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ABSTRACT

Recently, a coupled echo canceller was proposed that uses two short adaptive filters for
sparse echo cancellation. The first filter operates in the partial Haar domain and is used
to locate the channel’s dispersive region; the second filter is then centered around this
location to cancel the echo in the time domain. In this paper, we propose feasible
solutions to improve the performance of this partial Haar dual adaptive filter (PHDAF) in
practical applications. These include: (1) alleviating the dependence of the PHDAFs
performance on the echo-path impulse response’s bulk delay; (2) improving the
tracking performance of the PHDAF in response to abrupt changes in the echo path; and
(3) extending the original PHDAF structure to support the cancellation of multiple
echoes. The proposed algorithmic solutions exploit the Haar transform’s polyphase
representation and make use of a novel peak tendency estimator (PTE) based on
Dezert-Smarandache theory (DSmT). The improved PHDAF is evaluated in terms of its
mean-square error (MSE) curves and its mean time to properly locate a dispersive region
for different SNRs. Results show that enhanced performance can be obtained using the
proposed solutions at a minimal increase in computational cost.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Line, or network echo is commonplace in today’s
expanding communications infrastructure. Unlike other
types of echo (e.g. acoustic), line echo is sparse: the echo-
path impulse response consists of an initial zero or bulk
delay region, corresponding to the signal round-trip,
followed by a non-zero or dispersive region, corresponding
to the echo arrival. Line echo is usually caused by an
impedance mismatch, as occurring in the hybrid circuits
used for ‘2‘—wire conversion [1]. In voice communications,
when the bulk delay between callers exceeds 25 ms or so,
the reflected signal is perceived as a distinct echo that can
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severely impede a conversation. The coding and signal
processing functions of digital technologies may introduce
delays in excess of 100 ms; while for long distance calls
routed via satellites, the propagation delay may reach
several 100ms [2]. Recent advancements, such as Voice
over Internet Protocol (VoIP) telephony and xDSL tech-
nologies for broadband data transmission, highlight the
need to develop better echo cancellers for sparse line
echo.

In one of the earliest works on sparse echo cancellation
[3], the input and desired signals are bandpass-filtered,
decimated, and used by a short adaptive filter to estimate
the bulk delay. A second short filter operating at the
original sampling rate is centered around the dispersive
region to cancel the echo. This way, only two short
adaptive filters are required (compared to one long filter),
thus reducing overall system complexity. However, the
use of bandpass filtering in this approach has important
drawbacks. Firstly, in speech applications, it can remove
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important frequency components in the signals, prevent-
ing proper convergence of the subsampled adaptive filter.
Secondly, bandpass filtering in effect smears the peak of
the unknown echo-path impulse response, making it
more difficult to correctly locate the dispersive region.

Recent literature is rich in adaptive filtering algorithms
that exploit the sparse characteristics of line echo [4].
Most of these algorithms are based on finding ways
to determine which filter coefficients are associated
with the echo, and then adapting only these coefficients.
An adaptive multiple echo (ME) canceller is proposed in
[5], which uses a full-length primary adaptive filter in
parallel with a group of short secondary adaptive filters.
In [6], a two-stage adaptation process is proposed in
which the first stage estimates the bulk delay while the
second stage adapts filter coefficients using a constrained
tap-selection approach [7]. A well-known class of sparse
echo cancellers are based on the proportionate normal-
ized least mean squares (PNLMS) algorithm [8] and its
variants [9-11]. These algorithms allocate individual step-
size gains in proportion to the magnitude of each filter
coefficient.

Other recent attempts at improving sparse echo
cancellation rely on applying orthogonal wavelet trans-
forms to the input data. It is shown in [12] that the
number of adaptive coefficients needed to cancel the echo
can be reduced significantly by applying a Haar transform.
In [13], the authors propose using a subset of Haar
wavelets to detect the significant channel coefficients. By
exploiting the hierarchical structure of the dyadic wavelet
expansion, these significant coefficients are used to
activate wavelets in the remaining Haar subsets that
share the same non-zero time-support. The Haar trans-
form is particularly attractive for sparse echo identi-
fication: it facilitates the location of the dispersive
region through proper selection of its scale/transla-
tion parameters, and it is easily amenable to a digital
implementation.

Recently, Bershad and Bist [14] have proposed a
solution to the sparse echo cancellation problem that
combines favourable attributes of [3,13] in a coupled
configuration consisting of two short adaptive filters. In
this approach, referred to here as the partial Haar dual
adaptive filter (PHDAF), the first filter operates on a subset
of input Haar coefficients, and is used by a peak delay
estimator to locate the echo-path’s dispersive region. The
second filter is centered around this location to cancel the
echo in the time domain. In cases where the bulk delay is
large, the PHDAF provides a significant reduction in
computational and memory requirements. In addition,
by reducing the number of filter taps to an amount
necessary to model the dispersive region, the convergence
speed of the echo canceller is increased. An improved
theoretical model of the LMS algorithm in [14] for low
rank systems was recently developed in [15] to better
predict the behaviour of first and second moment
statistics of the partial Haar adaptive filter. In [16], a
partial block wavelet transform is proposed to increase
efficiency and improve peak detection of the system in
[14]. It is shown that the block transform reduces to using
Daubechies’ biorthogonal 2.2 spline wavelet, which is

claimed to have better properties for estimating a peak’s
location.

In this paper we identify, and propose feasible
solutions to three inherent limitations of the PHDAF for
sparse echo cancellation in [14]: (1) dependence of the
PHDAFs performance on the echo-path impulse response’s
bulk delay; (2) degraded tracking performance of the
PHDAF in response to abrupt changes in the echo-path
impulse response; and (3) limitation of the original
PHDAF to a single dispersive region. The proposed
algorithmic solutions exploit the polyphase representa-
tion of the Haar transform and make use of a novel peak
tendency estimator (PTE) based on Dezert-Smarandache
theory (DSmT) and fuzzy inference [17,18]. The improved
PHDAF is evaluated in terms of its mean-square error
(MSE) curves as well as its mean time to properly locate a
dispersive region under different SNRs. In experiments
using normalized least mean squares (NLMS) for the filter
coefficient adaptation, the proposed amendments to the
original PHDAF are shown to yield significant performance
gains at a minimal increase in computational cost.

This paper is organized as follows: The structure and
main equations of the PHDAF in [14] are reviewed in
Section 2, along with a discussion of its main limitations.
The solutions that we propose to overcome the latter are
developed in Section 3. A series of supporting computer
experiments is presented in Section 4. Finally, Section 5
concludes the work.

