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Adaptive Eigendecomposition of Data Covariance
Matrices Based on First-Order Perturbations
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Abstract—In this paper, new algorithms for adaptive eigende-
composition of time-varying data covariance matrices are pre-
sented. The algorithms are based on a first-order perturbation
analysis of the rank-one update for covariance matrix estimates
with exponential windows. Different assumptions on the eigen-
value structure lead to three distinct algorithms with varying
degrees of complexity. A stabilization technique is presented and
both issues of initialization and computational complexity are
discussed. Computer simulations indicate that the new algorithms
can achieve the same performance as a direct approach in which
the exact eigendecomposition of the updated sample covariance
matrix is obtained at each iteration. Previous algorithms with
similar performance require O(LM?) complex operations per
iteration, where L and M respectively denote the data vector
and signal-subspace dimensions, and involve either some form
of Gram-Schmidt orthogonalization or a nonlinear eigenvalue
search. The new algorithms have parallel structures, sequential
operation counts of order O(LM)? or less, and do not involve
any of the above steps. One particular algorithm can be used
to update the complete signal-subspace eigenstructure in 5L
complex operations. This represents an order of magnitude im-
provement in computational complexity over existing algorithms
with similar performance. Finally, a simplified local convergence
analysis of one of the algorithms shows that it is stable and
converges in the mean to the true eigendecomposition. The
convergence is geometrical and is characterized by a single time
constant.

1. INTRODUCTION

URING the last 15 years, signal-subspace algorithms

based on the eigendecomposition of the covariance ma-
trix of a random data vector have been applied successfully
to both temporal and spatial-domain high-resolution spec-
tral analysis [1]-[2]. In practice, these algorithms are often
implemented in a batch mode, using a sample covariance
matrix obtained by collecting data vectors over a sufficiently
long observation interval. This approach, which relies on the
assumption of statistical stationarity of the data, cannot be used
in situations where the characteristics of the received signals
change with time. In this case, the direct application of signal-
subspace methods requires repeated eigendecompositions of a
continually updated sample covariance matrix, a task which is
generally prohibitive.

Recently, several adaptive eigendecomposition algorithms
have been proposed for the efficient application of signal-
subspace methods in nonstationary environments. Instead of
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recomputing the eigendecomposition estimate from scratch
with every update of the sample covariance matrix, these algo-
rithms attempt to recursively update the eigendecomposition so
as to minimize the amount of computations involved. At least
two major families of adaptive eigendecomposition algorithms
can be identified, depending on the type of approach used to
obtain the desired recursion.

In the first family (e.g., [3]-[6]), the determination of the
signal subspace is formulated as a constrained optimization
problem. The latter is solved adaptively via a stochastic gradi-
ent search over time, using either a recursive or instantaneous
estimate of the data covariance matrix to evaluate the gradient
vector. These algorithms generally involve some form of
Gram-Schmidt orthogonalization at each iteration. The most
computationally efficient algorithms in this family require on
the order of O(LM) operations per iteration, where L is
the dimension of the data vector and M is the dimension
of the eigensubspace being tracked. However, only those
algorithms with complexity O(LM?) can achieve a level of
performance comparable to direct eigendecomposition of the
updated sample covariance matrix.

Algorithms in the second family (e.g., [7]-{10]) are based
on variations and extensions of a rank-one updating algorithm
for the symmetric eigenvalue problem originally proposed
by Golub [11] and later improved by Bunch er al [12].
These algorithms exploit the low-rank nature of the additive
modification terms which are used to update the sample
covariance matrix in nonstationary applications. Apart from
a possible buildup of roundoff errors, these algorithms permit
calculation of the exact eigendecomposition of the updated
sample covariance matrix much more efficiently than a direct
approach. They involve the solution of a nonlinear equation
for the calculation of the eigenvalues and they require on the
order of O(LM?) operations per iteration.

In this paper, a novel approach to the adaptive eigen-
decomposition problem is proposed, and then several new
algorithms are derived and evaluated. Starting from a rank-one
recursive update for sample covariance matrices with expo-
nential windows, the proposed approach consists of treating
the additive modification term in this recursion as a perturba-
tion, with the (small) forgetting factor playing the role of a
perturbation parameter. Following this interpretation, a first-
order perturbation analysis is made to obtain an approximate
recursion expressing the eigendecomposition estimates at time
k in terms of those at time k& — 1 and the new data vector
observed at time k. By making different assumptions on the
eigenvalue structure, three algorithms with varying degrees
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of complexity (denoted PA, PB, and PC, respectively) are
obtained.

For the particular case of tracking a signal-subspace of
dimension M, the resuiting algorithms can be realized by
means of M linear combiners with nonlinear weight-vector
adaptation equations. Moreover, they do not involve an explicit
Gram-Schmidt orthogonalization step nor the solution of a
nonlinear equation for the eigenvalues. Simulation results
for narrow-band array data indicate improved performance
of the proposed algorithms when compared to the family
of adaptive algorithms proposed in [5]. In particular, the
algorithm PC can achieve the same level of performance as
direct eigendecomposition of the sample covariance matrix
with only 5LM operations per iteration. This represents a
major improvement over existing algorithms which require on
the order of O(LM?) operations per iteration to achieve the
same performance. A simplified local convergence analysis
of the algorithm PA shows that it is stable and converges in
the mean to the true eigendecomposition. The convergence
is geometrical, with all adaptive modes characterized by the
same time constant.

The paper is organized as follows. The data model and
the formulation of the adaptive eigendecomposition problem
as a perturbation problem are discussed in Section II. The
first-order perturbation analysis and the derivation of the new
algorithms are presented in Section III, where a stabilization
technique and the issues of initialization and computational
complexity are also considered. Section IV presents the results
of computer simulations. Finally, Section V provides some
conclusions. The convergence analysis of the algorithm PA is
outlined in Appendix L

II. FORMULATION OF THE PROBLEM

Let z(k) denote the complex L-dimensional data vector
observed at time k. In the context of time series analysis, z(k)
corresponds to the kth signal frame, which is made up of L
consecutive signal samples. In array-processing, z(k) may be
identified with the narrow-band output of an array of L sensors
over the kth snapshot. The data vector z(k) is modeled as a
linear superposition of M < L signal components in additive
background noise. More precisely

z(k) = A(k)s(k) + n(k) )

where A(k) is a complex L x M matrix whose columns
represent the signal waveforms (typically, but not necessarily,
complex exponentials), s(k) is a complex M-dimensional
vector containing the amplitudes of the signals, and n(k) is a
complex L-dimensional vector representing background noise.
It is assumed.that s(k) and n(k) are zero-mean, uncorrelated,
vector random processes with covariance matrices at time k
respectively given by

R, (k) = E[s(k)s" (k)] @)
Rn(k) = o2 (k)L (€))

where the superscript # denotes complex conjugate transposi-

tion, oﬁ(k) is the noise variance at time k, and I isthe Lx L
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identity matrix. From (1)—~(3), the data covariance matrix is
obtained as

Ry(k) = A(k)R,(k)A" (k) + o}, (k). O]

Let A\;(k) and g;(k), ¢ = 1,..., L, denote the eigenvalues
and corresponding orthonormalized eigenvectors of the data
covariance matrix R, (k), with the eigenvalues arranged in
decreasing order. Assuming that A(k) is of full rank and that
R, (k) is positive-definite, it can be shown that

A(k) 2 2 Aar(k) > Anrga (k) = - = An(k) = o7 (k)
and ©
AR(E)Qn(k) =0 (6)
where 0 denotes the M x (L — M) zero matrix and
Qn(k) = [grr41(k), - qr(K)]. )

Hence, the number of source signals, M, is given indirectly by
the multiplicity of the smallest eigenvalue, while the column
span of the matrix A(k) is identical to that of

Qs(k) = [(Il(k)7,qM(k)] (8)

The column spans of Q.(k) and Q,(k) are appropriately
referred to as the signal- and noise-subspaces, respectively.

