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Plane Rotation-Based EVD Updating
Schemes for Efficient Subspace Tracking

Bendt Champagne and Qing-Guang Liu

Abstract—We present new algorithms based on plane ro- In on-line applications of subspace-based methods to non-
tations for tracking the eigenvalue decomposition (EVD) of a stationary signals, it is desirable to continually update the EVD
time-varying data covariance matrix. These algorithms directly estimates in real time as new data vectors become available

produce eigenvectors in orthonormal form and are well suited for . d it the d . f ab h a/
the application of subspace methods to nonstationary data. After In order to permit the detection of abrupt changes ana/or

recasting EVD tracking as a simplified rank-one EVD update the tracking of nonstationarities in the signal environment. In
problem, computationally efficient solutions are obtained in two recent years, several computationally efficient techniques in
steps. First, a new kind of parametric perturbation approach  the form of recursive algorithms have thus been proposed for
is used to express the eigenvector update as an unimodulargq . ential estimation and tracking of some, or all, of the EVD

orthogonal transform, which is represented in exponential matrix f . ina d . . h
form in terms of a reduced set of small, unconstrained parame- COMponents of a time-varying data covariance matrix. These

ters. Second, two approximate decompositions of this exponential algorithms, which are collectively referred to here as subspace
matrix into products of plane (or Givens) rotations are derived, trackers, rely on different approaches for their derivations and,

one of which being previously unknown. These decompositions accordingly, may differ considerably in terms of complexity
lead to new plane rotation-based EVD-updating schemes (PRO- and performance.

TEUS), whose main feature is the use of plane rotations for L.
updating the eigenvectors, thereby preserving orthonormality. A commonly used approach for the derivation of subspace

Finally, the PROTEUS schemes are used to derive new EVD trackers is to formulate the determination of the desired EVD
trackers whose convergence and numerical stability are inves- components as the optimization (possibly constrained) of a
tigated via_simulations. One algorithm can track all the signal  gpacific cost function involving the unknown data covariance
subspace EVD components in onlyD(LAM ) operations, where L . . . . o
matrix. To arrive at a recursive algorithm, the optimiza-

and M, respectively, denote the data vector and signal subspace . " . . . . .
dimensions while achieving a performance comparable to an tion is accomplished adaptively via an appropriate stochastic

exact EVD approach and maintaining perfect orthonormality of ~ search procedure. Algorithms of this type have been derived
the eigenvectors. The new algorithms show no signs of error pased on the constrained gradient search [16], [20], [33],
buildup. [37], [46], [52], the conjugate gradient iteration [10], [20],
[19], [43], the Gauss-Newton search [27], [28], [36], and
I. INTRODUCTION the recursive least-squares [51]. Another type of approach
. . . consists of using classical algorithms from numerical analysis
SJBS.PACE'BASED S'g.”a' analysis methOd.S play a majqp compute exactly, at regular intervals, the EVD of a time-
. o!e n (_:ontgmporary_5|gnal processing, with appl'cat'p%rying sample covariance matrix or, equivalently, the singular
including d|rect|on-_of-ar_r|va| est!matpn N array processing, o decomposition (SVD) of a corresponding data matrix.
and frequency estimation of sinusoidal signals in spectigl o a technique based on orthogonal iterations is proposed

analysis. As their distinguishing feature, these methods s 33]. Within this framework, specific attempts have been
to extract the desired information about the signal and noiﬁ]e '

by first estimating either a part or all of the eigenvalue decom ade to exploit the low-rank nature of practical recursive
y 9 P 9 covariance matrix estimates. In [23], a classical algorithm

position (EVD) of the data covariance matrix. For exampl? r SVD computation [21] is tailored to the rank-one update

knowledge of the eigenvalues can be used in connection wi L i . . .
situation; noise eigenvalue smoothing (i.e., noise subspace

a criterion such as AIC or MDL to estimate the number R . . !
. . i sphencallzanon) is also introduced to reduce the computational
of dominant signal sources present in the observed data

%ad and the estimation variance. In [41], a similar solution is

i[ﬁsz]a. Qdﬂl_t;gggllulagzwlergg: dal;;hseug]gzgv?\:ltf SrTCcatl(r; 2§tilrjnse%oposed based on an algorithm for exact rank-one updating of
9 P . Ahe EVD [5]. Further related contributions include numerical
unknown parameters of these dominant sources [3], [40].

stabilization techniques [12], [30], extension to rankpdates
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orthogonal iteration [24], [45], the QR iteration [17], [39],thus leading to the formulation of the PROTEUS schemes. The
the Lanczos method [11], [49], and the Jacobi-type SVBew subspace trackers based on these schemes are presented in
iterations [18], [25], [31]. Specific algorithms have also beeBection IV, where convergence and numerical stability issues
developed that track only basis vectors of the signal andfre discussed briefly. The comparative performance of these
noise subspaces based on the URV decomposition [35], [4d¢w algorithms is investigated via computer experiments in
the rank-revealing QR factorization [4], and classical invaria®ection V. Some final remarks are provided in Section VI.

subspace updating techniques [26]. The following notations are used:
Recently, efficient EVD trackers have been obtained basedr set of real numbers;
on the application of classical perturbation methods to thec set of complex numbers;
rank-one update for the sample covariance matrix [6]. Onegl[ ] mathematical expectation;
of these algorithms (PC) can track thé-dimensional signal 7 plain conjugate transpositions;
subspace (eigenvalues and eigenvectors) of-alimensional  # complex conjugate transpositions;
data vector in onlyO(LM) operations while achieving a diag(-) diagonal matrix with entries given by the argu-
performance comparable with an exact EVD approach. The ments;
main limitation of this approach, which is common to many of 7, L x L identity matrix;
the above subspace trackers, is its inability to directly produceg zero vectors and matrices of appropriate dimen-
perfectly orthonormal eigenvector estimates. Yet, several of sions;

the most popular subspace-based signal analysis method@e(.) determinant;
assume or require the use of an orthonormal basis. Forl| - || matrix-2 norm of its argument

instance, random deviations from orthonormality ultimately overwriting.
limits the resolution capability and estimation accuracy of
the root-MUSIC method [1]. Some form of orthonormality Il. PRELIMINARY NOTIONS

is also important in maintaining long-term numerical stability
of the perturbation algorithms of [6] as wgll as of otheJ'A_ Problem Eormulation
subspace trackers [12], [31]. In all these situations, further ) o ) .
orthonormalization of the dominant eigenvectors is necessary!" @ typical application of subspace-based %'Q”al processing,
This entails additional computational costs @fLM?) that ahL-dimensional complex data vecta(k) € C™ is observed
set a lower bound on reachable operation counts. at the_kth sampling instant, where = 1,2,.... The sequence

In this paper, we derive and evaluate new EVD trackinﬁ(k) is modeled as a zero-mean, random vector process whose
algorithms that overcome this limitation by directly producing©variance matrix at timé is shown by
eigenvector estimates that are .orthonormallat all times. The R(k) = E[x(k)x(k)"] @
derivation involves two steps: First, a new kind of improved,
parametricperturbation approach is used to express the eigemhere it is implicitly assumed that the proces§:) can be
vector update as a unimodular orthogonal transformation theinstationary. The eigenvalues and corresponding orthonor-
is represented in exponential matrix form in terms of malized eigenvectors of the matrik(k) are denoted by, (k)

reduced set of small, unconstrained parameters. Second, amd q;(k), ¢ = 1,..., L, respectively. That is, the matrices
approximate decompositions of this exponential matrix into .