2. Background and problem formulation
2.1. The partial Haar dual adaptive filter

2.1.1. Partial Haar transform

Let N=2/, where J is a positive integer. The
N-dimensional discrete-time Haar wavelet transform can
be represented by an N x N orthogonal matrix H with
entries hp,(n), where the row index m identifies a basis
vector and the column index n represents discrete-time
[19]. The elements of the first row are equal to
ho(n) = 1/+/N, while the remaining rows are obtained by
scaling and shifting a discrete-time wavelet filter y(n)
defined as

+1, 0<n<N/2,
Yy(n) =< —1, N/2<n<N, (1)
0 otherwise.

Specifically, let m = 2/ + k, where j € {0,...,] — 1} is the

scale index and k € {0, .. .,2j — 1} is the translation index.
We have
hin(n) = oy(2'n — kN), (2)

where the normalization factor «; = \/2//N. The number
of rows with scale index j is equal to 2 and the
corresponding basis vectors have non-overlapping time-
support of length N /Zj . A partial Haar wavelet transform
consists of using only a subset of size ¢ = 2’ of Haar basis
vectors corresponding to scale index j, to transform a
given input data vector. The corresponding transform
matrix, denoted Hg, is thus a g x N submatrix of H,
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obtained by extracting its rows hy(n) for m = g+ k and
k=0,...,q— 1. As j increases, the time resolution of the
transform improves at the cost of increasing the dimen-
sion of the output vector, which translates into a longer
Haar-domain adaptive filter in the PHDAF (see below).
Unlike the complete Haar transform matrix, the partial
Haar matrix Hy (9 <N) is only row-wise orthonormal, i.e.
H.H] =1, #H H,.

2.1.2. PHDAF structure and operation

The structure of the PHDAF proposed in [14] is shown
in Fig. 1, where discrete-time signals u(n) and d(n),
respectively, denote the line input and the echo-contami-
nated reference used to drive the adaptive process.

The upper branch, consists of a partial Haar transform
matrix Hy of size g x N, followed by a length-q (<N) partial
Haar adaptive filter. The value of N is set to match the
maximum length of the unknown echo-path impulse
response. The selection of g = 2/ involves a trade-off between
the desired level of time resolution and complexity reduction.
At time n, a new sample u(n) is shifted into the input data
vector u(n) = [u(n),u(n — 1),...,u(N — 1)]" of length N and a
new transformed input vector of length q is calculated, i.e.

z(n) = Hgu(n). (3)

Vector z(n) is used as input into a so-called partial Haar
adaptive filter with coefficient vector at time n given by v(n).
In this work, the partial Haar adaptive filter v(n) is updated
by means of the NLMS algorithm, i.e.

v(n + 1) = v(n) + pllzn)| ey (mz(n), (4)

en(n) = d(n) — v(m)'z(n), (5)

where p denotes the step size and ey(n) is the error signal.
Under appropriate conditions, v(n) converges to a scaled-
down version of the true echo-path impulse response. The
peak delay estimator in Fig. 1 tracks the location of the
dispersive region by locating the peak coefficient magnitude
of v(n).

In the lower branch of the PHDAF, the estimated peak
location is used to offset a short time-domain adaptive
filter w(n) of length L so as to center it around the
dispersive region. The value of L is set to match the longest
expected dispersive region in the echo path. Once the
peak location of v(n) is properly estimated, the short time-
domain adaptive filter can converge to the dispersive
region and thus cancel the echo component of the
reference signal d(n). In this work, the NLMS algorithm
is also used to update w(n). In practice, the residual signal
after echo removal, i.e. e(n) = d(n) — w(n) u(n), is used for
data transmission over the network.

2.1.3. Properties of the PHDAF
To simplify the discussion, let us assume that

d(n) = wiu(n) + v(n), (6)

where wy represents the true echo-path impulse response
and v(n) is an additive measurement noise. Also assume
that the sequences u(n) and v(n) are stationary white,
uncorrelated, with variances ¢2 and o2, respectively. Then,
the optimum Wiener solution for the partial Haar filter
can be obtained as

Vo = Hywy, (7)

which is the partial Haar transform (i.e. a scaled-down
version) of the true time-domain echo-path impulse
response wy. Thus, when wy features a single, localized
dispersive region and the scale index j=log,q of the
partial Haar transform provides adequate temporal reso-
lution, the location of the dispersive region can be
recovered from the peak coefficient in vy. It is also worth
mentioning that wy cannot be recovered from vy unless it
lies in the row-space of H,. Under proper operating
conditions, the partial Haar adaptive filter will converge
to the Wiener solution in (7). The steady-state MSE then
takes the form J, = Jiin + -# where .# is the misadjust-
ment noise power of the adaptation algorithm and J;, is
the minimum MSE corresponding to the Wiener solution

- H,
input
—
u(n)
A
»| Bulk
Delay

Peak Delay
Estimator

Fig. 1. PHDAF structure.



P. Kechichian, B. Champagne / Signal Processing 89 (2009) 710-723 713

(7). The latter is given by

Jmin = 02 + G2(IWol13 — IVo[13). (8)

When g = N (complete Haar transform), we have |wy]|, =
|lvoll> and the second term on the right-hand side of (8) is
equal to zero. When g <N, this term is positive, reflecting
the rank-deficiency of the transform matrix Hg. This
increase in minimum MSE is acceptable if it does not
impact the ability of the partial Haar adaptive filter to
locate a dispersive region.

These considerations motivate the use of the con-
verged vector v(n) as input to the peak delay estimator for
the purpose of locating the dispersive region. It is shown
in [14] that the greater the steady-state peak magnitude of
v(n), the faster the short time-domain filter can be
centered, and therefore, the overall PHDAF can adapt
more quickly.

2.2. Limitations of the PHDAF

The simulation results in [14] show that the PHDAF
may provide a drastic increase of the echo canceller’s
convergence speed in general, while keeping computa-
tional complexity low. However, our own experiments
show that in certain cases, the PHDAF can require an
extremely large number of input samples to converge,
underlining inherent shortcomings of the original system.
Below, we take a closer look at these drawbacks.

2.2.1. Sensitivity to bulk delay

The lack of shift-invariance of the Haar wavelet
transform can greatly affect the time required by the
peak delay estimator to properly locate a dispersive
region. A wavelet transform whose basis vectors have a
time-support of length M = N/q is periodically shift-
invariant with a period equal to M. As a result, depending
on the bulk delay of the true echo-path impulse response,
there exist M distinct partial Haar transformed Wiener
solutions. Furthermore, the respective peak magnitudes of
each of these solutions can differ, and consequently, the
amount of time it takes the peak delay estimator to
correctly locate a dispersive region.

To illustrate this point, Fig. 2 shows the transformed
impulse responses of differently shifted versions of a
common echo-path impulse response. In this example, the
true echo-path vector of length N =1024 is set to
wy = [m1(n — 600 — I)]T, where my(n) is one of the ITU-T
G.168 hybrid impulse responses in [20] and shift index
le{1,5,6,7} (see Section 4 for additional details). For each
value of [, a transformed impulse response vector of size
q = 128 is computed by applying the partial Haar matrix
H; as in (7). One can clearly observe that the second case
(I =5) displays a diminished peak.