Typical signal-subspace algorithms such as MUSIC (see
paper by Schmidt in [1]) exploit the information embedded
in the eigendecomposition of the data covariance matrix to
achieve high-resolution spectral analysis of the observed data.
In stationary environments, these algorithms are often im-
plemented in a batch mode (i.e., off-line). This involves the
following steps: collecting data vectors z(k) fork =1,..., K,
where the number of observations K is sufficiently large to
minimize the effects of noise; forming an estimate R, of the
data covariance matrix as in

11 &
R,= == x(k)a:H(k); 9)

KK

k=1

performing the eigendecomposition of R,; and, finally, us-
ing the eigendecomposition to extract the relevant spectral
information. Under standard assumptions of stationarity, the
performance of signal-subspace algorithms based on (9) is
known to improve as K increases [2].

In several applications of interest, however, the assumption
of stationarity is valid only over a limited time interval due to
changes in the characteristics of the signal and noise. In array
processing, for instance, the direction of arrivals of the signals
of interest may change with time as the sources move. In this
case, it is convenient to estimate the data covariance matrix
recursively, in a manner that de-emphasizes past observations.
The following recursion is often used in applications:

Ro(k) = aR,(k — 1) + (1 — a)z(k)z™ (k) (10)

where « is a real smoothing factor such that 0 < @ < 1.
Equation (10), referred to as a rank-one update of the sample
covariance matrix, is equivalent to exponential time averaging
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of the sequence x (k) (k). In this respect, the factor 1/(1—a)
provides a rough measure of the effective length of the
exponential window.

The real-time (i.e., on-line) implementation of signal-
subspace algorithms based on a recursive update of the
sample covariance matrix, as in (10), requires repeated
eigendecomposition of the time-varying matrix R, (k).
The computational costs associated with performing this
eigendecomposition from scratch at each iteration are very
high, and in many instances, prohibitive. As indicated in
Section I, two major families of adaptive eigendecomposition
algorithms have been proposed recently to overcome this
difficulty. Instead of performing the eigendecomposition of
the updated matrix R,(k) from scratch, these algorithms
recursively update the eigendecomposition over time (either
exactly, or approximately) so that the overall computational
load is reduced.

We now present an alternative formulation of the adaptive
eigendecomposition problem as a first-order perturbation prob-
lem. In Section III, this formulation will lead to a new family
of adaptive algorithms with varying degrees of complexity.
Let (10) be written as

Ry (k) = Re(k — 1) + e[z(k)z™ (k) — (11)

where € = 1 — a, with 0 < ¢ < 1. For ¢ sufficiently small, the
modification term efz(k)zH (k) — R, (k — 1)] in (11) can be
interpreted as a small perturbation of R,(k — 1). Intuitively,
then, we expect the eigendecomposition of R, (k) to be related
to that of R, (k — 1) through small correction terms which are
well-behaved functions of e. This argument can be formalized
as follows.

To begin with, note that }?z(k) (11) is expressed as a power
series in ¢, converging to Ry(k — 1) in the limit ¢ — 0.
Moreover, assuming that fzw(o) is Hermitian, it follows from
(11) that R, (k) is Hermitian for all positive integers k and for
all real €. According to a fundamental theorem from the theory
of perturbation of Hermitian matrices [13], it follows that the
eigenvalues and normalized eigenvectors of R, (k) can also
be expanded in power series in £, converging to the respective
eigenvalues and eigenvectors of R, (k —1) in the limit & — 0.
More precisely, let v;(k) and u;(k) denote the eigenvalues
and normalized eigenvectors of the sample covariance matrix
R, (k) (11), that is,

Ry (k)ui(k) = vi(k)u (k) (12)
w T (k)uj(k) = 6;; (13)

where §;; is the Kronecker delta. According to Theorem 1 in
Chapter 1 of [13], there exist power series

Yio = vi(k — 1) (14)
uio = ui(k — 1)
(15)

Yi(k) = vio + V1€ +'7i252 + -,
u; (k) = uio + uine + U2 + -+,

all convergent in a neighborhood of ¢ = 0, which satisfy the
eigenvalue problem (12)—(13). In (14) and (15), vio = ~i(k —
1) and u;o = wu;(k — 1) are the eigenvalues and normalized
eigenvectors of Ry (k — 1), while y;; and u;(j > 1) are
unknown coefficients that must be determined.
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This general result is valid regardless of the multiplicities
of the unperturbed eigenvalues ;. However, in the case
of repeated eigenvalues (i.e., multiplicity > 1), a particular
basis of unperturbed eigenvectors, {uj:i = 1,.. ., L}, must
be selected for the power series expansions (14) and (15) to
exist. The theory of perturbation provides various methods for
calculating the jth-order (j > 1) coefficients v;; and vector
coefficients u;; appearing in the expansions (14) and (15).
In the case of repeated eigenvalues, the proper choice for
{ug:i = 1,...,L} is also prescribed by the application of
these methods.

In practice, perturbation series of the type (14) and (15) are
truncated to yield tractable approximations. In particular, for
n, a positive integer, an nth-order approximation results from
neglecting all terms of order ™ with m > n. This type of
approximation is justified on the basis that the perturbation
series are convergent in some neighborhood of & = 0. Hence,
provided ¢ is sufficiently small, a low-order approximation can
be used to evaluate ;(k) and u;(k) with good accuracy. In
this paper, it is proposed to recursively update the eigende-
composition of the sample covariance matrix R.(K) in (11)
based on a first-order approximation of (14) and (15).

There are several reasons for choosing this approach. For
low-order approximations, perturbation methods are known
to provide numerical results comparatively quickly, along
with significant physical insights. Another important aspect
of a perturbation approach is that it makes an algebraically
consistent use of the small parameter e: all the calcula-
tions are done with the same degree of accuracy and no
resources are spent on trying to achieve unnecessary precision.
In this respect, algorithms of the second family identified
in Section I (e.g., [7]-[10]) are somewhat inefficient. Fi-
nally, being algebraic in nature, the proposed perturbation
approach is statistically robust in the sense that it does not
rely on sophisticated modeling assumptions about the signal
and noise.

