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Abstract—In this paper, we present a structural analysis of space-
time log-likelihood processors (LLP) that applies to arbitrary signal
transmission models consisting of N sources, M sensors, a time-varying
linear channel, and nonstationary Gaussian source signal and sensor
noise processes. Our approach is based on representing the time-vary-
ing linear channel as a bounded linear operator L with closed range.
By exploiting the properties of such operators and the specific struc-
ture of the array covariance function, we show that the classical M-
dimensional integral equations defining the LLP can be transformed
into equivalent N-dimensional integral equations. As a result, it is al-
ways possible to factor the LLP into a cascade of three specialized time-
varying subprocessors, namely: a space-time whitening filter, an M-
input N-output unitary beamformer (UB), and an N-input quadratic
postprocessor (QPP). This decomposition provides a generalization of
conventional results on optimum array processing that were previously
derived under the assumption of time-invariant transmission channel
and signal statistics. Both the UB and the QPP are given an interpre-
tation and their most important features are indicated. The UB, which
is closely related to the generalized inverse of the transmission opera-
tor L, is independent of the source signal statistics and maximizes the
array gain. Moreover, when N < M, it can be used advantageously to
reduce the number of time functions that need to be quadratically pro-
cessed. The QPP behaves like an LLP for the output of the UB and,
therefore, it admits a number of standard realizations, both causal and
noncausal. Specializations of the above results to the cases of low and
high signal-to-noise ratios are also considered. Finally, to illustrate the
theory, several examples of its application to signal models involving
time-varying delays are given.

1. INTRODUCTION

HE problem of space-time signal processing consists

of extracting useful information from wavefield mea-
surements taken over both space and time coordinates. In
many practical applications, with examples in sonar and
seismology, the wavefield of interest is generated by one
or more distinct sources and is monitored by a spatial ar-
ray of multiple sensors in the presence of an additive
background noise component. The purpose may be to de-
tect the presence of a source or a‘scatterer, or to estimate
the value of an unknown source or transmission parame-
ter. In both cases, one possible strategy for extracting the
relevant information is to optimally process the sensor
outputs according to a predetermined statistical criterion.
In this respect, the log-likelihood processor (LLP) is of
fundamental importance because it is optimal (or at least
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closely related to the optimal scheme) for a variety of de-
tection and estimation criteria [1]-[4]. For this reason, it
is frequently referred to as the optimum processor.

Conventional space-time LLP’s such as those used for
source detection or bearing estimation [2]-[8] are derived
under the following assumptions: 1) stationary source sig-
nal and sensor noise processes; 2) time-invariant trans-
mission channel between the sources and the sensors; and
3) long observation intervals. Moreover, propagation ef-
fects are usually limited to pure time delays, with possibly
discrete multipaths. There are situations, however, where
such modeling assumptions are unrealistic. For instance,
in the presence of source or receiver motion, which is
often the case in sonar applications, the delays in the sig-
nal components at the array output are functions of time.
In this case, the signal transmission cannot be modeled as
a time-invariant transformation and, consequently, clas-
sical results on optimum array processing are no longer
applicable.

Despite these considerations, a literature review indi-
cates that only a few attempts have been made to study
the space-time LLP under time-varying conditions, and
even these have been rather limited in scope, focusing
mainly on specific time delay models. Schweppe [9] stud-
ied the least squares array processor for a multiple sources
model. Although this analysis applies to nonstationary
(discrete-time) source signals, the propagation model is
limited to pure, time-invariant delays. Knapp and Carter
[10] derived the maximum likelihood processor for esti-
mating a linearly varying time delay between two noisy
versions of a common source signal. More recently,
Stuller [11] extended their analysis to the case of arbitrary
time-varying delay, nonstationary signal and noise pro-
cesses and arbitrary observation time. In [12], Lourtie and
Moura considered a more general problem formulation
which includes multiple nonstationary (state-space rep-
resentable) source signals and time-varying delays.

In this paper, we study the space-time LLP for a very
general signal transmission model consisting of N sources,
M sensors, a time-varying linear channel, and nonstation-
ary Gaussian signal and noise processes. We base our ap-
proach on representing the time-varying linear channel as
a bounded linear operator L with closed range, operating
on an infinite dimensional Hilbert space of source signals.
By proceeding in this way, reference to particular signal
representations such as Fourier coefficients or discrete-
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time samples is avoided. This results in considerable sim-
plifications and enables us to uncover the structural prop-
erties of the LLP in the more complicated case where non-
stationarities are present in the signal model.

In particular, by exploiting the properties of the oper-
ator L and the specific structure of the array covariance
function, -we show that the classical M-dimensional inte-
gral equations defining the LLP can be transformed into
equivalent N-dimensional integral equations. As a result,
it is always possible to factor the LLP into a cascade of
three specialized time-varying subprocessors, namely: a
space-time whitening filter, an M-input N-output unitary
beamformer (UB) and an N-input quadratic postprocessor
(QPP). The UB, which is closely related to the general-
ized inverse of the transmission operator L, is indepen-
dent of the source signal statistics and maximizes the ar-
ray gain. Moreover, when N < M, it reduces the number
of signals that need to be quadratically processed. The
QPP behaves like a LLP for the output of the UB and thus
admits a number of standard realizations, both causal and
noncausal.

Because of the generality of the signal model consid-
ered, many well-known space-time LLP’s (both time in-
variant and time varying) can be obtained directly as par-
ticular cases of the factored LLP configurations obtained
in this paper. Besides their novelty, these configurations
thus play an important role in unifying previous results on
array processing.

This paper is organized as follows. Section II describes
the signal model considered, reviews the integral equa-
tions defining the LLP, and establishes an appropriate
framework for the application of linear operator theory.
Section IIT shows that the M-dimensional integral equa-
tions defining the LLP are indeed equivalent to N-dimen-
sional integral equations of the same types. The canonical
LLP configurations that result from this equivalence are
presented in Section IV, where the limiting cases of low
and high signal-to-noise ratios are briefly discussed. Sec-
tion V gives three examples of the application of the the-
ory to signal models involving time-varying delays. Fi-
nally, Section VI summarizes the main conclusions of this
work. Four Appendices at the end of the paper contain
the proofs of various properties and formulae.

II. PROBLEM FORMULATION
A. Signal Model

A typical source-array configuration is shown in Fig. 1.
It consists of N distinct sources, a transmission medium,
and an array of M sensors connected to a processing de-
vice (M, N arbitrary ). During a time interval / = [, 1;],
each source radiates a signal waveform g;(¢) (i = 1,
++, N;tel) which is transmitted through the medium.
The resulting wavefield is monitored by the array in the
presence of additive noise during a time interval J = [T,
T¢]. Finally, the sensor outputs x;(¢) (i = 1, - -+ , M; ¢
€ J ) are processed to extract the relevant information. In
the passive case, where the signals a;(t) are externally
generated, the processor can be used to obtain informa-
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Fig. 1. Generic source-array configuration.

tion about the sources (number of sources, locations,
spectral characteristics, etc.). In the active case, where
the a;(¢) are known to the observer, the processor can be
used to learn about the transmission process or the array
itself (presence of a scatterer, array calibration, etc.).
From a mathematical point of view, the difference .be-
tween the two cases amounts to modeling the source sig-
nals as random processes with zero mean in the passive
case and as deterministic functions in the active case. In
this study, we shall focus our attention on the passive case.

The source signal vectora(z) = [a,(¢t), = - - ,an(D]7,
where the superscript T denotes transposition, is generally
characterized by a vector 6, of possibly unknown param-
eters which can be either random or deterministic in na-
ture. Examples of such parameters might include the
bandwidth or the center frequency of a given signal a;(t).
For a fixed value of 8,, it is assumed that a(#) is a zero-
mean Gaussian vector random process with known auto-
correlation matrix R, (t, u; 6,) = Eg,[a(t)a’(u)], where
Ey [ ] is to be interpreted as a conditional expectation
when 6, is random and as a conventional expectation based
on the signal model with parameter vector 4, in the deter-
ministic case. (This will only affect the interpretation
made of the log-likelihood function.)

The transmission of the signals a,(¢) from the sources
to the sensors is represented by a linear transformation
satisfying certain general conditions given in Section II-C.
This transformation maps the N-vector process a(t) into
an M-vector process s(t), consisting of the signal com-
ponents in the various sensor outputs, according to

s(t) = S/L(t’ u; 0)a(u)du, tel (1)
where L(t, u; 6,) is the M X N matrix impulse response
(possibly a distribution) of the transformation. L(¢, u; 6,)
is completely determined by the geometry of the problem
and the nature of the transmission process; it is function-
ally independent of the process a(r) and the parameter
vector 8,. 0, is a vector of possibly unknown parameters,
either random or deterministic, which characterize the
transmission process. Possible examples include the bear-
ing or bearing rate of a given source, or the transmission
loss in a given frequency band.