Due to measurement noise and the rank-deficiency
effect of the partial Haar transform on the minimum
MSE in (8), the peak delay estimator takes a longer time
to locate such small peaks. To support this claim, consider
the family of experimental cumulative distribution
function (CDF) curves in Fig. 3 corresponding to the
time! to correctly locate the dispersive region for these

0.1 =11
0.05 i
0 L L L 1 L L

0 20 40 60 80 100 120
01 [ T T T T T L
1=5
0.05 i
0 s L s Ly s s
0 20 40 60 80 100 120
1 F T T T T T L
0 1=26
0.05 g
0 L L L s L L
0 20 40 60 80 100 120
1 F T T T T T L
0 1=7
0.05 i
0 L L L Ly L L
0 20 40 60 80 100 120

samples

Fig. 2. Set of transformed impulse responses corresponding to m;(n —
600 — I) for shift index [ € {1,5,6,7}.
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0.1 f

0

100 10! 102 10 10
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Fig. 3. Probability (P.) of correctly estimating peak delays within a given
number of time iterations (each curve is labelled by its peak magnitude
in the Haar domain and the corresponding value of ).

four different bulk delays. It is apparent from this figure
that it takes the peak delay estimator a larger number of
input samples to correctly locate a smaller peak. The curve
corresponding to a peak magnitude of 0.0166 shows that
the peak delay estimator can barely locate the peak after
10* input samples.

! The peak delay estimator looks for the filter coefficient with the
maximum instantaneous absolute value, and returns its location A4(n). If
|A(n) — Aol <n for n. consecutive input samples starting with n = ny,
where 4, is the true peak delay, then n, is set as the time to correctly
estimate the peak location. Integer # is chosen to avoid small estimate
jitters around 4y. As pointed out by Ribas et al. [16], a similar solution to
the jitter problem was used in [14]. In Fig. 3, we set = 10, and n = 950.
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2.2.2. Degraded tracking performance

In [14], the merits of using the coupled PHDAF
configuration are demonstrated by calculating the echo
canceller’'s mean time to correctly locate a dispersive
region. It is shown on average that this time does not
exceed more than 200 samples at 8 kHz when employing
a partial Haar NLMS algorithm. These results, however,
only represent the case when the partial Haar adaptive
filter has been initialized to zero, i.e. v(0) =0, and the
echo path is stationary. The case where the echo-path
impulse response changes during the course of the echo
canceller’s steady-state operation is not considered. Our
experiments show that the performance of the PHDAF can
degrade significantly in the presence of sudden changes in
the true echo path. Indeed, unlike the case where v(0) = 0,
and a peak only has to compete with neighbouring
coefficient noise, after a sudden change in bulk delay,
the new peak also has to compete with the residual of an
older peak. In the case of the LMS adaptive algorithm for
example, this older peak will undergo a slow exponential
decay which may prevent the detection of the new peak
for a large number of time iterations.

2.2.3. ME cancellation requirements

The peak delay estimator analyzed in [14] assumes the
presence of a single dispersive region. This greatly
simplifies the estimation process because the adaptive
filter coefficient associated with a global maximum
directly indicates the location of this region. In a multiple
peak delay estimation scenario, the task does not only
involve finding local maxima from the partial Haar
adaptive filter, but also requires the classification of these
maxima as peaks. A major difficulty arises from the fact
that knowledge about the number of dispersive regions in
a channel may not be available a priori. Clearly, this
number must remain small if any advantages are to be
gained from the use of a tailored ME canceller structure.

Another difficulty relates to the shift-variant property
of the Haar wavelets. It was seen that, depending on the
bulk delay, the partial Haar Wiener solutions can display
peaks of varying magnitude, and this in turn determines
how fast a dispersive region is located. The same is true
for MEs, except now their corresponding peaks with
largest magnitude need not correspond to the same shift
within a period of M. Finally, an algorithm that cancels
MEs will require a dynamic mechanism to allocate
resources (e.g. short time-domain filters) to dispersive
regions that have been correctly located.

3. Improving the coupled echo canceller
3.1. Redundant partial Haar transform

From the above discussion, it appears that some of the
difficulties related to the rank-deficiency of the partial
Haar transform, especially the sensitivity of the peak
magnitude in the Wiener solution vg (7) to the bulk delay
in the true echo-path impulse response wy, could be
overcome by driving the partial Haar adaptive filter
towards a properly shifted version of wy. In effect, this

can be achieved by modifying the upper Haar-domain
adaptive filter in Fig. 1 in two different ways (without
directly affecting the operation of the lower time-domain
adaptive filter):

(1) Replacing the reference signal d(n) in (5) by d(n + ),
where [ is the desired integer shift.

(2) Replacing the transformed input vector z(n) by z(n — I)
in (4)-(5).

Under the modelling assumptions presented at the
beginning of Section 2.1.3, both approaches lead to the
same modified optimum Wiener solution, i.e.

vo = HyS;wy, (9)

where S; is an N x N shift matrix with (i, j)th entry equal to
1 for j =i+ 1 (i.e. Ith diagonal) and 0 otherwise.

While both approaches have the equivalent effect of
decreasing the effective bulk delay of wg by [ samples, in
this work, we favour the use of the second approach.
Indeed, as explained below, all M = N/q shifted input
vectors z(n — 1), where € {0,1,...,M —1}, can be ob-
tained naturally as the polyphase components of a so-
called redundant partial Haar transform (RPHT), which
trades arithmetic operations for memory. In addition,
shifting d(n) cannot help when dealing with MEs since a
ME path channel can be written as a sum of single-echo-
path channels, each with its own bulk delay, and whose
contribution to d(n) is unknown a priori.

A consequence of the wavelet transform’s lack of shift-
invariance is the requirement of calculating the partial
Haar transform of the length-N input data block u(n) in (3)
for every new input sample. The computational load for
this operation is on the order of N arithmetic operations
per iteration,? which is expensive. The length-N vector of
RPHT coefficients at time n, denoted s(n), is defined by

s(n) =[s(n),sm—1),...,s(n— N+ D", (10)
where
s(n) = h'u'(n), (11)

h = o; [Y(0), ¥(q), ... (@M — 1)]" is a vector of length M
containing the non-zero portion of any row of Hy, and
uw(n) =[um,um—1),...,un—M+1D]". Because this
RPHT has a simple translational relationship with the
input, it only requires the calculation of a single partial
Haar coefficient s(n) every iteration with a small cost on
the order of M arithmetic operations.