products of plane (or Givens) rotations are derived, one A(k) = diag(A1(k), .-, AL (k) (2)
of which being previously unknown. These decompositions Q(k) = [ai(k),....qr(k)] 3)
then lead to new plane rotation-based EVD-updating SChemse?isfy

(PROTEUS) for the rank-one problem. These schemes, whith

are noniter_ative (i.e., close form), use specific sequences_of R(k) = Q(k)A(k)Q(k)H 4)
plane rotations to update the eigenvectors, thereby preserving QT Qk) = I. (5)

orthonormality. In the paper, the PROTEUS schemes are used

to derive various subspace trackers whose convergence &oggation (4) is known as the eigenvalue decomposition (EVD)

numerical stability are investigated via computer experimentsf. R(k). Without loss of generality, it is convenient to assume

One particular algorithm (PROTEUS-2) can track all the signéat A\, (k) > X2 (k) > -+ = Ap(k) = 0.

subspace EVD components in only( LM ) operations while  Within this framework, the most exhaustive form of sub-

achieving a performance comparable with an exact approagace tracking consists of performing sequential estimation

and maintaining perfect orthonormality of the eigenvectorsf all the EVD parameters ak(%) as new observations(k)

Furthermore, the new algorithms show no sign of numerichécome available. To this end, recursive algorithms are needed

instability or error buildup. that can compute the EVD estimates at tild.e., estimates
The paper is organized as follows. In Section I, a mathematf A(k) and Q(k) in (4), given estimates ofA(k — 1) and

ical formulation of subspace tracking is provided, and a serié§k — 1) and the new data vectot(k). To be of practical

of preprocessing steps are described to put the problem inadue, these algorithms must have low complexity so that

normalized form. In Section Ill, the parametric perturbatiotheir real-time implementation is conceivable. In addition,

approach is exposed, and the decompositions of the associditey must possess the following statistical properties: In a

exponential matrix into products of plane rotations are derivestationary environment, the EVD estimates converge to the
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true EVD for &k sufficiently large; whereas in a nonstationarghat can significantly reduce the computational complexity
environment, the estimates have the ability to track variation$ the resulting subspace trackers without adversely affecting
in the true EVD. Finally, numerical stability over long periodsheir statistical performance. Clearly, such approximations will
of operation is also a practical necessity. be legitimate if they are masked by the estimation errors in
While in certain specific applications it may be necessar}}(k) (20).
to track all the EVD information, very often, only a subset A fundamental limitation common to many of the existing
thereof is required, such as, for example, the largest or subspace tracking algorithms is their inability to produce
L — M smallest eigenvalues and corresponding eigenvectperfectly orthonormal eigenvector estimates. Thus, if such a
of R(k), for some integetM < L, or only a basis of one basis of eigenvectors is required by the postprocessing method,
of the corresponding eigensubspaces. We refer to the fifistther orthonormalization is necessary, adding a significant
class of problems asompleteand to the second, larger classomputational load to the overall process. Here, to overcome
of problems agpartial subspace tracking. In this paper, wehis limitation, we further require that the orthonormality
shall be concerned at first with deriving efficient algorithmeonstraint (9) be strictly enforced for alle {1,2,...}.
for the complete problem. Later, in Section IV, we describe
some further simplifications that result for partial problems ®&. Preprocessing and Normalization
particular interest.
Let the sequential estimates af(k) of Q(k) in (4) be
represented by

We next describe a series of preprocessing steps that are
used to put the rank-one EVD update (8) into a normalized
form. This will not only simplify subsequent analysis but also

I'(k) = diagyi(k), ..., v (k) (6) result in important computational savings in various situations
U(k) = [u (k) ()] 7) of practical interest, e.g., complex data and/or repeated eigen-
= W) 1 values. For brevity, lel/ = U(k — 1), I' = I'(k — 1), and

respectively, wherey; (k) > v2(k) > -+ > (k) > 0. In X = x(k) denote the information available at tinig prior
this work, we seek computationally efficient recursions fdP the update, and let” = U(k) and " = T'(k) denote
updating these estimates so that within a good degree B¢ updated EVD estimates. Preprocessing consists of the

approximation following four steps, in whichx, {/, andl' are transformed
y so that (8) is gradually brought into the desired form:
UR)L(R)U(F) 1) Diagonalization Rank-one EVD update of a diagonal
=(1— Uk — DDk - DUk — )7 + ex(k)x(k)" matrix is obtained by setting
(8) £E=U"x. (11)
wheree is a constant parameter with < ¢ < 1, subject to 2) Mapping into Real Vector Spa¢é1]: To modify the up-
the constraint dating problem so that only real quantities are involved,
UMUK = I, ) define the diagonal unitary matrix
: . : D = diag(&:/|i]) (12)
which must be enforced exactly at all time. The underlying
motivations are discussed below. where¢; denotes theth entry of &, and let
When (8) is satisfied exactly for alk, the factors of ¢ —DU¢ (e & — [6]), U—UD (13)

U(k)L(k)U (k)" indeed provide the EVD of a sample covari-
ance matrix with exponential window, i.e., defined through 3) Deflation[5]: The dimensionality of the problem can be
the recursion reduced whenever some of the diagonal elements of
R R are repeated Specifically, suppose that there dfe< L
R(k) = (1 = )Rk — 1) + ex(k)x (k)" (10) distinct eigenvalues among the(k — 1), i =1,..., L.
Then, by using an appropriate block Householder matrix
H =diag Hy,...,Hk) (see [5] for a definition of the
block matricesH,), it is possible to zero oul — K
entries of the vectog. Thus, we have

which is the basis of several subspace trackers. Notecthat
in (10) is a forgetting parameter that determines the effective
length of the exponential window (namelly/e). In nonstation-
ary environments, a larger value ofypically results in better

tracking capabilities at the expense of increased estimator ¢ —HY¢, U—UH. (14)
variance. In practical applications of (1@),is usually much ] ] ] )
smaller than one. 4) Reordering Using an appropriate permutation matfx

In the area of matrix analysis, the computational problem  (S€€ [22]), reorder the entries ¢f the columns of/,
specified by (8) and (9) is known as a rank-one EVD update. ~and the diagonal entries df so that the last, — K
Several subspace trackers have been proposed that seek an €ntries of¢ are zero and the firsk” diagonal entries of
exactsolution to this problem, e.g., [12], [41], [53]). However, I are in decreasing order
sequentigl EVD estimates obtained in this way are still subject ¢—Pr¢, U—UP, T<PrP. (15
to statistical errors and are generally not optimal in a nonsta; L ) i i
. . hi d t require that Deflation is also possible When a partlcula_r_ entry gafls zero [5]. _
tionary environment. For this reason, we do not req @3wever, due to background noise, the probability of this event is null in

be satisfied exactly. Our intent is to allow for approximationsost applications. This type of deflation is not given further consideration.
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TABLE | from O(LK) to O(LK?)), and, as a result, the eigenvectors
SUMMARY OF PREPROCESSINGSTEPS remain orthonormal during the update.
Step | Operation The parametric perturbation approach is presented in Sec-
1 £=U"x tion IlI-A. The two decompositions of the matri¥ into
2 | D= diag(&/1&)) products of plane rotations along with the corresponding EVD
&£+ D¢ updating algorithms are derived individually in Sections IlI-B
U«<UD and III-C. We refer to these algorithms as PROTEUS-1 and
3 | H = block Houscholder matrix -2, where PROTEUS stands for “plane rotation-based EVD
£ HE updating scheme.”
U+ UH
4 ?; }??nummon matrix A. Parametric Perturbation of the Rank-One EVD Update
U« UD In essence, the parametric perturbation approach consists
I« Py of applying perturbation methods in a lower dimensional

parameter space associated with the constraint of interest, i.e.,
. . 19). Here, only first-order perturbation series are used so that
The;e steps are S‘.Jm'“.”a”zed in Table I_ for future refgren an also be viewed as a form of constrained linearization [7].
Their practical realization a_nd computational complexity aGis application to subspace tracking is based on the assumption
wally depend on the particular type of subspace traCk'@ﬂat the memory parametein (18) is small compared with 1,
problem under consideration; additional explanations are PW®Rich is verified in most situations of interest. For example,

