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Exact Maximum Likelihood Time Delay Estimation
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Abstract—This paper presents an exact solution to the prob-
lem of maximum likelihood time delay estimation for a Gauss-
ian source signal observed at two different locations in the pres-
ence of additive, spatially uncorrelated Gaussian white noise.
The solution is valid for arbitrarily small observation intervals;
that is, the assumption T >> 1., |d| made in the derivation of
the conventional ‘‘asymptotic’’ maximum likelihood (AML)
time delay estimator, where t, is the correlation time of the
various random processes involved and d is the differential time
delay, is relaxed. The resulting ‘‘exact’’ maximum likelihood
(EML) instrumentation is shown to consist of a finite-time de-
lay-and-sum beamformer, followed by a quadratic postproces-
sor based on the eigenvalues and eigenfunctions of a one-di-
mensional integral equation with nonconstant weight. The
solution of this integral equation is obtained for the case of sta-
tionary signals with rational power spectral densities. Finally,
the performance of the EML and AML estimators are com-
pared by means of computer simulations for a first-order au-
toregressive source signal and for values of T, 1., and d such
that the condition T >> t,, |d| is not satisfied. The results in-
dicate that the AML estimator suffers a dramatic deterioration
in performance (large error, bias, and standard deviation) as
the ratio d/ T increases from 0 to 0.1, making it essentially use-
less beyond this point. No such effect is observed with the EML
estimator which has the best overall performance and whose
mean-square error approaches the Cramér-Rao lower bound
for large values of the signal-to-noise ratio (SNR). The results
also indicate that for large SNR, considerable simplifications of
the EML estimator are possible without any significant loss in
performance.

I. INTRODUCTION

URING the last two decades, considerable attention .

has been given to the problem of time delay estima-
tion (TDE), which consists of estimating the time differ-
ences between noisy, delayed replicas of a common ran-
dom source signal [1]-[5]. This problem arises most
naturally in the context of passive sonar where an array
of sensors is used to monitor a propagating wave. In this
case, the time delays between the various sensor output
signals are equal to the time differences of arrival of the
wavefront to the sensors. Estimation of these delays can
therefore provide information about the direction of ar-
rival of the wavefront. Besides this dominant application,
TDE also occurs in other areas of science such as seis-

Manuscript received September 2, 1989; revised June 4, 1990.

B. Champagne is with INRS-Télécommunications, Université du Qué-
bec, Verdun, Que., Canada H3E 1H6.

M. Eizenman and S. Pasupathy are with the Department of Electrical
Engineering, University of Toronto, Toronto, Ont., Canada M5S 1A4.

IEEE Log Number 9143798.

mology, economics, and dendrochronology (historical
dating from tree ring records) [6], to name a few.

One of the most popular methods of estimation used in
connection with the TDE problem has been that of max-
imum likelihood (ML), largely because ML estimators are
known to be asymptotically efficient in the limit 7 — oo,
where T denotes the observation interval [7, p. 138]. The
application of the ML method to the TDE problem is usu-
ally based on three fundamental assumptions [2]-[4],
namely, constant delay, stationary processes, and long
observation interval (i.e., T >> 7, |d|, where 7, is the
correlation time of the various random processes involved
and d is the differential time delay.) Because they are de-
rived under the assumption of a long observation interval,
we refer to these ML estimators of time delay as ‘‘asymp-
totic’> maximum likelihood (AML) estimators.

In many cases of practical interest, however, the as-
sumption of long observation interval is inconsistent with
other prevailing conditions. For example, when monitor-
ing a rapidly moving source with a passive array of sen-
sors, the assumptions of stationary processes and constant
delay will only be satisfied over a limited time interval,
and failure to take this fact into gccount may result in a
serious deterioration of the delay estimator performance
[8]. Another example occurs when the source signal under
observation is a transient of short duration.' In this case,
increasing the observation interval beyond the signal du-
ration will eventually result in a performance deteriora-
tion rather than in an improvement. Finally, in other ap-
plications, external factors will prevent the observation
interval from being sufficiently long. This may occur, for
example, when working with prerecorded data sets.

While the above considerations justify the need for new
TDE techniques that can be used when the condition T
>> 7., |d| is not satisfied, it is legitimate to wonder about
the role played by the ML estimator in this ‘‘nonasymp-
totic’’ situation. There are, however, very important mo-
tivations for considering ML estimation even when the
observation interval is short. First, as indicated in [10],
there is actually a tradeoff between observation time and
signal-to-noise ratio (SNR) in the TDE problem. Under
appropriate conditions, one might therefore expect the ML
estimator to be asymptotically optimal in the limit of large

'A discussion of the equivalence of transient and narrow-band signals in
the context of signal processing can be found in [9].
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SNR. Second, knowledge of the ML estimator (or, more
exactly, of the associated log-likelihood instrumentation)
can be used to evaluate various bounds on estimator per-
formance, such as the Cramér-Rao or Barankin lower
bounds [11, ch. 2]. Finally, the ML estimator provides
fundamental insights that are essential in the development
of simpler estimators, some of which follow as limiting
cases of the ML estimator itself.

Despite its importance, the problem of ML TDE for
short observation intervals has received relatively little at-
tention in the signal processing literature, mostly because
of its inherent complexity. Indeed, when the assumption
of long observation interval is not satisfied, the problem
becomes nonstationary in nature because of ‘‘end effects’’
and it is no longer possible to use the conventional Fourier
techniques that previously made the analysis of the AML
estimator tractable. Among the results available for non-
stationary ML TDE, those of Stuller [12] are of particular
interest here because they address specific issues related
to end effects. Lourtie and Moura [13] also present gen-
eral results on nonstationary ML TDE that are applicable
in the case of short observation intervals. However, these
studies formulate the ML estimator in terms of unsolved
integral or partial differential equations and, as a result,
they do not provide practical ways of realizing the ML
estimator, nor do they compare its performance to that of
the conventional AML estimator.

In this paper, we present an exact solution to the prob-
lem of ML TDE for a Gaussian source signal observed at
two separated locations in the presence of additive, spa-
tially uncorrelated Gaussian white noise. This solution is
valid for arbitrarily short observation intervals; that is, the
standard assumption T >> 7., |d| made in the derivation
of the AML estimator is relaxed. The exact maximum
likelihood (EML) estimator is obtained in two steps: first,
the factorization properties of optimum space-time pro-
cessors [14] are used to transform the matrix integral
equations defining the log-likelihood function into sim-
pler scalar integral equations; second, these reduced in-

tegral equations are solved for the case of stationary sig- -

nals with rational power spectral densities by generalizing
a technique originally developed by Youla for a simpler
class of integral equations [15]. In the last part of the pa-
per, computer simulations are used to study the compar-
ative performance of the EML, AML, and other related
estimators. For the simulations, a first-order autoregres-
sive source signal is used along with values of T, 7, and
d violating the condition T >> 7., |d]|.

