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In time of arrival (TOA) estimation of received ultra-wideband (UWB) pulses, traditional

maximum likelihood (ML) and generalized likelihood estimators become impractical

because they require sampling at the Nyquist rate. Sub-Nyquist ML-based TOA estima-

tion currently assumes a priori knowledge of the UWB channels in the form of the

average power delay profile (APDP). In this paper, instead of assuming a known APDP, we

propose and investigate a joint estimator of the TOA and the APDP. We assume a multi-

cluster parametric APDP model and estimate its parameters via a least-squares

approach; the estimated APDP is then used in connection with a ML criterion to obtain

the TOA estimate. The proposed method has a low sampling rate requirement and is

well-suited for real-time implementation. Simulation results show that it can achieve

improved accuracy in practical UWB TOA estimation scenarios, when compared to other

competing approaches.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

In the past few years, applications of localization and
tracking algorithms in wireless sensor networks (WSN)
and radio frequency identification (RFID) have received
considerable attention. RFID-based localization allows an
object or person to be identified and located using a radio
wave transmission [1] from a RFID transmitter (tag) to the
multiple RFID receivers (tag readers). The spatial coordi-
nates of the RFID tag are calculated by triangulation based
on range measurements as obtained from, e.g., time of
arrival (TOA) estimation of the received signals at the tag
readers [2]. Impulse radio (IR) ultra-wideband (UWB)
signals are particularly well suited for this task, as they
can provide very accurate TOA estimates which, in turn,
can lead to localization within an order of a few centi-
meters [3].
. All rights reserved.

ds québécois de la

ang).
Traditionally, TOA estimation is performed by using a
correlation or matched filter (MF) receiver, where the
received noisy signal is matched to a time-shifted replica
of the undistorted transmitted pulse waveform. The TOA
estimate is then obtained as the time shift corresponding
to the peak value of the squared output of the MF. In the
case of a single path radio channel, and under low noise
conditions, this method provides good estimates of the
unknown delay, which is equal to the propagation time
between the tag and the tag reader (assuming there is no
synchronization error). However, these ideal conditions
are rarely met in practical applications of UWB signals to
RFID localization [4], where the typical radio channel
exhibits a complex multipath structure [5].

In particular, due to the multipath propagation, it is
very likely that the strongest multipath component will
not correspond to the first arrival path [6]. Therefore, MF
based methods are in general not applicable to TOA
estimation of UWB signals. A maximum likelihood (ML)
TOA estimator was derived in [7] with explicit considera-
tion of multipath propagation. Its performance was shown
to closely approach the Cramer-Rao bound (CRB) at high
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signal-to-noise ratios (SNRs). However, the excessive com-
putational cost associated with the search over the multi-
dimensional delay and gain space, combined with the high
sampling rate requirement, render this joint estimator
impractical for UWB channels with a large number of
multipaths, as it is well recognized in the literature [3,8].
To reduce complexity, the generalized maximum likeli-
hood (GML) estimator was proposed in [9]. Under the
assumption that the strongest path has been correctly
acquired, this estimator obtains the desired TOA as the
location of smallest delay found to be above a predeter-
mined threshold during a backward search starting from
the strongest path location.

Although the previously mentioned ML-based approaches
can achieve good TOA estimation accuracy, the requirement
of sampling the received signals at the Nyquist rate makes
them impractical due to the prohibitive implementation
costs. Consequently, TOA estimation approaches with lower
sampling rate requirements have gained significant interest
in the recent years. Although the performance of the sub-
Nyquist estimators is not as good as that of the Nyquist ones,
their low computational complexity makes them attractive
for low-cost ranging applications. In particular, low-
complexity estimators based on the energy detection (ED)
receiver [10–12] have become quite popular. Within this
class, Gezici et al. [10] propose a two-step approach, in which
TOA estimation is performed by first obtaining a coarse TOA
estimate based on ED, and then refining the estimate via
hypothesis testing. The performance of low-sampling rate MF
and ED for TOA estimation based on thresholding is analyzed
and compared in [11]. Two new Bayesian TOA estimators
that rely on the overall energy profile available at the output
of the ED are proposed in [12]. A main disadvantage of ED-
based estimators is that they may suffer greatly from noise
and their performance thus degrades rapidly at low SNR. ML
estimators based on sub-Nyquist sampling models have also
been proposed, such as the maximum energy sum selection
(MESS) and its weighted (W-MESS) and double-weighted
(DW-MESS) versions [13]. In [14], ML timing estimation with
sub-sampling is proposed under the assumptions of normally
distributed channel impulse response and known power
delay profile.

