrange multipliers.

We do these three steps only once, which ensures that vy
are improved (in the sense of improving the objective).

V. OPTIMIZING HYBRID RECEIVER

In this section, inspired by [16], we use MO to search the
solution for Upp and Ugpr by fixing A and vx. However,
our approach considers the original sum-rate maximization
problem (8), which is different from the Frobenius norm
based approach in [16].
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TABLE II
PSEUDO CODE OF MO ALGORITHM FOR U (SEE ALSO APPENDIX B)
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TABLE III
PSEUDO CODE OF THE CCCP-WMMSE-MO ALGORITHM

Initialize Uprp,o such that g = vec(Ugp,0) € M™;
do = —gradp(zo) and r = 0;
repeat
Choose the Armijo backtracking line search step size a;

Find the next point a,4y1 and the
URF,»410sing retraction in (37);

[ O N S

corresponding

6  Determine Riemannian gradient g,41 = gradp(x,41) ac-
cording to (35) and (36);

7 Calculate vector transports g;r and d;° of the gradient g,- and
conjugate direction d,. from a, to @, 41;

8 Choose the Polak-Ribiere parameter v, 41;
Compute conjugate direction d,41 = —gr4+1 + Yr+1 d;;
10 r«r+1;
11 until a stopping criterion is satisfied.

A. Baseband Receiver Design

First, we design the baseband receiver Upp while fixing
the analog receiver Ugfr. Since we already have fully digital
MMSE receiver U™™¢ from the beamformer optimization,
we simply need to exploit the decomposition of U""*¢ into
the product of Ugrr and Upp. As a result, we can obtain
the well-known least squares solution for the baseband
beamformer, as given by

Upp = Uj,, U™, (26)

Clearly, this is a globally optimal solution for the baseband
receiver design with a fixed analog receiver.

B. Analog Receiver Design

We here focus on optimizing the analog receiver while
fixing A, vy and Upp, ie., update Ugrr by finding the
solution of the following optimization problem

max R
Ugrr

s.t. [[Ugrlijl =1,

This problem is complex mainly due to the constant modulus
constraints, which is intrinsically nonconvex. Here we use
MO to address the issue, which has the following two
advantages: 1) the rich geometry of Riemannian manifolds
makes it possible to define gradients of cost functions in
terms of vector fields; 2) optimization over a Riemannian
manifold is locally analogous to that over a Euclidean space
with smooth constraints. As a result, we can resort to the well
developed conjugate gradient algorithm in Euclidean spaces
to find its counterpart in Riemannian manifolds, as further
explained in Appendix B. In [16], the hybrid receiver is
designed by minimizing its Frobenius distance to the optimal
fully digital receiver. Here, by exploiting the idea of MO,
we directly solve the sum-rate maximization problem (27),
which results in better performance.

Based on Riemannian geometry, we can develop an iterative
algorithm to optimize the analog receiver matrix Ugr, which
is summarized in Table II. In this algorithm, the use of the

l<i<R, 1<j=<Ngr. 27

Initialize A, vi, Urp and Upgp, such that they meet all the
constraints;

repeat
use CCCP-based method to find A;
U+ Y2(LAVVHAT 4 o21)71AV;
W« (£(I-pVIAafdU))~1
fork=1: K
use Lagrange multiplier to solve (25) and find vg;
end

O 0 9 O L AW

until a stopping criterion is satisfied;

—_
=]

repeat
Upp + ULLU;
use MO algorithm to find Ugrp;

—_ = =
W N =

until a stopping criterion is satisfied.

well-known Armijo backtracking line search step size in
Step 1 and of the Polak-Ribiere parameter in Step 8 ensures
that the objective function is non-decreasing at each iteration
according to [36, p. 129]. In Step 7, a transport is a specific
mapping between two tangent vectors in different tangent
spaces, which can be expressed as

Transp, _,, . (d) £d-Rdox))ox 4. (28)
According to [16] and [37, pp. 63—65], MO for problem (27)
converges to a stationary point, i.e., the point where the
gradient of the objective function is zero.