To extract the q coefficients corresponding to the
standard partial Haar transform z(n) = Hyu(n) from s(n),
we simply observe that

Z(n) = [s(n),s(n — M), ...,s(n — (q — HM)]". (12)

In effect, vector z(n) corresponds to the first (i.e. [ =0)
polyphase component of the complete vector s(n), while
the remaining polyphase components represent the

2 That is, N — q additions and q multiplications if the normalization
factors o; in (2) are included.
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Fig. 4. Block diagram: peak tendency estimator.

transformed input vectors time delayed by [ =1,...,M —
1 sample(s), i.e. z(n — 1) down to z(n — M + 1).

Unlike the recently proposed partial block wavelet
transform-based algorithm in [16] which calculates a
transformed input coefficient every M samples, the
proposed approach here can produce a new transformed
input sample s(n) every iteration. This makes it possible to
drive the partial Haar adaptive filter with a specific
polyphase component of s(n), which in turn results in its
convergence to one of M different steady-state solutions
(see Fig. 2, for example), each with its unique peak
magnitude.

In what follows, the term context will be used to denote
the polyphase component of s(n), corresponding to shift
index [ € {0,...,M — 1}, that is being used as input to the
partial Haar adaptive filter. Storing all N samples of s(n)
makes M contexts and their resulting steady-state solu-
tions readily available. At any given time, the partial Haar
adaptive filter can be driven to one> of these M solutions,
increasing the system’s flexibility by making it possible to
avoid suboptimal cases (such as illustrated by the right-
most curve in Fig. 3).

3.2. Peak tendency estimation

Without further a priori knowledge (e.g. a pre-deter-
mined threshold), the magnitude of a detected peak alone
is not a sufficient indicator of how well the bulk delay
estimation process is progressing for a given context.
A method is needed that includes a relative measure of
the peak quality with regard to the detection process, in
addition to a means for tracking this measure’s behaviour
over time. To categorize the performance of a context, i.e.
if it is suitable or not for quick and correct peak delay
estimation, a PTE is therefore presented below. This
estimator is based on the work of [21], where an original
approach for target behaviour tendency estimation
(i.e. receding or approaching) is developed using the
DSmT of plausible and paradoxical reasoning [18].

3 An obvious, but much more expensive solution is to use M partial
Haar adaptive filters in parallel, each operating with a different context
and choosing the peak delay to correspond to the maximum peak among
the global maxima for each filter.

To mitigate the local effects of coefficient noise on the
peak location of the partial Haar adaptive filter v(n), a
peak discernibility measure (PDM) is proposed here which
is calculated as follows: partition vector v(n) into three
contiguous groups of similar size and find the maximum
peak magnitude for each of the three groups. Let cpin(n)
and cpax(n), respectively, denote the minimum and
maximum among the three maxima so obtained. The
PDM at time n is defined as*

PDM(“) =1- Cmin(n)/cmax(n)~ (13)

When cpax(n) is large compared to cpin(n), then the PDM
approaches 1 (a large localized peak). However, if the two
are comparable (which is usually the case for coefficient
noise), then the PDM approaches 0. In Appendix A, we
show that the PDM (13) is indeed related to the
probability of correctly locating the peak of v(n), and thus
provides an indication of the quality of the peak detection
process.

The proposed PTE takes PDM(n) as input at time n and
uses a combination of DSmT and fuzzy inference similar to
[21]. Unlike traditional logic, fuzzy inferences can be made
even when rules are only partially satisfied. This is in stark
contrast to crisp logic, where a rule is satisfied only if a
premise of interest matches an implication’s antecedent
exactly. This is a powerful extension for dealing with fuzzy
sets as linguistic descriptors that are difficult to clearly
define, and possess a degree of uncertainty (interested
readers may consult [17,22-25] for a good introduction to
fuzzy systems). This inference mechanism makes fuzzy
systems well-suited for complex or nonlinear control
applications, such as step-size control in adaptive filtering
algorithms [26-28]. However, unlike such approaches, the
method described here is solely used to track and
categorize a peak’s discernibility as increasing or decreas-
ing (where this information is used in the algorithm
described in Section 3.3).

The adopted PTE system is represented in block
diagram form in Fig. 4. It consists of two state prediction
filters running in parallel on the sequence of fuzzified
inputs PDM(n), with each filter using a different model of
possible PDM behaviour. The top model corresponds to a
PDM that increases over time and eventually results in the

4 Set PDM(n) = 0, if cmax(n) = 0.
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Fig. 5. Fuzzy interface including small and large membership functions.

proper detection of a dispersive region. The bottom model
corresponds to a decreasing PDM which can be used to
detect coefficient noise. The basic components of the PTE
system are briefly described below (see [18,21,29] for
additional details on DSmT and its applications to
behaviour tendency estimation).

Two fuzzy sets, labelled S and L and defined in terms of
the membership functions shown in Fig. 5, are used to
characterize a small and large discernibility, respectively.
At time n, a new (row) vector of fuzzy PDM values is
obtained as v, = [vu(S), va(S U L), vn(L), vo(S N L)] where

va(L) = g, (PDM(1)), (14)
Va(S) = us(PDM(n)), (15)
va(SUL) =1 —vp(S) — va(L) (16)

and v,(SNL) = 0. The terms v,(-) denote the basic belief
masses (bbm) used within the DSmT framework.

The peak tendency at time n is internally characterized
by a pair of fuzzy PDM state vectors corresponding to the
two models, i.e. ™ and pdec, where (.# = inc or dec)

=1 (S, 5 (S ULy, i/ (L), (SN D), (17)

with g;”(-) representing the corresponding bbm values.
The state vector of each model is updated recursively in
two steps: (1) the previous state vector g, is processed
by a fuzzy inference engine to obtain a prediction of the
current state vector, denoted ;" _;; (2) the predicted state
vector p;{(n_1 is merged with the current observation
vector v, via the DSmT rule of combination to obtain the
current state vector p;”.

The respective rule-bases for each model in Table 1
consist of if-then statements with antecedents A; and
consequents C; (e.g. for rule 1 of the increasing PDM
model, A; = C; =S). These rules are used together with
the membership functions in Fig. 5 to construct a 4 x 4
fuzzy graph matrix G* for each of the two models, as
given in Table 2, which quantifies the degree of associa-
tion between two fuzzy sets for a specific model governed
by a corresponding rule-base. The graph entries for a
transition A — C are computed with the maximum value

Table 1
Fuzzy rule bases.