The vector x(1) = [x,(1), - - -, x;(2)]7 of observed
sensor outputs is given by ’

x(t) = s(t) + n(1),

tel

(2)
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where s(r) is given by (1) and n(t) is an additive noise
component modeled as a zero-mean Gaussian vector ran-
dom process, statistically independent of a(r). In order
to simplify the analysis, we assume that n(7) is a white
noise process with autocorrelation function

R,(t,u) = E[n(t)n"(w)] = 6(t = u)lyxy (3)

where 6(¢ — u) is the Dirac delta function and Iy, is
the M X M identity matrix. The modifications needed for
the case of known colored noise are straightforward and
described in Section III.

As a first consequence of the linear transformation ir
(1), it follows that for a fixed value of the concatenated
parameter vector § = (6,, ,), s(#) is a zero-mean Gauss-
ian random process and its autocorrelation matrix R, (¢, u;
0) = Ep[s(t)s”(u)] satisfies

R.(t, u; 0) = S S L(t, 75 6))R, (7, p; 6,)
11

< L™(u, ; 0,) dr dp. (4)

In this paper, we shall exploit the specific structure of
R, (¢, u; §) provided by (4) in order to decompose the LLP
into simpler subcomponents. To simplify the notation, the
dependence in 6,, §,, and @ will generally be omitted un-
less explicitly needed.

B. Log-Likelihood Processor

We now review the basic equations that define the LLP
for the observation modet (2), (3). At this point, we do
not make use of (4). Since standard derivations of all the
results presented below can be found in the literature [11],
[13, ch. 2], no proofs are given.

Regardless of whether the problem considered is one of
detection or estimation, the LLP always evaluates the log-
likelihood function (LLF), In A (x), of the observed data
x(1), t€J. In a typical detection problem, the LLF would
be computed for each of the possible hypotheses, while
in a typical estimation problem, the LLF would be com-
puted for all possible values of the unknown parameters
(at least in principle). For the observation model (2), (3),
which falls in the ‘‘Gaussian signal in Gaussian noise’’
category, the LFF (or conditional LLF if § is random) is
given by

In A(x) =14 {ll(x) - 12} (5)
ne = 25 s al @
b= in(1+n). (7)

i

The N, and ¢; (1), which also occur in the Karhunen-Logve
expansion [1] of the process x (), are the eigenvalues and
normalized eigenfunctions of R, (7, u), repectively. They
satisfy the following equations:

Sl R(t, u)d;(u) du = Noi(£), tel (8)
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[, #7601 e = 5, ©)
where §;; is the Kronecker delta. It is important to note
that the \; and ¢, (¢) are functions of the parameter vectors
Ga and 0[.

Closed-form expressions that do not require the deter-
mination of the eigenvalues and eigenfunctions of R (1,
u) can be obtained for the terms /,(x) and [, of the LLF
(5). First, consider /, (x) (6). Introducing

0

> N

i=1 N+ 1

Hy(t, u) = o (1) (u) (10)
(the reason for the subscript 2 will become clear later),

(6) can be written as
Li(x) = Sl gjxr(t)Hz(t, u)x(u)dtdu. (11)

Although H,(t, u) is still linked to the \; and ¢;(¢) by
(10), it can be obtained independently as the unique so-
lution to the M X M nonhomogeneous Fredholm integral
equation of the second kind

Hy(t, u) + SJ H,(t, v)R,(v, u) dv = Ry(t, u)

(12)

The solution H, (¢, u) of (12), known as the Fredholm
resolvent of R, (¢, u), is the impulse response of the non-
causal linear filter which provides the minimum mean-
squared error (MMSE) estimate of s(¢) from x(u), t, u €
J [14].

Next, consider /, (7). It can be shown that

t,ueld.

L = S, Tr {hy(t, 1)} dt (13)
where Tr { } is the matrix trace operator, and h, (¢, u) is
defined as follows: h, (¢, u) = 0 (the M X M zero matrix )
forT, =t < u < Tyand

t

hy(t, u) + STV hy(t, v)R(v, u) dv = R(t, u) (14)

for T, = u < t < T;. The solution h, (¢, u) of (14) has
the following interpretation: it is the impulse response of
the causal linear filter which provides the MMSE estimate
of s(¢) fromx(u), T; = u <t < T;[14].

C. Operator Notation

An appropriate framework for the application of linear
operator theory is now established. Moreover, the general
conditions imposed on the linear transformation in (1) are
stated.

We represent the source signal a(t) as a point in an
abstract Hilbert space S of real, N-vector valued func-
tions defined over the interval I = [r, t;], with scalar
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product and norm, respectively, given by

(mﬁx=&a7nmow (15)
lell, = V(e, ), (16)

for all «, B € S,. By analogy, we represent the array out-
put vector x () as a point in a Hilbert space S, of real, M-
vector valued functions defined over the interval J = [T},
T;], with scalar product and norm

(6, = |, #7000 e (7)
l€ll, = V(& &), (18)

for all £, n € S,. We shall refer to S, as the source signal
space and to S, as the observation space.

Within this framework, we represent the linear trans-
formation in (1) as a linear operator L: §; — S, defined
by

[La](t) = S{L(I, w, 0))a(u)du, telJ (19)

for all « € §;. In this paper, we shall assume that L is a
bounded linear operator with closed range. Recall that L
is bounded if there exists a finite positive number m such
that

Izal, = m{«], (20)

for all « € S,. Physically, this property means that the
ratio of the energy contained in Lo to the energy con-
tained in o remains bounded for all signals «. The re-
quirement that L have a closed range is more subtle and
will be discussed in Section III.

We denote by L* the adjoint of L. Recall that L* is a
linear operator of S, — S, uniquely defined by the con-
dition

(L*, ), = (& La), (21)

required to hold for all o« € S, and all £ € S,. In terms of
the impulse response L(t, u; 6,), the adjoint operator is
given by

[L*£](t)=SJLT(u,t;O,)E(u)du, tel. (22)

Proceeding as in (19), we associate the kernels R, (1,
u), R;(¢t, w), and H, (¢, u) (12) with operators R,: S, —
S, R: 8, 2 S, and Hy: S, — S,, respectively. Because
R,(t, u) is a covariance kernel, we have R, (t, u) = RZ(u,
t), which implies that R, is self-adjoint, i.e., R = R,.
The same conclusion applies to R,; that H, is also self-
adjoint follows from (12).

With the above notations, some of the previous equa-
tions can be written in a simpler way. In particular (de-
noting by a prime the new form of the equation), we have

R, = LR,L* (4")

N
i

R.¢; = o, (8")

(00, #), = §; (9"
L(x) = (x, Hyx), (11)

H, (I, + Rs) = R, (12")

where, in (12'), I, denotes the identity operator in S,.

III. FACTORIZATION PROPERTIES OF THE LLF

In this section, we exploit the specific structure of R
(4') and the fact that L is a bounded linear operator with
closed range in order to factor the eigenfunctions ¢, (8'),
(9') and the Fredholm resolvent H, (12') into simpler
components. New expressions for the bias term I, (7) of
the LLF and other related results are also obtained. The
analysis is divided in three parts. In subsection A, we pro-
ceed with the construction of a unitary transformation be-
tween two fundamental subspaces of S, and S,, and we
also provide some motivations for the supplementary as-
sumption of closed range imposed on L. In subsection B,
we present and discuss the main properties satisfied by ¢;,
H,, and l,. Finally, in subsection C, we address briefly
the case of known colored noise.

A. Unitary Transformation Between the Transmission
and Reception Signal Subspaces

Let N and R denote the null space and range space of
L, respectively (see Fig. 2(a)), and suppose for the mo-
ment that both N and R are closed subspaces, so that the
decompositions S, = N ® N* and S, = R  R* where
@ is a direct sum and * indicates the orthogonal comple-
ment, are legitimate [15, p. 30]. According to (1) and (2),
any signal x € S, at the array output can be written in the
from x = La + n, where a € S, is a source signal com-
ponent and n € S, is a noise component. Moreover, due
to the above decompositions of S, and §,, we have a =
ay + a, for some ay € Nand a, € N*, and n = ny + n,
for some n, € R and n, € R*. Hence,

x = (La; + ng) + ny (23)

where La, + ng € R. In light of (23), we refer to N* as
the transmission signal subspace, to R as the reception
signal subspace, and to R* as the reference noise-alone
subspace. The terminology adopted for R and R* is con-
sistent with that used by Picinbono [16] in finite dimen-
sion.