C. Complete Algorithm and Computational
Complexity Analysis

According to the aforementioned results, we summarize
the proposed joint antenna selection and transceiver
design algorithm in Table III, which is referred to as
CCCP-WMMSE-MO.

Since R is a large number, the dominant computational
complexity of optimizing the transmit beamformers in the
transceiver design without antenna selection is given by
O(R? + R’K + RK? + RTK? + RT?*K + RK> + RTK).
With antenna selection the computational complexity of this
optimization reduces to O(R>+RK K;+RK;+RT*K+RK?*+
RTK+RK?Ky). Compared to the optimization of the transmit
beamformers, the computational complexity of the MO-based
hybrid receiver design is relatively low since it only requires
the nested loops of a line search process and the Kronecker
products of two matrices (see in Appendix B). Finally, the
computational complexity of the proposed antenna selection
method is given by O(R2K + RK?). Hence, the overall com-
plexity of the proposed transceiver design algorithm is similar
to that of the transceiver design using all antennas. However,
with the aid of the proposed algorithm with antenna selection,
the energy consumption at the BS can be significantly
reduced, as will be demonstrated by simulation results in
Section VII.
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VI. CONVERGENCE ANALYSIS

The proposed iterative transceiver design algorithm, shown
in Table III, is a two-phase algorithm. In this section, we
analyze the convergence of our proposed iterative transceiver
design algorithm. The convergence property for the first phase
(i.e. Steps 2-10 in Table III) is summarized in Theorem 3.

Theorem 3: Any limit point of the sequence generated by
the first phase of the algorithm in Table III is a stationary
point of the following optimization problem:

R

P HAH 2
max logdet(I + =5 AVVA Hﬁ(;w” — Ks)
s.t. Tr(vkv,fl) <1, kek%k,

A €S, (29)

which is an approximative problem assuming a specific
choice of receiver, i.e. MMSE decoder.

The detailed proof is presented in Appendix C, where we
first establish the equivalence among the objective functions
in (9), (12), (18), (23) and (29) by using Theorem 1 and
Theorem 2. Note that step 3 in Table III is equivalent to
globally solving problem (9). We then demonstrate that the
non-iterative WMMSE is equivalent to minimizing a locally
tight upper bound of (18). Hence, the first phase is in essence
the block successive upper-bound minimization (BSUM)
algorithm [38] applied to the optimization problem (29).
Finally, based on the convergence properties of the BSUM
algorithm [38], it follows that repeating Steps 2-10 can finally
reach a stationary solution of problem (29)

For the second phase (Steps 11-14) in Table III, directly
following the proof in [37, pp. 63—65], we can conclude that:

Theorem 4: Any limit point of the sequence generated by
the second phase of the algorithm in Table III is a stationary
point of (27).

From Theorem 3 and Theorem 4, the objective function
values of (27) and (29) generated by the CCCP-WMMSE-MO
algorithm increase monotonically. In practice, both loops
will end after only a few steps, which will be shown in
Section VII through numerical experiments. According
to our simulation results, a near-optimal solution is often
obtained by applying the CCCP-WMMSE-MO algorithm to
the optimization problem (8).

VII. SIMULATION RESULTS

In this section, we evaluate the sum-rate performance of
the proposed transceiver design. Without loss of generality,
we define SNR £ J% as in [10] and [16]. For the mmWave
channel, the number of rays is set to L = 20. The directivity
gain can be expressed as

1, VY¢; € [Pmin, Pmax],

. (30)
0, otherwise.

Al = [
We implement the Saleh Valenzuela model assuming planar
geometry and uniform linear arrays for convenience. The
azimuth AoDs and AoAs are generated randomly with uniform
distribution over [0, 27 ). The antenna elements in the uniform
linear array (ULA) are separated by a half wavelength and all
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Fig. 2. The convergence performance of the first loop in the
CCCP-WMMSE-MO algorithm with R = 64, Ky = 32, K =4, Ngp = 8
and SNR =0 dB.

simulation results are averaged over 500 channel realizations.