V|dFeo:| In _Sectr|]on V. dT b . q to obtain an effective exponential window length greater than
ollowing these stepg andI’ can be partitionned as 20 samples, we need < 0.05,

et = [ 570]7 I' = diagI',,I;) (16) We begin by observing that for in the neighborhood of
I 0, the modified EVD component3, and V' in (18) and (19)
where &, = [&,....¢x]" with & > 0, T'w = can be analytically connected 1o, and I, respectively, so
diagv, ..., yx) With v > 72 > - > 9 > 0, and  thatT/, — I', andV — Iy in the limit e — 0 [38]. Thus,
Iy = diagyx 11, .-+, vo) With 5 € {v1,..., vk} fori > K. for ¢ sufficiently small, the EVD modifications resulting from
Furthermore, (8) can be expressed in the form the update (18) are small, that I, — I'y|]» < 1 and
_ T V — Ixl||l2 < 1. To emphasize this point, let us first write
vt — g T Ottty O Lt an P/ in tﬁe|z|2f0rm
0 (1—-oly u
According to (17), the original rank-one EVD update problem I, =Ty + AT, (21)
(8), (9) overCk has been simplified to the rank-one EVD Al =diagéy,...,0K) (22)
date of a di | matri &~ ie.,
tpcate or a diagonal matrix ov € where the unknown parametéy, ¢ € {1,..., K}, represents
VI VT = (1 — o, + €, & (18) the modification in théth eigenvalue. According to the above
VIV = I (19) discussion|é;| < 1, providede is sufficiently small.

o _ The introduction of a similar representation fgrin terms
wherel”, is diagonal. Once the solutiori§ and I, of the ~ of small parameters requires additional care because of the
normalized problen(18), (19) have been found,” and U’  orthogonality constraint (19). To derive such a representation,

can be obtained from we first note thatdet(V) = +1 as a consequence of (19).
, vV 0 , T 0 Without loss of generality, we shall assume theit(V') = +1;
U= U[o I,/_,J’ = [0 (1— C)Fl:|. (20) this amounts to multiplying one of the modified eigenvectors
(i.e., any column oV) by —1. With this additional restriction,
[Il. NEw EVD UPDATING SCHEMES V now belongs to the special orthogonal grot@( K) [42],
BASED ON PLANE ROTATIONS i.e., the group of allK x K unimodular orthogonal matrices,

which is also known as proper rotations. As a member of

: As explained in Section ”_A’ n subspace traqkmg applic _O(K), V" automatically admits an exponential representation
tions, (18) needs not be satisfied exactly, but it is genera o¥ the form

desirable to enforce the constraint (19). In this section, a new

kind of improved parametric perturbationapproach is first V = exp(0) (23)
used to derive an approximate solution to (18), which satisfie 6 — 16.1] K . CGREXE (i
(19) exactly. Two approximate decompositions of the resultirsg;ere = (0] is a skew-symmetric matrix | (e,
matrix V' into a product of plane rotations are then obtained. = —©, or equivalentlyf;; = —0;), and exp(-) is the
When used in connection with (20), these decompositioB22trx exponential function, which is defined as

lead to new algorithms for the rank-one EVD update. The > ek
algorithms are particularly attractive for subspace tracking exp(0) = A (24)
applications: The eigenvalues are obtained in close form (no k=0

iterative search), the eigenvector update (20) is achieved effhe above representation &T in terms of theK(K — 1)/2
ciently via sequences of plane rotations (complexity rangigal parameterd,; for 1 < ¢ < j < K is of particular
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interest to us. Indeed, we have seen that dasufficiently Consider thef{ x K matrix © with entriest;; (27). Let¥;;
small, ||V — Ix||]2 < 1; in light of (23), this in turns implies denote the matrix obtained frofd by setting all its entries to

|6:;] <« 1. zero, except for thej andj: entries (i.e.f;; andf;; = —6;;),
The remaining steps of the proposed parametric perturbatiwhich are left unchanged. It is then possible to express
approach can be summarized as follows: terms of the matriced;; as
i) Substitute (21) and (23) into (18), and use (24) to
) (21) (23) into (18) n (24) o=Yu, (29)
expand the exponential function (i.8/, = Ix + © + L 7Y
). I
i) Assuming ¢ small, retain only linear terms (i.e., of Substituting (29) in (23) and using the definition (24), it can
degree zero or one) iAl',, and ©. be verified that
iii) Solve the resulting equation foAl',, and ©. )
iv) Substitute the solutions back into (21) and (23). V = []exp(¥i;) +O(||O]f3). (30)
J>i

The matriced™, and V' so obtained are the desired solutions
to the rank-one EVD update problem (18). Since the approxhus, V can be expressed as a finite product of simpler
imation in step ii) is made at th® level, it has no effect on orthogonal matrices, namelgxp(¥;;), plus an error term of
the orthogonality oft”, which is kept inSO(K) via (23); the the order of||©||3. Here, the entries o® are given by (27)
orthonormality constraint (19) is thus automatically satisfiedo that||©||» = O(¢), and the error term in (30) goes to zero
These steps are carried out below. ase? in the limit e — 0. Thus, for small values of, which is
Steps i) and ii) lead to the situation of interest in this work, it is reasonable to neglect
this term. Note that this has no effect on the orthogonality
T _ T _
Aly +06r, +1,67 = C(‘f“ u F”') (25) of the matrix V. Furthermore, in light of the linearization
which is linear inAT",, and®. To implement step iii), we must approach used in the previous section, this does not represent

consider independently the diagonal and off-diagonal entri@8 additional_approximatioﬁ. o _
in (25). Doing so, we arrive At Now, consider the matrixexp(¥;;), which is the basic

building block in (30). Using the definition (24) once more,
si=e(&—-v), i=1,...,K (26) we can verify that (see Appendix A for details)

eij = 651‘5]’/(%’ -v), 1<i<j<K. (27) eXP(\I/ij) — Gij(eij) (31)
The remaining entries o are obtained from its skew- where Gi;(6) € REXX is the well-known plane (or Givens)

symmetry property (i.edi; = 0 and;; = —6;; for < > j5). oo matrix defined as [22
Note that in the normalized EVD update problem (18), the ! X : [22]

eigenvaluesv;, ¢« = 1,...,K are distinct so that division I 4 _
by v, — v in (27) is legitimate. For the final step iv), we cos() sin(8)
first substitute (26) into (21) and (22), yielding the updated@;;(8) = : Iy (32)
eigenvalue matrix _sin(6) T cos(6)
I, = (1 — T, + cdiag(é2, ..., £%). (28) Ir—j

. . . . with all the unspecified entries equal to zero. Insight into the
Thgnuzdztset_(: ?!gre]n(;/fec;(;r r_r:]atfggs obtained in the same Waysignification of the parametets; in (27) can be gained from
up UDSHtIt (27) in (23). this result. Indeed, when considered individually, eéghcan

ok ot e e ponents bncton (23 neeBe et s a smll taton anle (n racans) i the
PICILY. ' PP j-coordinate plane.