There is a major conceptual difference between the approach
proposed in this paper and the adaptive algorithms of the
second family, in which the eigendecomposition of R, (k) (11)
is updated exactly at each iteration. Indeed, even if the exact
eigendecomposition of R,(0) is known initially, recursive
updating based on a first-order approximation of (14) and
(15) generally results in an approximate eigendecomposition
of R,(k) for k > 1. (This is also true for the algorithms
of the first family.) However, whether or not the resulting
estimates ;(k) and u;(k) form the exact eigendecomposition
of R, (k) is not the primary concern. This is pamcularly true
in nonstationary environments where the definition of R, (k)
itself is somewhat arbitrary. What is important is that ;(k)
and u;(k) be good estimators of the eigendecomposition of
the true data covariance matrix R, (k) in (4). For the proposed
perturbation approach, this is confirmed by simulation (Section
IV) and by mathematical analysis (Appendix I).

In the next section, the first-order approximations to the
power series (14)—(15) are obtained explicitly by applying the
methods of perturbation theory. This leads to a new family of
adaptive eigendecomposition algorithms with varying degrees
of complexity.
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III. FIRST-ORDER PERTURBATION ANALYSIS

The first step consists of deriving a basic set of equations
for the first-order coefficients -y;; and w;; in (14) and (15). To
simplify the notations, let

Ry = R,(k—-1) (16)
Ry = x(k)z™ (k) — Ry (k — 1) (17

so that (11) can be expressed as
R.(k) = Ry +¢Ry. (18)

In the following derivation, it is temporarily assumed that the
zeroth-order coefficients ;o = v;(k — 1) and w0 = u;(k — 1)
are the exact eigenvalues and orthonormalized eigenvectors
of Ry = R,(k — 1)\. Furthermore (in the case of repeated
eigenvalues), it is assumed that the set {u;o:¢ = 1,...,L}
has been properly selected so that the power series expansions
(14) and (15) exist.

Substituting (14), (15) and (18) in (12) and multiplying term
by term, one obtains

Rouio + (Rouir + Riuio)e = Yiouio + (Yiowi1 + Yi1tio)e
+ 0(£?) (19)
where O(e?) represents terms of order 2. Since (19) is valid

for all € in a neighborhood of ¢ = 0, corresponding powers
of ¢ must be equal. This yields

(20
@n

Royuio = viotio,

Rou;1 + Riuio = viotsy + Yirtio-

Note that (20) provides no new information; it is already
satisfied by assumption.

Equation (21) can be expressed in a more convenient form
by projecting it on the orthonormal basis vectors w;o for
Jj = 1,...,L. Premultiplying (21) by uf}, observing that
ul Ry = ~ioulf, which follows from (20), and using the

orthonormality of the set {u:7 = 1,..., L}, one obtains
Y1 = ufy Ryuip. (22)
Similarly, premultiplying (21) by uff (j # ©) gives
(vjo — Yio)ujoui = —ulgRiu, j#1i. (23)

Another equation is obtained by substituting (15) in (13) and
equating corresponding powers of ¢:

uﬁu]-o + uz'H()ujl =0. (24)

The desired basic set of equations for -y;; and u;; is provided
by (22)—(24). Equation (22) can be used to determine -y;;
explicitly, while the expansion coefficients of u;; in the basis
{'Lt,io:i =1,... ,L}, i.e.

bji = ujpui (25)

! Actually, this assumption can be relaxed by requiring that ;o and u;q be
approximate eigenvalues and orthonormalized eigenvectors of Ry, up to error

terms of order O(c2). This will not affect the following analysis since only
first-order terms are considered.
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can be obtained from (23) and (24). Once the coefficients b;;
are known, u;; is obtained from the reconstruction formula

L
U1 = Z bjiujo.
=1

Depending on the configuration of the unperturbed eigen-
values v;g, different cases occur in the solution of (22)—(24). In
subsections A, B, and C below, three distinct cases of practical
importance are considered. In each case, the coefficients
;1 and wu;; are derived explicitly and the corresponding
adaptive eigendecomposition algorithm is stated. The issues
of initialization and computational complexity are addressed
in subsections D and E.

(26)

A. Distinct Eigenvalues

In this subsection, (22)-(24) are solved for the first-order
coefficients «;; and u;1, under the assumption that the unper-
turbed eigenvalues ;o are distinct (i.e., multiplicity = 1). Let
the unperturbed eigenvalues ;o be arranged in descending
order, so that

Y10 > Y20 > - > YLo- 27

Substituting (17) and (16) in (22) and using (20) together with
the orthonormality of the unperturbed eigenvectors, we obtain

Y1 = %il? = Yo (28)

where

Yi = Uf(i)z(k) 29)

is the orthogonal projection coefficient of the data vector z(k)
on the unperturbed eigenvector u;.

Proceeding similarly with (23) and observing that ;o —
vYio # 0 for j # i under the assumption (27), one obtains

. YiY;

bit = b, (vio = Yjo)’
Note that (30) is consistent with (24). The remaining coeffi-
cients b;; can be obtained as follows. When j = ¢, (24) reduces
to Re(b;;) = 0, where the notations Re(.) and Im(.) denote the
real and imaginary parts of a complex number, respectively.
Since no other constraint is imposed, Im(b;;) can be chosen
arbitrarily. The simplest choice is Im(b;;) = 0, which results in

bi; = 0. 31

j# (30)

According to (25), this means that u;; is orthogonal to the
corresponding unperturbed eigenvector u;q.

Equations (28)—~(31) (together with (26)) define the first-
order perturbation coefficients «;; and u;; explicitly in terms
of the observed data vector z(k) and the unperturbed eigen-
decomposition, i.e., 1,0 = Vi{k — 1) and u;o = u;(k —
1) for ¢« = 1,...,L. Following the approach proposed in
Section II, an adaptive algorithm for recursively updating
the eigendecomposition estimates +;(k) and wu;(k) of the
true data covariance matrix can now be obtained as follows:
substitute ~y;; and u;; calculated above in the power series
expansion (14)—(15) and neglect all terms of order O(¢™) for
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n > 2. Some additional manipulations are needed to make the
algorithm more parallel and to minimize the operation count.
For instance, it is advantageous to perform the multiplication
by e directly on the input data z(k), rather than on ~;;
and u;; as in (14)—(15). Another simplification occurs if the
unperturbed eigenvectors u;o = u;{k — 1) are multiplied by an
appropriate complex number of absolute value 1 so as to make
y; (29) real. Observe that (20) and the orthonormality of the
set {uz0:¢ =1,..., L} are not affected by this modification.

A stabilization mechanism is also needed to prevent an
undesirable behavior of the algorithm, which may occur when
the difference between successive eigenvalues is too small.
To see this, consider a stationary signal model with true
eigenvalues such that A; = A; + A for some j > i, where
A is a small positive number, i.e. A < A;. Assuming that the
eigenvalue estimates v;(k) and ~; (k) are well separated at time
k = 0, the difference v;o — vjo = vi(k — 1) —v;(k — 1) will
initially decrease as the algorithm converges and the coefficient
bj; in (30) will become relatively large. Then, small random
fluctuations of -y;(k—1) — ~;(k~1) around the true difference
Yio—v;0 Will induce large variations in b;;, limiting the steady-
state performance of the algorithm, and in some cases making
it unstable.