These sub-Nyquist sampling ML estimators can achieve
good estimation accuracy, but to function properly, they
generally require a priori information about the channel, in
the form of the average power delay profile (APDP), which
should be estimated beforehand. As we have been able to
verify, a lack of adequate information about the APDP can
significantly deteriorate the performance of these estimators.
Besides its application in ML-based TOA estimation, the APDP
is an important characteristic of the UWB channel in its own
right. Indeed, it can provide useful information about the
characteristics of the multipath radio channel, including the
presence of dominant scatterers in the vicinity of the RFID
transmitter as well as the reflection/absorption properties of
the surrounding environment. Despite its importance, the
estimation of the ADPD from a statistical signal processing
perspective has not yet been extensively explored.

In this work, we propose to jointly estimate the APDP of
the UWB channel, along with the desired TOA of the IR signal
at sub-Nyquist sampling rate. To this end, and motivated by
the work of the IEEE 802.15.4a Task Group on standard
channel models for IR-UWB systems [15], we adopt a multi-
ple cluster parametric model for the APDP. The parameters of
this model include the clusters’ arrival times, peak power
levels and decay rates which, together with the unknown
TOA, define the unknown parameter vector subject to
estimation. We first derive the likelihood function of the
observed data for the complete set of unknown parameters.
To simplify the multi-dimensional search, we consider a sub-
optimal scheme in which the APDP parameters are first
estimated via a least-squares approach. The resulting APDP
is then used to find the TOA estimate via the ML criterion
through a one-dimensional search at the chip level (sub-
Nyquist). We also derive the CRB for joint unbiased estima-
tors of the APDP parameters and TOA. Through numerical
simulations of IR-UWB signal propagation in realistic multi-
path UWB channels, the proposed joint estimator is shown to
produce accurate estimates of the TOA and the APDP para-
meters. The newly obtained APDP estimate can also be used
in other existing sub-Nyquist estimators which need this
information beforehand. Using the same chip sampling rate
at the receiver, we show that the proposed joint TOA
estimator outperforms the previous ones as it can achieve a
finer accuracy in practical UWB TOA estimation scenarios.
The proposed method has reasonable complexity and is well-
suited for real-time implementation.

The remainder of this paper is organized as follows.
Section 2 gives a description of the system model. The
proposed method for joint TOA and APDP estimation is
derived in Section 3 while in Section 4, the CRB for joint
estimation of these parameters is derived. Performance
comparisons of the proposed method to other benchmark
approaches are presented and discussed in Section 5.
Finally, a summary and conclusion are given in Section 6.

Regarding notations: A baseband signal model is
assumed so that, unless otherwise indicated, all signals
and physical quantities of interest are real-valued. Bold
font is used to represent vectors and matrices. Superscript
T is used to denote matrix transpose. I denotes an identity
matrix of appropriate dimension. Finally, E½�� stands for
expectation.

2. System model

We consider a RFID-based location system in which the
tag transmits a time-hopping (TH) IR-UWB signal, s(t),
where t denotes time. TOA estimation is typically per-
formed during the preamble section of a ranging packet. As
described by the IEEE 802.15.4a standard, the preamble
can contain a large number of symbols (e.g., up to 4096)
[16]. To improve processing gain and suppress noise,
averaging over the preamble symbols is a very common
operation [3,17]. The signal s(t) consists of Nf consecutive
frames of duration Tf that amount to a total observation
interval To ¼Nf Tf . In turn, each frame is divided into Nc

consecutive chips of equal duration Tc, so that Tf ¼NcTc.
Within the jth frame, j¼ 0,1, . . . ,Nf�1, a single IR-UWB
pulse w(t) is transmitted with a time offset of cjTc relative
to the beginning of the frame, where cj 2 f0, . . . ,Nc�1g
denotes the TH sequence. We assume that the UWB pulse
waveform w(t) has finite duration Tc, i.e., wðtÞ ¼ 0 for tr0
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Fig. 1. APDP in Saleh–Valenzuela model.