Two important observations can be made in connection
with (23). First, no information about the transmitted sig-
nal component a, is lost when x is projected on R since
the result of this operation is precisely La, + ny. Second,
note that L defines a one-to-one transformation between
N* and R (for any «, 8 € N*, La = LB implies (o —
B8)e N N N*, which in turn implies « = 8). Hence, it
is possible to map La, + ng back into N*, again without
any loss of information. These observations suggest that
it may be possible to realize the optimum space-time pro-
cessor in three steps, namely (see Fig. 3): 1) orthogonal
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Fig. 2. (a) The operator L and (b) its adjoint L*.

observation space S, source-signal space S,

real axis

InA(x)
Fig. 3. Three-step approach to optimum space-time processing: (1) or-
thogonal projection of x onto R; (2) one-to-one mapping from R to N*;
(3) optimum processing of resulting image y.

projection of x onto R; (2) mapping of the projection La,
+ ng back into N* via an appropriate one-to-one trans-
formation; and (3) optimum processing of the resulting
image in N*. In order to carry out this sequence of op-
erations, we need a proper transformation between N*
and R. For reasons that will become apparent in the fol-
lowing subsection B, we can advantageously use a unitary
transformation. Before proceeding with the construction
of this transformation, we digress briefly to comment on
the initial assumption that both N and R are closed.

We immediately note that the null space of a bounded
linear operator is always closed [17, p. 12] so that we can
restrict our attention to R. Recall that R is closed if every
convergent sequence ¢, in R converges to a point of R.
To understand how fundamental is the concept of a closed
subspace (in contrast to that of an arbitrary subspace), we
point out that geometric notions such as the orthogonal
projection of S, onto R or the existence of a point in R
closest to an arbitrary point in S, only make sense when
R is closed. Moreover, the assumption that R is closed in
the preceeding discussion ensures that the inverse of L,
from R to N*, is well conditioned (i.e., bounded). There-
fore, this assumption can be regarded as a ‘‘regularity’’
condition that simplifies the analysis and the interpreta-
tion of the space-time LLP.

A practical way of verifying if L has a closed range is
by means of the following property: a bounded linear op-

erator L has closed range if and only if there exists a num-
ber ¢ > 0 such that

|La], = c|«| (24)

" alla e N*

(necessity is proved in {17, p. 14]; sufficiency is proved
in [18]). We emphasize that the class of bounded linear
operators satisfying the condition (24) is sufficiently large
for practical applications and includes most of the *‘ideal-
istic’” transmission models commonly used in the array
processing literature.

We now return to the construction of a unitary trans-
formation between the transmission signal subspace N*
and the reception signal subspace R. To begin, we note
that the null space of L* is R* and (since R is closed) its
range is N* [17, p. 13] (see Fig. 2(b)). This property of
the adjoint is fundamentally important to the present dis-
cussion. Next, we define the operator W: N* — N* by

W = L*L. (25)
Observe that W is self-adjoint. Moreover, it follows from
(25) and (24) that for all « € N*

(o, War), = HLaH; = ¢? a||f (26)

where ¢ > 0. Hence, W is strictly positive definite. As a
result, W possesses a well-defined square root, i.e., an
operator W'/? such that W'/2w'/? = W, and both W and
W'/2 are invertible, with inverses denoted by W' and
w2, respectively. Like W, the operators w2 ow
and W~'/? are self-adjoint. It is convenient to extend the
domain of the operators W* (p = +%, +1) to S, by set-
ting W¥o = 0 for o € N.
Finally, consider the operator U: §; — S, defined by

U=1w'2 (27)
Ifo e N*, then
UtUa = W2 LSLW ™ Pa = w1 2w 2 = a.
(28)
If £ € R, then £ = L« for some o € N* and we have
UU*¢ = LW™'?PW™12L*La = LW ' Wa = La = &.
(29)

Hence U provides a unitary transformation between the
subspaces N* and R (i.e., a one-to-one transformation
having its own adjoint for inverse). As a consequence of
(28), it follows that

(Ua, UB), = (o, B),s

In other words, U preserves scalar products. As we shall
see, U and U* play a fundamental role in the study of the
space-time LLP.

a, BeN.  (30)

B. Main Results

We mentioned previously that it should be possible to
realize the LLP in three steps, namely: projection on R,
mapping from R to N*, and optimum processing in N*.
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This statement, which is verified in the next section, is a
simple consequence of the factorization properties pre-
sented below. In essence, these properties assert that the
integral equations defining the LLP in S, can be trans-
formed into equivalent integral equations in $;. To un-
derstand why such transformations are possible, consider
the representation (4') of R, i.e., R, = LR,L*. Observe
that

L:LW—I/ZWI/2 (31)

forifa e N*, W™'2W' 2 = o, while ifa e N, W'/?a
= 0 by definition. Therefore, we can express R, in the
form

Rs - (LW—I/ZWI/Z)RH(LW—I/Z Wl/Z)*

(LW—l/Z)(WI/ZRUWI/Z)(LW-I/Z)*

= UKU* (32)
where U is given by (27) and K: N* = N* is defined by
K = w'?R W'/, (33)

Equation (32) reminds us of a similarity unitary transfor-
mation between two Hermitian matrices of the same di-
mension. Recall that matrices connected by such trans-
formations have many characteristics in common. In
particular, they have the same eigenvalues and their ei-
genfunctions are related by a unitary transformation. By
analogy with the finite dimensional case, we would expect
that the operators R, and K in (32) share the same eigen-
values and have eigenfunctions connected by a unitary
transformation. More generally, the LLF associated to R;
in the observation space S, should in some sense be equiv-
alent to the LLF associated to K in the source signal space
S;. This is confirmed by Properties 1, 2, and 3 below,
whose proofs can be found in Appendix I.

The first property concerns the eigenvalue problem (8'),
(9") for R,.

Property 1: Let {{;} be a complete orthonormal set'
of eigenfunctions of K (33) in N*, with corresponding
eigenvalues \;. That is

Ky = N (34)
¥ ¥y), = 8. (35)

Define
o = Uy;. (36)

Then, the following is true: a) the functions ¢; are nor-
malized eigenfunctions of R, with eigenvalues A\, i.e.,
they satisfy (8') and (9'); b) {¢;} is complete in the re-
ception signal subspace R; ¢) any £ € R, the reference
noise-alone subspace, is an eigenfunction of R, with zero
eigenvalue.

'Such a set will exist if the operator K is compact [15, p. 191]. In the
present context, a sufficient condition for K to be compact is that the aver-

age enerﬁy of the signal component s(#) (1) at the array output be finite,
e, E{llsl3} < .
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According to this property, all the eigenfunctions ¢; of
R, having nonzero eigenvalues can be generated through
(34)—-(36). Since the remaining eigenfunctions of R, do
not explicitly enter the expressions (5)-(7) of the LLF,
equations (34), (35) are actuaily equivalent to (8'), (9").
Equation (36) can also be written in the form ¢; =
L(W~'/2y,), which shows that the eigenfunctions of R,
(with nonzero eigenvalues) have the same ‘“structure’’ as
the signal component s = La at the array output. This is
consistent with the fact that s can be written as a linear
combination of the ¢; by means of the Karhunen-Logve
expansion. '

Because H, is related to the ¢; through (10), we expect
that the factorization (36) for the ¢; translates into a cor-
responding factorization for H,. Indeed, we have the fol-
lowing result.

Property 2: The Fredholm resolvent of R,, H, (12'),
admits the factorization

H, = UH,U* (37)

where H,: §; = S, is a self-adjoint operator given by
H =K(I, + k)" (38)

and /, is the identity operator in ;.

According to this property, the solution of the M-di-
mensional integral equation (12) reduces to the solution
of an equivalent N-dimensional integral equation which,
in operator notation, takes the form H, (I, + K) = K. We
note that H, is precisely the Fredholm resolvent of K. This
important feature of the factorization (37), (38) will later
be exploited to obtain a simple interpretation of H, in
terms of MMSE estimation theory.