Rule no. Increasing PDM

1 If PDM(n — 1) = S then PDM(n) = S

2 If PDM(n — 1) = S then PDM(n) = L

3 If PDM(n — 1) = L then PDM(n) = L
Decreasing PDM

1 If PDM(n — 1) = L then PDM(n) = L

2 If PDM(n — 1) = L then PDM(n) = S

3 If PDM(n — 1) = S then PDM(n) = S

Table 2

Fuzzy graphs corresponding to two models of peak discernibility.

n-1-n S SUL L SnL

(a) Increasing discernibility, G

S 1 0 1 0
SUL 0 0 0 0
L 0.2 0 1 0
SNL 0 0 0 0
(b) Decreasing discernibility, G

S 1 0 0.2 0
SUL 0 0 0 0
L 1 0 1 0
SNnL 0 0 0 0

of the fuzzy intersection function between A and all A;
such that G; = C [22]:

8ac = Max min(i,(x), Uy (%)), (18)
Jixe[0,1] J

where A and C take values in the DSmT set of composite
propositions & = {S,L,SNL,SUL}. As long as the member-
ship functions u, and u, overlap, the degree of associa-
tion is non-zero. The predicted state vector for each model
is obtained as

B =m0 G’ (19)

where o denotes the matrix form of Zadeh’s max-min rule
of composition [17]. Each vector ;% _; is then normalized
so that its entries sum up to 1.

At time n, the new input vector v, is separately
combined with each of the predicted state vectors /",
using the DSmT rule of combination

1= > i 1AV B), CeZ (20)
b

to obtain the updated fuzzy state vectors pu;”.

Finally, each model’s corresponding set of updated
bbms (g;”) are converted into the Pignistic probabilities
[18]

PY{S} = i (S) + 051,/ (SUL) +0.514/(SN L), (21)

PLY = (L) + 0.5/ (SUL) + 0.5,/ (SN L). (22)
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The correct behavioural model corresponds to the model
with the smallest Pignistic entropy, as given by

Hi=— 3 PYAINGA), 23)
Ae{S.L}

3.3. Suboptimal-context escape (SCE)

The SCE approach that we propose here monitors the
correct peak model from the PTE and decides if the
current context should be changed (i.e. if a different
polyphase component of the input RPHT should be used)
in the event that a peak’s discernibility is poor. Deciding
when to make a context switch requires some care. While
the partial Haar adaptive filter needs time to reach steady
state, it is usually the case that the time required to
correctly locate a peak is far less than the convergence
time in a proper operating context. It is thus inefficient to
wait until the Haar-domain adaptive filter has converged
to decide whether to remain in the current operating
context or to attempt a new context.

The proposed solution consists of a schedule of M =
N/q non-decreasing trial periods 7= {ty,...,Tm}
(t1<12<--- <7TMy) to sequentially test each of the M
possible contexts. The selection of a proper schedule is
based on prior knowledge about the amount of time
required by the peak delay estimator to correctly locate a
peak in different contexts. The first trial period 7, should
be related to the number of samples required to properly
detect the global peak in an optimal context. The final trial
period 7y reflects the amount of time willing to be spent
operating in a worst-case context. The remaining
trial periods can be uniformly spaced between these
two limits. Intuitively, a schedule of non-decreasing
trial periods ensures that the likelihood of selecting
(yet-unattempted) contexts that can successfully lead to
a correct estimate of the peak delay increases. At the same
time, beginning the schedule with shorter waiting times
escapes any suboptimal contexts earlier in the peak delay
estimation process. Further analytical motivations in
terms of the mean time to correctly locate the bulk delay
are provided in Appendix B.

In our implementation of this scheme, two counters
Cinc and Cgec are used to maintain the number of samples
that the peak tendency has either been increasing or
decreasing during the current trial period 7. If Cyec > T
and jitter occurs in the peak delay estimate, then the filter
and counters are reset to zero and a new context is
attempted for the next trial period 7, ;. If instead Cipc > 1y,
i.e. peak delay is correctly estimated, then the counters are
reset and the trial period is set back to its initial value 7. If
all contexts have been attempted unsuccessfully, the
process is repeated beginning with t,.

3.4. Improved tracking (IT)

Abrupt changes in an echo-path impulse response can
be associated with a change in the bulk delay, or a phase
roll, whereby the impulse response coefficients change
signs. The tracking of a dispersive region after an abrupt

change in the echo path can be seen as a competition
between filter coefficient magnitudes. Indeed, when the
partial Haar adaptive filter is initialized to zero, a peak’s
magnitude only has to compete with the low-magnitude
coefficient noise of the surrounding taps, which makes its
detection easier. However, in the event of an abrupt
change in the echo-path impulse response (as can occur
on IP networks for example), a new peak might have to
compete with the decreasing magnitude of an old peak.
This can cause the peak delay estimator to take much
longer to find the new peak.

The proposed IT approach takes advantage of the
following observation: After an abrupt change in the
echo-path impulse response occurs, one finds that
although the location of the new peak as well as its
steady-state magnitude is unknown, the new steady-state
magnitude of an old peak is approximately zero. Thus, if a
significant decrease in the current peak’s magnitude is
detected (which usually signals a change in the echo-path
impulse response), the entire partial Haar filter is reset to
v(n) = 0. This is a feasible solution because this filter is
not directly being used to cancel echo. This allows the new
peak to solely compete with the low-magnitude coeffi-
cient noise of its neighbouring taps instead of the
decreasing magnitude of the previous peak. As a result,
the performance gains obtained in [14] for the stationary
case can be extended to cases where abrupt changes in the
echo-path impulse response occur.

A reset is only deemed necessary when a decrease
in magnitude is detected for a peak whose tendency
has been in an increasing state during more than
Tinc (not necessarily consecutive) iterations. To prevent
the effects of false resets, the location of the peak before
resetting the partial Haar adaptive filter, is stored and fed
to the bulk delay unit. Only once the new peak tendency
has been categorized as increasing for a total of Tj,.
samples, is the location of the new peak used to center the
short time-domain filter. This way, if a reset is in fact
necessary, the bulk delay unit will offset the short time-
domain filter to the new peak location once it has been in
an increasing state for a total of T;,. samples. If, however, a
reset is unnecessary, then the old peak location is still
used to center the short time-domain filter and the partial
Haar adaptive filter will readapt to the old solution
without affecting the time-domain adaptation. To avoid
resetting the partial Haar adaptive filter too often, no new
reset operation is attempted for at least Tgs iterations
following a previous reset. In practice, Tgs and Tj,. can be
selected as Tgs ~ 0.25Tj,c ~ 71. The above IT approach can
be easily integrated with the SCE approach in Section 3.3.

3.5. Multiple echo (ME) cancellation

The solution proposed here for ME cancellation with
the PHDAF is based on a coordinator-multi-agent archi-
tecture similar to [30]. The following assumptions are
made:

e The length of the dispersive regions is bounded by a
known integer L in the time domain.
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Fuzzy Interface

Fig. 6. Multiple echo cancellation system architecture.

e The delay between successive echoes (or reflections) is
larger than L, i.e. dispersive regions do not overlap.

e The number of dispersive regions is upper bounded by
a small integer np.

These standard assumptions ensure that some advantages
can be gained by using an adaptive solution tailored to the
ME case; otherwise, the use of a full time-domain
adaptive filter may be more appropriate. For instance,
most network hybrid impulse responses range from 3 to
12 ms, or a corresponding length of 24-96 samples at a
sampling rate of 8 kHz [20], which is typically much
smaller than the maximum possible bulk delay.

