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Abstract

This communication studies the quantization effects on the steady-state performance of a fixed-point implementation of

the Least Mean Squares (LMS) adaptive algorithm. Based on experimental observations, we introduce a new intermediate

mode of operation and develop a simplified theoretical approach to explain the behaviour caused by quantization effects in

this mode. We also review the stall mode and provide a new expression that predicts the discontinuous behaviour of the

steady-state mean squared error as a function of the input signal power. Combined with a previous analysis of

quantization effects in stochastic gradient mode, this study provides analytical expressions for the steady-state mean

squared error for the full range of step-size values. We present experimental results that are in a good agreement with

theoretical predictions to validate our model.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Least Mean Squares (LMS) algorithm [1] is
widely used in adaptive filtering. This algorithm
recursively updates the vector of coefficients wðkÞ ¼
½w0ðkÞ;w1ðkÞ; . . . ;wN�1ðkÞ�

t of an FIR filter accord-
ing to the following equations

eðkÞ ¼ yðkÞ � wtðkÞxðkÞ, ð1aÞ

wðk þ 1Þ ¼ wðkÞ þ meðkÞxðkÞ, ð1bÞ

where k is the discrete time index, eðkÞ is the
estimation error, xðkÞ ¼ ½xðkÞ; xðk � 1Þ; . . . ; xðk �
N þ 1Þ�t is the input signal vector, yðkÞ is the
reference signal to be estimated, and m is an

adaptation parameter. The speed of convergence
of the algorithm towards the optimal Wiener
solution, as well as the power of the residual error
after convergence (i.e., in steady-state) depend on m.
These properties of the LMS are well established for
infinite precision arithmetic (see [2] and references
therein).

When LMS is implemented on a fixed-point
processor, quantization errors affect its perfor-
mance and the mean squared error (MSE), i.e.
EfjeðkÞj2g where Ef�g denotes statistical expectation,
may be significantly higher than the one expected in
infinite precision. Analysis of the quantization
effects on LMS performance goes back to the work
of Gitlin et al. [3] who studied the variations of the
MSE as a function of the step-size in a digitally
implemented LMS. They reported two main
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observations: (a) the MSE after the algorithm
converges is much higher than the one expected
from a quantization of the algorithm variables and
(b) due to quantization effects, the adaptation may
stop and in this case, the MSE may be actually
reduced by increasing the step-size. Caraiscos and
Liu [4] presented an analysis of quantization errors
in steady-state for fixed-point and floating-point
arithmetic. In their analysis, they modelled quanti-
zation errors as white noise and obtained an
analytical expression for the residual error. How-
ever, the error model they used is only valid when
the adaptation is not stopped by quantization
effects—in this situation, the quantization has a
low impact on the steady-state MSE. Alexander [5]
used the same white noise model for quantization
errors to analyse the behaviour of the finite
precision LMS algorithm in the transient regime.

Bermudez and Bershad [6] recognized the draw-
back of the error model used in [4] and [5] and its
non-validity in a situation where adaptation is
stopped by quantization effects. They proposed a
non-linear analytical model for the quantization
function. By using a conditional moment technique,
for a white Gaussian input and a small adaptation
step size, they derived recursive equations which can
be numerically solved to give the MSE in both
transient and steady-state regimes [6]. They inves-
tigated the steady-state behaviour of the quantized
LMS algorithm for small step-size and showed that
the stalling behaviour is indeed a ‘‘slow-down’’
phenomenon. Under limiting assumptions, their
model predicts a steady-state MSE that is nearly
independent on the number of bits [7]. In our study,
we observed the steady-state behaviour of the LMS
for all range of values of the adaptation step-size
and noticed a clear difference between our simula-
tion results and the MSE predicted by the model in
[7], as we will show in Section 3.

The studies cited above explained and modelled
the LMS behaviour in different conditions but did
not provide an analytical expression of the steady-
state MSE (SS-MSE) for all these conditions. In
particular, the intermediate region between the stall

mode, where adaptation is stopped, and the
stochastic gradient mode, where the analysis of [4]
is applicable, has not been previously investigated.
In this work, we introduce a new intermediate mode
to characterize the algorithm behaviour in this
region and develop a simplified theoretical model
that provides an analytic expression of the corre-
sponding SS-MSE values for a white stationary

Gaussian input signal. We also review the stall
mode and provide a new expression that predicts the
discontinuous behaviour of the SS-MSE as a
function of the input signal power. Combined with
the analysis of quantization effects in stochastic
gradient mode, this study provides analytical
expressions for the SS-MSE for the complete range
of step-size parameter values. In particular, the
value of step-size corresponding to the onset of the
stall mode can be predicted accurately, so that
stalling can be avoided by judiciously choosing the
step size value.