F. Shang et al. / Signal Processing 93 (2013) 1317–1327 1319
and for tZTc . In addition, the pulse transmitted within the
jth frame is affected by a polarity code, dj 2 fþ1,�1g, used
for spectrum smoothing [4]. A data aided approach is
employed in this work in which a known training sequence
(i.e., all zero) is used, which is very common in this
application, e.g., [10,18].

Accordingly, the transmitted signal can be expressed
in mathematical form as

sðtÞ ¼
XNf�1

j ¼ 0

dj

ffiffiffiffiffi
Ep

q
wðt�jTf�cjTcÞ, 0rtrTo ð1Þ

where Ep40 will denote the transmitted energy per
pulse. In practice, both sequences cj and dj are known to
the receiver. In this work, since we consider the single
user case, no TH code will be used; without loss in
generality, we therefore set cj ¼ 08j.

The transmitted UWB signal s(t) propagates over a
multipath channel before reaching the tag reader. A
tapped delay line model is employed to characterize the
UWB multipath channel, as in [10,19]. Assuming a tap
spacing of Tc, this model represents the impulse response
h(t) of the channel as the sum of scaled and delayed
impulses1

hðtÞ ¼
XL�1

l ¼ 0

aldðt�tlÞ ð2Þ

where dð�Þ is the Dirac delta function, al is a zero-mean
random variable representing the amplitude of the lth
multipath component, tl ¼ lTcþt0 is the propagation time
delay of the lth multipath, t040 is the deterministic but
unknown delay of the first path, and L is the number of
time-resolvable multipaths. According to (2), the channel
delay spread is given by tds ¼ LTc . Here, the focus is on
sub-Nyquist TOA resolution and hence we assume that to

is a multiple of the chip duration, i.e., t0 ¼DTc where D is
an integer [10]. This approach reduces the search com-
plexity of the delay estimation; yet, as will be illustrated
in Section 5, our proposed algorithm can be applied with
arbitrary values of t0.

Since the tapped delay line model is based on the use of
resolvable time delay bins, the temporal correlation coeffi-
cients between adjacent tap amplitudes are very small and
can be neglected according to the previous studies
[20,21,14]. Therefore, the channel tap vector, defined as
h¼ ½a0, . . . ,aL�1�

T , has zero mean and covariance matrix

Rh ¼ E½hhT
� ¼

P0 0 . . . 0

0 P1 ^

^ & 0

0 . . . 0 PL�1

2
66664

3
77775 ð3Þ

where the sequence of the diagonal entries, Pl ¼ E½a2
l �, for

l¼ 0, . . . ,L�1, constitutes the average power delay profile
(APDP) of the channel.

The UWB channel model proposed by the IEEE
802.15.4a task group is based on the modified Saleh–
Valenzuela model [15], where each channel tap amplitude
1 The pulse distortion on each multipath component, due to the fine

(time-unresolvable) structure of the channel, is ignored for simplicity.
al follows a Nakagami distribution, with the APDP con-
forming to the doubly exponential decay model with
Poisson inter-arrival times. For mathematical conveni-
ence, we consider a simplified version of this model in
which the amplitudes of the resolvable multipaths in (2)
follow a Gaussian distribution, with the associated APDP
expressed as a sum of multiple, exponentially decaying
clusters, as follows (see also Fig. 1):

Pl ¼
XC�1

k ¼ 0

bke�akðl�ckÞuðl�ckÞ, l¼ 0, . . . L�1 ð4Þ

where C is the total number of clusters, k 2 f0, . . . ,C�1g is
the cluster index, the non-negative parameters bk, ak and
ck represent the peak power level, exponential decay rate
and start time (i.e., arrival time of the first path) of the kth
cluster, respectively, and u(l) denotes the unit step func-
tion (i.e., uðlÞ ¼ 1 for lZ0 and 0 otherwise). We note that
ck represents the arrival delay of the first path within the
kth cluster, relative to the first arrival delay D. Therefore
c0 ¼ 0 and ckockþ1.

The parameters of this APDP model, depend on the
characteristics of the UWB radio propagation environ-
ment. We emphasize that the modeling simplifications
are made purely for the sake of developing a math-
ematically tractable algorithm; in our simulation experi-
ments in Section 5, the resulting algorithm will be shown
to perform adequately when applied to more accurate
UWB channel models that comply with the IEEE 802.15.4a
standard.