This problem can be overcome, without significantly alter-
ing the complexity of the algorithm, by thresholding the small-
est possible eigenvalue difference used in the computation of
bj; (30) and by renormalizing the updated eigenvector u;(k)
at regular interval. In this respect, the following thresholding
approach has been found extremely useful:

Yi Y o
bii = max(8v1i0, ¥io = Vjo)’ EE

(32)

where § is a small positive number, typically 0.01. For ¢ > j,
bj; is obtained from the symmetry relation in (30). When
this stabilization technique is used, the algorithm can even
handle the case of two repeated eigenvalues, as confirmed by
simulations.

The stabilized version of the algorithm, denoted PA (for
perturbation-A), is summarized in Table I where the notation
||.|| indicates the Euclidean norm of a vector. In this algorithm,
the scaled data vector \/ex(k) is passed through L linear
combiners (or tapped delay-lines in time series analysis) with
complex weight vectors given by u;(k — 1),2 = 1,..., L.
The outputs y; of the combiners, which can be viewed as
sufficient statistics, are then used in the calculation of the
first-order correction terms. Finally, these are combined to
vi(k—1) and u;(k—1) to yield the updated eigendecomposition
~i(k) and u;(k). Note that only the observed data vector z(k)
and the previous eigendecomposition, i.e., vio = vi(k — 1)
and u,o = u;(k — 1) for i = 1,..., L, enter the algorithm.
Explicit knowledge of the sample data covariance matrix
Ry = R,(k — 1) is not needed, resulting in saving in data
storage and computation rate.

A simplified local convergence analysis of algorithm PA is
presented in Appendix I. The results show that for 0 < e < 1,
the algorithm is stable and converges in the mean to the true
eigendecomposition. The convergence is in (1 — €)* for all
adaptive modes. As a result, the algorithm is characterized
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TABLE 1
ADAPTIVE EIGENDECOMPOSITION ALGORITHM PA

x(k) « Ve x(k)

fori=1toL:
n=u (k- 1) x(k)
yi=Inl (y; is now real)
ui(k — 1) « (ly)uitk - 1)

end
fori=1to L:
b;=0
for j=i+1toL:
b =y;yj/max(6n (k- 1), 5,k - 1) — y;(k ~ 1))
by=-bji
end
end
fori=1to L:

v)=(1-¢eylk-1)+ y?
L

uk) =u; (k=1 + 3, bj.'llj(k -1
s

ui(ky  u;(k)Mu; (kN
end

by a single time constant which is given by 7 = 1/e for €
small. This is a rather remarkable property of the perturbation
approach. Finally, we note that the weight-vector adaptation
equation provided by the algorithm PA is nonlinear (cubic)
in the u;(k — 1). Based on the results of the convergence
analysis, this nonlinearity may be viewed as a substitute for
the orthogonalization step found in other algorithms.

B. Repeated Noise-Subspace Eigenvalue

In practical applications of signal-subspace algorithms, the
number of data points, L, often exceeds the number of source
signals, M, by 2 or more. According to (5), the smaliest
eigenvalue of the true data covariance matrix is then repeated
with multiplicity L — M > 1. By explicitly incorporating this
multiplicity in the perturbation analysis, it is possible to reduce
the computational complexity and improve the convergence
behavior of the algorithm PA. To this end, the following
condition is imposed on the L — M smallest eigenvalue
estimates:

Tm+1(k) = -+ = yL(k) = p(k) 33)

for all k, where p(k) is an estimate of the noise variance.
In (33), it is implicitly assumed that the signal-subspace
dimensionality, M, is known. In practice, M can be estimated
from the data using one of the several criteria presently
available for detecting the number of sources (e.g., [14]).
Some of the signal-subspace eigenvalues can also be re-
peated. By imposing additional equality constraints on the
corresponding ~;(k), as in (33), it would be possible to
further reduce the complexity of the algorithm PA. In practice,
however, the signal subspace eigenvalues are rarely exactly
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repeated; when they are, this is usually over a limited time
interval and the corresponding multiplicity is small. As our
experience indicates, the most effective way of handling
temporarily repeated signal-subspace eigenvalues is to use a
thresholding technique such as the one described in Part A.
Therefore, to simplify the discussion, it is assumed that
(k) > - > yu(k) > p(k) G4
for all k.
In terms of the unperturbed eigenvalues v;o = vi(k — 1),
(33) and (34) become:

Y10 > 00 > VMO > YM41,0 = = VLo = Po (35
where pg = p(k — 1) is the unperturbed noise variance. In
the following paragraphs, (22)—(24) are solved for «;; and ;1
under the condition (35). The following integer sets are used:
Q1 ={1,...,M} and Q = {M + 1,..., L}. Moreover, the
linear spans of {u;o:¢ € 1} and {u;0:7 € Qy} are referred to
as the unperturbed signal- and noise-subspaces, respectively.

The major difficulty in solving (22)—(24) occurs with (23),
when both i,j € Q5. The difference v;o — 7vio is then equal
to zero and it is not possible to solve directly for uff)uﬂ.
In this case, (23) must be interpreted as a constraint on
the unperturbed noise-subspace eigenvectors {u;o:2 € Q2}.
The necessity of this constraint can be explained as follows.
Since o has multiplicity L — M > 1, there is a large
freedom in the choice of the unperturbed noise-subspace
eigenvectors: Any orthonormal basis of this subspace can be
used. However, when an arbitrary perturbation is applied, the
noise-subspace eigenvalues will generally become distinct and
the corresponding eigenvectors will no longer be arbitrary (up
to a phase term). To express these perturbed eigenvectors
as power series in ¢ around the unperturbed ones (in other
words, to connect both sets analytically), a particular basis of
unperturbed eigenvectors must be selected. The role of (23)
with 7,7 € ) is precisely to ensure that the proper choice
is made.

When 4,5 € Q9 and ¢ # j, (23) reduces to

Yiy; =0 (36)
where y; is defined in (29). To satisfy this constraint, the
unperturbed eigenvectors u;0,4 € €2, can be selected as
follows. First, define

M
Ie = Zy,-uio, Tp = z(k) — zs. (37
i=1

The vectors z, and z, are the orthogonal projections of
the data vector z(k) on the unperturbed signal- and noise-
subspaces, respectively. By construction, they are orthogonal:
zHz, = 0. Now, set

UpM+1,0 = Tn/||2nl| (38)

and finally, select u;9,2 = M + 2,..., L, arbitrarily within
the unperturbed noise-subspace, subject to the constraint that
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{uip:t € Ny} form an orthonormal basis of this subspace.
Then, using (29), it is easy to verify that

- {IlwnII, i=M+1
Yi = 0’

i=M+2,...,L
and (36) is automatically satisfied.