The outline of the paper is as follows. In Section 2
we present the theoretical analysis and develop-
ments leading to analytical expressions for the SS-
MSE for different operating conditions of the
algorithm. In Section 3 we present experimental
results. A brief conclusion follows in Section 4.

2. Theoretical analysis

In our analysis of the finite precision LMS
algorithm we assume that the input signal xðkÞ is a
white stationary Gaussian process with zero mean
and variance s2x, and the reference signal yðkÞ is
written as

yðkÞ ¼ wt
oxðkÞ þ nðkÞ, (2)

where wo is the optimal vector of coefficients and
nðkÞ is a white stationary Gaussian noise indepen-
dent of xðkÞ, with zero mean and variance s2n. We
assume that signals and filter coefficients are real-
valued but this analysis can be easily generalized to
the complex case.

Under the above assumption on the input signal
xðkÞ, the LMS algorithm converges in the mean
square for values of m in the range [8]

0omo2=ðNs2xÞ, (3)

where N is assumed to be large.1 The SS-MSE, i.e.
after the algorithm converges, is given by [4]

x ¼ lim
k!1

EfjeðkÞj2g ¼
xmin

1� mNs2x=2
, (4)

where xmin is the MSE of the optimum filter, equal
to s2n if the adaptive filter is long enough to cover the
impulse response to be estimated.

ARTICLE IN PRESS

1Variations of this result can be found in the literature (see [2]

and references therein). However, for the model under considera-

tion here (i.e. white stationary Gaussian processes and large N),

the values predicted by (3) are sufficiently accurate and in good

agreement with experimental observations.
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In fixed-point arithmetic, signals, variables, and
parameters used in the algorithm as well as
operation results are quantized to discrete values.
We will use a fractional fixed-point representation
with values lying in the interval ½�1;þ1Þ. We
assume that addition does not lead to overflow
and that only multiplication induces quantization
errors. We consider a roundoff quantization using b

bits (including sign) and represented by a generic
function Q½��. We use primed symbols to represent
quantities of the finite precision LMS, which can
then be described by the following equations:

e0ðkÞ ¼ y0ðkÞ �Q½w0ðkÞtx0ðkÞ�, (5a)

dwðkÞ ¼ Q½me0ðkÞ�x0ðkÞ, (5b)

w0ðk þ 1Þ ¼ w0ðkÞ þQ½dwðkÞ�, (5c)

where Q½�� applied to a vector acts on each of its
components. All three quantizers in (5) are con-
sidered in our analysis.

In (5), the quantization operation Q½�� cannot be
modelled in general by a smooth function and
therefore an analytic expression for the SS-MSE
cannot be easily derived. In the existing literature on
the finite-precision LMS, we can distinguish two
qualitative operating modes of the algorithm. In the
first mode, the components of the updating vector
dwðkÞ are smaller in absolute value than D=2, where
D ¼ 21�b represents the least significant bit, and are
quantized to zero in (5c). The adaptation is virtually
stopped by quantization effects and the algorithm is
in stall mode [3]. In the second mode, the
components of dwðkÞ are much larger in absolute
value than D=2, and their quantization can be
modelled as an additive white noise (i.e. linear noise
model). With fluctuations of the stochastic gradient,
the algorithm continues to adapt as in the infinite
precision case [4]. We refer to this mode as
stochastic gradient mode. In this work, we introduce
a third mode as being intermediate between the stall
and stochastic gradient modes.