II. PROBLEM FORMULATION

We consider the family of vector random processes x (¢;
d), parametrized by the delay variable d € [d_, d. ], and
defined as follows:

x(t;d) = a(t;d) + n(0, O0=<st=<T (€))

a(t) n(®)
;d) = , = 2
a d) L(t - d)} "o [nz(t)] @
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where a(f), the source signal, and n;(¢) (i = 1, 2), the
additive noise components, are zero mean uncorrelated
stationary Gaussian random processes with known auto-
correlation functions R,(7) and R,(7), respectively. The
interval [d_, d, ] represents the a priori range of possible
delay values. We assume that a(f) possesses a power
spectral density G,(w) which is a rational function of w’
That is,

Ry(r) = —— S Galw)e™ do @)
27(' — o0
_NGH .
Ga(w) - D(Sz)’ N -‘_]O) (4)

where N(+) and D (-) are irreducible real coefficient poly-
nomials of degrees m and n, respectlvely, satisfying the
following conditions: a) any zero of N D) (interpreted as
a function of the complex vanable s) on the imaginary
axis has even multiplicity; b) D(s?) has no zero on the
imaginary axis; and c¢) n > m. These conditions ensure
that G,(w) is a well-defined, absolutely integrable spec-
tral density [15]. We further assume that the additive noise
components n; () are white with unit spectral height, that
is,

R, (1) = 8(7) 5)
where §(7) is the Dirac delta function.

Let x(¢) (0 < t < T) be a particular realization (i.e.,
an observation) of the process x (¢; d*), where d* repre-
sents the true value of the unknown delay parameter. The
TDE problem then consists of finding a statistically reli-
able estimate of d* from the observation x (¢). By defini-
tion, the ML estimate dyy; of d* is the value of d at which
the log-likelihood function of the observed data, 1n A (x;
d), defined below, attains an absolute maximum. That is,

InAG; dy) = InA(x; d), aldeld_,d,]. (6
The log-likelihood function of the observed data x(z) (0
< t < T), represented simply by x, can be obtained by
means of the following series representation [16, ch. 6]

1
InAx; d) = 3 {lix; d) — L)} )

2
. )\f ’ tr
Lx; d) = ‘Z;l T)\; {So &) x(® d’} (®

L(d) = :El In (1 + N\). ©)

The superscript " in (8) denotes transposition. \; and ®;(1),
which also occur in the Karhunen-Loéve expansion of the
vector process a(t; d) in (2), are the eigenvalues and (real)
normalized vector eigenfunctions, respectively, associ-
ated with the autocorrelation matrix R,(7; d) of a(t; d).
They satisfy the following integral equations:

T
SO R,(t — u; d) ®;(u) du = N®;(), 0=<t=<T
(10
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T
S (1) ®;(r) dr = &
0

where §;; is the Kronecker delta. Note that A; and &;(¢) are
actually functions of the delay parameter d.

In order to evaluate the log-likelihood function In A (x;
d) and thus determine the ML estimate L?ML, it is first nec-
essary to solve the integral equations (10) and (11) for the
\; and the ®;(¢). Using a standard technique [11, p. 205],
it is rather easy to show that under the asymptotic condi-
tion T >> 7., |d|, where 7, is the correlation time (or
inverse bandwidth) of the process a(?) in (2), possible so-
lutions to (10) and (11) are given by i = 0, +1, - - )

i

N =2G (), w= ;l (12)
—1/2, jwit 1

®;(1) = 2T)" % gioid | 13)

Here, the eigenfunctions are complex valued and the su-
perscript " in (11) must be interpreted as a complex trans-
pose operation. Real, properly normalized eigenfunctions

can be obtained from (13) by considering the real and ~

imaginary parts individually and multiplying them by an
appropriate scaling factor. Substituting these real eigen-
functions together with their eigenvalues \; (12) into (8)
and (9), it can be shown that the log-likelihood function
(7) reduces to the conventional AML estimator, which
consists of a generalized cross correlator with Hannan-
Thomson prefilters [4].

However, when the observation interval is short, i.e.,
when the condition T >> 7., |d| is not satisfied, \; and
®,(r) specified by (12), (13) are no longer solutions of
(10), (11) and, as we will see in Section V, their use in
(8), (9) may result in unreliable delay estimates. In the
next two sections, we present an explicit method that can
be used to find the exact solutions of (10) and (11) for any
value of T, regardiess of how small it is.

III. DIMENSIONALITY REDUCTION

The first step in the solution of the matrix integral equa-
tions (10) and (11) is to transform them into equivalent
scalar integral equations. This can be achieved by apply-
ing one of the factorization properties of optimum space-
time processors presented in [14]. The property of interest
[14, property 1'] essentially states the following: since
the vector process a(t; d) in (2) is related to the scalar
process a(f) by a linear operation, the eigenfunctions $;(r)
in (10) can be obtained by applying the same linear op-
eration to the properly normalized eigenfunctions of a
scalar integral equation whose eigenvalues are precisely
the A;. There are at least two important reasons for pro-
ceeding this way rather than considering (10) and (11)
directly. First, solving a scalar integral equation is con-
ceptually simpler than solving a matrix integral equation.
Second, this approach provides simple, yet very impor-
tant structural information about the eigenfunctions &;(r)
and the log-likelihood processor (7)-(9).

an
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In the case 0 < d < T, [14, property 1’] gives the
following results: Define the weighting function

1, -d<t<0
p() =1 2, 0<t<T-d (14)
1, T-d<t<T

and let \; and ¥; (¢) be the eigenvalues and eigenfunctions
of the scalar integral equation

T
S dRa(t — Wy p) du = Ny;(®, —-d=t=<T

(15)
with the ¥, (¢) satisfying the orthonormality condition

T
S_d Vi@ ¥ p () dt = §. (16

Then, the functions

8.0 = [rﬁ,(t)
¥t — d)
are normalized eigenfunctions of R, (r; d) with eigenval-
ues A;. That is, \; and ®;(¢) obtained through (14)-(17)
satisfy (10) and (11) (this can be verified by direct sub-
stitution). Of course, R,(7; d) will have other eigenfunc-
tions that cannot be generated in this way. However, as
explained in {14], these eigenfunctions all have zero-ei-
genvalue and therefore, in light of (8) and (9), they need
not be considered when evaluating the log-likelihood
function (7).

Once we have determined the \; and $;(7) for a given
value of d in [0, T1], it is a simple matter to obtain the \;
and ®;(¢) corresponding to —d. Indeed, using (10) and
(11), it can be verified easily that (the dependence upon

], O0<:=T amn

d has been introduced temporarily)

Ni(—d) = N(d) (18)
Vit — d; d)
vi(t; d)

where \;(d) and ¥, (¢; d) are obtained through (14)-(16).
Reference [14, property 1'] could also be used in a sim-
ilar way to handle the case |d| > T. However, since no
additional difficulties are involved and since |d| > T does
not represent a very practical situation (no overlap be-
tween the source signal components observed at the two
sensors), we shall limit ourselves to the case |d| < T.
The problem of solving the reduced integral equation (15)
is addressed in the next section.