The factorization of h,(t, u) defined in (14) follows
immediately as a particular case of (37) and (38). To see
this, let us first rewrite (37) in integral notation, making
the dependence of the various kernels upon T explicit:

i i
Hy(t, u; Ty) = S dr S dpU(t, 7; Ty)

CH (7, THU (u, ps Tr) (39)

where H, (¢, u; Ty) and U(1, u; T;) are the integral kernels
corresponding to H, and U, respectively. Upon compari-
son of (14) with (12), we notice that fort = u

hy(t, u) = Hy(t, u; 1). (40)
(In other words, when Ty = 1, the causal and noncausal
filters providing the MMSE estimates of s(¢) from x(u),

T; = u < Ty, are identical.) Using (39) in (40), we finally
obtain

i if
hy(t, u) = S/ dr Srv dulU(t, 75 1)

cHy (7m0 U (e, s t). (41)

While (41) provides a legitimate factorization of A, (1, u),
its substitution into the expression (13) for the bias term
1, of the LLF does not lead to any clarifying simplifica-
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tions (because the kernels U( 7, u; t) do not cancel out).
A more natural approach to the evaluation of /, is based
on the next property.

Property 3: The kernel h,(t, u) in (14) satisfies the
identity

Sj Tr{hy(z, 1)} dt = X: Tr{h(t, )} &t (42)

where A, (t, u) = 0 (the N X N zero matrix) for 1; < ¢
< u = frand

T

hi(t, u) + 5 h(t, v)K(v, u)dv = K(t, u) (43)

for; =ust=<y.

According to (42), one can use h, (¢, u) instead of h, (¢,
u) to calculate [, (13). Because of the special way in which
hy and H, are related to K through (43) and (38), it is
possible to show that [19, p. 130]

Hy = h, + h{ — hfh,. (44)

This important relation, also known as the Krein factor-
ization theorem, will be used in Section IV.

We emphasize the complete equivalence existing be-
tween equations (8), (9), (12), (14), and (34), (35), (38),
(43), respectively. The former set of equations defines the
LLF associated with R in the observation space S,, while
the latter set defines the LLF associated with K in the
source signal space S;. The two sets are connected by
(36), (37), and (42), so that knowledge of one of these
LLF specifies the other, and vice versa.

In some cases, the evaluation of W™! and W*'/2 may
pose a serious difficulty. For this reason, we complete the
discussion by providing alternative results that do not ac-
tually involve these quantities.

Property 1': Let P denote the orthogonal projector of
S, onto the transmission signal subspace N*, and let

(. B),, = (a, WB), (45)

for all , B € N*. Observe that (. , .), defines a scalar
product on N*. Let {7} be a complete orthonormal set
of eigenfunctions of PR, W in N*, with respect to the sca-
lar product (45), and let \; denote the corresponding ei-
genvalues. That is

PR, Wy; = N (46)
(niv 7)])“, = 51j~ (47)

Define
¢ = Lu;. (48)

Then, the conclusions of Property 1 apply without modi-
fication.

Property 2': H, admits the factorization
H, = LG,L* (49)
where G,: S, — S, is a self-adjoint operator given by

G, = R,(I, + WR,)™". (50)

1859

Property 3': Suppose that N = {0} (i.e., that L is in-
jective), then

IZ:ZS,Tr{f(t,t)}dt (51)

where f (t, u) = 0 foru > rand

St u) + S’ da'f(t, 1) S,- du' W(t', w' )R, (u’, u)

t

= S du' W(t, u' )R, (u', u) (52)
1

forty =ust=t.

The proofs of Properties 1’ and 2’ are almost identical
to those of Properties 1 and 2; for this reason, they have
been omitted. The proof of Property 3’, which is not as
simple as that of Property 3, is outlined in Appendix II.
Finally, a factorization formula similar to (44) can be ob-
tained for G, in the case N = {0}. It is given by

G =g +g* - g%~ f*g (53)
where g is a causal operator defined by g (7, u) = 0 for u
> t and

! 1
g(t, u) + S da’' g(t, 1) S du’ W(t', w )R,(u', u)
1 1

= R,(t, u) (54)

fort; = u <t < t;. The proof of (53) is outlined in

Appendix III.

C. Factorization in Colored Noise

Instead of being specified by (1)-(3), suppose that the
vector process observed at the array output is given by

(55)

where n, is a colored noise component with strictly posi-
tive autocorrelation operator R, . Let

Q=R;" (56)

Then, the LLP for the observed signal x, (55) performs
the following operations [1]: first, the whitening operator
0'?is applied to x,, resulting in

x. = La + n,

x=Q0"x.=s+n (57)
s = Q"La (58)
n=Q"’n, (59)

where s is the signal complement of x and n is now a white
noise process; second, the LLF for the whitened process
x is evaluated. Hence, to apply the results of subsection
B to the second step of the procedure, simply replace L
by Q'*L in all the previous expressions. Of course, R
has to be redefined as the range of Q' /2L (the null spaces
of L and Q'/°L are the same). We note that such a rede-
finition of R does not affect the original assumption that
it is closed, for if L satisfies (24), so does Q'/zL (with
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TABLE 1
IMPORTANT DEFINITIONS FOR LLP FACTORIZATION IN COLORED NOISE

Symbol Definition

N-component source process
M-component sensor-noise process
M-component sensor-output process (x, =La+n.)
autocorrelation operator of @
autocorrelation operator of n,
R, !
transmission operator
null space of L
transmission signal subspace
reception signal subspace (range of 0 L)
reference noise-alone subspace
0%z
Q"La
Q%n,
Q"LR,L* Q"
L°QL
QLW
WYR,W*
onto signal p
cigenfunctions of R, (¢; = Uy;=Q"%Ln,)
eigenfunctions of K
eigenfunctions of PR, W
Fredholm resolvent of R, (H,=UH U  =Q%LG ,L" Q")
K +K)™
Ro([1+WR,)™
causal operator related to X through equation (43)
causal operator related to R and W through equation (52)
causat operator related to R and W through equation (54)

N.L

possibly a different constant c¢). This follows because Q
(56) is strictly positive. For future reference, the colored
noise versions of the various quantities introduced thus far
have been listed in Table I.

IV. PrOCESSOR CONFIGURATIONS

We now look at the LLP configurations that result from
the factorization properties in Section III. For the sake of
generality, colored noise is assumed throughout.

A. Canonical Configuration
Using (37), the data dependent term (11’) of the LLF

(5) can be written in the form

Li(x) =(y, Hl)’)] (60)

where

y = U*x = U*Q'?La + U*n (61)
(the second equality in (61) follows from (57) and (58)).
The resulting canonical LLP configuration is shown in
Fig. 4 where, for completeness of presentation, the de-
pendence of the various block components on the param-
eter vectors 6, and 6, have been indicated. This configu-
ration consists of three specialized subprocessors serving
very different purposes. The first one is a space-time whit-
ening filter that transforms x. into x = Q'/?x, (57). The
second one, referred to as a unitary beamformer (UB),
transforms the M-component signal x into the N-compo-
nent signal y = U*x (61). The last one, referred to as a
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unitary beamformer quadratic post-processor

whitening i
filter

Ut=wTLQ"

2InAG)

Fig. 4. Canonical space-time LLP configuration (see Table I for descrip-
tion of various operators).

quadratic postprocessor (QPP), finally operates on y ac-
cording to (60) to produce the LLF (5).

The canonical configuration in Fig. 4 provides a gen-
eralization to nonstationary signal models of conventional
optimum array processing structures previously derived
under the assumptions of (specific) time-invariant trans-
mission channels, stationary signal processes, and long
observation intervals [2]-[8]. To recover these structures
from Fig. 4, simply replace the various operators by the
Fourier transforms of their matrix kernels (assumed to be
time invariant); the resulting structure then operates in the
frequency domain with abstract operator composition re-
placed by conventional matrix multiplication. Additional
explanations are given in Section V-B, where the opti-
mum structure of [5] is derived as a particular case of a
more general time-varying processor.

We note that in Fig. 4, the whitening filter and the UB
can actually be reconfigured so that only Q appears at the
input of the LLP, and not Q'/z. However, we emphasize
that Q enters the block components W ~'/? and H, implic-
itly because W = L*QL and H, = K(I, + K)~' with K
= W!'/2R,W"/?. Even the bias term [, depends on Q be-
cause it is a function of the eigenvalues of K. The point
is that conventional noise prewhitening affects all stages
of the LLP, not only the input. In subsections B and C,
we take a closer look at the UB and the QPP.