After multipath propagation, the received UWB signal
at the tag reader can be expressed as

rðtÞ ¼
XL�1

l ¼ 0

alsðt�tlÞþnðtÞ, 0rtrTo ð5Þ

where n(t) is an additive noise term modeled as a white
Gaussian process. We assume that Tf is sufficiently large
such that there is no interframe interference, that is, the
scaled and delayed replicas of the transmitted pulse
during the jth frame are received during that frame, which
is possible if 0rt0rtmax where the maximum delay
satisfies 0rtmaxrTf�tds. In practice, this assumption is
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well justified since the transmitted pulse signal has a low
duty cycle. Specifically, the pulse repetition period is of the
order of 1 ms while the delay spread of a typical indoor
channel is of the order of a few 100 ns. Nevertheless, the
effect of a small amount of inter-frame interference (IFI) is
further considered in our simulation experiments (see
Section 5). Under this assumption, it follows from (1)
and (5) that

rðjTf þtÞ ¼ dj

ffiffiffiffiffi
Ep

q XL�1

l ¼ 0

alwðt�tlÞþnðjTf þtÞ, 0rtoTf : ð6Þ

To derive the TOA estimator, an equivalent discrete-time
version of the signal model will be used. We first consider
uniform sampling at the rate 1=Ts, where Tsr1=2B and B is
the bandwidth of the transmitted IR signal. Let M¼ Tc=Ts be
an integer, so that each frame is represented by MNc

samples and let rj ¼ ½rðjTf Þ, . . . ,rðjTf þðMNc�1ÞTsÞ�
T denote

the column vector of discrete-time noisy signal samples of
the jth frame. Similarly, the IR pulse w(t) can be represented
by the column vector w¼ ½wð0Þ, . . . ,wððM�1ÞTsÞ�

T and we
let w have unit energy. We emphasize that the sampling
period Ts mentioned here is used only to analyze the
discrete-time system model; in the end, the proposed
estimator will only require the evaluation of the likelihood
function at the sub-Nyquist chip rate of 1=Tc (see Section 3).

Making use of (6), the vector of received signal
samples rj in the jth frame can be written as

rj ¼ dj

ffiffiffiffiffi
Ep

q
Whþnj ð7Þ

where W ¼ ½wD,wDþ1, . . . ,wDþL�1� is a MNc � L matrix
with columns

wd ¼ 0, . . . ,0|fflfflfflffl{zfflfflfflffl}
dM

, wT , 0, . . . ,0|fflfflfflffl{zfflfflfflffl}
MNc�M�dM

2
6664

3
7775

T

ð8Þ

for d 2 fD,Dþ1, . . . ,DþL�1g, and nj is the discrete-time
vector representation of the noise n(t) in the jth frame
with zero-mean and covariance matrix s2

nI.
Given the set of observations rj, for j 2 f0, . . . ,Nf�1g

and the knowledge that the UWB channel’s APDP can be
described as in model (4), our aim is to develop estimators
for the unknown integer delay, D, and the modeling
parameters of the APDP, that is, the number of clusters
C, and the individual clusters’ parameters ak, bk and ck for
k 2 f0, . . . ,C�1g. In the absence of interframe interference,
D is limited to the range 0rDrDmax ¼Nc�L. The cluster
parameters ak and bk are positive real numbers, and the
associated shift parameters ck are non-negative integers.

3. Joint estimation of APDP and TOA

In this section, we develop a novel approach for jointly
estimating the unknown integer delay D and the para-
meters of the APDP. We first derive the log-likelihood
function (LLF) for the joint estimation problem, based on
the above modeling assumptions. To avoid the computa-
tional complexity of maximizing the likelihood function
by searching over the complete parameter space, we
propose a sub-optimal approach in which the APDP
parameters are estimated via least-squares fitting using
the parametric model in (4). The APDP estimates so
obtained are substituted back into the LLF, which is finally
maximized to obtain the desired delay estimate D.