A block diagram of the proposed multiple echo-PHDAF
(ME-PHDAF) is shown in Fig. 6. The partial Haar adaptive
filter is partitioned into N/L sections, each of length L/M
coefficients. Assigned to each region is an agent A; that
runs a distributed form of the SCE algorithm that departs
slightly from the case of a single dispersive region in
Section 3.3. The length of each region is fL/M, obtained by
extending the corresponding section of the partial Haar
filter so that it overlaps with its left neighbour; the
overlapping factor is typically set to § = 1.5. The PDM of
agent i at time n is now given by

min(ci,mam 5)

PDM; =1 — (24)

Ci,max
Each agent sends its ¢;min to the coordinator (see Fig. 6)
where ¢ is calculated as ¢ = max; ¢ min. The use of the min
operator in (24) is necessary because &>Cjmax iN some
cases, making the original PDM negative. This form of
cooperating agents preserves the global characteristic of
the PDM.

If an agent requires a context switch, then only its
corresponding section’s (not region) context should be
changed. The polyphase decomposition of the RPHT from
Section 3.1 comes in handy here, since each set of
transformed input samples spanning a given section is
readily available. The use of overlapping regions help to
ensure that contiguous agents sharing a peak near their
boundary have the same operating context, so that the
orthogonality of the corresponding Haar basis vectors is
preserved. Each agent is classified as active (q; = 1) or
inactive (a; =0), depending on its peak’s behavioural

model. An agent becomes active if its peak tendency has
been in an increasing state for more than Tj,. samples;
otherwise, it is deactivated. A maximum of np agents can
be active at any given time, based on a first-in first-out
mechanism.

With information about the state of an agent, the
central coordinator does one of two things: If one or more
agents are active, the coordinator uses the peak locations
of those agents to update only certain tap-weights of the
time-domain adaptive filter centered on these locations.
In effect, the input signal u(n) in Fig. 1 is time-shifted and
applied as input to short adaptive filter sections of length
L, represented by the shaded areas in Fig. 6. If none of the
agents are active (i.e. during initialization of the algo-
rithm), the coordinator uses a single-echo version of the
SCE scheme to locate a single dispersive region and
proceeds to update the coefficients of a time-domain filter
of length L centered on this delay.

3.6. Computational complexity

For convenience, we shall refer to the PHDAF algorithm
incorporating the proposed SCE and IT schemes of
Sections 3.3 and 3.4 as the improved PHDAF (I-PHDAF),
and to the PHDAF incorporating the multi-agent structure
in Section 3.5 as the ME-PHDAF. We first note that the
partial Haar transform used in these algorithms is
computationally efficient as it does not require explicit
multiplication operations. Indeed, for a given scale index j,
the normalization factor o; is constant; it can be factored
out of the matrix Hy and absorbed as part of subsequent
operations on the transformed output vector.

The bulk of the SCE and IT schemes’ computational
complexity lies with the PTE. Table 3 shows the number of
arithmetic operations per iteration required by the PTE,
the SCE and the IT schemes, along with the required
number of operations for an NLMS-based realization of
the basic PHDAF structure in Fig. 1. We note that the
arithmetic operations associated with the PTE are drasti-
cally reduced since many bbm terms, such as v,(SN L) and
u;;ﬁfl(s U L), are zero throughout the PTS’s operation [21].
The logarithmic operations needed in (23) can also be
eliminated since only the relative entropy is required. An
alternate measure that preserves the desired relationship
and reguires only a single comparison operation is given
by I:I";ig = min(P“{S},P“{L}). Therefore, as an example,
letting N = 1024, q = 256, and L = 128, the percentage
increase in complexity when using the I-PHDAF algorithm,
versus the basic PHDAF algorithm, is only 25 = 3.94%.

Table 3
Number of arithmetic operations per iteration—single dispersive region
(I-PHDAF).

PTE SCE IT PHDAF
Add. 17 1 0 2q+2L+N/q+1
Mult. 18 0 0 2q+2L+6
Div. 3 0 0 1
Comp. 11 5 6 0




P. Kechichian, B. Champagne / Signal Processing 89 (2009) 710-723 719

Table 4
Number of arithmetic operations per iteration—multiple dispersive
regions (ME-PHDAF).

Multi-agent PHDAF
Add. 18N/L 2q+2nDL+N/q +1
Mult. 18N/L 2q+2nDL+ 6
Div. 3N/L 1
Comp. 18N/L—1 0

The computational complexity of the ME-PHDAF is
summarized in Table 4. Note that the complexity of the
PHDAF component now includes provisions for the use of
np short time-domain adaptive filters. The complexity of
the multi-agent scheme is on the order of N/L times that
of the basic PTE/SCE scheme in Table 3. To reduce the
computational load, the ME-PHDAF can be programmed
to allow only one agent to estimate its peak tendency
every input sample, i.e. agents time-share the PTE. This
also requires scaling the trial periods in the schedule T and
relevant counters by N/L.

4. Computer simulations
4.1. Methodology

The set of hybrid impulse responses used in the
following simulations are taken from Annex D of the
ITU-T G.168 Recommendation for digital network echo
cancellers [20]. There are eight impulse responses m;(n)
(i=1,2,...,8)with lengths L; that range from 64 to 128 at
a sampling rate of 8 kHz; it is assumed that m;(n) = 0 for
n<0 and for n>L; These impulse responses are time
shifted as needed and scaled to obtain an echo return loss
of 15dB. The input samples u(n) are taken from a white
zero-mean Gaussian process with unit variance. The error
signal d(n) is obtained by filtering u(n) with the selected
impulse response and adding a white Gaussian measure-
ment noise v(n), uncorrelated with u(n) and of zero-mean
and variance ¢2 = 1075N*/10 The SNR is set to 30dB,
unless stated otherwise.

The length of the input data vector (i.e. maximum
length of unknown echo path) is set to N = 1024. The
PHDAF and proposed I-PHDAF and ME-PHDAF algorithms
use a partial Haar transform of size g = 256 and the length
of the dispersive region(s), i.e. short time-domain filter(s),
is assumed to be L = 128. The partial Haar and short time-
domain adaptive filters utilize the NLMS algorithm with a
step-size u = 1.° In the proposed PHDAF algorithms, the
initial context is set to 1, which corresponds to no shifting
of the partial Haar basis vectors. A conventional NLMS
algorithm (i.e. length N) is also used as a reference for
comparison.

5 In the partial Haar NLMS update equation (4), [u(n)|? is used
instead of ||z(n)||? for the normalization step; this was found to make the
algorithm more robust to the rank deficiency of the transform matrix Hy.

a

-18

-20

-22

-24

MSE (dB)

-26

98 I-PHDAF/PHIAF

0 1000 2000 3000 4000 5000 6000 7000
k

MSE (dB)

0 1000 2000 3000 4000 5000 6000 7000
k

Fig. 7. Learning curves for ITU-T hybrid response ms(n) using a: (a) best
and (b) worst-case bulk delay for the initial context used (SNR = 30dB).