2.1. Stall mode

During the adaptation, while the algorithm in (5)
tends to the steady-state, the amplitude of the error
e0ðkÞ decreases with the number of iterations until
the components of dwðkÞ become smaller than D=2
in absolute value. Hence, the adaptation of the filter
coefficients stops and the algorithm enters the stall
mode. To evaluate the resulting SS-MSE, we

assume that adaptation stops when the components
of the quantized updating vector Q½dwðkÞ� in (5c),
where dwðkÞ is defined in (5b), become equal to zero
with a high probability, which is expressed as

Pr½jQ½me0ðkÞ�x0ðlÞjoD=2� ’ 1, (6)

where the time index l 2 fk �N þ 1; . . . ; kg. In
practice, we find that the stall mode is achieved
when the absolute value of Q½me0ðkÞ� becomes
smaller than a certain threshold. Since the quantity
Q½me0ðkÞ� takes values which are integer multiples of
D (i.e. Q½me0ðkÞ� ¼ �pD, with p 2 f0; 1; 2; . . .g), this
threshold corresponds to a maximum value of p and
is written as pmaxD. Assuming that the processes
e0ðkÞ and xðlÞ are independent, the condition (6) is
satisfied whenever

Pr½jme0ðkÞjpðpmax þ 1=2ÞD� ’ 1; and (7)

Pr½jx0ðlÞjo1=ð2pmaxÞ� ’ 1. (8)

To calculate the SS-MSE, we have to determine a
value for pmax appropriate for use in (7) and (8). For
a signal xðlÞ with an amplitude much larger than D
and for a small value of pmax, we can replace x0ðlÞ by
xðlÞ in (8). For the Gaussian process xðlÞ, we can
argue that (8) is valid for 1=ð2pmaxÞXlxsx, where lx

is a number that we can reasonably set to 3 or more
(for lx ¼ 3, the probability is 0:997).2 The corre-
sponding pmax is expressed as

pmax ¼
1

2lxsx

� �
, (9)

where bxc is the greatest integer smaller than or
equal to x.

In a similar way, (7) will be valid if

ðpmax þ 1=2ÞD ¼ lem
ffiffiffiffi
x0

p
, (10)

where x0 ¼ Efje0ðkÞj2g is the SS-MSE and le is a
positive number we can reasonably set to 3 or more.
Replacing pmax from (9) into (10), the desired SS-
MSE is obtained as

x0 ’
D2

l2em2
1

2lxsx

� �
þ

1

2

� �2

. (11)

This result provides a simple expression of the SS-
MSE as a function of the step-size m, the number of
bits (via D ¼ 21�b), and the input signal power s2x.
While the general behaviour of (11) with respect to
these parameters is consistent with earlier studies

ARTICLE IN PRESS

2More generally, for any zero-mean random variable x, it

follows from Chebyshev’s inequality that if 1=ð2pmaxÞXlxsx then

Pr½jxjo1=ð2pmaxÞ�41� 1=l2x.
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[3], the presence of the floor function in (11) is new.
It allows for a more accurate description of the SS-
MSE versus sx relationship, as clearly evidenced by
the experimental results in Section 3 (see Fig. 4).

2.2. Stochastic gradient mode

In this mode, the algorithm converges before
entering the stall mode. The filter coefficients
continue to adjust in a random way around the
optimal Wiener solution, due to the stochastic
gradient noise. The components of dwðkÞ in (5)
have an absolute value much larger than D=2, on
average, and their quantization only introduces a
small error to their values. Thus, we can describe all
quantization errors in the algorithm as additive
white noise. To obtain an analytic expression of the
SS-MSE (needed in the analysis of the intermediate
mode), we use the approach of Caraiscos and Liu
[4], modified to allow for the quantization of the
term me0ðkÞ in (5b), which is not considered in their
original paper.

The various quantization errors in the finite
precision LMS are defined as follows:

qyðkÞ ¼ y0ðkÞ � yðkÞ, ð12aÞ

qxðkÞ ¼ x0ðkÞ � xðkÞ, ð12bÞ

qwxðkÞ ¼ Q½w0ðkÞtx0ðkÞ� � w0ðkÞtx0ðkÞ, ð12cÞ

qmeðkÞ ¼ Q½me0ðkÞ� � me0ðkÞ, ð12dÞ

qdwðkÞ ¼ Q½dwðkÞ� � dwðkÞ. ð12eÞ

The following assumptions are made (see also [2,9]
for a further discussion): the errors qyðkÞ, qwxðkÞ,

and qmeðkÞ have zero mean and respective variances

S2
y, S

2
wx, and S2

me; the error vectors qxðkÞ and qdwðkÞ

have independent components of zero mean and

respective variances S2
x and S2

dw; and finally, the

quantization error of a variable is independent of
that variable, of other variables and of their
respective quantization errors.