B. The Unitary Beamformer (UB)

By definition, the UB performs the operation U*
W-1/21*0'/2 on the whitened signal x. Since the null
and range spaces of U = Q'2LW="/2 are N and R, re-
spectively, the null space of U* is R* and its range is N*.
We can therefore visualize the operation U*x in two steps:
x is first projected on the reception signal subspace R and
then, the resulting projection is mapped into the trans-
mission signal subspace N* for further processing by the
QPP. This validates the general approach suggested in
Fig. 3 where both steps (1) and (2) can be performed by
the UB. Note that in U* = W™'/2L* Q"2 0'/? must not
be mistaken for a whitening operation (the operator Q'/?
at the input of the LLP already acts as a whitening filter).
One must rather interpret the combination L* Q'? =
(Q'/2L)* as a space-time filter matched to the ‘‘trans-
mission’” operator Q'/2L in (58).
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The UB has a number of very desirable properties. To
begin with, it does not depend upon the statistics of the
source signal a (1); it is entirely determined by the source-
array geometry, the transmission characteristics of the
medium and the noise statistics. This property is partic-
ularly important for applications in which a complete de-
scription of R, is unavailable, or in estimation problems
where In A(x) has to be computed for different values of
0,. In fact, for any fixed value of 6,, the output y of the
UB provides a sufficient statistic for both problems of sig-
nal detection and estimation of 0,. Another important fea-
ture of the UB is that the number of signal components at
its output is equal to the number of sources N in the model
(which needs not be the same as the exact number of
sources really present in the environment (see subsection
F)). Whenever N < M, the UB can therefore be used to
reduce the number of signals that needs to be quadrati-
cally processed.

If n is an S, process with autocorrelation operator I,
then U*n is an N* process with autocorrelation operator
U*U. Since U* U acts as the identity in N* (see (28)),
we conclude that the UB is a distortionless processor, in
the sense that it maps a white noise process in S, into a
white noise process in N*.

In the class of all operators Q: S, = N* satisfying the
distortionless condition QQ*« = « for all @ € N*, the
operator U* plays a very important role. Indeed, let y =
Qx, where x = s + n (57) is the input to the UB in Fig.
4. Since both x and y consist of a signal component cor-
rupted by additive unit white noise, it is legitimate to de-
fine the input and output channel signal-to-noise ratios for
the operator { as follows:

SNR;, =

E[total energy in s] (62)

1
M

1
SNR,, = N E[total energy in Qs] (63)
where s is given by (58). Then, it can be shown (see Ap-

pendix IV) that the choice @ = U* maximizes the ratio
SNR,../SNR;,, with

SNRout — _Az (64)
SNR, lg_y» N’

In other words, the unitary beamformer maximizes the ar-
ray gain.
C. The Quadratic Postprocessor

The following expressions for the data-dependent term
(11") of the LLF can be obtained easily

L(x) = (Hi?y, H{?y), (65)
Li(x) =(2y — hyy, hl)’)l (66)
Lo = T (@) (o)
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Fig. 5. Filter-squarer postprocessor.

hy

> + G

1)
% N4
Fig. 6. Causal postprocessor.
a
(i, = (P
y hx)
Qp
W 01— P
o = A/(1+Ay)

Fig. 7. Eigenvector postprocessor (n-term approximation).

Equation (65) is a simple consequence of (60), (66) fol-
lows from (60) and (44), and (67) follows from (6), (36),
and (61). The postprocessor configurations corresponding
to (65), (66), and (67) are shown in Figs. 5, 6, and 7,
respectively. These configurations are quite standard [13,
ch. 2] and the terminology adopted should require no ex-
planation. The novelty here lies in that these configura-
tions are not applied directly to the M-component array
output vector x., but rather to the N-component beam-
former output y.

In the present context, simple interpretations can be
given to the filters H, and h, in Figs. 4-6 and to the ei-
genvalues \; and eigenfunctions y; in Fig. 7. To begin
with, observe that in the colored noise case, (31) becomes
Q'PLw " 2Ww!'/? = Q'/2L (with W = L*QL). Hence

U0’ La = U*Ql/zLWﬂ/z W' g

= UxUw'a
= w'/a. (68)
Making this substitution into (61) and defining
2= W (69)
we obtain
y =z + U*n. (70)

Now observe that U* U = P, the orthogonal projector of
S, onto N* introduced in Property 1', for if @ € N*,
UtUax = Po = a, and if e € N, Ux = Q0 and Pa = 0.
Using this result and the definition (33) of K, and observ-
ing that @ and n are independent, we easily obtain that

E[z(t)zr(u)] = K(t, u) (71)
E[z(1)y"(u)] = K(1, u) (72)
E[y(t)yT(u)] = K(t,u) + P(t, u) (73)




1862

where K (¢, u) and P(t, u) are the integral kernels asso-
ciated with the operators K and P. Using (72), (73), and
(38), it can be verified that the orthogonality condition
E{(z(t) — [Hy1())yT(u)} = 0 is satisfied for all ¢,
u € I. Therefore, H,y is a noncausal linear MMSE esti-
mate of z from y. When P = I, (i.e., when N = {0}),
it can be verified in a similar way that A,y is a causal
linear MMSE estimate of z from y (however, when P #
I, hyy does not admit a simple interpretation). Finally,
it follows from (71), (34), and (35) that the \; and ; are
the eigenvalues and eigenfunctions associated to the pro-
cess z. These observations can be summarized by saying
that the quadratic postprocessor is a LLP for the output y
of the UB in Fig. 4.

Some additional comments can be made regarding the
configuration of Fig. 6. First, even if this configuration is
causal, its insertion into Fig. 4 does not result in a *“glob-
ally’’ causal LLP because the whitening filter and the UB
are in general noncausal, with processing delays of the
order of the correlation times of the kernels L(t, u) (1)
and Q(t, u) (56). Second, whenever the kernel K(t, u)
is state-space representable (or more generally separable),
a direct realization of A, in terms of initial value differ-
ential equations is possible [14].

D. Alternative LLP Configurations

The LLP configurations in Figs. 4-7 were based on the
factorization Properties 1-3 and on (44). Alternative con-
figurations based on Properties 1’, 2’, and 3’ and on (53)
can be derived in an obvious way. Here, we briefly dis-
cuss one of these alternative configurations because of its
connection to Schweppe’s work [9].

Using (11') and (49) and making the appropriate col-
ored noise modifications, the LLP configuration shown in
Fig. 8 is easily derived. This configuration has a very in-
teresting property which follows from the orthogonality
principle, namely: the output of the filter G, is a noncau-
sal linear MMSE estimate of Pa from x.. The particular
decomposition of G, in Fig. 8 provides some insights into
how such an estimate is obtained. Indeed, observe that
the output of the operator W' is given by Pa +
W"LQnr. Hence, in the absence of noise, Pa can be re-
covered exactly at the output of W™ '. This is because
W~'L*Q'/? is the generalized inverse of Q'/2L in (58)
[17, p. 45]. Hence, MMSE estimation of Pa from x,. can
be visualized in three steps: prewhitening, generalized in-
version, and optimum filtering with (I, + R,W) 'R, W.
The configuration of Fig. 8 generalizes the so-called ‘‘de-
coupled-beam data processor’” obtained by Schweppe [9]
in the study of least squares array processors for pure time
delay propagation models. In particular, the operator W ™!
extends the concept of a decoupling matrix introduced in

[9].

E. Postprocessor Approximations

A low signal-to-noise ratio (SNR) situation occurs
whenever || K|l < 1, where | K|, the norm of X, is de-
fined by | K|l = sup {[|[Kal;: a €S, lal, = 1}. In
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X R
== L

Fig. 8. Generalized decoupled-beam processor.

Gy = +R,W) 'R,

such a case, the Neumann series [15, p. 861 (1, + K)™!
=1, - K+ K*— --- converges, and its substitution
into (38) yields

H=K-K+--- (74)

Retaining only the first term in the above series and sub-
stituting the resulting approximation H, = K in Fig. 4,
we obtain (after reconfiguration) the LLP shown in Fig.
9. Except for Q = R,.', no other operator inversion is
required with this configuration. When the source signals
a;(t) are uncorrelated, the processor R, in Fig. 9 decou-
ples into N parallel processors, one for each output of the
operator L*. This property of the LLP was observed by
Wax and Kailath [7] in the study of the maximum likeli-
hood estimator of source locations in a stationary envi-
ronment.