3.1. Log-likelihood function derivation

Since the channel tap vector h and the additive noise
vector nj are independent Gaussian with zero-mean, it
immediately follows from (7) that the vector of observa-
tions in the jth frame, rj, is also the Gaussian with zero-
mean and covariance matrix

Rrj
¼ E½rjr

T
j � ¼ EpWRhWT

þs2
nI ð9Þ

where Rh is given by (3). In addition, because of the white
noise assumption, the covariance matrix between obser-
vation vectors in different frames is simply

Rrirj
¼ E½rir

T
j � ¼ didjEpWRhWT

ð10Þ

Therefore, the covariance matrix of the complete received
signal vector within the observation time To ¼Nf Tf repre-
sented by r¼ ½rT

0 , . . . ,rT
Nf�1�

T , can be described as the
following block matrix

Rr ¼ EpWrRhWT
r þs

2
nI ð11Þ

where Wr ¼ d�W , d¼ ½d0, . . . ,dNf�1�
T with size Nf � 1, and

� represents the Kronecker product. We note that there are
Nf � Nf blocks in the first term on the right-hand side of (11)
and the identity matrix has dimension MNcNf .

Under the Gaussian assumption, the LLF of the
received signal r can be written in the following form:

Lðr; hÞ ¼�rT R�1
r r|fflfflfflffl{zfflfflfflffl}

L1

�lnðdetðRrÞÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
L2

ð12Þ

where h¼ ðP0, . . . ,PL�1,DÞ is the vector of unknown para-
meters, consisting of the APDP values and the integer
delay. The dependence of the LLF on h is through the
covariance matrix, i.e., Rr � RrðhÞ in (11).

After some manipulations, we find that the terms L1

and L2 in the right-hand side of (12) are equal to

L1 ¼�
Ep

s4
n

rT Wr R�1
h þ

EpNf

s2
n

I

� ��1

WT
r rþC1 ð13Þ

and

L2 ¼
XL�1

l ¼ 0

ln det
EpNf

s2
n

RhþI

� �
þC2 ð14Þ

where C1 and C2 are constants independent of the
unknown parameter vector h. The inverse of Rr , which is
needed in L1, can be obtained with the help of the matrix
inversion lemma [22].

In light of (13), it is convenient to define the L� 1
vector z¼ ð1=Nf ÞW

T
r r, whose lth entry can be expressed as

zðl;DÞ ¼
1

Nf

XNf�1

j ¼ 0

djw
T
Dþ lrj ð15Þ

where the dependence on D is now made explicit.
Note that, on the basis of (8), the inner product wT

l rj

represents the lth output (at the chip rate) of a filter
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matched to the transmitted pulse w(t), when applied to
the observed data in the jth frame. Accordingly, the vector
z contains delayed values (by D) of the matched filter
output, further averaged over the Nf available frames.

Making use of (15) and (3) in (13) and after further
simplifications, the final expression of the LLF can be
obtained as

Lðr; hÞ ¼
XL�1

l ¼ 0

SNRl

ð1þSNRlÞ

z2ðl;DÞNf

s2
n

�lnð1þSNRlÞ

" #
ð16Þ

where we define

SNRl ¼
Nf EpPl

s2
n

, l¼ 0,1, . . . ,L�1 ð17Þ

The latter gives the SNR for the lth propagation path and
is a function of the unknown parameter Pl.

The joint ML estimator of the integer delay D and the
APDP values Pl, l¼ 0, . . . ,L�1, can be obtained by max-
imizing the log-likelihood function with respect to these
parameters. Unfortunately, the large dimension (i.e., Lþ1)
of the resulting parameter vector h prohibits a practical
implementation of this search. In the next section, we
develop a simplified scheme based on a lower-dimensional
parametric model of the APDP.

3.2. Estimation of average power delay profile

If the APDP was known, one could estimate the TOA
via a simple one-dimensional search of the LLF in (16)
over the discrete delay parameter D. Motivated by this
observation, we propose to first estimate the APDP and
then substitute the results back in (16) for the final
search. Ideally, as described in Section 2, the APDP of a
UWB channel exhibits a double-exponential decay as a
function of the excess delay parameter l, as given by (4).
Here, we adopt a curve fitting approach based on a
weighted least-squares (LS) rule to fit such a model to a
function of the observed data. Because of the importance
of the single cluster case (C¼1) in the literature and the
resulting simplifications in the APDP estimation, we treat
it separately from the multiple clusters ðC41Þ case.