Moreover, the initial phases of the analog receiver, Ugp,

follow a uniform distribution over [0,27). Among all the

analyzed techniques in this paper, we consider the following:

o CCCP-WMMSE-MO: the proposed algorithm described
in Table III;

¢ CCCP-OMP-MO: the CCCP-based method and the
algorithm in [16] used jointly;

« EX-WMMSE-MO: all possible combinations of BS
antennas are tried and the best one is selected as the
output before resorting to the WMMSE approach for vy
and MO for the hybrid receiver;

« FULL-WMMSE-MO: the CCCP-WMMSE-MO algo-
rithm without antenna selection (K; = R);
¢ FULL-OMP-MO: the CCCP-OMP-MO

without antenna selection;

o CCCP-WMMSE-FD: the hybrid receiver is replaced
with the fully digital MMSE receiver after the antenna
selection matrix is obtained;

o EX-WMMSE-FD: assuming that the BS uses a fully dig-
ital MMSE receiver, we verify all possible combinations
of selected antennas using exhaustive search. Then, for
each fixed antenna selection, we optimize the precoding
matrices using the WMMSE approach. Finally, we select
the best solution, which provides an upper bound for the
performance of CCCP-WMMSE-MO.

algorithm

A. Convergence Performance

Fig. 2 and Fig. 3 illustrate the convergence behavior for the
first and second loops of the proposed algorithm (respectively
lines 2-10 and lines 11-14 in Table III) in a typical proposed
algorithm in a typical situation. From these figures and
other similar results, we conclude that both loops in the
CCCP-WMMSE-MO algorithm converge monotonically in a
few iterations.

B. Performance Versus the Number of Selected Antennas

Fig. 4 and Fig. 5 show the system sum-rate versus the
number of selected antennas K; under SNR = 0 dB.
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Fig. 3. The convergence performance of the second loop in the
CCCP-WMMSE-MO algorithm with R = 64, Ky = 32, K =4, Ngr =8
and SNR =0 dB.
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Fig. 4. The system sum-rate versus Ky when R = 16, T = 2, K = 2,
NRF =2 and SNR = 0dB.
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Fig. 5. The system sum-rate versus Ky when R = 64, T =2, K = 4,
NRF = 8 and SNR = 0 dB.

To illustrate the performance of the exhaustive antenna
selection method as a benchmark, we here only consider
moderate-scale systems (with tens of antennas) in Fig. 4
when testing the EX-WMMSE-MO algorithm and the
EX-WMMSE-FD algorithm, although it can be applied to
large-scale MU-MIMO systems (possibly with hundreds of
antennas). Consequently, we do not show the performance
of the EX-WMMSE-MO algorithm in Fig. 5 where R = 64.
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Fig. 6. The energy efficiency versus Ky when R = 64, T = 2, K = 4,
NRF =4 and SNR = 0 dB.

From these figures, we can see that if a performance loss
is accepted, the proposed algorithm can select much fewer
antennas than the FULL-WMMSE-MO and therefore reduce
energy consumption and implementation costs at the BS. The
sum-rate performance of the proposed algorithm is very close
to that of the exhaustive search method, which is the optimal
antenna selection method. Hence, the CCCP-based antenna
selection algorithm can perform as well as the exhaustive
search method but with much lower complexity. It can also
be observed that the CCCP-WMMSE-MO algorithm always
significantly outperforms the CCCP-OMP-MO algorithm.
Furthermore, if we select all the antennas at the BS, one can
see that the sum-rate performance provided by the proposed
FULL-WMMSE-MO algorithm is much higher than that of the
FULL-OMP-MO algorithm, which verifies the effectiveness
of the proposed transceiver design approach. In addition, the
performance of the EX-WMMSE-FD algorithm is presented
in Fig. 4, which serves as an upper bound for the CCCP-
WMMSE-MO algorithm. As we can see, the gap between
the CCCP-WMMSE-MO algorithm and the EX-WMMSE-FD
algorithm is small, implying a high-quality solution provided
by the CCCP-WMMSE-MO algorithm to problem (8).