. . 1
decompositions of (23) as a product of plane rotations ar/eSubstituting (31) in (30) and neglecting the second-degree
ﬁrror term, a first decomposition &f is obtained, namely

derived in the following subsections. When combined with
(20), each decomposition leads to a new, computationally
efficient algorithm for EVD updating (namely, PROTEUS 1 Vi = HGU(QU) (33)

or 2) in which a specific sequence of plane rotations is used i

to update the eigenvectors, thereby preserving orthonormality. i . )
with ¢;; given by (27). This result simply states that for

B. PROTEUS-1 small, the matrixV’ (23_) can be_ expr(_assed as the _product of
K(K —1)/2 plane rotation matrices with small rotation angles

The only assumption involved in the following derivatiory, . Fyrthermore, to the first degree of approximationein
of PROTEUS-1 is that < 1. As pointed out in Section Ill- the order in which these rotations appear is immaterial. This
A, this implies that||©[|> < 1, which in turn is exploited t0 s analogous to the well-known fact that small rotations in

obtain the desired decomposition Bf(23) into a product of three-dimensional (3-D) Euclidean space almost commute.
plane rotations.
3Note that in Section Ill-A, the parametrizatidi = I~ exp(W;;)
2As pointed out by a reviewer, similar equations also occur in the areamight have been used directly instead of (23). However, in light of the
continuous-time matrix differential equations. See [15] for additional detailerivation of PROTEUS-2 in Section IlI-C, we have found it preferable to
and references. use (23).
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TABLE || with an O(L K) operation count. Its derivation is based on the
PROTEUS-1 AGO{%;THM/ (TotAL COMPLEXITY: following assumptionse < 1, as in the case of PROTEUS-1,
6LK? 4+ 1.5K% + 2.5K RFLOP') : : =
_ andy; > v2 > --- > . The latter is equivalent to requiring
Step | Operation | Flop count (rflop) that the eigenvalues are well separated. However, we point out
1 &£ Veg K immediately that the use of PROTEUS-2 is not restricted to

2 |fori=1:K-1 K(K—-1)/2 x
fory=¢1+1: K
9((&{]'/(7]771) 3

this situation. Further related observations are provided at the
end of the section.
Recall that after preprocessing (Table H; > ~» >

end -+ > vg. If we further assume that the eigenvalues are well
end separated, i.eq; > v for k£ < [, then the rotation angle;
3 [T« (1— )T +diag(e?) | 3K (27) can be approximated as

Oij = —c€i&i/vi, 12i<j<K. (36)
Based on the decomposition (33), a complete EVD updating
algorithm is now obtained. For the eigenvector update, sulf- order to preserve the skew symmetry ©f we still let
stitute V4 (33) in the place ofV’ in (20), which can then be 0:; = —8;; for j > i.

expressed as Next, we introduce a particular block representation for
) the matrix ©, with entries #;; now given by (36). Let
U =U[]Gi6:)) (34)  Ox(&y, ..., &), where the dependence on thés is indicated
J>i explicitly, denote the principal submatrix & corresponding

where G;;(6;;) now represents a plane rotation matrix ifo its first & rows and firstt columns. Then, we have
REXL obtained from (32) by usingy—; instead of Ix_; 0= 0t £0)
as the lower right block diagonal element. According to =~ 2 \&troe-7oK

(34), the updated eigenvector matrix’ is obtained from Or—2(&1,- - aT£K—2) —elg_19 —er @
postmultiplication ofl by a sequence of plane rotations with = CSK—MT) 0 Ok 1,5 (37)
anglesé;; given by (27). For the eigenvalue update, simply £x ¢ —O0K-1,K 0
substitute (28) into (20). Observing that the laAst K entries where
of £ (16) are zero, it follows that

I' = (1- ol +cdiagél, . .., &3). (35) b= (1, px-2)", bi =&/ (38)

The complete algorithm is presented in Table Il under th#fe can see from (37) that as a direct consequence of our
name PROTEUS-1. assumption of well-separated eigenvalues, the #{o- 2

The initial values of¢, I", and/ used in this algorithm are dimensional column vectors occupying the upper-right corner
those obtained after preprocessing (Section 1I-B). In Stepof @ are now linearly related. Below, this additional structural
(Table 1), the parameter is incorporated in the data vectorproperty is exploited to derive a decompositionegH(©) as
in order to reduce the overall number of computations. Stepproduct of only2K — 3 plane rotations.
2 is a double loop over the rom§ = 1,...,K) and the  Let
columns(j > ¢) of the matrix© that implements the sequence
of K(K —1)/2 plane rotations composing (34). As indicated ax -1 = —arctaféx /{x-1) (39)
earlier, the order in which the rotations are performed might be
modified to better suit a specific processing architecture. Sl%'ﬁ
3 performs the eigenvalue update via a finite computation, that

) . . L A 1 = Gg_1 g(ag_1). 40
is, no iterative search is involved. K-l K-t (K1) (40)
In the case of complex data, each plane rotation requirﬁaﬁe plane rotation matrixi;_; so defined can be used to
12L real floating-point operations (rflops), plus some overheggd,q the |ast entry of the data vectd; = [& x]T
[ = e .

to compute the trigonometric functions. The total complexity e specifically, premultiplication o, by AL, performs a

; i i 2 £ 52 5 _ ) ) KL .
Of‘; the4a|gor|thm in Table Il is thu$LK™ + 1.5K" +2.5K  ¢jockwise rotation by-ag_; rad in the(K —1, K ) coordinate
rflops:

plane so that

C. PROTEUS-2 AL €u =1, Er 2,81, 0" (41)
The O(LK?) operation count of the PROTEUS-1 algorithm
may be prohibitive for certain real-time subspace trackin‘ﬁ

applications in which large values éf and/or K" are used. In ¢ . /—52 e (42)
this section, we present an alternative algorithm PROTEUS-2 K-1 7 Y 5K-1 T 5K:

4|n the literature, _complexity is sometimes measured in terms of complqahus, premultiplication of® (37) by A}Z’—l followed by
multiply—add operations (cops). In this paper, we prefer to use the rflops; to

obtain the approximate complexity in cops, simply divide the rflops couHOSthItiplicaﬁon byAKfl will Zerq the ﬁrStK_.2 entries in
by 8. the last row and last column & without affecting the other

here
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entries of the matrix. Equivalently, sincky _; is orthogonal,
ie, AL | = A, we have

TABLE I
PROTEUS-2 AGORITHM (ToTAL COMPLEXITY:
24LK + (2v — 14)K — 2(2v + 7) RFLOPY)