3.2.1. Single cluster fitting

Differentiating (12) with respect to Pl and setting the
result to 0, we first obtain a preliminary APDP estimate
conditioned on D as follows:

P̂
ð0Þ

l ðDÞ ¼max
1

Ep
½zðl;DÞ2�s2

N�,d0

� �
, l¼ 0, . . . ,L�1 ð18Þ

where zðl;DÞ is the time-shifted correlator output (15), d0

is a small positive number and the maximum operation is
used to ensure that the estimate P̂

ð0Þ

l ðDÞZd040 for all l.
For the single cluster model, we seek to fit the calcu-

lated P̂
ð0Þ

l ðDÞ in (18) to a simplified form of the APDP (4)
with only a single exponentially decaying envelope, i.e.,
Pl ¼ be�la for l¼ 0, . . . ,L�1, with parameters a40 and
b40. Since an exponential decay in linear scale becomes
a straight line in logarithmic scale, we choose to carry out
the curve fitting in the log-domain and seek values of a and
b that best fit ln P̂

ð0Þ

l ðDÞ in a weighted LS sense. Specifically,
these parameters are obtained by solving the following
optimization problem:

min
a,b

XL�1

l ¼ 0

ml9ln P̂
ð0Þ

l ðDÞ�ðln b�laÞ92
ð19Þ

where mlZ0 denotes a suitable weighting sequence. Our

use of ml and our choice for its specific form have a simple

intuitive justification. Ideally, we would like to include in
the fitting only the data points that correspond to actual
multipath components (MPCs). Also, due to the log opera-
tion, we find that paths with very low power would be
overemphasized in the objective function, which lead to
poor fitting. Therefore, we propose to include in the fitting
only the local maxima, as they are more likely to corre-
spond to MPCs, and discard the very low power values at
the same time. Accordingly, we set ml ¼ 1 if there is a local

maximum, i.e., P̂
ð0Þ

l�1ðDÞo P̂
ð0Þ

l ðDÞ4 P̂
ð0Þ

lþ1ðDÞ, and 0 otherwise.

This approach, which has been confirmed experimentally,
allows us to mask out the noisy low power data points, as
desired.

The analytic solution to (19) is given by

â ¼�
PL�1

l ¼ 0 mlðl�A1Þ ln P̂
ð0Þ

l ðDÞ

A0A2
1�A0A2

ð20Þ

b̂ ¼ exp
1

A0

XL�1

l ¼ 0

ml ln P̂
ð0Þ

l þA1â
 !

ð21Þ

where we define

A0 ¼
XL�1

l ¼ 0

ml, A1 ¼
1

A0

XL�1

l ¼ 0

lml, A2 ¼
1

A0

XL�1

l ¼ 0

l2ml ð22Þ

Note that A0 is the total number of local maxima, while A1

and A2 correspond to the first and second moments of the
weighting ml respectively.

With the above values of â and b̂, a new APDP
estimate is obtained as follows:

P̂
ð1Þ

l ðDÞ ¼ b̂e�lâ , l¼ 0, . . . ,L�1 ð23Þ

This estimate can easily be calculated for every possible D

in the range of 1,2, . . . ,Dmax, and then substituted back in
(16) to finalize the one-dimensional search over the delay
parameter, as further discussed in Section 3.3. Although
single cluster fitting may lead to an oversimplified
description of the overall APDP, its use in connection
with the LLF (16) can still provide a fine estimation of the
unknown delay D. However, in cases where there are
multiple separated clusters in the UWB channel, we find
that the TOA performance can be improved by using a
more sophisticated fitting approach that better reflects
this situation.