We now look at the processor configuration that results
from the specific structure of the eigenfunctions ®;(¢) in
(17). Substituting (17) in (8), the following expression
can be obtained for the data-dependent term /,(x; d) of
the log-likelihood function (7):

o A T 2
b d) = 2 Ud v y @) dt} (20)

=ll+)\i
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where the scalar process y(?) is given in terms of the com-
ponents of the observed vector process x(f) = [x,(1),
x,(1)]" by

X + d), -d<t<0
y@) = { x,(t) + (¢t + d), 0<t<T-d 21)
x(1), T-d<t<T

The resulting processor configuration is shown in Fig. 1.
It consists of two specialized subprocessors. The first one,
referred to as a finite-time beamformer, transforms the
observed vector process x(f) (0 < ¢t < T) into the scalar
process y(f) (—d < t < T) by means of (21). The second
one, referred to as a quadratic postprocessor, computes
l)(x; d) from y () by means of (20) and finally performs
bias compensation and scaling to generate the log-likeli-
hood function (7).

Many interesting observations can be made regarding
the finite-time beamforming operation (21). First, its out-
put y(#) will in general be discontinuous at # = O and ¢t =
T — d. These discontinuities, or ‘‘end effects,’’ are a di-
rect consequence of the fact that the observation interval
[0, T] is finite. Second, the middie term on the right-hand
side of (21), whose contribution to the integral in (20) is
most important when T >> d, corresponds to a simple
coherent delay-and-sum beamforming operation. Finally,
the operation (21) is robust in the sense that it is indepen-
dent of the signal statistics. In other words, the finite-time
beamformer in Fig. 1 is entirely determined by the ge-
ometry of the problem and is insensitive to modeling er-
rors in the source signal a(f).

As seen from (7), (9), and (20), the quadratic postpro-
cessor has the same structure as a conventional log-like-
lihood processor based on the eigenvalues \; and scalar
eigenfunctions ;(7), except that the eigenfunctions are
now normalized according to (16) which features the dis-
continuous weighting function p (7). In practice, because
of the asymptotic behavior of the \; in the limit i = oo,
only a finite number N of terms need to be included in (9)
and (20). If the observation interval T is short and the
spectrum G, (w) converges to zero sufficiently rapidly as
o tends t0 +oo, this number can actually be very small,
therefore resulting in computational simplifications. This
was indeed our primary motivation for using a series ex-
pansion approach to the evaluation of the log-likelihood
function (7). Other possible realizations of the quadratic
postprocessors are indicated in [14].

Finally, it is of interest to study the behavior of the
data-dependent term /,(x; d) (20) in the limiting case of
large signal power. To begin, we observe from (15) that
multiplying R, (z) by a constant factor has the effect of
rescaling all the eigenvalues \; by the same factor. There-
fore, if the signal power R,(0) is sufficiently large, the
dominant eigenvalues will be much larger than one and,
for these eigenvalues, we will have \;/(1 + \;) = 1.
Making this approximation in (20), we obtain

Y T 2
Li(x; d) = El H—d Yi(t) y(@ dtJ . 22)
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x1(0)
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x(1)

itz

? E‘/z InA(x;d)

=l2(d)

Fig. 1. Configuration of the EML processor. (a) Finite-time beamformer
(x;(ry =0fort < Oand: > T, i = 1, 2). (b) Quadratic postprocessor (a;
=)\,-/(1 +N),i=1,--- N

Equation (22) can be further simplified by means of the
completeness relation [17, p. 266]

PO L i) Yiw) = 8¢ — w) 23)
which is satisfied by the eigenfunctions y; (¢) in (15), (16).
The result is
T .2

YO 4.
-d p(1)
The right-hand side of (24) is a nonconventional measure
of the total signal energy at the output of the finite-time
beamformer. From a practical point of view, (24) presents
two major advantages over (20). First, it does not require
a priori knowledge of the signal statistics, i.e., it is in-
dependent of R, (7). This is particularly important for ap-
plications in which such knowledge is unavailable.? Sec-
ond, because it does not require the computation of the
eigenfunctions y;(#), its implementation is considerably
simpler than that of (20). It remains to be determined
whether or not (24) can actually be used as a reasonable
approximation to (20), and if so, under what conditions.
This will be investigated experimentally in Section V.

Lix; d) = S (24)

IV. SoLuTiON OF THE REDUCED INTEGRAL EQUATION

Many techniques are available for the determination of
the eigenvalues and eigenfunctions of a stationary process
a(f) whose autocorrelation function R, (7) satisfies (3), (4)
(see [11, p. 187] for references). Unfortunately, none of
them can be applied directly to solve the reduced integral
equation (15) because of the nonconstant weighting func-
tion p (u) appearing under the integral sign. In this sec-
tion, we develop a new algorithm that can be used to solve

*We note, however, that only /,(x; d) has been simplified to a form in-
dependent of R, (7). The complete determination of the log-likelihood func-
tion (7) still requires the knowledge of the bias term /,(d) (9), which de-

. pends in a specific way on the eigenvalues of R, (7).
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(15) when R, (7) is of the type (3), (4) and p(?) is given
by (14).

We begin by stating three properties that are satisfied
by the eigenvalues A; and eigenfunctions ¥;(#) of the in-
tegral equation (15). These properties will later help in
clarifying some aspects of the proposed solution algo-
rithm for (15). The proofs of these properties can be found
in Appendix A.

Property 1: The eigenvalues \; are bounded. More

precisely, 0 < N; < 2y, where
v = max {G,(w): —®© < w < ®}. (25)

Property 2: The eigenfunctions y;(¢) are continuous on
the interval [—d, T].

Property 3: Let Ly(p) denote the Hilbert space of

square integrable functions defined over the interval [—-d,
T], with scalar product given by
T

£, 8= S_df(t) gy p®d, allf gelyip). (26)
There exists a complete orthonormal set of eigenfunctions
{¥:(*)} in Ly(p), such that each eigenfunction in the set

satisfies the symmetry relation
Vi) = ey (T —d— 1) 27

where ¢;, referred to as the symmetry index of ¥;(?), is
either equal to +1 or —1.

The next theorem is at the basis of the solution algo-
rithm for the reduced integral equation (15). Before stat-
ing it, however, we need to introduce some notation. Let
¥;(?) be a solution of (15) and define the auxiliary func-
tions ¥;(8) (j = 1,2, 3; —o < t < ) as follows:

‘pi (t)9
¥ (t) = {

0, otherwise

tel
28)

where I, = (=d,0),, = (0, T - d)and I, = (T — d,

T). Denote by ¥, (s) the bilateral Laplace transforms )

(BLT) of the auxiliary functions y;(¢), that is,
‘I,lj (S) = S 1[/,-j(t)e_s' dr. (29)

Finally, et D *(s) and D ~(s) be real coefficient polyno-
mials of degree n defined by the conditions:

D(s®) = D*(s) D~ (s) (30
D*(s) = D (—s) 31
D*(s) =0  implies Re (s) < O (32)

where Re (s) denotes the real part of 5. The factorization
of D(s?) as in (30)-(32) is sometimes referred to as a
canonical factorization [18, p. 41].