Using these expressions in (5) and neglecting the
quantization errors terms of order greater than one,
a development similar to the one presented in [4]
(see this reference for details) leads to the following
expression for the SS-MSE for the finite precision
LMS algorithm:

x0 ’
1

1� mNs2x=2
xmin þ kwok

2S2
x

�

þ S2
y þ S2

wx þ
N

2m
ðs2xS

2
me þ S2

dwÞ

�
. ð13Þ

In expression (7) of [4], replacing the trace of the
correlation matrix (trR) with Ns2x, which corre-
sponds to our assumption on the input signal xðkÞ,
leads to a result similar to (13). However, in [4],
authors assumed that, as for a particular LMS
implementation in which the step size value is a
power-of-two, the elements of the term Q dwðkÞ½ � in
(5c) are calculated by first computing the product
e0ðkÞx0ðkÞ, right shifting the result and then quantiz-
ing. In this case, there is no quantization error
for the product me0ðkÞ and thus there is no term
corresponding to S2

me.

2.3. Intermediate mode

In this analysis of the quantization effects we
emphasize the important role of the step-size m in
the operation of the quantized LMS algorithm.
When all other parameters used in the algorithm are
fixed we can explain all the modes of operation of
the algorithm after convergence in terms of the
choice of the value of m.

For small values of m, the algorithm is in stall
mode and the SS-MSE decreases according to (11)
(i.e., as 1=m2) as m increases. However, this effect
must be limited since the SS-MSE cannot decrease
below a limiting value xlim for which the vector of
estimated coefficients becomes equal to a quantized
value of the optimal Wiener solution wo.

A simple expression for xlim can be obtained by
substituting wo ¼ Q½wo� � qw in (2), where qw is a
vector whose components are independent quanti-
zation errors of zero mean and variance S2

w. This
results in

yðkÞ ¼ Q½wo�
txðkÞ þ n0ðkÞ, (14)

where the uncorrelated modelling error is now given
by

n0ðkÞ ¼ nðkÞ � qt
wxðkÞ. (15)

The limiting SS-MSE, defined as xlim ¼ Efjn0ðkÞj2g,
is

xlim ¼ xmin þNs2xS
2
w. (16)

In a fixed-point context, the best result that can
be aimed for is that the LMS converges to the
quantized value of the optimal vector of coefficients
Q½wo�. Accordingly, it is reasonable to replace the
reference signal model (2) by (14) and thus, xlim

ARTICLE IN PRESS
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should be used in place of xmin in the SS-MSE
expressions.3

When the step-size m increases and the SS-MSE
gets closer to the limiting value in (16), the
algorithm leaves the stall mode to enter in the
stochastic gradient mode, where the quantization
errors contribute in the algorithm as additive white
noise. Simulations results of the SS-MSE as a
function of m showed that for a limited range of
values for m, corresponding to a region between the
stall and stochastic gradient modes, SS-MSE values
cannot be explained by expressions (11) or (13),
corresponding to these modes. Based on this, we
introduce an intermediate mode, corresponding to
the transitional region between the stall and the
stochastic gradient modes.

We consider this mode as a modified stochastic
gradient mode where the components of the
updating vector dwðkÞ (5b) are still small in absolute
value, but may exceed with non-zero probability the
first quantizer decision level D=2. Specifically, to
obtain a simplified expression of the steady-state
MSE in the intermediate mode, we make the
following additional assumptions:

A1. The quantizer in (5c) is operated in the small
input regime. That is, the variance of the
components of dwðkÞ is of the order of D2=12.

A2. The uniform quantizer Q½me0ðkÞ� in (5b) ap-
proximately satisfies the centroid condition for
minimum squared error distortion [9].

All other quantization errors are treated as in the
analysis of the stochastic gradient mode (i.e.,
independent additive noise model).

For a uniform quantizer in the small input
regime, the variance of the quantization error can
be approximated by that of its input.4 The lth
component of the updating vector dwðkÞ (5b) is
given by

dwlðkÞ ¼ Q½me0ðkÞ�x0ðk � lÞ. (17)

Thus, under assumption A1, the variance of the
quantization error in (5c) can be approximated as

S2
dw ’ varfQ½me0ðkÞ�x0ðk � lÞg ¼ s2xEfQ½me0ðkÞ�2g,

(18)

where the second equality follows from the zero-
mean and independence assumptions.