3.2.2. Multiple clusters fitting

In this case, we would like to adjust the parameters in
the complete model (4) to achieve the best fit with the
available data obtained for a specific channel. Since a
more complicated APDP model is adopted, it is desirable
to estimate its parameters only once; that is, to minimize
complexity, we will not seek to estimate a new P̂

ð1Þ

l for
every possible D.
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It turns out that for this purpose, only a rough estimate
of D is needed, and this can be obtained by considering
the complete set of instantaneous power values at the
matched filter output, i.e., P̂

ð0Þ

i ð0Þ, as given by (18) with
D¼0 but with the range of the subscript i now extended
over the entire frame, i.e., i¼ 0, . . . ,Nc�1. To obtain the
preliminary delay estimate of D, say D̂p, we use a
method similar to the maximum energy sum selection
(MESS) in [13], with the main difference that a threshold
is adopted to rule out impossible timing points. As a
result, the search range for the delay is now much smaller,
which greatly reduces the computational cost. Based on
the estimate D̂p, we form the sequence P̂

ð0Þ

l ðD̂pÞ for
l¼ 0, . . . ,L�1 and use it to fit the parameters of the multiple
cluster model in (4). To this end, we propose an iterative
weighted LS approach, which searches for, and fits conse-
cutive clusters one at a time, until a stopping criterion has
been met.

A detailed description of the proposed algorithmic
steps follows2:

Step1: We fit the instantaneous log power data for the
whole frame (i.e., ln P̂

ð0Þ

i ð0Þ, i¼ 0, . . . ,Nc�1), to a straight
line lTH1

ðiÞ ¼ ln b�ia, which will be used as a basic thresh-
old. In particular, the parameters a and b are obtained via
a weighted LS fitting similar to (19), but where the range
of summation is now from 0 to Nc�1

arg min
a,b

XNc�1

i ¼ 0

mi9ln P̂
ð0Þ

i ð0Þ�ðln b�iaÞ92
ð24Þ

where mi ¼ 1 if P̂
ð0Þ

i ð0Þ is a local maximum and 0 otherwise.
The use of lTH1

ðiÞ will greatly reduce the search range for the
preliminary estimate of D̂p in the next step.

Step2: We identify the local maxima of ln P̂
ð0Þ

i ð0Þ which

are above the basic threshold line lTH1
ðiÞ. Among these

local maxima, we consider those in the range 0r irDmax.
For each of these points, we calculate the sumPL�1

l ¼ 0 ln P̂
ð0Þ

l ðiÞ. The value of i for which this sum is

maximum is taken as the estimate D̂p. The latter also gives

us the position of the first cluster in the frame, i.e., c0 ¼ D̂p.

Step3: We fit the local maxima of ln P̂
ð0Þ

l ðD̂pÞ,
l¼ 0, . . . ,L�1 to a new straight line, denoted by lTH2

ðlÞ, using
the same procedure as in the single exponential case. This
new threshold, obtained using the data of all the clusters,
will be used to determine the onset of any new cluster, that
is, the APDP value at the starting point of each cluster, given
by parameter bk, should be above lTH2

ðlÞ.
Step4: We search for new clusters using lTH2

ðlÞ as a
threshold. Assuming that the starting time of the current
cluster ck is known, we detect a new cluster if we find at
least one point P̂

ð0Þ

l ðD̂pÞ that is above lTH2
ðlÞ in the range

ckþbtmic=Tccr irckþL, where tmic is the minimum inter-
cluster delay depending on the channel environment, e.g.,
tmic ¼ 10 ns. We denote the corresponding abscissae l for
these points as lj,j¼ 1, . . . ,J, where J is the total number of
such points.
2 At this point, the reader may consult Fig. 2 for further clarifications

on these steps; the experimental methodology for generating this figure

will be explained in detail in Section 5.
Step5: Once a new cluster is detected, we have to
identify its starting time. Intuitively, l1 could be consid-
ered as the new cluster starting time. However, this may
not be the best choice due to noise and the random nature
of the channel. Therefore, to select the starting time of the
new cluster ckþ1, we proceed as follows. For each
j¼ 1, . . . ,J, we temporarily set ckþ1 ¼ lj and perform a
weighted LS fitting of the current exponential cluster
between ck and lj according to

arg min
ak ,bk

Plj�1

i ¼ ck
mi9ln P̂

ð0Þ

i ð0Þ�ðln bk�ði�ckÞakÞ9
2

Plj�1

i ¼ ck
mi

ð25Þ

The value of lj with the smallest average LS fitting error
is chosen as the new cluster starting time, that is ckþ1 ¼ lj,
and the corresponding values of ak and bk are used as
model parameters for the current cluster.

Step6: We repeat Steps 4 and 5 until there are no new
clusters detected and we let C denote the total number of
detected clusters.