Theorem: a) Let \; and ¢, (¢) be solutions of (15) and
suppose that y;(f) satisfies (27). Then, there exist real
coefficient polynomials P;(s) and Q;(s), of degrees equal
atmostton — 1 and 2n — 1, respectively, such that

e* D (s) Pi(s) — Qi(s)

¥l = XDesh - N6

(33)
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0,(5) + ee*T"9Qi(—s)
ND(s?) - 2N(s?)

all singularities in (33) and (34) being removable. More-
over,

¥5(5) =

(34

¥;3(s) = EieAs(T_d)‘I’u(_s)- (35)

b) Conversely, suppose we can find polynomials P;(s) and
Q;(s) as above, and numbers \; (0 < \; < 2v) and ¢; (¢
= +1) such that the right-hand sides of (33) and (34)
have only removable singularities. Let ¢;(t) = ¥;,(t) +
Yia(t) + ¥i3(2), where y,; () are the inverse BLT of ¥;;(s)
given by (33)-(35), the region of convergence being the
whole s plane. Then \; and () are solutions of (15) and
¥, (p) satisfies (27).

The proof of this theorem is given in Appendix B. Based
on this theorem, it is now easy to develop an algorithm
for the determination of the eigenvalues and eigenfunc-
tions of the reduced integral equation (15). Essentially,
we must determine the coefficients of the polynomials
P;(s) and Q;(s) by requiring that the right-hand sides of
(33) and (34) have only removable singularities. This will
translate into a 3n X 3n system of homogeneous linear
equations which has nonzero solutions only for certain
values of the \;, which are precisely the desired eigen-
values. We now describe in details the various steps of
the solution algorithm for (15):

1) Determine the canonical factors D *(s) and D ~(s) of
D(s?) as in (30)-(32).

2) Find the K, distinct zeros s\ (N\), k=1, -+ , K|,
of the polynomial AD(s%) — N(s?) and let m;; denote
their respective multiplicities. Similarly, find the K, dis-
tinct zeros sy (N), k = 1, -+ - , K,, of the polynomial
AD(s?) — 2N(s?) and let my, denote their respective
multiplicities. Observe that the zero configurations of both
these polynomials are symmetric about the real and the
imaginary axis in the s plane.

3) Define the functions

gi(s) = e*D*(s) P(s) — Q)
865, &) = Q) + ee "TQ(~s)

where ¢ = +1 and where P(s) and Q(s) are yet undeter-
mined real coefficient polynomials of degrees n — 1 and
2n — 1, respectively, i.e.,

(36)

€0

PGs)=po+pis+ - +pois"” (38)

2n—1

Q6) =g+ qs + -+ (39)

4) Consider the following system of 4n complex ho-
mogeneous linear equations in the 3n real unknown coef-

ficients pg, * * * , Pu—1,Go> * * *

+ Qon-1S

> Qan—1°

gl =0, k=1, --,K,
1=0,- ,my — 1 (40)

g uN, 0 =0, k=1, ",K,
l = 0, . s My — 1 (41)
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where the superscript (/) denotes the /th derivative with
respect to s.

5) Using the symmetries present in the zero configu-
rations {s;,(N)} and {s5;(N)} and in the functions g,(s)
and g,(s, €), simplify this system into an equivalent one
consisting of 3n real homogeneous linear equations in the
unknowns pg, - -, ¢y,_1. Let this new system be rep-
resented by the matrix equation

AN, X =0 42)

where A(A, €) is a 3n X 3n real matrix and X = [p,,
T o]

6) Find the roots (\;, ¢;), with0 < \; < 2yand ¢; =
+1, of the equation

det A\, ) = 0. 43)

The \; so obtained are the eigenvalues of (15) and the ¢;
are the symmetry indices of the corresponding eigenfunc-
tions.

7) For each pair (N, ¢;), determine the solution space
of the equation

AN, €)X = 0. 44)

For simplicity, assume that the solution space has dimen-

sion one (the general case needs only trivial modifica- B

tions) and let X; = [po;, = * * , g2—1,;]" be an arbitrary
nonzero element of the solution space.
8) Let

Pi(s) = po + -

Qi) =qo; + * -
Then, we have

( K D+(S) P‘(s)e’(”d)
G 2 Re [x,-D(sz) —NGY)

-d<t<0

K
C; kgl Res {

+ Paris" ! 45)
+ Grn— 1,.'32"‘]- (46)

s Slk()\i):l9

Vi) = ¢ 0.5)e"
is)e
ND(s?) = 2N(s?)’

sZk()\i)}a

\ 0<t<T-d @7

where ¢; is a yet undetermined coefficient and where the
notation Res [ f(s), s,] is used to denote the residue of the
function f(s) at one of its pole so. For T —d < t < T,
¥:(¢) can be obtained from (47) by making use of the sym-
metry relation (27).

9) In order to determine c;, simply substitute the above
expressions for y; (¢) into (16) and perform the appropriate
integration.

This completes the algorithm. Note that in general,
steps (6) and (9) will have to be carried out numerically.

This algorithm generalizes Youla’s technique [15] for
the determination of the eigenvalues and eigenfunctions
of R,(7) in the absence of the weighting function p (7).
Besides the various modifications needed to account for
p (1), there is one major distinction between our approach
and that of Youla which deserves some explanation. What
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makes Youla’s technique efficient is the use of a sym-
metry relation, equivalent to (27) for d = 0, that reduces
by half the number of unknown eigenfunction coeffi-
cients. However, the derivation of this relation in [15]
relies upon certain supplementary assumptions concern-
ing the multiplicity of the eigenvalues. Rather than mak-
ing supplementary assumptions, we have chosen a differ-
ent approach: since Property 3 asserts the existence of
eigenfunctions satisfying the symmetry relation (27), we
developed our solution algorithm so that it gives precisely
these eigenfunctions.

Some interesting observations can be made about the
eigenfunctions (7). First, although they are continuous
as stated by Property 2, (47) reveals that their behavior in
the middle interval 0 < ¢ < T — d is different from that
in the end intervals —d < t < Qand T—d <t < T.
This is another consequence of the fact that the observa-
tion interval is finite. Second, the existence of symmetries
in the eigenfunctions, as stated by Property 3, is a very
desirable feature that can be exploited at the implemen-
tation level to reduce by half the computational load. Fi-
nally, as a consequence of (47), it follows that the auxil-
iary functions y; (¢) associated with ¥, () by means of (28)
satisfy specific constant-coefficient linear homogeneous
ordinary differential equations. More precisely, we have:

Property 4: Let \; and y;(¢) be solutions of (15) and
let y;;(¢) be defined as in (28). Then

[ND(@A) = p() NAHIY;() = 0, (48)

where A represents the time derivative operator d/dt.