This choice of {u;0:¢ € 2}, which is prescribed here
by (23), is equivalent to that made in [7] for the rank-
one eigenstructure updating problem. We note that several
techniques can be used to construct the eigenvectors u;o,% =
M+2,...,L, including Gram-Schmidt orthogonalization and
Householder reflections [17]. However, if one is interested
only in updating the signal-subspace, explicit construction of
these eigenvectors is not necessary (see below).

Having made the proper choice of {u:i € (0}, the
remaining equations in (22)—(24) can now be used to determine
~;1 and u;;. From (22), it follows that

]yi — Y0, IL=177M
znll® — po, i=M+1
—po, 1=M+2,...,L

If (40) is used directly in a first-order perturbation expansion to
update the eigenvalues v;o = vi(k —1),4 = 1,..., L, which
satisfy (35) by assumption, the multiplicity of the smallest
eigenvalue estimate will decrease by one since yary11 >
YM+21 = -+ = 7vr1. As a result, the condition (35) will
no longer be satisfied at the next iteration. This difficulty can
be overcome as follows. Let p; denote the arithmetic mean of
vii fori=M+1,...,L:

(39)

]2

Vi1 = (40)

L 2
1 YM1
= 1= ~ po- 41
1 L—M,E V1= T TP 41
1=M+1

Instead of updating the ~;(k — 1) individually for i = M +
1,..., L, we update the noise variance estimate p(k — 1) using
the first-order expansion

p(k) = po +ep1. (42)

A similar averaging technique is used in [9] to maintain a
multiplicity constraint on the smallest eigenvalue.

Finally, it can be verified that (23)-(24) are satisfied when
the coefficients b;; (25) are chosen as follows:

bji = —bj; =

yryi/(vio — vi0), HJ€{l,...,M+1}andi#j
0, otherwise

43)

The first-order coefficient vectors u;; are obtained upon sub-
stitution of (43) in (26). In particular, we note that u;; = 0
for i = M +2,...,L while for + = 1,...,M + 1, the
summation in (26) extends only from j = 1 to M+1. It follows
that the unperturbed noise-subspace eigenvectors {u;o:i =
M +2,...,L} do not enter into the calculation of the wu;1.
Moreover, since ups+1,0 (38) can be calculated from the data
vector z(k) and the unperturbed signal-subspace eigenvectors
{uio:i € 1}, knowledge of these eigenvectors alone is suf-
ficient. Hence, in applications where only the signal-subspace
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TABLE II
ADAPTIVE EIGENDECOMPOSITION ALGORITHM PB

x(k) « e x(k)

fori=1to M:
n=uf(k-1) x(k)
yi=Inl
uik —1) « (nly) ui(k—1)
end

M
xp = x(k) = 3 yi uiCk = 1)
b

Yun =lx,l
Uy (k= 1) = xp/ypn1

fori=1to M +1:
b;=0
for j=i+1toM +1:
bji = yiy i/ max(@n k- 1), 7ik - 1) - 7;(k = 1)

b"j =—bj,'
end
end
fori=1to M:

70 =(1-&)ytk=1) + y?
M+
u(k)=u;(k—-1)+ Z b,-;u,-(k -1
j=1
ui(k)  u;(k)Mu; (kU
end

T (k) = plky = (1 = )pk = 1) + yly /(L ~ M)

eigenvectors are needed, it is not necessary to maintain and
update the noise-subspace eigenvectors {u;(k):1 € Q2}. More
generally, if a projector on the noise-subspace is needed, it can
be obtained easily from the signal-subspace eigenvectors [10].

Using the proposed first-order perturbation approach and
proceeding as in Part A, an adaptive eigendecomposition
algorithm can now be formulated. The stabilized version of this
algorithm, denoted PB, is summarized in Table II. According
to the discussion in the previous paragraph, only the signal
subspace is updated; the dominant noise-subspace eigenvector
uprr41(k — 1) is calculated explicitly within the algorithm. An
alternative version of this algorithm can be obtained where all
appearances of ups+1(k — 1) are eliminated through (38) and
(37) [15].

C. Approximation Resulting from Large Eigenvalue Ratios

In this subsection, considerable simplifications are made to
the algorithm PB by assuming that the ratios of consecutive
eigenvalues, i.e. vio/7vi41,0 for i = 1,..., M, are much larger
than one, or equivalently:

Y0 P P YM41,0 = 0 = VL0 (44)

In the single source case (M = 1), (44) corresponds to
the condition of high signal-to-noise ratio (SNR) found in
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several applications. Using the decomposition (4) of R.(k),
practical examples of multiple source scenarios where (44)
is satisfied can also be found (e.g., uncorrelated, orthogonal
sources with very unequal power and high SNR). However,
as indicated by simulations (see Section IV), the simplified
version of the algorithm PB derived in this subsection is quite
robust to the assumption (44) and can be used even when
some of the signal-subspace eigenvalues are repeated. In this
respect, (44) should be viewed as a mathematical device for the
simplification of perturbation series, rather than as a necessary
condition for the application of the resulting algorithm.
Under the assumption (44), the coefficients b;; (43), for

i,j € {1,..., M + 1}, can be approximated as follows:
bji =y y;/vio, 1< (45)
with b;; = —b;‘j for 7 > j and b;; = 0. Important compu-

tational simplifications result when the approximation (45) is
incorporated in the algorithm PB. Indeed, the calculation of
u;(k) fori = 1,..., M in the algorithm PB of Table II requires
on the order of O(LM?) complex operations. However, when
(45) is used properly, it is possible to compute the u;(k) in
only O(LM) complex operations. Explanations for this are
provided below. (The issue of computational complexity is
considered in more detail in subsection E.)
Define the square matrix

B=[b, 4,j=1,....,M+1 (46)
Using (45), B can be decomposed in the form
B=ypPzH-zpTYH (A7)
where
Y = diag(y1, -, yn+1) (48)
Z = diag(z1,...,2M41)s 2 = Yi/Vio (49)
P =pil,pyi = {(1) i (50)

In (48) and (49), diag(.) denotes a diagonal matrix with
diagonal elements given by the arguments. Now, let

(51
(52)

Up = [u10, ..., uar+1,0]

Uy = [ug1, - -, uar41,1)-

Expressing (26) in matrix notation and using (47), we have

Up=UB=VZH _—wvH (53)

where
V—_—[Ul,...,'(}M+1]:UOYP (54)
W = [wy,...,wpy1] = Up Z PT. (55)

Simplifications occur in the computation of U; (53) because
of the particular structure of the matrix P (50). Indeed, the
matrix product V = UpY P in (54) can be evaluated in only

O(LM) operations through the following recursion:
i=1,..., M+ 1. (56)

Vi = Vi—1 — Yilio,
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TABLE 1III
ADAPTIVE EIGENDECOMPOSITION ALGORITHM PC

x(k) « Ve x(k)

fori=1to M:
n=uf'(k—1) x(k)
y;=Inl
zi=yify(k-1)
u;(k—1) « (nly)uitk - 1)
end

fori=ltoM:
%) = (1 - e)plk - 1) + y?
end

v = x(k)

w =0

fori=1toM:
Ve v-yutk-1)
ui(k) =uik—D+2,v-—yw
u;(k) & u;(k)Mu; (kN
wew+ziuk—1)

end

Yy =Vl
(k) = p(k) = (1= £)p(k — 1) + yh L — M)

The initial condition is given by

M+1
Vo = Z Yilio
i=1
=Ts+ Tpn
= z(k) 57
where we have used (37)~(39). We also note that
UM = Tnp. (57)

Similarly, the matrix W (55) can be evaluated recursively as
follows:

Wiyl = W; + 2%0, t=1,...,M (59)

with initial condition

w1 = Opx1. (60)

Finally, according to (53), the first-order coefficient vectors
u;1 are given by

Ul = 2501 —Yiwi, t=1,...,M+1. (61)

As indicated in part B, u;; =0 fori =M +2,...,L.