For a quantizer satisfying the centroid condition,
the quantizer output is uncorrelated with the
quantization error (see [9, Lemma 6.2.2]). Thus,
invoking (12d) and assumption A2, we obtain

m2x0 ¼ S2
me þ EfQ½me0ðkÞ�2g. (19)

Combining (18) and (19), we obtain5

s2xS
2
me þ S2

dw ¼ m2s2xx
0. (20)

Substituting this result in (13), replacing xmin by xlim
(16) and solving for x0, we finally obtain the desired
SS-MSE expression:

x0 ’
1

1� mNs2x
½xlim þ kwok

2S2
x þ S2

y þ S2
wx�. (21)

In practice, the quantity me0ðkÞ will not be
uniformly distributed between adjacent quantiza-
tion levels, so the uniform quantizer in (5b) will not
exactly satisfy the centroid condition (i.e. the
quantization levels are not optimal) and the result-
ing SS-MSE may exceed that prescribed by (21).

2.4. Summary of modes

Table 1 summarizes the different operating modes
of the fixed-point LMS algorithm with the corre-
sponding expressions for the steady-state MSE. The
step-size values mL and mU delimiting the three
regions can be obtained by equating the appropriate
expressions for x0 and solving for m.

3. Experimental study

To validate our analysis, we consider an applica-
tion of the fixed-point LMS adaptive filter to the
identification of a linear system. The input signal
xðkÞ is a stationary white Gaussian process with
zero mean and variance s2x ¼ 0:1. The reference
signal yðkÞ is obtained via convolution of xðkÞ with a
vector wo of length N ¼ 100. We used this signal
without additional noise to ensure that the SS-MSE
is only due to quantization effects. In the fixed-point
LMS, the signal x0ðkÞ ¼ Q½xðkÞ� is obtained by a
uniform quantization of xðkÞ and the samples with a
value outside the interval ½�1;þ1Þ are saturated to

ARTICLE IN PRESS

3For the stochastic gradient mode, this modification does not

result in appreciable changes of the SS-MSE values over the

range of interest of m.
4See [10] for a more precise analytical characterization of the

input–output variance relationship.

5While this derivation is based on the general LMS imple-

mentation (not a power-of-two step size case), the results can also

be applied to the power-or-two case by setting the variable Sme to

zero in (20).
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�1; the reference signal y0ðkÞ ¼ Q½yðkÞ� is similarly
obtained. The optimal vector wo was randomly
generated and scaled so that kwok

2 ¼ 0:4.
We developed a set of C routines that emulate

arithmetic operations of a fixed-point DSP [11] with
a number of bits b ¼ 16 and implemented the fixed-
point LMS on a personal computer using these
routines. We also implemented the fixed-point LMS
on a fixed-point DSP emulator software provided
by Texas Instruments and validated the accuracy of
our routines. We performed proper scaling of the
various signals relative to the available dynamic
range so that saturation effects are avoided at initial
stage of operation of the algorithm.

To simulate different modes of operation of the
algorithm, we varied the step-size m and measured
the SS-MSE. Two slightly different implementations
of the error calculation in the fixed-point LMS were
considered:

� Without accumulator: to emphasize the quantiza-
tion effects, the elements of the inner product
wtðkÞxðkÞ were individually quantized and then
added together.
� With accumulator: the individual products were

computed in double-precision, summed and the
final result was quantized.

For all values of m used in our experiment, we
ran simulations for up to several millions samples.
Fig. 1 shows experimental results versus the number
of iterations for the fixed-point LMS with an
intermediate accumulator and for three different m
values of 0:002, 0:075 and 0:16 corresponding,
respectively, to stall, intermediate and stochastic
gradient modes. For all three m values the steady-
state behaviour is clearly reached. As we show in the
inset of Fig. 1 for m ¼ 0:002, there is a difference
between our simulations results and the SS-MSE

predicted by Bermudez’s model using Eqs. (18) and
(26) from [6].