Practically, this property implies that the eigenfunc-
tions y;(f) can be generated on-line by means of a recur-
sive equation. In this case, the solution algorithm still
needs to be used to determine the eigenvalues \; and the
initial conditions necessary to start the recursion.

As a final remark, we mention that the above solution
algorithm for (15) could easily be extended to a larger
class of weighting functions consisting of all the positive
step functions that are symmetrical about the middle point
(T — d)/2 of the interval [—d, T]. This might actually
find an application in the more general TDE problem with
an arbitrary number M = 2 of equidistant sensors.

tel;

V. COMPUTER SIMULATIONS

Computer simulations were used to study the compar-
ative performance of the EML, AML, and other related
time delay estimators when the asymptotic condition T
>> 7., |d| is not satisfied. Our primary concern was not
to provide an exhaustive characterization of the perfor-
mance of the various processors, but rather to determine
what kind of improvement, if any, can be achieved by
using EML instead of a more conventional method such
as AML. Accordingly, we focused our attention on a sim-
ple low-pass system and only a few values of the param-
eters of interest, such as bandwidth, signal-to-noise ratio
and true delay, were considered. Nevertheless, the results
are quite significant and clearly show that substantial im-
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provements in performance are possible with EML when
the observation interval is short. In this section, we briefly
describe the simulations and discuss the results obtained.

A. Simulation Details

The signal a(r) was modeled as a stationary first-order
Gauss-Markov process with autocorrelation function and
power spectral density

R (1) = Pe™"! 49
2aP
Gyw) = = (50)

respectively. P represents the mean-square value of the
signal a(¢) while « is a measure of its bandwidth (-3dB
point of G,(w)). In what follows, we refer to the dimen-
sionless quantity « T as the time-bandwidth product.

In order to implement the simulations on a digital com-
puter, the observation interval [0, T] was divided into N;
subintervals of length T, = T/N,. The true value of the
delay parameter was then chosen as a multiple of T, i.e.,
d* = k*T, where k* is an integer. To generate the sample
values of the sensor output signals x,(r) and x,(z) at the
time instants £, = (n — 1/2) T, (n = 1, - - -, N;), we
proceeded as follows. First the sequence a(z,) (n = 1 -
k*, - -+, N,) was obtained by passing a Gaussian white
noise sequence through an appropriate first order IIR lin-
ear filter. Two other Gaussian white noise sequences e;(z,)
and e,(t,), with variance

1
Ewmn=; 1

were also generated (these correspond to samples of fic-
titious band limited white noise processes e(f) and e(?)
with common power spectral density G,(w) = 1 for ||
< /T, and O otherwise). Finally, the three independent
sequences a(t,), e(t,) and e,(t,) were combined accord-
ing to’

xl(tn) = a(tn) + el(tn)

xZ(tn) = a(tn—k*) + e2(llz)'

From the above considerations, it follows that the signal-
to-noise ratio (SNR) at the sensor outputs, which we sim-
ply define as the signal mean-square value divided by the
noise mean-square value, is given by

SNR = PT,. (53)

Five different methods were used to generate time delay
estimates from the simulated data x,(z,) and x,(¢,). They
are listed as follows together with their abbreviations: 1)

(52)

3The problem addressed in this paper might as well have been formulated
in the discrete-time domain. Indeed, as long as d* is a multiple of T, the
continuous-time derivations of Sections III and IV admit direct discrete-
time counterparts. While the discrete-time approach seems more natural
for simulations and DSP implementations, the continuous-time approach
more accurately reflects the analog nature of the physical signals monitored
at the sensor outputs. In any case, provided the sampling rate is sufficiently
high, both approaches are equivalent.

exact maximum likelihood (EML); 2) high SNR version
of EML (HEML); 3) asymptotic maximum likelihood
(AML); 4) AML with prewindowing (WAML); 5) max-
imization of tapered cross-correlation estimate (MTCC).

For each method, a time delay estimate was first ob-
tained by maximizing the corresponding likelihood func-
tion over the restricted set of delay values

d=kT, kelk*—8, -+ k¥ +8} (549

This estimate was then refined by applying a three-point
quadratic interpolation formula as in [19]. Important sim-
ulation details for each of the methods listed above as well
as the motivation for Methods 4 and 5 are given in the
next paragraphs.

The likelihood function used to generate the EML es-
timate was obtained via (7), (9), (20), and (21), with the
infinite summations in (9) and (20) replaced by finite ones
extending from i = 1 to a preset value i = N, and with
the integral over ¢ in (20) approximated by a Riemann sum
with step size T;. The eigenvalues A, (d) and the sample
values ;(t,; d) of the eigenfunctions were precomputed
using the algorithm of Section IV and stored along with
the (truncated) bias term [ (d).

The HEML estimate was obtained by maximizing the
likelihood function /;(x; d) (24), without using the bias
term L(d) (9). This later modification was suggested by
independent computations revealing the weak dependence
of I,(d) on the parameter d. In light of (24), the HEML
estimate is therefore completely independent of the signal
statistics.

The AML estimate was obtained by maximizing the
asymptotic log-likelihood function

M

2Ga(wi) 2 2 l
: = " X = —
Lewd) = 25y +1 % @~ ©
T
X, = @D, ) S x@e et dt  (56)
0

which can be obtained by the technique outlined in Sec-
tion II. The integral in (56) was evaluated via radix-2
FFT. In order to make our comparison of EML and AML
meaningful, we chose M = N/2 as the upper limit of
summation in (55). This choice, based on experimental
considerations, ensured that the corresponding instrumen-
tations had comparable bandwidths.

The WAML method was similar to the AML method
except that the data sequences x,(7,) and x,(t,) were mul-
tiplied by a Hanning window function w(t,) = sin?
(xt,/T) prior to computing the FFT in (56). This was
done as an attempt to limit certain performance degrada-
tions observed with the AML estimator and caused by end
effects (this is discussed further in Section V-B).

Finally, the MTCC estimate was obtained by maximiz-
ing the “‘tapered” cross-correlation estimate, which is
given by [20]

1 T—d
RA]Z(d) = g X](t) X2(l + d) dt

T—dJo S
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for 0 < d < T. Again, this method was considered be-
cause it can potentially eliminate problems caused by end
effects.

For each choice of system parameters o7, N;, SNR,
d*/T, and N considered, 500 independent simulations
were run and at the end, the various statistical perfor-
mance indicators of interest were computed. These were
the percentage of anomalous time delay estimates and the
bias and standard deviation of the nonanomalous esti-
mates. Based on Ianniello [19], an estimate d was said to
be anomalous if |[d — d*| > 7./2, where 7., the corre-
lation time of the source signal a (), is defined here as

o

a

RX(7) dr (58)

T R0 S o
Conversely, d was said to be nonanomalous if |d — d *|
< 7./2. In order to simplify the discussion in Section
V-B, we shall adopt the following notational convention:
the symbols %, b, and ¢, with one of the subscripts EML,
HEML, AML, WAML, and MTCC, will be used to rep-
resent, respectively, the percentage of anomalous delay
estimates and the bias and standard deviation of the non-
anomalous estimates, for the corresponding method of es-
timation indicated by the subscript.