When the above computational technique is incorporated in
the algorithm PB, the signal-subspace eigenvectors u;(k),7 =
1,..., M, can be updated in only O(LM) complex operations.
This represents a major improvement over the original algo-
rithm PB in Table II. The resulting algorithm, denoted PC, is
summarized in Table III
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TABLE IV
OPERATION COUNTS OF ALGORITHMS PA, PB, AND PC
Algorithm  Operation count
PA anRL® +o?
PB (2)LM? + O(LM)
PC SLM +O(L)

D. Initialization

Startup values of ~;(0) and u;(0) for ¢ = 1,...,L are
needed to initialize the algorithm PA in Table I. These can
be obtained by performing a single eigendecomposition of an
initial estimate ﬁI(O) of the data covariance matrix. A simpler,
but less effective approach consists of making a particular
choice of IA{z(O), for which the initial eigendecomposition
step can be avoided. An example of this is provided by
R.(0) = diag(y10,---,7L0) Where yio > --- > 7ro are
reasonable a priori guesses of the true eigenvalues, obtained
from signal and noise power considerations.

For the initialization of the algorithms PB and PC in Tables
II and 111, we must fix the value of M (signal-subspace dimen-
sionality) and chose startup values of v;(0),i = 1,..., M +1,
and u;(0),¢ = 1,...,M. If M is a priori unknown, it
must be estimated from the data. Typically [14], this involves
evaluating the eigenvalues of an initial estimate R.(0) of the
data covariance matrix. Once the eigenvalues are known, a
criterion such as AIC or MDL is used to estimate M. In this
respect, we note that the performance of the algorithms PB and
PC is not significantly affected by overestimating M, owing
to the stabilization mechanisms described earlier. Once M is
fixed, startup values of <;0 and u;o can be obtained in the
same manner as for the algorithm PA. A better startup value
for var41,0 = po is actually given by the arithmetic mean of
vio fori = M +1,...,L.

E. Computational Complexity

We use the term operation to mean one complex multipli-
cation and one complex addition, which is about the same as
four real multiplications and four real additions. The operation
counts of the algorithms PA, PB, and PC are given in Table IV.

In terms of operation count, the algorithm PB is comparable
to, or better than other existing algorithms with similar per-
formance. Indeed, referring to the two families of algorithms
mentioned in the introduction, the best algorithms in the first
family require O(L2M) complex operations per iterations to
achieve a level of performance comparable to direct eigen-
decomposition of the updated sample covariance matrix (10).
Algorithms in the second family require (1/2) LM%+ O(LM)
operations for an exact rank-one update of the covariance
matrix, but they involve the solution of a nonlinear eigenvalue
equation by means of interpolation techniques. In this respect,
perturbation algorithms are simpler to implement since they
completely avoid this step.

The operation count of the algorithm PC is one order of
magnitude smaller. This is comparable to the fastest algorithms
in the first family, which are based on instantaneous estimation
of the data covariance matrix and as a result cannot achieve a
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level of performance comparable to direct eigendecomposition
of (10). One remarkable feature of the algorithm PC is the fact
that, despite its low operation count, it can achieve such a level
of performance. This is shown by simulations in Section IV.

IV. SIMULATIONS

The convergence properties of the new algorithms presented
in this paper were studied by means of computer simulations.
Other existing algorithms were also considered for the purpose
of comparison. Both stationary and nonstationary computer-
generated narrow-band array data were used to evaluate the
algorithms. The case of stationary data is considered first,
followed by the nonstationary one.

The scenario considered for the stationary simulations con-
sisted of M = 2 uncorrelated narrow-band plane waves with
directions of arrival (DOA) 6; = 9° and 6, = 12°, impinging
on an uniform linear array of L = 8 sensors, with intersensor
spacing equals to half the wavelength. The sensor outputs
were corrupted by additive circular Gaussian white noise with
signal-to-noise ratios set to SNR; = SNR, = 20 dB.

Synthetic data were generated and processed with the fol-
lowing algorithms: perturbation algorithms PB and PC; Yang
and Kaveh’s covariance matrix gradient and instantaneous
LMS-type adaptive algorithms [5], referred to as YKI and
YK2, respectively?; and exact eigendecomposition of the up-
dated covariance matrix estimate (11), simply referred to as
EIG. Except for possible roundoff errors (which do not play
a significant role in this study), the EIG approach produces
the same output as the rank-one adaptive eigendecomposition
algorithms of the second family, which are based on the algo-
rithm of Bunch et al. [12]. The use of the algorithm PA is not
recommended here because of the relatively large multiplicity
of the noise subspace eigenvalue, which is repeated L—M = 6
times.

The algorithms were initialized as follows: A sequence of
10 independent data vectors (k) was combined as in (9) to
form an initial covariance matrix estimate RI(O), which served
as startup value in the EIG approach. Then, the eigenvalues
and eigenvectors of RI(O) were calculated and used as startup
values in the algorithms PB, PC, YK1, and YK2, as described
in Section III-D. Unless otherwise indicated, the correct value
of M = 2 was used in these algorithms.

Three different indicators were used to evaluate the perfor-
mance of the various algorithms. The first one is a vector with
components

ei(k) = [vi(k) — Al /A,

where A; are the eigenvalues of the true covariance matrix (4).
Hence, ¢;(k) represents the relative error in the ith eigenvalue
estimate, -y;(k), at time k. The second indicator is given by

J(k) = [U(R)UT (k) = Qu()QI (R (63)
where ||.|| denotes the Frobenius norm of a matrix, Qs(k) is
given by (8), and

Us(k) = [u1(k), ..., um(k)]. (64)

21n the notation of [5), the equivalence is YKI = V; = A2 and YK2
=V = A3.

i=1,...,.M+1 (62
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Fig. 1. Signal-subspace error J(k) as a function of k for the algorithms PC,
YKI, and YK2 under the same steady-state error (M = 2 sources; 6; = 9°,
0y = 12°; SNR; = SNRo = 20 dB; 40 independent runs).

The quantity J(k) provides a measure of the error between the
projector on the true signal subspace, i.e., Qs(k)Qs(k)¥, and
an estimate of this projector at time k given by U, (k)UH (k).
When the columns of U(k) are exactly orthonormal, J(k)
is equal to the distance between the subspace spanned by
the columns of Us(k) and the signal-subspace spanned by
Q< (k) [17]. The third indicator is a vector of DOA estimates,
[61(k), B2(K)], obtained with the root-MUSIC algorithm [16].
In the following discussion, &;, J; and 0;(k) represent the
averaged values of these indicators over 40 independent runs
(with independent re-initializations).