4.2. Context escaping

We use the following schedule of trial periods to test
the different contexts: t = {150, 250,300,400}. Fig. 7(a)
and (b) show the learning curves corresponding to an
echo-path impulse response using ITU-T G.168 hybrid
model ms(n —1) under the best and worst bulk delays
(with respect to the initial context), respectively. The
curves represent an ensemble of 200 runs for each
simulation.

For the best-case bulk delay (Fig. 7(a)), both the I-
PHDAF and PHDAF show identical learning curves reach-
ing steady state at around k = 750 compared to the NLMS
which converges at around k = 5000. This is due to the
fact that the NLMS adapts a far larger number of
coefficients (1024 compared to 128). In fact, this result
(i.e. when the best bulk delay is used for the initial
context) may be viewed as a best-case performance for
the proposed I-PHDAF (and also PHDAF) since it leads to
the fastest possible detection of the global peak. Even if all
the contexts are adapted in parallel, this would not lead to
a faster convergence at the considered SNR level of 30 dB.
For a worst-case bulk delay (Fig. 7(b)), the PHDAF never
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Table 5
Comparison of mean times and standard deviations to correctly estimate
the peak delay for different SNRs.

SNR (dB) I-PHDAF PHDAF

Mean Std. Mean Std.
30 91.5 75.4 1211 203.0
20 107.7 86.4 214.5 664.0
15 167.4 138.3 362.7 1067.7
10 4214 387.1 531.7 1177.2

seems to reach steady-state, while the proposed I-PHDAF
converges much faster, nearly as well as in the optimal
case, requiring about k = 1000 samples to converge. In
effect, the I-PHDAF adds flexibility to the basic PHDAF and
prevents it from “getting trapped” in suboptimal contexts.
At the same time, the I-PHDAF is fairly stable, i.e. can
remain “locked” on an optimal context. This behaviour
may significantly increase the convergence speed of the
echo canceller, as observed.

In addition to learning curves, the mean time for each
echo canceller to correctly estimate the location of a
dispersive region was compared for different SNRs. Each
row in Table 5 consists of the average and standard
deviation over 500 independent runs. For each run, one of
the eight ITU-T G.168 hybrid impulse responses is selected
with equal probability, and a random bulk delay uni-
formly distributed in the interval [0, 895] is included. In all
cases, the proposed I-PHDAF algorithm finds the disper-
sive region faster (the mean time is smaller) and more
consistently (the standard deviation is much smaller).
Although the PHDAF and the I-PHDAF display comparable
mean times to convergence at very low SNR, the standard
deviation of the PHDAF is three times larger. This reveals
the robustness of using a fixed schedule t together with a
PTE for different values of SNR. Of course, if the SNR does
not change much over a specific channel, then schedules
can be constructed specifically for those cases.

4.3. Improved tracking

For reasons of brevity, only one generic scenario will be
considered here in which the bulk delay of the true echo-
path impulse response abruptly changes from an optimal
to a suboptimal delay with respect to the initial context.
Specifically, the change is from m;(n — 640) to ms(n —
322) at time k = 5200. The parameters of the proposed IT
approach are chosen as Tgs = 32 and T, = 128.

The corresponding learning curves, averaged over 200
independent runs are shown in Fig. 8. It can be seen that,
initially, both echo cancellers converge optimally. How-
ever, after the abrupt change in bulk delay, the I-PHDAF
requires much fewer samples to converge. The learning
curve of the PHDAF features a plateau-region extending
for almost 2000 samples after the change. This corre-
sponds to the amount of time it takes the new peak’s
magnitude (which is very small since the new bulk delay
is suboptimal) to exceed the decreasing magnitude of the
old peak.
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Fig. 8. Tracking behaviour of the I-PHDAF compared to the PHDAF and
NLMS algorithm with a best-to-worst-case change in bulk delay
(SNR = 30dB).

4.4. ME cancellation

The ME-PHDAF algorithm of Section 3.5 is tested with
N/L = 8 agents operating in parallel to classify and locate
dispersive regions. The number of possible dispersive
regions is set to np =3 and the parameter Tj, = 64
samples.

The learning curves in Fig. 9(a) and (b) first compare
the ME-PHDAF’s performance to that of the PHDAF for the
two cases of single echo path in Fig. 7. Each learning curve
was averaged over 200 runs. For the best-case bulk delay
in Fig. 9(a), the PHDAF is slightly faster than the ME-
PHDAF, although both echo canceller’s require only
around 1000 samples to converge. However, the distrib-
uted form of the SCE algorithm allows the ME-PHDAF to
converge again much faster in a worst-case bulk delay in
Fig. 9(b).

Fig. 10 shows the performance of the ME canceller
when the number of dispersive regions in the true echo-
path impulse response is 2. The learning curves are
averaged over 600 independent runs consisting of bulk
delays and dispersive regions randomly selected accord-
ing to

h(n) = gymi(n — A1)(n) 4 g;m;(n — 43), (25)

where h(n) is the echo-path impulse response, g; and g,
are fixed gains, i and j are independent equiprobable
selections from {1,2,...,8}, 41 =320+1r, 4, =640+71;
and rq,r, are independent equiprobable in {0, 1,2, 3}. The
IdNLMS filter represents the ideal case where exact prior
knowledge about the location of these two dispersive
regions is available, and only the corresponding time-
domain filter coefficient are adapted while the remaining
coefficients are set to zero. This approach, used as a
benchmark, provides the best possible performance in this
case. From the results in Fig. 10, we note that for k<500,
the ME-PHDAF's learning curve is slightly larger than the
NLMS (only one peak is initially detected), after which its
convergence speed increases, reaching the IINLMS curve’s
steady-state MSE at around k = 2500.
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5. Summary and conclusion

We have proposed feasible solutions to improve the
performance of the partial Haar dual adaptive filter (PHDAF)
in practical applications. These includes: (1) alleviating the
dependence of the PHDAF's performance on the bulk delay
of the echo-path impulse response; (2) improving the
tracking performance of the PHDAF in response to abrupt
changes in the echo path; and (3) extending the original
PHDAF structure to support the cancellation of MEs.

The proposed algorithmic solutions exploit the poly-
phase representation of the RPHT and make use of a peak
tendency estimator (PTE) based on Dezert-Smarandache
theory (DSmT) and fuzzy inference. The PTE monitors the
time evolution of the Haar-domain peak coefficient’s
discernibility, and categorizes it as being in an increasing
or a decreasing state. In the proposed IPHDAF algorithm,
this information is used to decide if the current operating
context (i.e. polyphase component of the Haar transform)
should be changed, as well as to detect if an abrupt change
in the echo-path impulse response has occurred. To deal
with the case of multiple dispersive regions, an ME-PHDAF
algorithm is also proposed which uses a distributed (i.e.
multi-agent) form of the above PTE-based approach.