B. Results

The results presented below were obtained with the fol-
lowing values of the system parameters:

alT =4

N,=32 (e, T, =T/32)
d*/T, =0,2,4, -+, 16
SNR = 0, 10, 20 dB

N =32,

The above range for d* /T, is quite sufficient to illustrate
the practical problems that arise with conventional TDE
techniques when the condition 7 >> d* is not satisfied.
Observe that d* /T, = 16 corresponds to the case when
the true delay is equal to half of the observation interval.

Tables I-1II show the percentage of anomalous time de-
lay estimates as a functions of d *, for each of the five
estimators considered and for SNR equals 0, 10, and 20
dB, respectively.* These tables reveal that the EML esti-
mator achieves the lowest percentage of anomalous esti-
mates for all values of SNR and d * considered (except for
SNR = 0 dB and d* = 2, where Name is slightly lower
than ngyy ). It is also observed that for a fixed value of
d*, ngmy decreases as SNR increases, while for a fixed
value of SNR, 7gy; generally increases as d* increases.
Both these observations are intuitively very conceivable:
in the first case, as SNR — oo, only the signal component

“Because of the statistical uncertainty resulting from the finite number of
simulations used (i.e., 500), a percentage of anomalous estimates corre-
sponding to a number of anomalous trials between | and 4 is simply indi-
cated as <1%.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 39, NO. 6, JUNE 1991

TABLE I
PERCENTAGE OF ANOMALOUS TIME DELAY ESTIMATES AS A FUNCTION OF
TRUE DELAY FOR SNR = 0 dB

True Percentage of Anomalous Estimates

Delay

d*/T, EML AML WAML MTCC HEML
0 9.8 10.0 10.0 19.0 42.2
2 10.2 9.4 11.2 18.0 34.4
4 12.4 16.2 17.6 21.0 39.4
6 14.8 24.2 23.2 22.4 40.4
8 17.2 28.8 36.4 27.4 49.2
10 14.0 322 46.2 24.2 48.0
12 20.8 40.2 63.4 31.8 56.4
14 20.0 37.4 64.4 30.0 58.6
16 19.2 38.6 70.2 322 67.2

TABLE 1l

PERCENTAGE OF ANOMALOUS TIME DELAY ESTIMATES AS A FUNCTION OF
TRUE DELAY FOR SNR = 10 dB

True Percentage of Anomalous Estimates

Delay

d*/T, EML AML WAML MTCC HEML
0 0 0 0 1.0 <1
2 0 0 0 <1 <1
4 <1 2.2 3.2 1.6 <1
6 0 10.6 12.8 34 1.8
8 <1 16.0 26.4 6.2 2.0
10 <1 17.6 38.4 6.8 3.8
12 <1 28.0 55.6 9.2 5.4
14 1.0 26.4 63.0 8.0 9.2
16 1.0 34.0 71.8 10.2 15.8

TABLE 1

PERCENTAGE OF ANOMALOUS TIME DELAY ESTIMATES AS A FUNCTION OF
TRUE DELAY FOR SNR = 20 dB

True Percentage of Anomalous Estimates
Delay
d*/T, EML AML WAML MTCC HEML
0 0 0 0 <1 0
2 0 0 0 <1 0
4 0 <1 1.0 <1 0
6 0 9.0 8.8 <1 0
8 0 13.6 21.6 1.6 0
10 0 16.8 344 3.0 0
12 0 24.0 53.6 4.2 0
14 0 24.0 60.8 3.8 0
16 0 320 72.6 5.0 <1

is present at the sensor outputs and since this signal is
random in nature, it should be possible to determine d*
exactly (at least in principle; in practice, the estimation
accuracy may be limited by finite precision arithmetic);
in the second case, as d* increases, the effective period
of time over which perfect correlation is possible between
the signal components at the sensor outputs decreases,
making it more and more difficult to estimate d* accu-
rately in the presence of noise.

The behaviors of 9,y and gy, as functions of d* and
SNR are quite different. Indeed, although both quantities
are similar for d* < 2T;, n,y; suddenly begins to exceed
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Fig. 2. Bias of nonanomalous time delay estimates as a function of true
delay for SNR = 0 dB.

7emy around d* = 4T,, and for d* = 6T, nay remains
much larger than ngy, . What is even more striking is that
this ‘‘threshold’’ phenomenon (in the d*-domain) ob-
served with AML does not disappear as the SNR in-
creases. In contrast, such a threshold phenomenon is not
observed with the EML estimator.

The WAML method, which was suggested as a possi-
ble approach to attenuate the threshold phenomenon ob-
served with the AML method, does not produce the effect
anticipated. In fact, the results for the WAML estimator
are generally worse than those for the AML estimator.
Although the introduction of a window function in the
AML method may effectively lessen edge effects in some
cases, it seems that multiplying x (#; d*) in (1) by a non-
constant window function, and therefore destroying the
simple structure of a (¢; d*), generally results in a loss of
correlation between the two channels and hence a higher
percentage of anomalous estimates. Thus, the WAML
method will not be considered any further.

Interestingly, the results in Tables II and III indicate
that at higher SNR, the simple MTCC method does not
suffer as much as the AML method from a threshold phe-
nomenon in the d *-domain. However, we emphasize that
numtcc is always larger than npgyp. As a result, the SNR
required to make nyrcc lower than a preset level is larger
than that required for ngyy -

Finally, we note that g,y decreases to a level iden-
tical to that of ngp; as the SNR increases from 0 to 20
dB. This is consistent with the fact that the HEML esti-
mator was obtained as an approximation to the EML es-
timator under the assumption of large signal power.

We now examine the statistical behavior of the nonanom-
alous time delay estimates. Fig. 2-4 show the sample bias
of the nonanomalous estimates as a function of the true
delay d* for the EML, HEML, AML, and MTCC meth-
ods, and for SNR equals 0, 10, and 20 dB, respectively.
The vertical line segments in these figures represent the
95% confidence intervals for the true bias of the EML
estimator. The confidence intervals [b_, b, ] for the other
estimators have been omitted for clarity of presentation,
but they can be determined (within a good approximation)
from the standard formula b, = b + 1.96¢/ \/r_z;, where
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Fig. 3. Bias of nonanomalous time delay estimates as a function of true
delay for SNR = 10 dB.
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Fig. 4. Bias of nonanomalous time delay estimates as a function of true
delay for SNR = 20 dB.
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Fig. 5. Standard deviation of nonanomalous time delay estimates as a
function of true delay for SNR = 0 dB.

n, is the number of nonanomalous estimates, b is the sam-
ple bias, and ¢ is the sample standard deviation (see Figs.
5-7 for o). For SNR = 0 dB (Fig. 2), the EML estimator
is relatively unbiased (within experimental error) while
the AML estimator is negatively biased and the HEML
estimator is positively biased. The MTCC estimator is
only slightly positively biased. Increasing the SNR (Figs.
3 and 4) eliminates the bias of the HEML and MTCC
estimators but not that of the AML estimator which re-
mains strongly biased even for SNR = 20 dB.