Fig. 1 shows the “learning curves” of J(k) as a function of &
for the algorithms PC, YK1, and YK2, under the same steady-
state error. To obtain these curves, the parameters controlling
the algorithms YK1 and YK2 were first set as follows: o =
0.075, u1 = 0.00024, and pp = 0.00012, where p; and o
are the corresponding convergence factors (such values are
typical of those used in [5]). To obtain the same steady-state
error, the perturbation parameter of the algorithms PB and
PC was then set to ¢ = 0.02. As can be seen from Fig. 1, the
new algorithm converges more rapidly than the gradient-based
algorithms. Fig. 2 shows the corresponding DOA estimates
for the algorithms PC and YKI1. It is seen that the DOA’s
obtained with the algorithm PC are relatively unbiased, while
those obtained with the algorithm YK1 are slightly biased.
The DOA’s of the algorithm YK2, not shown, are noisier and
more biased than those of the algorithm YKI1. Fig. 3 shows
the eigenvalue errors &;(k) (2 = 1,2, 3) as a function of £ for
the algorithm PC. The lower steady-state value of e3(k) (by a
factor of about 1/+/6) is due to the averaging operation in (41).

The corresponding curves for the algorithms PB and EIG,
not shown in Figs. 1-3 for the sake of clarity, are almost
undistinguishable from those of the algorithm PC. Two im-
portant conclusions can be drawn from this observation. First,
despite a much lower computational complexity (i.e., O(LM)
as compared to O(LM?)) resulting from simplifying as-
sumptions, the algorithm PC can achieve the same level
of performance as the algorithm PB. Secondly, although
perturbation algorithms perform only an approximate update
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Fig. 2. DOA estimates 81 (k) and 62 (k) as a function of k for the algorithms
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Fig. 3. Eigenvalue errors &;(k)(z = 1,2,3) as a function of k for the

algorithm PC (same conditions as in Fig. 1).

of the eigendecomposition of the covariance matrix estimate
R, (k), their performance is comparable to an exact, more
costly approach in which the eigendecomposition of I%I(k)
is updated exactly. This suggests that the extra accuracy
gained from an exact eigendecomposition is overshadowed by
statistical errors in the estimate R, (k) itself.

The effects of overestimating the signal-subspace dimen-
sionality M were also investigated. The results indicate that
both perturbation and gradient-based algorithms are not sen-
sitive to small errors in M. In particular, when the above
experiment was repeated with an estimated value of M = 3,
no significant performance degradation was observed with the
algorithms PB, PC, YKI1, and YK2.

To demonstrate the effectiveness of the stabilization tech-
nique described in Section III-A and to evaluate the ro-
bustness of the algorithm PC to the assumption (44), the
algorithms were tested under the severe condition of equal
signal-subspace eigenvalues. To this end, the same scenario as
above was considered, but the DOA’s were set to §; = 0°
and 0, = arcsin(1/4) = 14.4775°. With this choice, A\, =
A2 =801 and \; = 1,4 = 3,...,8. The DOA estimates of the
algorithms PB and PC are shown in Fig. 4. In terms of bias and
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Fig. 4. DOA estimates 81(k) and (k) versus k for the algorithms

PB (—) and PC (—) (M = 2 sources; 8; = 0°, 02 = 14.4775°;
SNR; = SNRg = 20 dB; 40 independent runs).
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Fig. 5. DOA estimates 81 (k) and 2 (k)versus k for the algorithm PC when
submitted to a sudden environmental change (M = 2; [61,682] = [9°.12°]
for 0 < k < 500[81.8,] = [11°,14°] for 500 < k < 1000;

SNR; = SNR» = 20 dB; 10 independent runs).

variance, these estimates are comparable to those of the EIG
approach. In general, the simulation results indicate that the
performance of the algorithms PB and PC is not significantly
affected by the condition A; = As;.

The algorithms were also tested on nonstationary data
corresponding to two different scenarios. The purpose of the
first scenario was to evaluate the ability of the algorithms to
recover from a sudden change in the environment. Initially,
the same simulation environment as in Fig. 1-3 was used to
generate data for 0 < k < 500 (i.e., two stationary sources
with 6; = 9° and #; = 12° and SNR = 20 dB). Then, at
time k = 500, the DOA’s were changed abruptly to §; = 11°
and 6, = 14°. Fig. 5 shows the corresponding DOA estimates
obtained with the algorithm PC (10 independent runs). It is
seen that the algorithm is able to fully recover from such
a sudden change in the environment. Similar results were
obtained with the other algorithms.

With the second scenario, we tested the ability of the
algorithms to track two crossing sources. To this end, one
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Fig. 6. DOA estimates of the algorithm PC for two crossing sources
(61 = 9° + 6°k/1000, 2 = 12°; SNR; = SNR; = 20 dB; 10
independent runs).
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Fig. 7. DOA estimates of the algorithm YKI1 for two crossing sources
(1 = 9° + 6°k/1000, 62 = 12°and SNR; = SNRp = 20 dB; 10
independent runs).

of the source was maintained fixed at o = 12°, while the
other was changing DOA at a rate of 0.006° per iteration,
according to 61 (k) = 9°+6°k/1000. As before, the SNR was
set to 20 dB. Fig. 6 shows the corresponding DOA estimates
of the algorithm PC. (The results could be further improved by
the application of smoothing and track association algorithms.)
Except for a small time interval around the crossing point
at k = 500, where the root MUSIC algorithm is unable
to correctly resolve the two sources, the algorithm shows
good tracking performance. The algorithms PB and EIG have
similar behavior. However, as shown in Fig. 7, the tracking
performance of YKI1 is not as good.

V. SUMMARY AND DISCUSSION

New algorithms for adaptive eigendecomposition of time-
varying data covariance matrices were presented. The al-
gorithms are based on a first-order perturbation analysis of
the rank-one update for covariance matrix estimates with
exponential windows. Different assumptions on the eigenvalue
structure led to three distinct algorithms with varying degrees
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of complexity. A technique for stabilizing the algorithms was
presented and the issues of initialization and computational
complexity were discussed briefly. Finally, the convergence
behavior of the new algorithms was evaluated via computer
simulations and mathematical analysis.

The results show that the new algorithms can achieve the
same level of performance as a direct approach in which the
exact eigendecomposition of the sample covariance matrix is
obtained at each iteration. Existing algorithms with similar
performances require on the order of O(LM?) complex op-
erations per iteration and involve either a full Gram-Schmidt
orthogonalization of the adaptive eigenvectors or a nonlinear
eigenvalue search. The new algorithms have comparable or
lower operation counts and do not involve any of these steps.
One particular perturbation algorithm, i.e., PC, can be used to
update the complete signal-subspace eigenstructure in 5LM
complex operations while maintaining the same level of per-
formance as more complex O(LM?) algorithms. Moreover, a
simplified local convergence analysis of algorithm PA shows
that it converges geometrically to the true eigendecomposition
and is characterized by a single time constant.