61(72(517 e, &(72) _653(_1(){) 0 Step [ Operation Flop count (rflop)
©=Ak_1 GSIK_I(Z)T 0 91(_171( 1 £ ek K
0 —9](,17]( 0 2 f;{ — &k
T fori=K-1:-1:2 (K —2) x
X Ak -1 (43) a; + —arctan(&;, /&) v+1
Usi i ; 0« *ngiﬂ/% 2
ing a well-known property of the matrix exponential func- , S )
tion, namely,exp(ABA™!) = Aexp(B)A™!, it follows that GV v 3
U—UG;; (()éyj + 0) 12L + 1
exp(@) end
—a 0« —&i&h/y 2
= Ag—-1€Xp U« UG ,(6) 121
Ox_o(&1,....Ex—_2) —65/,(_1(,1) 0 fori =2: KP_fI (K —2) x
x 1" 0 Or—1,x U« UGH (o) 12L
0 —9[(_171( 0 end
P — . ) B
» A};,l 3 ' (1 —e)l +diag(és) | 3K
=Ag_jexp
Op_1(€1,... Ex_2, & 0 where
> <\I/K1,K + |: K 1(51 05[& 2 S[g—l) 0:|>A£’1
A =G (), Bi=Gi0(8), C=G12001). (49)

(44)
The rotation anglesy;, 3;, andé; in (49) are given by
with ¥y _; x as defined at the beginning of Section IlI-B. o) = —arctanél, , /&),

Now, observing that the two matrices in the argument of the

exponential function in the last line of (44) af¥¢), we have 0i = —c&i&ir/vis (50)
Bi=c; +0;
exp(©) = Ax_1exp(¥k_1,x) - _ _
« exp Or_1(f1s . Exa, & ) 0 AT where ¢! is defined recurswelyb as
0 0 , 57‘,, 1= K 51
L o(). (45) 5%“{\/5%5';11, i=x-1,..1 ©Y

From our development in Section 1l-B, we recall thaf\ccording to (48), the matrix” (23) can be approximated by
exp(Wr_1 k) = Gr—1.x(0x_1.r). Furthermore, we note & product of2K" — 3 plane rotation matrices. In contrast to

that for any coordinate paifi, j) and for any rotation angle the decompositiori’; in (33), the order in which the plane

a and 3, Gi;(a)Gy;(B) = Gij(a + B). Thus, (45) can be rotations appear in (48) is now important because the rotation

expressed in the form
exp(©) = Br_1
y exp<|:@K1(§la o -651(72753(_1) 8})
x Al 1+ O(e%) (46)
where

B 1=Ag 1exp(¥x_1 k)

(47)
= Gl\’—l,k’(ak’—l + 91(—1,1()-

Equation (46) indicates that up to an error term of oi@és?),

anglesw; andg; are not small in general. The above procedure
is summarized in the form of the PROTEUS-2 algorithm in
Table 1115 In the complex data case, the total operation count
of this algorithm is24LK + (2v — 14)K — (4v + 14) rflops,
wherer is used here as a common flop count for the operations
/ and arctaf).

Some comments are in order about the practical validity
of PROTEUS-2. The latter is based on a sequence of ap-
proximations between the last two rows and columns of the
matrices © (&1, . ... &k—1.&},), starting withk = K down
to £ = 3. As seen, a particular situation where this can
be justified theoretically is wher; > ~v > - > ~g.
Such a spacing of eigenvalues is sometimes encountered in

the matrixexp(©) can be factorized as a product of two plangrequency and DOA estimation when the dimension of the

rotations and an orthogonal matrix with orlif —1)(K —2)/2
nonzero rotation parameters.

signal subspace is small and the SNR is high. Other eigenvalue
configurations may also exist for which such a theoretical

Clearly (i.e., invoking mathematical induction), this procejystification of PROTEUS-2 is possible. More generally, we
dure can be repeated unfif = exp(©) has been entirely have found through various experiments that the latter is robust
factorized as a product of plane rotations, plus an error tegAd can be used essentially without regard for the eigenvalue

in O(¢?). Dropping this term, we finally obtain our second

approximate decomposition &f (23), namely

Vo= Bg_1---ByCAY ... A% | (48)

5This version of PROTEUS-2 differs slightly from the one originally
presented in [8], where the variallevas computed as,-fgﬂ/(viﬂ —7i)-
We have found that the new way of computifign Table IIl is more robust
to rapid changes in the statistics of the observed data.
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TABLE IV
PROTEUS-BSED ALGORITHM FOR TRACKING COMPLETE EVD
Step l Opcration Flop count (rflop)
1 | U« U(0)
'« I(0)
2 for k=1,2,..
(a) x « x(k)
(b) Preprocessing (Table 1) 14L% + (v + 5)L
(¢) Normalized EVD update with any one of | 6L% + 1.5L% + 2.5L or
PROTEUS algorithms from Table 2 or 3 2412 + (2v — 14)L — (4v + 14)
(d) Postprocessing (optional, see text)
end

configuration at the expense of possibly minor deteriorationsgniori knowledge, numerical considerations, or on statistical
tracking performance. Additional theoretical and experimenthaypothesis testing.
support for this claim are provided in Sections IV and V. In the case of distinct eigenvalues, the operation count of
the preprocessing step (Table 1)I4L? + (v + 5)L flops. The
total operation count of the subspace tracker in Table IV is
IV. APPLICATIONS TO SUBSPACE TRACKING obtained by adding this figure to the operation count of the

) ] ] o selected PROTEUS algorithm.
In this section, we discuss the application of the PROTEUS
algorithms Fo subspg_ce tracking. Related issues of CONVergepce, 1., Subspace Tracking
and numerical stability are also addressed briefly.
The eigenvalues of the data covariance mattpX) in (1)

) are often known to satisfy
A. Complete Subspace Tracking

In this particular form of the subspace tracking problem, Ac(k) > - > A (R) > Anggr (k) = - = Ark) - (52)
we are interested in tracking the complete EVD of the data _ . . N
covariance matrixk(k) (4), i.e., updating the full matrix with L, — M > 1. This oceurs, for instance, whea(k) =

estimated’(k) and/(k) in (6) and (7). This can be achieveds(k.) + n(k), V\(here s(k) is a signal component Whpse co

) C variance matrix has rank/ < L — 1, and n(k) is an
easily by repeated application of PROTEUS 1 or 2 at each time . ) .
) 4 . : unicorrelated background noise component with covariance
iteration. The procedure, which must also take into accour%tatrix)\ (k)I1. In this case, the column span of the matrix
preprocessing as discussed in Section I1-B, is detailed in Table = M+1\*/ L : P

IV, whose description follows. Q. (k) = [qu(k), ..., qu(k)] (53)
In the absence dd priori knowledge, the algorithm can be
initialized by usingl/(0) = I;, andI'(0) = diag(A1,...,Ar) and its orthogonal complement are, respectively, called the

in Step 1, with meaningful choices of eigenvaluks(e.g., signal and the noise subspace. In these types of applications,
distinct, positive eigenvalues covering the power range wafe are often interested in tracking only the signal-subspace
interest). Other initialization procedures are possible, such eigenvectorsy;(k), ¢ = 1,..., M and the eigenvalues;(k),
using the EVD of an initial low-rank estimate of the covarianceé= 1, ..., M + 1. Clearly, this information can be obtained
matrix R(k). Step 2, i.e., the loop over the time indéx as a by product of the subspace tracking algorithm presented
defines the sequential portion of the algorithm. It consists of Table V. However, it is possible to develop a more efficient

four groups of operations: version of this algorithm that does not maintain and update
a) data acquisition; the noise subspace eigenvectors, thus requiring less memory
b) preprocessing as defined in Table I; and computations.
c) normalized EVD update with PROTEUS 1 or 2, as T0 this end, suppose that the following information is
described in Tables Il and IlI, respectively; available at timek — 1: v; > --- > 9y >y +1=--- =
d) postprocessing. v.° and U, = [uy,...,uy]. Accordingly, U = [U,,U,],