At the other extreme, a high SNR situation occurs
whenever K is invertible (on N*) and |[K~'|| < 1. In
this case, we find that

H=L-K"'+ - (75)

Making the substitution H;, = I, in the quadratic postpro-
cessor of Fig. 4 reveals that at high SNR, the LLP simply
computes the energy contained in the N outputs of the UB
(another interesting feature of the UB). An equivalent
space-time LLP configuration for high SNR is shown in
Fig. 10. This configuration is robust in the sense that it is
independent of the statistics of the source signal a(¢). Fi-
nally, it is interesting to note the similarity existing be-
tween the low and high SNR LLP configurations in Figs.
9 and 10, and the generalized decoupled-beam processor
in Fig. 8.

F. Practical Considerations

Thus far, we have been concerned with the study of the
properties and structure of the space-time LLP for a fixed
source-array configuration. We have assumed that the
number of sources N, the channel impulse response L(z,
u; 6,), and the signal and noise autocorrelation functions
R,(t, u; 0,) and R, (¢, u) were known. In practical appli-
cations, however, such detailed a priori knowledge may
not be available and this ultimately affects the way in
which the LLP is realized.

At first, the most fundamental difficulty seems to come
from the requirement that the number of sources N be
known in the signal model of Section II-A. However, the
difficulty is only apparent. For instance, consider the
problem of localizing two point sources in the array far
field. In this case, a space-time LLP based on a single
source model can be used with near optimal performances
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Fig. 9. Low SNR space-time LLP configuration (|| K| << 1).
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Fig. 10. High SNR space-time LLP configuration (| K 'l << 1).

as long as the angular separation between the sources is
sufficiently large. Although performance will deteriorate
if the angular separation decreases below a certain level,
it can be partially corrected by using a LLP based on-N
= 2 instead of N = 1 [8]. Thus the number of sources N
used in the signal model need not be the same as the actual
number of sources present in the environment; N should
rather be determined from resolution considerations.

Once the number of sources N has been determined, the
choice of L(z, u; 6,) follows from a study of the various
sound propagation mechanisms taking place. In the ab-
sence of more extended knowledge, one can simply as-
sume pure time delay propagation. However, if the trans-
mission process is known to involve more complicated
effects such as dispersion or multipath, these can be in-
cluded in L.

A lack of a priori knowledge about the signal and noise
statistics is common in applications of array processing
and most techniques developed to overcome this difficulty
in stationary environments can in principle be extended to
more general nonstationary signal models. For example,
consider the configuration in Fig. 8 and suppose that de-
tailed knowledge of R, is unavailable. Since the output of
G, is an estimate of a (assume P = I, for simplicity ), this
output can be used to form an estimate of R,, say R,.
Then, upon replacement of R, by R, in Fig. 8, we obtain
an ‘‘approximate’’ implementation of G,.

V. EXAMPLES

In order to illustrate the theory presented in this paper,
three examples of its application to signal models involv-
ing time-varying delays are now presented.

A. Stuller’s Results

Stuller [11] studied the problem of maximum likelihood
estimation of time-varying delay for a single source signal
monitored in the presence of white noise at two different
locations. Using the principle of reversibility [1, p. 2891,
he was able to obtain closed form expressions for the ele-
ments of the 2 X 2 matrix kernel H, (¢, u) in (12), in
terms of the (unknown) solution of a scalar integral equa-
tion. In this example, we present an alternative derivation
of this result based on the factorization properties of Sec-
tion III. Besides being considerably simpler, our approach
provides additional insights.
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The signal model considered in [11] falls into the gen-
eral description of Section II-A, with the following spec-
ifications:

ay N=1, M=2.

| ’
b) [La}(r) = La(t _ d(t))J. (76)
c) R,(t, u) = Nob(t — u)ly . (77)

In the above expressions, ¢ # O is an attenuation coeffi-
cient, d(z) is a time-varying delay function, and N is the
noise power level in the sensor outputs. We assume that
0 < d(t) = T, — T;and d' (1) < 1, where the prime
denotes derivative with respect to time. The last condition
ensures that the function f (t) = t — d(z) is strictly in-
creasing and therefore invertible. The corresponding in-
verse, i.e., f ' (), is denoted by B(1).

We begin by constructing the mathematical quantities
needed to apply the factorization properties. The proper
choice for the interval of integration / = [, t;] is given
by t; = f(T;) and t; = T;. With this choice, the null space
of L reduces to N = {0} and, as a result, the transmission
signal subspace N* coincides with the source signal space
S,,i.e., Nt = §,. To evaluate L*, first observe that

6(t — u)
L(t,u) = l:cé(f(t) _ u):| (78)
Substituting (78) into (22), we find that
cB'(1)E:(B(1)), 1€ A,
[L*E](r) = § &1(2) + CB'(')E2(5(’))s ted
£i(1), t € A
(79)

where £ = [£,, £,]7 is an arbitrary element in the obser-
vation space S5, A, = (f(T;), T;), Ay = (T;, f (T)) and
Ay = (f(T;), T;). Using (76), (77), and (79), it is easy
to show that

[Wal(r) = {Ng'p()} a(t), tel (80)
where pe { +%, £1}, @ € S, and
c2B'(1), =
oty = {1+ c2B'(r), ted (81)
1, t€A3.

We note from (79) and (81) that [L*£](¢) and p(¢) are
discontinuous at ¢ = T; and ¢t = f (7). The discontinui-
ties, or edge effects, result from the fact that the obser-
vation interval is finite.

The operators U and U* are given by

_[{om} " at } o
[er](t) \:c{p(f(t))}_l/za(f(t)) ( )
[U*E1(r) = {p(1)}'2[L*£](r). (83)
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The interpretation of U* as a beamforming operation is
consistent with (83) and (79). Indeed, choosing tempo-
rarily ¢ = 1 and d(¢) = d, (constant delay), we find that
over the interval A,, which is the dominant interval when
Ty = T, >> d(1), [U*£](1) {&() + & +
do)}/\/i. This result corresponds to a simple delay and
sum beamforming operation on £ (). In the general case,
the operation £,(r) — B'(1)£(B(2)) in (79) can be
thought of as a compensation scheme that counteracts the
effects of the delay d(¢).
The kernel of the operator X is given by

K(tu) = N {o(0} "Ryt ) o)} (84)

It equals the autocorrelation (7’) of the process z(t) =
[W'2a)(1r) = {Ng'o(1)}'/?a(t). If the process a(r)
can be described by a linear state equation, so is z(z) and
therefore, a standard Kalman-Bucy filter can be used to
implement the postprocessor of Fig. 4. This approach
provides an alternative to a recent technique [12] which,
for the example under consideration, requires the use of
a generalized Kalman-Bucy filter applied directly to the
sensor outputs. Using postbeamforming Kalman-Bucy
filtering rather than generalized Kalman-Bucy filtering of
the sensor outputs appears to be particularly attractive in
the case of M >> 1.

We now proceed with the factorization of the eigen-
functions ¢; and the Fredholm resolvent H,. Considering
the simplicity of the resulting expressions, we prefer to
use Properties 1’ and 2’ rather than Properties 1 and 2.
Using (46)-(48) (with L replaced by NO_'/ZL), we obtain

7;(1)
cni(t — d(r))

¢>i(’)=N0_I/2[ } tel (85)

Ng'! SIRa(t, whni(u)p(u) du = Nui(r), 1el (86)

Ng'! S, 0:(t)n;(1)p (1) dr = §;. (87)

Using (49) and (50) (again with L replaced by Ny '/2L),
we obtain

Hy(1, u) = Ng'' {Gl(” u) <Gi(1. f () J
’ P LeGi(F (). 1) SGi(£(0), f(w)
Luel (88)
Gi(1, u) + N§! Sl Gi (1, v)R,(v, u)p(v) dv
= R,(t, u), t,uel. (89)

It can be verified that (88) and (89) are equivalent to [11,
eq. (3.44), (3.49), (3.50), (3.52), and (3.53)]. However,
(88) and (89) give more insight into the structure of H, (1,
u) because of their simplicity and their direct relation with
the operator L. Specialization of (51), (52), and (54) to
this example is trivial and we shall not present the results.
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Finally, we note that the possibility of factoring the ei-
genfunctions ¢;(r) as in (85)-(87) and the existence of
the canonical LLP configuration of Fig. 4 seem to have
been overlooked in [11].

B. Generalization of Knapp and Carter’s Processor

Knapp and Carter [10] derived the maximum likelihood
processor for estimating a linearly varying time delay be-
tween two noisy versions of a common source signal.
They considered stationary signal and noise processes and
assumed that the observation time was large in compari-
son to the delay and to the signal and noise correlation
times. In this example, we extend their results to the case
of M sensors, nonlinearly varying time delays and com-
plex, frequency-dependent attenuation.