Next, we consider the energy efficiency at the BS and
compare the proposed CCCP-WMMSE-MO, the FULL-
WMMSE-MO and the conventional CCCP-OMP-MO
algorithms. The energy efficiency is defined as %, where
R 1is the system sum-rate and P is the energy consumption
at the BS. In particular, P, £ P.1 4+ P2 + P.3, where P,
denotes the total energy consumption in the baseband receiver,
P.o = Ngr 15,,2 denotes the total energy consumption of
the RF chains, with Isr,z being the energy consumption of
each RF chain, and P.3 = K 5(15r,3 + NgrFr 13r,3) denotes the
total energy consumption of the analog phase shifters and
LNAs, with f’r,3 and I_’r53 denoting the individual LNA and
phase shifter energy consumptions, respectively. According
to [39]-[42], we have P.1 = 200mW, Isr,z = 120mW and
15,,3 = 13,,3 = 20mW in a small cell scenario. Fig. 6 shows
the energy efficiency versus Ky under SNR = 0 dB. From the
figure, we can see that the CCCP-WMMSE-MO algorithm
outperforms the CCCP-OMP-MO, the FULL-WMMSE-MO,
and the FULL-OMP-MO algorithms when K; > 8. If the
antenna selection strategy is not used at the BS, one can see
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TABLE IV
THE AVERAGE CPU TIME OF DIFFERENT ALGORITHMS TO SOLVE PROBLEM (8) WHEN T =2, K =2 AND SNR =0dB

CCCP-WMMSE-MO | EX-WMMSE-MO | CCCP-OMP-MO
R=16,Ks =2, Nrp = 6.38 x 1072 10.14 x 10~ %s 2.78 x 10~ ?s
R=20,K; =2,Npp = 6.99 x 10~ 2s 16.10 x 10~ %s 2.89 x 10~ 2s
R=16,Ks; =4,Nrp =2 18.82 x 10~ %s 88.26 x 10~ 2s 8.62 x 10~ 2s
R=16,Ks; =2, Nrp = 6.20 x 10~ 2 12.56 x 10~ %s 8.83 x 10~ ?s

—©— CCCP-WMMSE-MO
14} =©— CCCP-OMP-MO ]
—¥— CCCP-WMMSE-FD

Sum-rate (bits per channel use)
@ o
®
i \a

Sum-rate (bits per channel use)
S

Fig. 7. The system sum-rate versus Ngp for R=64, T =2, K =4 and
K = 32 when SNR = 0 dB.

that the FULL-WMMSE-MO algorithm is still more energy
efficient than the FULL-OMP-MO algorithm. Besides, the
results show that with an increase in K, the BS energy
efficiency of the CCCP-WMMSE-MO algorithm increases
first and then decreases, and the maximum value of the
energy efficiency occurs when K is around 20. It is because
the power consumption of the antennas becomes significant
when their number is large enough.

C. Performance Versus the Number of RF Chains

Fig. 7 shows the system sum-rate performance versus
the number of RF chains Ngr when SNR = 0 dB.
From the figure, the proposed algorithm outperforms the
CCCP-OMP-MO algorithm with a 4 to 5 bits performance
gap. Furthermore, as Ngp increases, the performance of the
CCCP-WMMSE-MO algorithm is enhanced monotonically
and coincides with the CCCP-WMMSE-FD algorithm when
Ngr = 8. This means that the proposed algorithm can achieve
optimal sum-rate with much less RF chains, which in turns
reduces the hardware complexity and implementation cost.