Postprocessing is optional and contains additional operatigg€reU» contains the unknown noise-subspace eigenvectors.
that may be needed in specific applications. For example B9inning with preprocessing and referring to TaTbIeTI, we
may be necessary to permute the EVD components so that B thaté |rl1{Step 1 can bg partitionned &8 = [£7,£7],
eigenvalues appear in nonincreasing order after the upddteh & = U,'x and§,, = U/;'x, whereg, can be computed

In other situations involving closely spaced eigenvalues, §XPiCitly. The transformations in Step 2 can then be applied
may be advantageous to force these eigenvalues to be edfiafs a@nd Us. Important specializations occur in Step 3.
by replacing them with their average. This will result iindeed, we note that there are only = M + 1 distinct

computational savings and may improve the accuracy of tRigenvalues. The problem can thus be deflated by using the

estimated EVD. The dec!S|on gs to whether certain e'g(:"nvalueg;To simplify the discussion, we assume that the signal subspace eigenvalues
should be considered identical can either be basedaonare distinct, but this is not necessary.
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TABLE V
PROTEUS-BSED ALGORITHM FOR TRACKING RANK -A SIGNAL SuBSPACE AND NOISE EIGENVALUE
Step | Operation | Flop count (rflop)
1 K+« M+1
Us « Ug(0), LxM
r«~T00), KxK
2 |fork=1,2,..
(a) x + x(k)
(b1) £, « Ullx SLM
(b2) D « diag(&/|&]i=1,..., M) | (v +5M
¢, « De,
Us <+ UsD 6LM
(b3) Xy ¢ X — UsE, 4LM
Ex HXHHQ 4L + (l/ - l)
Ug < X, /Ex 2L
U« U@a Uy
R
(c) Normalized EVD update 6LK?+ 1.5K? + 25K or
with PROTEUS-1 or 2 24LK + (2v — 14)K — (4v + 14)
(d) i yx — =R
(e) Reordering
end
block Householder matrix where hereéy 11 = ||€,]]2 [see (55)]. This technique, which
) . admits a least-square interpretation, often results in slightly
H =diagly, H) (54) improved robustness to background noise.

The complete algorithm is presented in Table V. We note
that the size of the matriX/ in this table is nowL x K,
HT¢, = 1€ |2€1 (55) instead ofl. x I, as was assumed previously. Thus, when using
PROTEUS-1 or 2 to implement Step 2(c), the size of the plane
ande; denotes the left-most column @f_,;. From (54), it rotations matrice?;;(-) in Tables Il or IlI, respectively, must
follows that be adjusted accordingly, i.ék x K. The total operation count
- of the algorithm in Table V id8LM +6L+(v+5)M +(v+2)
UH = [U,,UnH]. (56) rflops plus that of the selected PROTEUS algorithm. In

Finally, Step 4 is not necessary here since the eigenvalues Rgficular, when PROTEUS-2 is used, a tracking algorithm
already in the desired order. with total complexityO(LM ) is obtained.

Next, we note that to update the signal subspace eigen!n certain applications}/ is unknown or may change over
vectors with PROTEUS-1 or 2, only the firdf = M + 1 time. In this case, the algorithm can easily be complemented
columns of UH (56) are needed (see Tables Il or IlI). Sincdvith a postprocessing function that performs incremental rank

U, is already known, it is thus only necessary to compute i§stimation based on the available EVD information and then
I(Sth column. which i’s given byix = U, He,. From (55), it makes the necessary adjustments to the algorithm parameters.

follows immediately that One such technique presented in [50] can be applied without
modification to the algorithm of Table V (simply sett) =
ui =U,He, = U807 1€n]2- (57) M), but alternative solutions do exist. Finally, note that
other partial problems of interest have been considered in the
To computeuy (57), letx, = x — U,£, be the orthogonal jiterature, such as spherical [13] and four-level [14] subspace
projection of the data vectos on the noise subspace, and notgacking. Clearly, efficient subspace tracking algorithms based

whereH = H” = H~! (size L — M) is such that

that U&= x,, and ||€x |2 = [[xx]|2- on PROTEUS-1 and 2 could be derived as well for these
Following an EVD update with PROTEUS-1 or 2, Wespecific situations.
generally find thatyary1 > Yp42 = -+ = 7. Some

postprocessing is therefore needed to maintain a strict eq”a@YConvergence

constraint on these eigenvalue estimates, in agreement with ] )
(52). To this end, we use the noise eigenvalue smoothingcompmer simulations have shown that the new subspace
technique of [23], which amounts to trackers in Tables IV and V converge to and track the

desired EVD components under a wide range of operating
ML — VMl — L - K£2 (58) conditions (see Section V). Some theoretical justifications for
* L MMt this behavior are briefly reported below.
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To begin, consider the complete trackers of Table IV, witbffects renders the algorithm impractical. In the new subspace
distinct eigenvalues. Coarse convergence to the vicinity of thackers proposed here, the eigenvalue update is numerically
true EVD can be linked to the ability of the recursive estimatgable due to the presence of the facfior- ¢ in Step 3
R(k) (10) to converge to the true covariance matfig) (1). of the PROTEUS algorithms (see Tables Il and Ill). For
Indeed, letE(k) denote the approximation error that resultd < ¢ < 1, this factor limits the buildup of numerical errors
in (8) at time & from dropping second-order terms in then the eigenvalue computation.

PROTEUS algorithms, and assume th@(k)|l>» < 2§ for The only other possible source of error buildup is the
some upper bound > 0 independent ot. It can be verified eigenvector update via sequences of plane rotations in Step
easily that the difference\; (k) = U(k)I'(k)U(k)” — R(k) 2 of Tables Il and Ill. It is well known that numerical
is bounded by errors generated through repeated application of orthogonal
X matrices may keep on accumulating beyond limit. In certain
[A1(®)llz < (1 = )" [ALO)]]2 + 6. (59) subspace trackers that have been proposed recently, partial

This shows thatA, (k) can be made arbitrarily small fok orthogonalization_ mechanisms [12],. [30], [31] are indeed
large by choosing > 0 accordingly. Thus, ifl?.(k) is a good necessary to avoid such an error buildup. However, we have

tracker of R(k) for ¢ small, so must/(k)L'(k)U(k)H be after found experimentally that the new_s_ubspace_ trackers based on
some time. PROTEUS-1 and 2 are not sensitive to this problem. In all

Under the assumption of stationarity, i.@i(k) = R = the simulations that we have done, some involving as many as

QAQM in (4), local convergence to the true EVD can béOG iterations, error buildup never occurred (see Section VII).
investigated via a mean-value analysis of the error matric-ggus’ partial orthogonalization appears to be unnecessary with

As(k) and Ag(k), which is defined ds these new algorithm_%.l_n effect, they have th_e c_apability of
correcting small deviations from orthonormality in the eigen-
Ag(k)=T(k)— A (60) vector estimates, as we have been able to verify theoretically
exp(As(k)) = QU (). (61) by studying their internal dynamics with the ODE method.
Assuming small errors, i.e|Ax(k)||2 < v and||Az(k)||2 < V. COMPUTER EXPERIMENTS