The signal model under consideration is specified as
follows:

a) M arbitrary, N = 1.

b) The ith component of the M X 1 impulse response
L(t, u) is given by

Li(t,u) = (21r)_I S Ci(w) el=4-ul gy (90)

where C;j(w) = Cf( —w) is a frequency dependent atten-
uation coefficient, and d; (1) is a slowly varying time de-
lay function satisfying the condition |d] (1)| << 1.

¢) The processes a(r) and n(r) are stationary with
power spectral densities A(w) and N(w), respectively.

d) The noise components at different sensors are un-
correlated, that is, N(w) = diag [N, (w), - -+, Ny(w)].

e) T =T — T, >> dyuy, Tas Tny Te, Where dp,, is the
maximum value of |d;(¢)|, 7, and 7, are the correlation
times of a(r) and n(t), and 7. is the largest correlation
time of the impulse responses associated with the C;(w).

To determine the components of the LLP, we shall re-
quire different approximations. They can be justified be-
cause the errors introduced are negligible (and generally
overshadowed by a lack of a priori knowledge). Besides,
many of these approximations also occur in the deriva-
tions of the conventional ‘‘optimum’’ array processors
[41-[8].

Because T >> day, 7., Weset I = J = [T, T;]. Sub-
stituting (90) into (22) and defining £(u) = 0 foru & J,
we find that

waw=ceo" | afZcw]

@

-

- du Bf(u)E,(B,(u))e_«’“’“g e rel
(91)

where §8,(1) is the inverse function of f;(¢) = t — d;(1).
The kernel W(t, u) is given by

W(t, u) = Sl dr S/ du L7(7, 1)Q(7, u)L(u, u)

t,uel. (92)
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Under the assumption e) of long observation time, we
have

O(t, u) = diag[Q\(r — u), - -+, Qu(r — u)] (93)

-1

0i(r) = 2n)”" S_m do {Ni(w)} & (94)

Moreover, we can replace the limits of integration in (92)
by +oo. After a straightforward calculation, we find

Wt u) = (21)" Sl dw, Sl des, f;

i=1

* CF (@) Ci(wy) e/t 72

N " wsmswarsm

— Bi()) eI e,
Since 8;(¢) =t + d;(B;(t)) and | d/(t)| << 1, we have
Bi(t) = t + di(1)
Bi(t) =1
Bi(1) = Bi(u) =t~ u

with relative errors of the order of | d (¢)|. An interesting
interpretation of these approximations in terms of source
velocity and noise bandwidth can be found in [20, p. 72].
Using (96) in (91) and (95) and making the necessary ma-
nipulations, we obtain

(95)

(96)

o

-

[L*£](1) = (27)” SZ do {5 e |

cdu &(u + di(u)) e'j‘”“} e (97)

W(t,u) = (27r)_] S:n dw D(w) eV~ (98)
M Ci(w) ’

D(w) = g}l 1—1\,—(% (99)

Observe that W(t, u) is (approximately) time invariant, a
remarkable feature of the particular problem considered
here. Since R, (¢, u) is also time invariant and the obser-
vation interval is long, this implies that [W*] (¢, u)(p =
+5, 1), K(t, u), H, (1, u) and G, (1, u) are all time
invariant with Fourier transforms given by

w* o {D(w)}" (100)

K o D(w)A(w) (101)
o _D(w)4(w)

Hoe 7 D(w)A(w) (102)

G, ~ A(w) (103)

1 + D(w)A(w)’

T T T
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Fig. 11. LLP configuration for example of Section V-B.

The resulting LLP configuration is shown in Fig. 11.
When d;(t) = d; and C;(w) = 1, i.e., constant delays
and perfect propagation, this configuration reduces to that
of [5].

Finally, a closed-form expression can be obtained for
the bias term b, (7). Indeed, since K (¢, u) is time invariant
and the observation interval is long, its eigenvalues \; are
simply given by the spectrum (101) evaluated at » = w;,
where w; = 27i/T,i =0, £1, - - - [1, p. 207]. That is

N = D(w)A(w;), i=0,+1,---. (104)

Using (104) in (7) and replacing the infinite summation
by an integral, we obtain

T
lzzﬁ

Note that [, does not depend on the delay functions d;(7).

The LLP derived in this example can be used for max-
imum likelihood estimation of the delays 4;(¢). In this
respect, it is important to know how uncertainties in the
signal power spectrum A(w) will affect the accuracy of
the resulting estimates. This problem is addressed in [20],
[21] in the case Ci(w) = 1. There, a lack of a priori
knowledge concerning spectral parameters , was shown
not to affect the minimum variance attainable in estimat-
ing delay parameters. To achieve this minimum, how-
ever, it may be necessary to maximize the LLF over a
larger set of parameters including 6,.

ST In[1 + D(w)A(w)] do.  (105)

C. An Example Involving Two Sources

Consider the following signal model:
ayM=2,N=2.

al(t - dll(t)) + a2(t - d12(t))
b) [La](r) = :
a,(t — dy (1)) + ay(1 = dua(2))
(106)

where |dji(1)| << 1.

c) The sources are uncorrelated, i.e., R,(t, u) =
diag[R, (¢, u), Ry(t, u)].

d) The noise component is white, i.e., R,(t, u) = 8(t
— w)lyxm

e) T >> dnaos Tur -

As before, define f;(t) = t — d;(t) and denote the
corresponding inverse functions by 8;(¢). Invoking the
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condition e) and making approximations similar to (96),
we obtain

Z &(r + dy (1))
’;‘ (107)

§| &i(r + dia(1))

[L*¢](1) =

W, (t, u) = EI 8(fo(Bip(1)) —u)  (108)

where W, (¢, u) (p, g = 1, 2) are the elements of the 2
X 2 matrix kernel W (¢, u). In this example, the difficuity
comes from the off-diagonal terms in W (¢, u). To under-
stand the nature of this difficulty, consider the operator
WR, which occurs in the factorization (49), (50) and in
the LLP configuration of Fig. 8. After a straightforward
computation, the following expression can be obtained for
the matrix kernel of this operator:

MR, (1, u)

2 Ri(1 + dia(1) = da(1). w)

Because of the nonzero off-diagonal terms in the above
expression, the postbeamforming processor G, = R, (],
+ WR,)"! in Fig. 8 will not, in general, decouple into
two parallel subprocessors (unless || WR,| << 1). Al-
though a complete analysis of this problem is beyond the
scope of this paper, at least one particular case of practical
interest exists where the off-diagonal elements in (109)
can be neglected. Indeed, suppose that the following two
conditions are satisfied:

a'y M >> 1.
£) |du(r) = dia(e) = 4 (1) + dip ()] > 27, i # .

Then, for any given values of ¢ and u, only one term in
the summations over i in (109) can give a significant con-
tribution. When M >>1, the off-diagonal elements in
(109) can therefore be neglected. As a result, the proces-
sor G, in Fig. 8 decouples into 2 parallel sub-subproces-
sors and the outputs (or beams) of L* can be processed
independently of each others. This decoupling property
of G, provides a very fundamental explanation of the well-
known fact that sources having sufficient angular separa-
tion do not interfere considerably.

VI. CONCLUSIONS

In this paper, we have studied the structural properties
of the space-time LLP under very general time-varying
conditions. In particular, we have shown that the M-di-
mensional integral equations specifying the LLF, where
M is the number of sensors, can be transformed into
equivalent N-dimensional integral equations, where N is
the number of sources in the model. This transformation
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made it possible to decompose the LLP into a cascade of
three specialized subprocessors (Fig. 4): a whitening fil-
ter, a unitary beamformer (UB) and a quadratic postpro-
cessor (QPP).

These results provide physical insight into the structure
of the nonstationary space-time LLP. More specifically,
they point to the fundamental (and distinct) roles played
by the UB and the QPP. The UB is the first processing
stage in computing the LLF for the prewhitened sensor
outputs. It transforms its M-component input into a N-
component output by applying a unitary transformation
that maximizes the array gain. This transformation is in-
dependent of the source signal statistics and is entirely
characterized by the transmission process and the noise
statistics. The postprocessor finally computes the LLF by
performing a quadratic (power-like) operation on the out-
put of the UB. In fact, the postprocessor is itself a LLP
for the output of the UB. This space-time processing di-

2 Ro(r + da(1) = dia(1), w)

(109)

MRz(t, u)

chotomy, i.e., unitary beamforming followed by quad-
ratic postprocessing, has many practical implications.
First, since the UB is independent of 8,, its N-component
output is a sufficient statistic for the estimation of 6,. That
is, the output of the UB contains all the information nec-
essary to estimate 8, when 6, is fixed. Second, when
N << M, the UB drastically reduces the number of time
functions that need to be quadratically processed, there-
fore resulting in computational simplifications. Finally,
since the postprocessor is a LLP, standard techniques are
available for its implementation.