D. Performance Versus SNR

Fig. 8 compares the performance of different algorithms
versus SNR for Kg = 32 and Ky = 16. From the figure,
the proposed algorithm outperforms the conventional CCCP-
OMP-MO algorithm with a 10 dB gap for both Ky = 32
and 16 cases, and its performance comes very close to that
of the CCCP-WMMSE-FD algorithms. For such system
configurations, the proposed CCCP-WMMSE-MO algorithm
serves as an excellent candidate for joint transceiver design
with antenna selection, achieving both good performance and
low complexity.

E. Complexity Evaluation

We present the average CPU time of different algorithms
in Table IV. From these results, we note that the

20

—o— CCCP-WMMSE-MO (KS;SZ)
—#— CCCP-WMMSE-FD (K =32)
161 —— CCCP-OMP-MO (K =32)
14l - © COCP-WMMSE-MO (K =16)
% CCCP-WMMSE-FD (K =16)
¢ GCCCP-OMP-MO (K =16)

““““““““

-5
SNR (dB)

Fig. 8.
Nrrp = 8.

The system sum-rate versus SNR for R = 64, T = 2, K = 4,

CCCP-WMMSE-MO algorithm takes less time to solve
problem (8) than the EX-WMMSE-MO algorithms for the
given choices of parameters. While the CPU times of the
proposed algorithm exceed that of the CCCP-OMP-MO
algorithm, it can achieve much higher sum-rate as
demonstrated earlier. Besides, the CCCP-WMMSE-MO
and the EX-WMMSE-MO algorithms are sensitive to Kj,
while it can be shown that the average CPU time of the CCCP-
OMP-MO algorithm increases significant with K and NgF.

VIII. CONCLUSIONS

In this paper, we have investigated joint transceiver design
with antenna selection at the BS to maximize the sum-rate for
massive MU-MIMO uplink systems operating at mmWave.
The problem was separated into three subproblems and a
novel alternating algorithm named CCCP-WMMSE-MO
was proposed for their iterative solution. By exploiting
the CCCP-based method, we solved the antenna selection
problem and directly obtained a binary antenna selection
matrix. Then the WMMSE approach was used to optimize
the transmit beamformers while we resorted to the MO
method to update the hybrid receiver. The computational
complexity and convergence behavior of the proposed
CCCP-WMMSE-MO algorithm have been analyzed. The
numerical results have shown that the proposed algorithm
can achieve an outstanding performance, which is close to
that of the algorithms using fully digital transceiver and
exhaustive search method. In terms of energy efficiency at
the BS, the CCCP-WMMSE-MO algorithm outperforms the
FULL-WMMSE-MO algorithm. Our results and analysis
indicate that the proposed CCCP-WMMSE-MO algorithm
can serve as an excellent candidate for joint MU-MIMO
transceiver design with antenna selection in mmWave uplink
applications, achieving good spectrum efficiency, as well as
low energy consumption and implementation complexity.
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APPENDIX A
PROOF OF THEOREM 1

Proof: ~ Considering the idea behind CCCP, since

R

> [A]%i — K is strongly convex with second-order derivative
i=1

with respect to [A];;, we can choose f according to
Theorem 1 such that the objective function in (12) is convex.
Then problem (12) is to maximize a convex function subject to
the linear constraints. Therefore the optimal solution for [A];;

must be one of the bounds of the interval, i.e. 0 or 1. [ |

APPENDIX B
GRADIENT SEARCH ON THE RIEMANNIAN MANIFOLDS
The background theory on manifolds and manifold
optimization can be found in [37, pp. 17-53], [43, pp. 1-36],
and [44, pp. 1-31]. We define the Euclidean metric of the
complex plane C as

(x1,x2) = R(x{x2). (€29)
Therefore, the complex circle can be denoted as
M ={xeC:{(x,x)=1} (32)

Letting x be an arbitrary point on the manifold M., we
characterize the directions along which it can move as the
tangent vectors. Accordingly, the tangent space at the point x
can be represented by