1, and proceeding as in the analysis of stochastic gradientn this section, the performance of the PROTEUS-based
algorithms, it can be shown that when PROTEUS-1 is usedbspace trackers is investigated via computer experiments.
in Table IV The data vectok(k) is modeled as

. M
ElA;(B)] = (1 -eE[Ai(k-1)], i=2,3. (62) (k) = 3 VW g (k) o, k), p=1,...,L

Hence, for0 < ¢ < 1, convergence in the mean is geometrical. v=1
When Proteus-2 is used, (62) still holds foe= 2 but must (65)
be modified as where
k) wpth entry of x(k);
Blbss (W]~ (1 — ) Elsg(b—1)] (63 i) #ih ety ofx(h)

w, (k) normalized angular frequencies (possibly time-
€ = <1 _ ﬁ)e <e i<y (64) varying) of the_z/th expon_ential signal component;
Ai s,(k) complex amplitude of this component;

for ¢ = 3. Note that although specific assumptions on the n.(k) additive noise term.

eigenvalues were made in the derivation of PROTEUS-2, th8e temporal sequences (k) (v = 1,..., M) and n,(k)

resulting subspace tracker converges geometrically, regardlgss= 1. - - -, L) are mutually independent, strictly white noise

of the particular eigenvalue configuration; only the individudlrocesses, each time sample having a complex, zero-mean

rates of convergence of the matrix entrigs; are affected. ~ circular Gaussian probability density function. The common
A more general convergence analysis of the PROTEU®ariance of then, (k) is set to 1, whereas the variances of

based signal subspace trackers in Table V using the ORjte s.(k) are specified by the signal-to-noise ratio (SNR)

method [2] shows that these algorithms are locally asymparameters, SNR » = 1,..., M, respectively. The above

totically stable [9] and, under weak additional assumptionglodel is fairly general and can be used for both spatial and
globally stable. temporal spectral analysis applications.

In the experiments, data generated according to this model

D. Numerical Stability are processed with two different versions of the generic signal-

- L ) ) subspace tracker presented in Table V, respectively, based

In a f|n|te-preC|s!on |mplementat|9n of any recursive sutb-n (and simply referred to as) PROTEUS-1 and 2. The data
space tracker, buildups of numerical errors may occur ifts 450 process with Karasalo's [23] and the NASVD [25]

the algorithm is operated over long periods of time withouyqithms for comparison. The former, which is referred to
reinitialization. Such buildups always represent a potential

treat since they may lead to numerical instability, which in 8As pointed out by a reviewer, parametrizations of orthogonal matrices
apparented to (33) have been used in [37] and [54] to counteract error

A matrix As(k) = [65,;(k)] satisfying (61) can always be found accumulations by updating only the associated rotation parameters. In these
by forcing det(U(k)) = 1; furthermore,A3(k) is skew-Hermitian, i.e., works, however, the eigenvectors are not directly available and must be
3,05 (k) = =63 ;,(k) [42]. computed off line [inO(LA?) operations].
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Fig. 1. Initial convergence of KaSVD, PROTEUS-1 and 2, and NASVIFig. 2. Initial convergence of the trackers for various SNR anBubspace
algorithms. Subspace error (top), eigenvalue error (middle), and frequergyor versus discrete-timefor SNR= 15 dB, ¢ = 0.05 (top), SNR= 5 dB,
f;:ﬁ}t(ijn:aﬂorgJ g;rg)r (bottom) versus discrete-time indefor SNR = 15 dB, ¢ = 0.025 (middle) and SNR= 0 dB, ¢ = 0.0125 (bottom).

v = 1,...,4. In the first series of results, the algorithms
as KaSVD for convenience, is a(LM?) approach but uses are initialized with the EVD of a low-rank sample covariance
an exact (iterative) SVD algorithm of complexity(A/3) for matrix obtained by averaging the outer products of the first
the deflated problem and is thus of limited practical value fd¥/ data vectors. Fig. 1 shows the subspace, eigenvalue, and
large M. Nevertheless, it provides a useful benchmark since ftequency estimation errors (all averaged over 40 independent
performance is almost identical to an exact EVD of the sampiens) for SNR= 15 dB ande = 0.025. The convergence rates
covariance matrix (10). NASVD is also of interest sinceand residual errors of the PROTEUS algorithms are almost
similarly to PROTEUS-2, it is designed to track the completelentical to that of KaSVD. Note that in the case of PROTEUS-
signal-subspace EVD (i.e., eigenvalues and eigenvectors)Zinthis is so even though the firgt true eigenvalues are
O(LM) operations per iteration. In our implementation ofiot particularly well separated (true eigenvalues: 648, 471,
NASVD, we use a single diagonal sweep made ugof- 2 113, 37.9, 1.0). Regarding NASVD, its initial convergence
outer and one inner rotations, as suggested in [25], so that bate is significantly lower than the other algorithms, which is
NASVD and PROTEUS-2 use a total 8f{ + O(1) Givens consistent with the results reported in [34] and [35]. Although
rotations? In all the algorithms, the correct number of sourcei$ is possible to improve the convergence of NASVD by
M is assumed. making multiple sweeps, this generally results in a significant

The following performance measures are computed: increase in its computational complexity [in some of our ex-
i) the subspace errof P[U,(k)] — P[Qs(k)]||2, Where perimentsO(M) sweeps were needed to obtain a performance
U,(k) andQ,(k) are theL x M matrices of estimated comparable to KaSVD, thus making NASVD an(LM?)
and true signal-subspace eigenvectors, respectivejgorithmy.
and P[] denotes the projector on the column span of Fig. 2 demonstrates the effects of using different SNRand
(only the subspace error is shown). The top curve was obtained
with SNR= 15 dB ande = 0.05, which corresponds to a very
X (B)|/ Zfs:l Ai(k); short exponential window of effective length 20 samples. Due
iii) the orthonormality errot|U, (k) U, (k) — In|| p/ VM, to se_cond-(_)rder effects, the convergence of the PROTEUS
where|| -||» denotes the Frobenius norm; algorithms is now slowed down slightly as co[npared with
iv) the frequency estimation error. SM au(k) — KaSVD. rThe m|dQIe curve c.orresponds to SNR5 dB and
w,(k)|, where &, (k) denotes the root-MUSIC [1] ¢ = 0.025 (true eigenvalues: 65.7, 48.0, 12.2, 4.7, 1.0), and
estimate ofw, (k). finally, the bottom_curve corresponds to SNR O dB and
- . . ¢ = 0.0125 (true eigenvalues: 21.5, 15.9, 4.5, 2.2, 1.0). At
Results for initial convergence, numerical stability, and trac‘ﬁwer SNR, it is necessary to use a longer exponential window

its matrix argument; ’
i) the eigenvalue error Y F (k) —

ing behavior are presented below. to average out the effects of the noise; thus, we have the
N smaller value ofc used in the last case.
A. Initial Convergence To investigate convergence in the absence aopriori

We consider a stationary scenario with= 10, M = 4, knowledge, another series of experiments was conducted with
w, (k) = 0.0,0.25,1.0, and 1.25, and SNR = SNR, for the same simulation parameters but this time using random

9 . initial conditions obtained by computing the EVD of the
We have generally found that PROTEUS-2 requires less overhead and | . ix of led .
memory space than NASVD due to the need to maintain and update an up?r@mp e covariance matrix o (Sca € ) n0|se-only vectors. Typ-

triangular matrix in the latter. ical results for the subspace error are shown in Fig. 3 for
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SNR = 10 dB ande = 0.025 (top) and for SNR= 0 dB

Investigating numerical stability of the various trackers. Orthogon

TABLE VI

SAMPLE MEAN AND STANDARD DEVIATION OF ORTHONORMALITY ERROR
FOR KASVD, PROTEUS-1, PROTEUS 2np NASVD TRACKERS

Algorithm “

Mean

[ Standard. dev.