Figs. 5-7 show the sample standard deviation of the
nonanomalous delay estimates as a function of the true
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Fig. 6. Standard deviation of nonanomalous time delay estimates as a
function of true delay for SNR = 10 dB.

True delay (d*/T;)

Fig. 7. Standard deviation of nonanomalous time delay estimates as a
function of true delay for SNR = 20 dB.

delay d* for the EML, HEML, AML, and MTCC meth-
ods, and for SNR equals 0, 10, and 20 dB, respectively.
The vertical line segments in these figures represent the
95% confidence intervals for the true standard deviation
of the nonanomalous EML estimates. The confidence in-
tervals [o_, ¢, ] for the other estimators are given by gy
=0+ 1.960/ «/27,, (again within a good approximation).
Also shown in Figs. 5-7 is the Cramér-Rao lower bound
(CRLB) on the variance of unbiased time delay esti-
mators. The CRLB was computed by Monte Carlo simu-
lations as follows. For each of the 500 independent ex-
periments, the second derivative of the function g =
In A(x; d* + £) at £ = 0, where In A (x; d) is the version
of the log-likelihood function (7) used to obtain the EML
estimate, was evaluated numerically by means of the rap-
idly converging expansion

) _ 1 7[_2 ®© (_l)n—l
g“’)‘ﬁ{ T80 +2

*[8(=nT) + g("Ts)]} (59)
" This formula can be derived easily from the sampling

theorem by assuming that g(£) is band limited to
+1/(2T,) Hz. At the end of the 500 experiments, the
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Monte Carlo approximation to the CRLB, denoted o2y, 5,
was obtained as

(60)

where (- ) indicates a sample average. This approach for
computing the CRLB was motivated by the fact that the
standard formulae available in the literature for the CRLB
on time delay estimator variance [3], [4] are inapplicable
here because the condition T >> 7., d* is not satisfied.

For SNR = 0 dB (Fig. 5), the four estimation methods
give similar results. In this case, the standard deviations
of the estimators exceed the CRLB by a factor comprised
between 6.4 and 10.2 dB and come very close to the value
of 2.31T;, which is the standard deviation of a random
variable uniformly distributed within the interval +7./2.
This indicates that time delay estimation is dominated by
large errors, as confirmed by the results in Table I.

As the SNR increases from 0 to 10 dB (Fig. 6), the
standard deviations of the EML, AML, and MTCC esti-
mators, as a function of d*, begin to depart quite signif-
icantly from each other. Although 6,y is slightly lower
than ogy; at d* = 0, the AML estimator experiences
again a severe deterioration in performance as d* in-
creases from O to 47, and for d* = 4T,, o,y exceeds
opmL by an averaged factor of 10.7 dB. oyrcc, although
lower than g,y for all values of d* except 0, still ex-
ceeds ggyp by an averaged factor of 5.5 dB. It is also
important to note that the variance of the EML estimator
now exceeds the CRLB by only 2.6 dB atd* = 0 and 5.4
dB at d* = 8T, (in comparison to 7.7 and 7.3 dB, re-
spectively, at SNR = 0 dB), indicating a trend towards
optimality of the EML estimator as SNR increases. Fi-
nally, it is observed that oygyy is now very close to oy

The differences between ogyy, 0ami, and oypec are
even more accentuated at SNR = 20 dB (Fig. 7). In this
case, the results show that for d* = 2T,, o,y exceeds
opmL by an averaged factor of 22.3 dB, while for oyrcc,
the corresponding factor is 15.9 dB. In fact, for the AML
estimator, increasing the SNR from 10 to 20 dB does not
result in a very significant reduction of the standard de-
viation when d* = 27T,. The results also show that ogyy
approaches the CRLB within 1.0 dB at d* = 0 and 2.8
dB at d* = 8T,. Hence, for such values of d*, the EML
estimator is nearly optimal. Finally, although Fig. 7 in-
dicates that oygyy is slightly lower than gy, it must be
pointed out that bygyy is always larger than bgy; in mag-
nitude, so that the actual difference between the mean-
square errors (about d*) of the EML and HEML esti-

U%RLB = _(g"(o»_l

_ mators is less than the difference between their variances.

Our final remark concerns the sensitivity of the EML
method to modeling errors in G,(w). Since the HEML
estimator is independent of G, (w) and its performance ap-
proaches that of the EML estimator in the limit of high
SNR, it would seem that the EML estimator is relatively
insensitive to errors in the assumed spectrum, at least at
high SNR. As mentioned earlier, this is particularly im-
portant for applications in which complete knowledge of
G, (w) is not available.
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VI. SUMMARY AND CONCLUSIONS

In this paper, we have presented an exact solution to
the problem of maximum likelihood time delay estimation
between two sensors that is valid for arbitrarily short ob-
servation intervals. In other words, the standard assump-
tion T >> 7., |d| made in the derivation of the conven-
tional AML estimator has been relaxed. The resulting
EML estimator has been shown to consist of a special
finite-time beamformer, followed by a scalar log-likeli-
hood processor based on the eigenvalues and eigenfunc-
tions of a one-dimensional integral equation with noncon-
stant weight. The solution of this integral equation has
been obtained for the case of stationary signals with ra-
tional power spectral densities. Finally, the performances
of the EML, AML, and other related estimators have been
compared by means of computer simulations for a first
order autoregressive source signal and for system param-
eter values such that the condition T >> 7, |d| was not
satisfied.

The results of these experiments have shown that the
AML estimator suffers a dramatical deterioration in per-
formance (large error, bias, and mean-square error) as the
ratio d/ T increases from O to about 0.1, making it essen-
tially useless beyond this point. No such effect has been
observed with the EML estimator which had the best
overall performances. Moreover, for large SNR, the total
mean-square error of the EML estimator came very close
to the Cramér-Rao lower bound. Finally, the results have
also shown that for large SNR, considerable simplifica-
tions of the EML estimator are possible without any sig-
nificant loss in performance.

APPENDIX A
Proof of Property 1: Using (15), (16), and (3), it

can be verified that

v | ceuera  @n

27

where
T

Ai(w) = S . Yi(0) p(tye ™ dt. (A2)

Being the Fourier transform of a nonzero function, 4;(w)

must be different from zero in some interval (w;, w, ), with

w; < w,, of the w axis. Therefore, since G,(w) in (4) can

only have isolated zeros, (A1) implies \; > 0. Next, since

G,(w) = v only at isolated values of w, (A1) also implies
Y

N < — S |4;(w))? dw.

. (A3)

To complete the proof, simply observe that

1

o T
> S |4;(@)|* dw = S YAn o’ dr < 2. (A4
27 V- —d

The equality on the left is a particular case of Parseval’s
relation, while the inequality on the right follows from

(14) and (16). Combining (A3) and (A4), we finally con-
clude that \; < 2v.
Proof of Property 2: Since \; > 0, (15) implies that

T
1
Vi) = g dRa(t = u) ;) p(w) du.  (AS)
The continuity of ¥;(¢) then follows immediately from that
of R, (¥).