TeMee ={z€C:z"x +x%2=2(x,z) =0}. (33)

With reference to problem (27), we denote x = vec(UgF).
This vector forms a complex circle manifold M} = {x €
C™! x| = |xkl = - = |[x]al = 1), where
m = RNgF. Then we can search the solution of problem (27)
over a Cartesian product of m circles in the complex plane,
which is a Riemannian submanifold of C™*!. Hence, the
tangent space at a given point x can be expressed as
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Once a tangent vector is obtained, we can do retraction
to map a vector from the tangent space onto the manifold
itself. Following this key step of manifold optimization, the
destination on the manifold when moving along a tangent
vector is determined. The retraction of a tangent vector ad at
x can be expressed as

(37

Retry (ad) £ vec[ Lx + adl; :|

[x + ad];]|

Exploiting the concepts of tangent space, Riemannian
gradient and retraction on the complex manifold M., we
can develop a line search based conjugate gradient algorithm
to maximize the sum-rate as shown in Table II, which is a

classical search technique in Euclidean space.

APPENDIX C
PROOF OF THEOREM 3

Proof: Following Theorem 1, we have the following
identities:

log det(I + —2— AVVH AHY = log det(I + -2, VH AV)
Ko? Ko
(38)

Thus, Step 3 in Table III is equivalent to applying CCCP to
solve

R
. p 2
min log det(I + K—GQAVVHAH) — ﬁ(?_l [A]; — Ks).

(39
Note that the CCCP-based method is equivalent to successively
minimizing a sequence of upper bounds of the objective of
the above problem.

Furthermore, given the current V, denoted by \7 we can
easily obtain that [45]

logdet(L+ L5 AVV/AM) = 1.(V. V), Vor,  (@40)
o

T.M" = (z € C"™1 Rz o x*) = 0). (34) Where
vy & mmsey mmse mmse
Similar to the Euclidean space, we can find the direction of [:(V, V) = logdet(W ) = Tr(W E(U V) 7,
greatest increase of a function p(x) defined on ™ among 1 (41)
all the tangent vectors. Considering the relationship betyveen wmmse — ﬁVH AUy, (42)
the tangent vector gradp(x) on M and the Euclidean K
gradient V p(x), gradp(x) can be defined as pmmse _ Q(EAVVHAH + 021)_1AV (43)
K K ’
A _ *
gradp(x) = Vp(x) = R[Vpx)oxTJox. (33) and 7 is a small positive number. _

The Euclidean gradient of the cost function p(x) = —RK(x) Moreover, since W™™¢ = (E(U™™¢, V))~!, we have
in (27) is obtained as Eq. (36), as shown at the bottom of p SOHAHY 1 O T
this page. log det(I + Ko AVVZEAYY =1,(V,V),VV. (44)

2

Vp(x) = vec[—K—apzAVVH AHURpUg (U UH UppUpp)
¥+ #UQ’BUQFAVV”A”URFUBB(UQ’BUQFURFUBB)")’HUg’B
2 _
+K—52URFUBB(UgBUgFURFUBB) HUgBUgFAVVHAHURFUBB
I+ LUEIBU;{FAVVHAHURFUBB(UgBUgFURFUBB)iH(UgBUgFURFUBB)iHUgB] (36)

Ko?
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Hence, it can be verified that

Yy log det(I + %AVVHAH) — WL (V,V). (45
o

As a result, combining (40), (44) and (45), we infer that [, is a
locally tight lower bound [38] of log det(I + 25 AVVHZ AH),

Ko2

Hence, steps 4-9 are equivalent to minimizing a locally tight
upper bound of —logdet(I + }%AVVH A subject to the
power constraints. In sum, the first phase in Table III is in
essence the BSUM algorithm [38] applied to the optimization
problem (29). Based on the convergence properties of the
BSUM algorithm [38], it follows that repeated iteration of
steps 2-10 can reach a stationary solution of problem (29). W
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