KaSVD
PROTEUS-1
PROTEUS-2

NASVD

573 x 10710
871 x 10716
8.40 x 10716
1.01 x 10714

1.71 x 10716
2.60 x 10716
2.62 x 10716
3.50 x 1011
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run). The doted horizontal line in each subplot represents
the relative accuracy of numbers on our computer system,
i.e. 27°2, The sample mean and standard deviation of the
orthonormality error curves in Fig. 5 appear in Table VI.
The PROTEUS-based trackers show no apparent buildup of
numerical errors with time and maintain a similar level of
orthogonality as the exact KaSVD approach, which uses the
atlabsvd() routine [29]. The other performance measures
(which are not shown) are also stable and remain at the levels
attained after initial convergence. Numerous experiments of
this type generally suggest that in the computer environment
used here (Matlab, 32-bit UNIX workstation), no additional
reorthonormalization mechanism is necessary to ensure the nu-
merical stability of the new algorithms. NASVD also appears
to be numerically stable, although its error level is higher by
an order of magnitude due to some initial buildup.

C. Tracking Capability

To illustrate the tracking capability of the PROTEUS al-
gorithms, we first consider the following scenarib:= 10,
M = 4, andw, (k) time varying according to some simple
trigonometric functions. In Fig. 6, we show the true angular
frequencies.,. (k) and their root-MUSIC estimates (single run)
obtained from the KaSVD, PROTEUS, and NASVD trackers
for e = 0.025 and SNR= 15 dB. The tracking performance of
the PROTEUS algorithms is seen to be comparable with that
of KaSVD; NASVD is not as good. The subplot in the lower

Jilght corner of Fig. 6 compares the signal subspace errors of

PROTEUS-2 and NASVD.
To evaluate the tracking ability of the PROTEUS algorithms
under severe conditions, we consider a subspace rotation test

and ¢ = 0.0125 (bottom). Generally, we have found thasimilar to that proposed in [11], in which the true signal
whenever some form of convergence is possible with KaSvBybspace undergoes a sudden large change corresponding to a
the PROTEUS algorithms also converge to the same er¥ rotation. In our implementation of this test, we use- 10,

levels but possibly with an extra delay that depends on tAé = 4, andw, (k) = sgn(k)(2=v/L) for v =1,..., 4, where

specific simulation scneario.

B. Numerical Stability

sgnk) = 1 for k£ > 0 and —1 for £ < 0. We also allow
sufficient time for the algorithms to converge prior to the
change at timek = 1. Fig. 6 shows the subspace errors of

. . . the various algorithms (10 run average) for SNR 5 dB and
To test the numerical stability of the various subspace
. = 0.05 (top) and SNR= 5 dB ande = 0.025 (bottom).

trackers, we used the same scenario as above but let the
algorithms run over very long periods of time. Note timat
additional reorthonormalization mechanisms were used with
the PROTEUS and NASVD algorithms in order to characterize A parametric perturbation approach was used to derive new
their intrinsic error buildup properties. In the case of KaSVLEVD updating schemes for the rank-one modification problem.
the situation is different since an exact, costly SVD routine {Salled PROTEUS-1 and 2, these schemes use sequences of
used that produces orthonormal eigenvectors at each iteratjglane rotations to update the eigenvectors so that the latter

Fig. 4 shows the orthonormality error of the various trackeremain orthonormal. New subspace trackers based on the PRO-

versus discrete-timk for SNR= 15 dB ande = 0.025 (single TEUS schemes were derived, and their properties investigated

VI. SUMMARY AND CONCLUSIONS
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Fig. 5. lllustrating tracking capability of various algorithms. True frequencies versus discreté-{toe left). Root-MUSIC frequency estimates vergufor

KaSVD subspace (top right). Same for PROTEUS-1 (middle left). Same for PROTEUS-2 (middle right). Same for NASVD (bottom left). Comparison
of subspace errors for PROTEUS-2 and NASVD (bottom right).

via simulations. One particular algorithm based on PROTEUS- ¢
2 can track all the signal subspace EVD components in onlgo_a_
O(LM) operations while achieving a performance compaﬁo_e»
rable with an exact EVD approach and maintaining perfecg
orthonormality in the eigenvectors. Some conclusive remark%o'4
follow. o2r

Although our formulation of the subspace tracking problem %,
centered around the EVD of the sample covariance matrix
in (10), we point out that the PROTEUS schemes and the ¢ .
associated trackers of Section IV can be derived using an .|
SVD formulation based on the data matrix [9]. Indeed, the
PROTEUS trackers are truly data matrix algorithms (i.e.go'
squaring operations occur only in the computations of thé"'4
rotation angles). R :

It is interesting to compare the conventional perturbation 9, o 0 00 10 0 20 300
approach used in [6] and the parametric one used here. The . ,

. . . . Fig. 6. Ability of the various trackers to recover from a sudden? 90
forg]?]t.g(;an'tbhe V|ewe? 3;;” u‘l’lCOI’IIStraInhed I'Zevar_'zat'on olfl( ' tion in the Ejrue signal sub?pac)e. Sdutf)space error &/ersus discreté-time
an with respec =V — Ix, where is a small for SNR = 15 dB, ¢ = 0.025 (top) and for SNR= 0 dB, ¢ = 0.0125
arbitrary matrix. The latter can be viewed as a constrain&ytom):
linearization of (18) and (19) within the lower dimensional
space of skew-symmetric matricés = logV, which is the O(LK) scheme can be derived from (34) by settifig
tangent space of the groufO(K’) at the group identity (i.e., to zero for|j — i| > I, wherel is some fixed small integer [8].
the Lie algebra). In addition to preserving orthonormalitydowever, for small values df this scheme does not perform
an important advantage of this approach is the existenceasf well as PROTEUS-2.
efficient realizations of (23) via plane rotations; this was not The structured sequences of plane rotations used in the
apparent in [6]. PROTEUS algorithms involve a large number of local matrix

Further simplification of PROTEUS-1 into an effectiveoperations that exhibit a high degree of modularity and con-
O(LK) scheme, as was done in Section IlI-C to deriveurrency. As such, they are potentially well suited for parallel
PROTEUS-2, is not a trivial task. For instance, anothémplementation on special-purpose circuitry (e.g., systolic

KaSvD
PROTEUS-1
-—-—-  PROTEUS-2
NASVD

L
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array implementation using CORDIC processors). Furth@rm]
significant reductions in processing time could be achiev?ﬂ]
in this way.

Without loss of generality, consider the cdse= 2, and let

APPENDIX A [15]

PROOF OF (31)
[16]

0 0 [17]
o [0 1] )
(18]
Observe that fom = 0,1,2,...
[19]
62 0
2n _ (_1\n
0 92n+1 20]
\Ij2n+1 = (_1)n |:_92n+1 0 :| M (67)
[21]
Therefore, we have [22]
1 1 [23]
exp(¥) :1+\p+5\p2+5\p3+...
[ 1=50+ - 50+ (24]
T - 56+ 1— 567+
| cos(8) sin(@)| [25]
o {— sin(f) cos(8) | Gra(6). (68)
[26]
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