Proof of Property 3: Consider the self-adjoint op-
erators K and O defined by

T
[Kf10) = S_d Rt — wfu)p)du, —d=t=T

(A6)

[Of1(®) = f(T — d — 1), —-d=<t=<T (A7)

where f is an arbitrary function in Ly(p). Using the iden-
tities R,(7) = R,(—n and p(?) = p(T — d — 1), it is not
difficult to verify that K and O commute, i.e., KO = OK.
Hence, according to a well-known property of self-adjoint
linear operators, there exists a complete orthonormal set
of eigenfunctions common to both operators. For an ei-
genfunction y;(¢) in that set, we have

(T —d — 1 = [0%](0) = () (A8)

where ¢, is an eigenvalue of the operator O. However,
since 02 = I, where [ is the identity operator in L,(p),
the only possible eigenvalues of O are +1. This com-
pletes the proof.

ApPENDIX B
Proof of Theorem 1: a) Consider the function

0
@O = Nda(® — S_d R,(t — u) Y, (w) du,

—o < t < 0o, (B1)
Denoting by F(s) the BLT of f(#), we have

N(s?
FO) = N®) = 5o W) ko < Re ) < o

(B2)

where gy = min {Re (s): D 7(s) = 0}. Let D" and D~
be the differential operators defined by

d _[(d
D* = D+<E>’ D™ =D <c7t> (B3)
It can be shown that [15]
D*R,(n =0, >0 (B4)
D R(=0, <0 (B5)
Hence, fort < —d, we have
D f(n=0 it < —d). (B6)
Similarly, for ¢t > 0, we have
Dfy=0 (> 0). (B7)
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For —d < t < 0, (28) and (15) imply
T

f@ = SO R,(t — w) ¢;(w) p () du. (B8)
Therefore
D f=0 (—d<t<0). (B9)
Now define (i = 1, 2, 3)
Fis) = Sj_f(t)e’” dt (B10)

where J| = (-, —d), J, = (—d, 0), and J3 = (0, o).
As a consequence of (B6), (B7), and (BY), it follows that

D7 (s) Fy(s) = e*Py(s) (B11)
D7 (s) Fy(s) = e™Py(s) + Pi(s) (B12)
D7 (s) Fx(s) = Py(s) (B13)
for some real coefficient polynomials P,(s) (k = 1,

-, 4) of degrees equal at most to n — 1. Now, ob-
serving that L F;(s) = F(s) and using (B2), (30), (B11),
(B12), and (B13), we finally obtain

[ND(s?) = N(s*)]¥,(s)
= D(s%) F(s)
= D™(5) D"®IF\(s) + Fx(s) + Fy(s)]
= ¢"“D*(s) Ps(s) + Qy(s) (B14)

for some real coefficient polynomials Ps(s) and Q,(s) of
degrees at most n — 1 and 2n — 1, respectively. Pro-
ceeding in a similar way, it can be shown that

[IND(s%) — 2N(sH)]¥.s(s)

= 0y(s) + e 7T7D0y(s5) (B15)
[ND(s?) = N(s®)]¥:5(s)
= e T"0,(s) + e"D(s) Py(s)  (BI6)

where Py(s) and Q,(s) (k = 2, 3, 4) are again real coef-
ficient polynomials of degrees at most # — 1 and 2n —
1, respectively.

In order to establish links between the various polyno-
mials P (s) and Qy(s), first consider the function

T
g = S_d Rt —w) ¥i(w) p(u) du, —o0 <1< oo,
(B17)
The BLT of g(7) is given by
N 2
GGs) = Dg 2; [¥() + 29,(5) + ¥o)],

—po < Re (s) < po. (B18)

Using (B3), (B4), and (15), it can be verified (exactly as
we did for f(z) in (B1)) that g () in (B17) satisfies

D g =0, t< —d (B19)
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g®) = N, —-d<it<T

D'g(n =0,

(B20)

t>T. (B21)

As a result, G(s) can also be expressed in the form
s PrS) v Pe(s)
D~ (s) D™(s)
+ N[T(s) + Tin(s) + ¥i5()].  (B22)
Equating (B18) to (B22) and using (B14)-(B16) to elim-
inate the ¥ (s), we find
D (S)[Ps(s) + Py()]e* + [Qi(s) + 0x(s)]
+ [Q:(5) + Qu()]e™ T
+ D(s)[Pg(s) + Py(s)]e™*T = 0.

For this equation to be satisfied in the strip —pu, < Re (s)
< po, the polynomial coefficients of the various exponen-
tials must vanish. From this requirement, we extract
(among others) the relation

Qi(s) + Ox(s) = 0. (B24)

In order to obtain a similar relation between Q,(s) and
0Os(s), consider (27). In terms of the ¥;; (¢) defined in (28),
(27) implies

G@is) =e

(B23)

Vo) = e¥i(T —d — 1) (B25)

Yis() = (T — d — 1) (B26)
or, equivalently,

Vio(s) = e TN, (~5) (B27)

¥ix(s) = e T D, (—s). (B28)

Combining (B15) with (B27), we obtain the desired re-
lation between Q,(s) and Qs(s), namely,

03(5) = €0:(—5). (B29)

Equations (33) and (34) now follow easily from (B14)
and (B15) by eliminating Q,(s) and Qs(s) with the help of
(B24) and (B29) and setting P;(s) = Ps(s) and Q,(s) =
0,(s). Because the ¥ ;;(s) are analytic everywhere in the s
plane, the singularities appearing in the right members of
(33) and (34) are necessarily removable. Finally, note that
(35) in the statement of the theorem is identical to (B28).
This completes the first half of the proof.

b) Using the convolution theorem for the BLT, we have

T
S_d R,(t — u) ¥i(w) p(u) du

= Skw Ryt — w¥iu(w) + 2y + Yi3(w)] du

1 (NG
= ﬁj Sa_jm {(m [Yiu(s) + 2¥;,(s)

+ \I’,-3(s)]}e s ds (B30)
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where o is any real number in the interval —py < 0 <
po. However, by construction of the ¥, (s), the bracketed
quantity under the integral sign in (B30) is equal to

Pi(s) _st Pi(=53)
AT _ p5d o ,sT 1
Yi(s) — e D () 514 D) (B31)
where ¥;(s) is the BLT of y,(r). Therefore,
T
S_d Ra(t — u) (@) p () du
1 7+ joo P(S)
=>\i it __S LI\ s(t+d)
Vo —55 ) D’ *
o+ joo
& Pi(=$) ¢-m)
27j S,,_,m D ¢ (B32)

For —d < t < T, the two integrals on the left are zero.
This shows that \; and y;(f) are solutions of (15). That
¥;(?) satisfies (27) is obvious by construction. This com-
pletes the proof.
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