Besides unifying many earlier results, the present study
provides a useful framework for tackling many practical,
as yet unsolved problems in nonstationary array process-
ing. For example, in [22], we have used the factorization
properties of Section III to derive the maximum likelihood
estimator of time delay for short observation intervals (this
problem is nonstationary in nature because of edge ef-
fects). This resulted in a novel processor with improved
performance when compared to conventional time delay
estimators.

APPENDIX |

Proof of Property 1:
a) Using (32) and (28), we have

R ¢, = UKU*UY,; = UKYy; = NUY; = Nio; (Al)
and using (30), we have
(d’i’ ¢,‘)2 = (U‘ﬁi’ U¢j)2 = (‘ﬁp %’), = 5:‘,‘- (A2)
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b) Let £ € R N {¢;}*. We must show that £ = 0 [15,
p. 33]. Because £ € R, (29) implies that £ = Uc, with «
= U*t € N*. Because £ € {¢;} ", we have

0 = (¢ ¢;), = (Ua, UY;), = (a, ¥),

for all indices i. Since {y;} is complete in N* by as-
sumption, (A3) implies « = 0 and, consequently, £ =
Ua = 0.
¢) Recall that the null space of L* is R*. Hence, if ¢
€ R*,R,t = LR,L*t = 0.
Proof of Property 2: It can be easily verified that

(A3)

(L + UKU*)™' = I, — UK(I, + U*UK) 'U*. (A4)
This identity can be regarded as an extension of the con-
ventional matrix inversion lemma to linear operators. Be-
cause the range of K is included in N*, it follows from
(28) that U*UK = K. Hence (A4) reduces to

(L + UKU*)"' = I, — UK(I, + K)_'U*. (A5)
Making the substitution R, = UKU* in (12") and using
(AS), we obtain

H, = UKU*(I, + UKU*)

= UK(I, + K)'U*.
(A6)
Proof of Property 3: From (7) and (13), we have

S, Tr{hy(1, 1)} dt = _% In(1+X\) (A7)

where \; are the eigenvalues of R;. Because (43) linking
hy to K is identical to (14) linking A, to R,, we can write
directly

S, Tr{h(t, 1)} dt = ; In(1+v) (A8)

where v; are the eigenvalues of K. Since, by Property 1,
R, and K have the same eigenvalues, (42) follows from
(A7) and (ASB).

APpPPENDIX I

Proof of Property 3': Let 1 be a parameter with value
in I = [, t;] and consider the eigenvalue problem

S» du R,(t, u) S dv W(u, v)n(v; 7)

=N(T)ni(; 1), f<t<rt (A9)

S ds n!(s; 7) S dr W(s, t)n;(1; 7) = &; (A10)
{i 1

where W(¢, u) is the integral kernel associated with the
operator W. For 7 = 1, (A9) and (A10) are equivalent to
(46) and (47) (we assume N = {0} and therefore P = [,
in (46)). Hence, N\;(t;) = N;. Applying

S: dsn](s; 1) S, dr W(s, t) (Al1)

on both sides of (A9) and using (A10) to simplify the re-
sult, we find '

N(7) = Sh S,, drdu {T(t; YR, (1, u) Gi(u; ) (A12)

ST dv W(u, v) ni(v; 7). (A13)

i

Gius 1)

Hence, \;(f;) = 0. Because of the particular boundary
values of \;(7), we can write the bias term [, (7) in the
form

!
M e

L=3{In(1+X\() —In(1+N)}

o ("dN(r)/dr
- E] S,, 1+ N(7) dr. (A14)

To obtain a simple expression for d\;(7)/dr, we pro-
ceed as in the derivation of [1, eq. (3-163)]. To begin,
observe that

ST du R,(t, u) &i(w; 7) = N(r)mi(5; 7). (A1S)

1

This result follows directly from (A9) and (A13). Differ-
entiating (A12) with respect to 7 and using (A15) to sim-
plify the result, we find

d)\,’ T

D o) nl )57 7)

ti

+ Sidtnf(t; r)g;’—'((;;—ﬂ}. (Al6)

Using (A13), it is not difficult to verify that the integral
in (A16) is equal to

1d (" .
2 dT{St, dt i (6 7)6(5 T)}
which is equal to zero in light of (A10) and (A13). Hence

(A17)

dN\;
NG onl(n (). (A1)
With the help of (A18), (A14) can be written as
i
L =2 g Te{F(7, 7;7)} dr (A19)
ti
where F(t, u; 7) = 0fort > roru > 7, and
- Ni(7) T
. = — 7 (r T(u; 20
Pt r) = T 5 6 s 1) (A20)

fory, <= t,u < 7.

We note that in the space of N-vector functions defined
over [t;, 7] with scalar product (. , .), (45), § duR, (1, u)
W(u, v) is the kernel of a self-adjoint operator. Hence,
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[15, theorem 7.5.2] implies that

S}i du R,(t, u)W(u, v) = i; N(T)mi(s 1) ¢l (vs 7)
(A21)

fory; < t, v < 7. Using the expansion (A20) and (A21),
it is not difficult to verify that F(z, u; 1) satisfies

T

F(1,u;7) + § dat' F(t, t'; 1)
i
. S du' W(t', u')R,(u', u)
ti

= S du' W(t, w' )R, (u', u), <t us=<r.
i
(A22)

Property 3’ follows from (A19) and (A22) if we define
f(t,u) =F(1,u;1).

APPENDIX III
Proof of (53): Let 1 be a parameter in [#, t] and
consider the integral equation

T T

G(t,u; 7) + S dat' G(t, t'; 1) S
t

ti
cdu W(t', u' )R, (', u)
= R,(t, u), (A23)

Equation (A23) is identical to that defining the kernel
Gi(t,u) = Gl (u, t) of the self-adjoint operator G, (50),
except that in the latter equation, the upper limit of inte-
gration is ¢ rather than 7. Therefore, like G\ (t,u)

L<tu<r.

G(t,u;7)=G'(u,17), t<tus<r (A24)
and, obviously
G(t,u; 1) = Gi(t,u), 1 <tus< . (A25)
For 7 = 1, (A23) is identical to (54). Consequently
G(t,u;t) =g(t,u), t<u<r. (A26)

Let o be an arbitrary function in S,. Using (A24)-
(A26), we have

[Gia](r) Sh du G(t, u; t;)a(u)

I

S’ du G(t, u; 1)a(u)

I ] T
+ S dr — 5 du G(t, u; 7)a(u)
t 87 7

g; du g(r, u)a(u) + S:fdu g7 (u, 1)ac(u)

I

+ S: dr ST du % G(t, w; T)a(u). (A27)

14

i e

Proceeding as in the derivation of [13, eq. (2-62)], it can
be shown that

d
P G(t, u; 1)

T

= _gT('r, t) S,,- dv W(r, Z})G(l}, u; 7)

- ég' dv W(r, v)G(v, 1; T)} g(7, u).

i

(A28)
But

Sfdv W(t, v)G(v, u; 7) = F(t, u; 1) (A29)

since the quantity on the left is a solution to (A22) (this
follows from (A23)). Therefore

i 60w 7) = =75, £, ) — £7(r, ) ),

(A30)

To complete the proof, simply substitute this expression
back into (A27).

APPENDIX IV

Proof of (64): By definition, we have

SNRin = —

A14 EJ Tr{Ry(1, 1)} dt (A31)

SNR,, = 1%, gl Tr{[QRQ*](r, 1)} ar.  (A32)

According to Mercer expansion [19]

R(t,u) = E Noi(D)el(u). (A33)

Substituting this expansion into (A31) and (A32), we ob-
tain

M SNR;, = 2\, (A34)
N SNR,, = 2\ 4. (A35)
Observe that || Q¢ [, < 2]l ¢;1l, = Q] = 1. The last

equality follows because || @[> = || QQ*|| = 1 (for prop-
erties of the operator norm, see [17]). Therefore, N SNR,,
=< M SNR;,. Finally, when Q = U*, the equality holds
because U*gp; = U*Uy,; = y; and ||y, |, = 1.
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