The IPHDAF and ME-PHDAF algorithms were evaluated
in terms of their mean-square error (MSE) curves as well
as their mean time to properly locate dispersive regions
for different SNR and channel conditions. Results show
that a significantly enhanced performance can be ob-
tained using the proposed algorithms at a minimal
increase in computational cost when compared to the
original PHDAF algorithm. Finally, we note that the
techniques proposed in this paper for the PHDAF are not
conceptually limited to the Haar transform and could be
applied to other types of wavelets as well.

Appendix A. Theoretical motivation behind the PDM

In this appendix, we further motivate the choice of the
PDM (13) on theoretical grounds. We begin by deriving an
expression for Pc, defined as the probability of correctly
locating the peak magnitude of the partial Haar adaptive
filter coefficient vector v, where the dependence on
discrete-time n is omitted for convenience. To this end,
we generalize the development in [14] to the case of an
arbitrary mean vector. Specifically, let v = [v1,...,v4] and
assume that the individual weights v; are statistically
independent random variables with mean ¢; and prob-
ability density functions (pdf) f;(u) = ¢(u — ¢;), derived
from a common symmetric pdf ¢(u) with zero-mean, i.e.
¢(—u) = p(u). Define Cmax = max;_q_q(Ic;)) and let ig
denote the corresponding index; without loss in general-
ity, assume that ¢;; = cmax (positive peak). Then, P¢ can be
expressed as

geel
Pc = / Pr{|v;| <|v;,| for all iip|v;, = u}p(U — Cmax) du

(A1)
- [

/. P(u; — c,v)dui}d)(u — Cmax)du.  (A.2)
i2ig ¥ Wil <lul
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Next, we derive a lower bound and an upper bound for Pc.
Let .#4,...,.7k define a partition of the set .# = {ie N:
1<i<qandi#ip} and let p, denotes the number of
elements in .#;. For each subset .7, define b, =
min;c », (I¢j]) and dy = maxcy, (Ic;|). Due to the symmetry
of ¢(v), it can be verified that P’C <Pc<P¢ where

oo K Pk
P’CZ./ H{-/\uk|<\u| ¢(uk*dk)duk} (b(u*Cmax)du

—0 k=1

(A3)

and P¢ is given by a similar expression with the numbers
d, replaced by by, respectively. We note that this bound on
Pc becomes tighter as the size p, of the subsets .7 is
reduced.

Define Cpin = ming_1__k (/di), i.e. the minimum among
the maximum peaks of each of the intervals .#,. We
assume that each subinterval .#; contains at least one
coefficient with peak magnitude less than cp,, i.e.
by < Cmin, Which is reasonable for larger subintervals. Then
we also have PL<P,<P! where

0o . q-1
Pe= [{[  o0-cmndr} pu-cmodu (A4)
—oo L/ wl<ul
now provides an approximation to Pc. It can be shown
that: P. is an increasing function of cmax; Pr is a
decreasing function of cpin; Pe~1 in the limit
Cmax > Cmin; and P ~ 0 in the limit ¢yjy = Cmax and g>1.
This behaviour is captured by the ideal PDM

PDM® = 1 — Cimin/Crmax- (A.5)

In this respect, Eq. (13) represents a practical attempt at
estimating the unknown quantity PDM® based on the
available data, i.e. the filter coefficients v;(n) at time n, and
the use of only three subintervals.

Appendix B. Motivation behind using a schedule of trial
periods

The motivation for using a schedule of trial periods is
embedded in system reliability theory [31]. We assume
the existence of M systems Yq,...,Yy that provide the
solution to the same problem. The time for each system to
produce the solution is a random variable governed by an
exponential cumulative distribution F(t; ;) = 1 — e~ 4t for
i=1,...,M, with mean z; = 1//; and variance o2 = 1/47,
where /; is the rate parameter for system i. A randomly
ordered selection of the M systems is made, as repre-
sented by a 1-to-1 permutation 7 of the integers
{1,...,M}. Then, beginning with system Y, up to Yy,
each system is tested sequentially for a period of time
71,...,Ty, respectively. Given knowledge of the different
rates 4;, and assuming that the systems operate indepen-
dently, the problem of interest here is to choose the trial
times t;, or equivalently the system switching times
S;i =Tq +--- + T;, So that the total time spent is searching
a solution is minimized on a statistical basis under the
constraint of a fixed total trial time T = s),. The problem is
made difficult by the fact that the user does not know the
permutation 7, i.e. which system is being used in a given
trial interval.

Let random variable X denote the total time needed to
solve the problem. The conditional CDF of X given a
permutation 7 is shown to be

Fx(tim) = 1 — og(mye 51 g <t<sy,, (B.1)

where we define oy (m) = ﬁ‘;ﬂ e =% for k>1, oq(m) =1

and so = 0. For t<0, we have Fx(t|m) = 0 while for t>sy,,
we assume Fx(t|m) = 1, i.e. the probability of not obtaining
a solution within a total time sy is negligible. The
conditional expectation of X can be obtained as

i M. oy(m) Zm T
E[X|1r]:/ (1 = Fx(tm)dt = ="=(1 —e =%). (B.2)
0 =1
Finally, assuming that the different possible permutations
are equiprobable, the expected total solution time is
obtained as

1
EX] = MZE[XUT], (B.3)

where the summation is over all possible permutations 7.

While an exhaustive analysis of the above expression
for E[X] is beyond the scope of the paper, we can
nevertheless obtain interesting insights by considering
M = 2, in which case (B.3) takes the simplified form

EX] = 1 [l +Lenm (1 2 e—221:2>

2 A /12 M
1 1 —laTq j'1 —1Ty

In the case of equal rates, i.e. 11 = 1, = 4, this expression
simplifies to E[X] = (1/4)(1 — e~*T) which is independent
of the switching time 7, = s;. However, in the case 11 # 4,
the situation is different, as revealed by the plots of E[X]
versus 71 in Fig. B1, obtained under the constraint 7; +
T, =T for different values of the rate parameters /; and
/. The value of 7; minimizing E[X] in these plots can be
obtained by applying the method of Lagrange multipliers
and satisfies (O<tq <T):

Jpehm (1 — e R2T-m)) = jre 711 — e~ T-T), (B.5)
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0.47 }

0.465 |
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Fig. B1. Plot of E[X]/T vs. t1 /T for three pairs of (14T, 2,T).
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We generally find that for a wide range of parameter
values under consideration, the optimum switching time
occurs at 71 ~ 0.3T. Clearly, this approach can be general-
ized to the case of M>2 intervals.
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