Figs. 2 (without accumulator) and 3 (with
accumulator) show the theoretical SS-MSE versus
m for the stall, intermediate, and stochastic gradient
modes, as well as the limiting SS-MSE, defined,
respectively, in (11), (21), (13), and (16). In the
evaluation of these SS-MSE expressions, we use
S2

x ¼ S2
y ¼ S2

w ¼ S2
me ¼ S2

dw ¼ D2=12, and S2
wx ¼

cD2=12 where c ¼ N in the implementation without
accumulator and c ¼ 1 in the one with accumulator.

The results in Figs. 2 and 3 show the different
modes of operation of the algorithm. For small
values of m, the algorithm operates in the stall mode
and the SS-MSE decreases with increasing m. As
shown in the figures, the decrease in the SS-MSE in
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Fig. 1. MSE versus number of iterations for fixed-point LMS

with an intermediate accumulator (b ¼ 16, N ¼ 100). The three

curves are for three different m values corresponding to the three

modes (0:002 for stall, 0:075 for intermediate, and 0:16 for

stochastic gradient). The inset shows MSE for m ¼ 0:002 and for

a larger number of iterations (up to 30 millions) as well as values

obtained using the recursive equations (18) and (26) from [6] (the

smooth curve).

Table 1

Summary of fixed-point LMS modes and corresponding steady-state MSE values

Mode m Steady-state MSE, x0

Stall mpmL D2

l2em2
1

2lxsx

� �
þ
1

2

� �2

Intermediate mLpmpmU 1

1� mNs2x
½xmin þ kwok

2S2
x þ S2

y þ S2
wx þNs2xS

2
w�

Stochastic gradient mUpm 1

1� mNs2x=2
½xmin þ kwok

2S2
x þ S2

y þ S2
wx þ

N

2m
ðs2xS

2
me þ S2

dwÞ�

M. Ghanassi et al. / Signal Processing 87 (2007) 3226–3233 3231
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the stall mode is well described by a 1=m2 function,
such as that given by (11) with lx ¼ 3:2 and le ¼ 4:5.

As the step size m increases, the SS-MSE decreases
to reach a minimum value corresponding to the
boundary point mL between the stall and intermedi-
ate modes; as m is increased beyond this limit, the
SS-MSE starts increasing and the algorithm leaves
the stall mode to enter the intermediate mode.
Increasing m further leads to the stochastic gradient
mode.

Fig. 4 shows experimental results of the SS-MSE
in stall mode as a function of the variance s2x of the

input signal xðkÞ. We have a good agreement with
the expression of (11) with parameters lx ¼ 3:2 and
le ¼ 4:5. In particular, the presence of the floor
function in (11), not present in earlier analysis of the
stall mode, enables a good prediction of the stair
case behaviour of the SS-MSE as a function of the
input signal variance.

In the intermediate and stochastic gradient
modes, the SS-MSE increases with m. Experimental
results of the SS-MSE for these modes are in a very
good agreement with theoretical results of (13)
and (21).

4. Conclusion

In this paper, we studied the impact of quantiza-
tion effects on the steady-state behaviour of the
LMS algorithm. We introduced a new intermediate

mode to characterize the algorithm behaviour for a
specific range of step-size parameter values and
developed a simplified theoretical model that
provides an analytic expression of the correspond-
ing steady-state MSE values for a white stationary
Gaussian input signal. We also reviewed the stall

mode and provided a new expression that predicts
the discontinuous behaviour of the steady-state
MSE as a function of the input signal power.
Combined to the analysis of quantization effects in
stochastic gradient mode, our study provides uni-
fying set of analytic expressions for the steady-state
MSE for the complete range of step-size parameter
values. Experimental results show good agreement
with our theoretical analysis.
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Fig. 3. Steady-state MSE versus m for fixed-point LMS with an

intermediate accumulator (b ¼ 16, N ¼ 100). The three solid

curves are for the three modes (stall, intermediate, and stochastic

gradient). The circles show the experimental results. The

horizontal line is the limiting SS-MSE xlim.
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Fig. 4. Steady-state MSE in stall mode versus the input signal

variance, for b ¼ 16, N ¼ 100, m ¼ 0:02. The solid line is from

(11). The circles are experimental points.
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Fig. 2. Steady-state MSE versus m for fixed-point LMS without

an intermediate accumulator (b ¼ 16, N ¼ 100). The three solid

curves are for the three modes (stall, intermediate, and stochastic

gradient). The circles show the experimental results. The

horizontal line is the limiting SS-MSE xlim.
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