Considering their numerical complexity (operation count,
parallelism, etc.) and their convergence behavior, the new
perturbation-based algorithms are particularly well suited to
real-time implementations of various signal-subspace process-
ing methods.

APPENDIX I

In this Appendix, we present a simplified convergence
analysis of the algorithm PA. Only the local behavior of the
mean eigenvalues and eigenvectors around the true eigende-
composition is considered. Nevertheless, the results obtained
are quite pleasing and provide additional motivations for using
the new algorithms. Another virtue of this simplified analysis
is to help the reader develop a better understanding of the
internal operation of the new algorithms and of the conditions
necessary for their successful application.

For the present discussion, we consider the following form
of the algorithm PA, where the final normalization step has
been omitted:

Yi(k) = (1 -e)u(k—1)

+ eul (k — Va(k)z™ (k)u;(k — 1), (A1)
ui(k) = u;(k - 1)
uf(k — Dz(k)z® (k)u(k — 1) o
+e; 1) k= 1) uj(k —1).
(A2)

Furthermore, the data vector z(k) is assumed to be stationary
with E[z(k)] = 0 and E[z(k)zH(l)] = R:6r. The eigen-
values and normalized eigenvectors of the time-independent
covariance matrix R, are denoted by \; and g;, respectively.

We first note that v;(k) = A; and wu;(k) = ¢; for ¢ =
1,..., L is a stochastic stationary solution of (A1)—(A2) in the
sense that conditioned on v;(k — 1) = ); and u;{k — 1) = g¢;,
these equations imply E[v;(k)] = A and Efui(k)] = ¢
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To study the local behavior of +;(k) and u;(k) around this
stationary solution, the following assumptions are made:
(1) We pose

ui(k) = q; + ni(k) (A3)

where n;(k) represents small time-varying fluctuations
around the true eigenvector g;.

(2) Second- and higher-order terms in n;(k) are neglected
in the analysis.

(3) Let Q = [g1,...59z] and U(k) = [u(k),...,ur(k)]
Since the eigenvectors ¢; are orthonormal, it follows
that

Q¥ =1L (Ad)
Similarly, we shall assume that
E[UO)E[UH(0)] =1 (AS)

(4) From (A4) and (AS), it follows that

E[U(0)] = QR (A6)

where R = Q¥ E[U(0)] is also unitary, i.e.

RR¥ =1. (A7)
Hence, according to (A6), the orthonormal coordinate
systems defined by E[U(0)] and @ are related by a
unitary transformation (i.e., generalized rotation) in the
complex L-dimensional vector space. Since we are
concerned with the local behavior of U(k) near the
stationary point (), we shall assume that the generalized
rotation R is small, i.e.

R=I+S8 (AB)

where || S|} < 1. Substituting (A8) in (A7) and neglect-
ing the second order term SSH, it follows that

S+8H=0 (A9)
so that S is anti-hermitian’.

(5) The reader will note that the evolution equations (A1)
and (A2) for ~;(k) and u;(k) are coupled. To simplify
the discussion, we consider an uncoupled approximation
to (A1) and (A2) obtained by setting u;(k — 1) = ¢
in (Al) and ~;(k — 1) = X; in (A2). (Note that this
assumption is not absolutely essential.)

Using the above assumptions, one can derive linear evo-

lution equations for E{y;(k)] and E[u;(k)}. From (Al), we
obtain

whose solution is
Elyi(k) = M) = (1 - &)*E[%(0) — A (A11)

3The fact that a small rotation can be expressed in the form R = [ 4+ S
with § = —S* is well known from the theory of continuous transformation
groups [18]. In this framework, R = I 4+ S is identified as an infinitesimal
generator of the group of unitary matrices.
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From (A2), we obtain

Elui(k)] = Elui(k - 1)]

NE[ (k- D]gi + Mg Elui(k — 1)]
+ EZ i — N w

(A12)

1#i

To solve this linear recursion, we first define
Bji(k) = ¢ Elui(k)], 4j5=1,...,L.

In terms of these new variables, (A12) can be expressed as

(A13)

Bii(k) = Bi(k — 1) (Al4)
Bii(k) = Byilk = 1) + -\ (k = 1)
i j
+AiBji(k—1)], A4 (A15)

The above recursion for the parameters 3;;(k), j # 4, can be
uncoupled easily by introducing new variables as follows:

vii(k) = Bji(k) + B5;(k), (A16)
wi; (k) = AjBi(k) + X (k). (A17)
Using (A16), (A17), and (A15), we obtain:
vij(k) = vij(k - 1) (A18)
wii (k) = (1 - e)w(k - 1). (A19)

The solution of these uncoupled equations is straightforward,
namely

(A20)
(A21)

(k) = vi;(0)
wij(k) = (1 - &)*w;;(0).
An important simplification occurs at this point as a result
of the assumption that E[U(0)] and Q are related by a small
rotation. Indeed, using (A6) and (A8) in (A13), it can be
verified that
(A22)
(A23)

Bi(0) =1

B;i(0) = sji, J#1
where sj; denotes the corresponding element of the matrix S.
As a consequence of (A9), it follows that

'U,']'(O) =0
wi;(0) = (Aj — Ai)sji

(A24)
(A25)

Finally, substituting (A24)—(A25) in (A20)—(A21), inverting
the transformation (A16)—(A17) to obtain §;;(k) in terms
of v;;(k) and w;;(k), and expressing E[u;(k)] in terms of
the G;;(k), one obtains the desired solution of the evolution
equation (A12), namely

E[U(K)] = QU + (1 - ¢)*5]. (A26)

For 0 < e < 1, which is the situation of interest in this
paper, the following conclusions can be drawn from the above
local convergence analysis:

1) From (A11), it follows that ~;(k) converges in the mean

to the true eigenvalue ;.
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2) From (A26), it follows that u;(k) converges in the mean
to the true eigenvector g;.

3) According to (A26), the coordinate systems defined by
E[U(k)] and Q are related by a small rotation whose
magnitude decay with time so that the two systems
eventually get correctly aligned.

4) The convergence is geometrical, with all adaptive modes
characterized by a single time constant which is given
by 1/e for € small. This is a rather remarkable property
of this algorithm.

5) Contrarily to other adaptive algorithms such as those
based on stochastic gradient search, the time constant of
algorithm PA is independent of the true eigenvalues.

The above analysis can be extended to the algorithms PB
and PC. Moreover, it is possible to use the same type of
approach to study the sensitivity of the new algorithms to the
choice of initial conditions. This would involve determining
all the stochastic stationary points of a particular algorithm
and studying the local behavior of the algorithm around these
points. Depending on whether these stationary points attract or
repel the estimated eigendecomposition, it would be possible
to formulate general rules concerning the choice of initial
conditions. Such an analysis is currently under way and will
be reported independently along with a more comprehensive
convergence analysis of the new algorithms including a study
of steady-state variance.
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