3.3. TOA estimation

For the single cluster case, we let the estimated P̂
ð1Þ

l ðDÞ

in (23) depend on the integer delay D. Since we simply
assume one decaying exponential, it is simple to calculate
this APDP estimate for every possible D. Note that a
should be positive to ensure an exponential decay; there-
fore, tentative delays D that lead to a negative value of a
should be discarded. For every possible D in the search
range, we substitute P̂

ð1Þ

l ðDÞ back into the LLF (16), and
then search for the maximum over D, which is the only
unknown parameter left to be estimated.

For the multiple clusters case, the APDP estimate P̂
ð1Þ

l

obtained from the above procedure bears no dependence
on D. Inserting the refined APDP estimate P̂

ð1Þ

l back into the
LLF (16), again, the only unknown parameter left to be
estimated is D, which can be finally obtained via a simple
one-dimensional integer search. We note that once the
APDP has been estimated, the final LLF L(D) only depends
on the matched filter outputs zðl;DÞ and the background
noise variance s2

n, which can be obtained from a priori

estimation. We denote the final delay estimate by D̂.

3.4. Complexity analysis

The computational complexity of our proposed approach
mainly depends on two factors, namely the preliminary LS-
based APDP estimation and the subsequent TOA estimation
which involves the maximization of the LLF.

For the sake of conciseness, our analysis of the APDP
estimation complexity focuses on multiple cluster fitting
as in Section 3.2.2. This approach begins in Step 1 with the
preliminary calculation of Nc log power values, at cost of
4Nc flops.3 The core of the procedure then relies on the
application of multiple LS estimation steps, in which a set
3 The computational complexity is evaluated in terms of the number

of required floating point operations (flop), where a multiply-add, a

division and a numerical function evaluation (e.g., log) each count for

one flop.
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of power measurements, represented here by a vector b of
generic length m, are fitted to a straight line in the log
domain, represented by the product Ax where A is a
known matrix of size m� 2 and x¼ ½a,b�T is the vector of
unknown parameters. The efficient implementation of the
LS method then involves the QR factorization of matrix A,
with a cost of 8 m, followed by the computation of the
unknown parameters with a cost of 4 m. Therefore, the
total cost for each LS estimation step is 12 m, which is
linear in m. In Step 1, we have moNc , while in Step 3, we
have moLrNc . For Step 5, it is necessary to perform
multiple LS fittings of various sizes. For simplicity, let us
assume a constant value of J for each cluster index k.
Because the cost of each LS fit is linear in m, it can be
verified that the total cost of Step 5 is upper bounded by
12JL. The total complexity of the multiple cluster APDP
estimation algorithm is therefore upper bounded by
16Ncþ12ðJþ1ÞL where J would typically be a small
integer. Because we only use local maxima in the fitting,
these bounds tend to be very conservative.

For each frame, we assume that the Nc squared corre-
lator values, i.e., zðl;0Þ2 for l¼ 0, . . . ,L�1, are available. For
each l¼ 0, . . . ,L�1, we first compute the numerical coeffi-
cients al ¼ SNRl=ð1þSNRlÞ, at the cost of 4L. From there,
each evaluation of the LLF (16) amounts to the calculation
of an inner product. The total cost of the ML search is
therefore of the order of LDmax, where Dmax delimits the
range for the TOA search. This cost for the evaluation and
maximization of the LLF is comparable to that of compet-
ing sub-Nyquist estimators which, when implemented at
the same sampling rate, require the evaluation of an inner
product with similar size for each tentative value of the
unknown delay [13,14].

In practice, we find that the search range DmaxZ12J, so
that the total computational cost is dominated by the ML
search for the TOA estimation, with the APDP estimation
representing only a smaller fraction of the former.

4. Cramer Rao bound

The CRB provides a lower bound on the covariance
matrix of any unbiased point estimator of a parameter
vector. Specifically, if ĥðrÞ denotes such an estimator of
vector h¼ ½y0, . . . ,yL�, we have that

CovðĥðrÞÞZJðhÞ�1
ð26Þ

where Covð�Þ denotes the covariance matrix of its vector
argument, and JðhÞ is the Lþ1 by Lþ1 Fisher information
matrix. The latter is defined in terms of its entries

Ji,jðhÞ ¼�E
@2Lðr; hÞ

@yi@yj

� 	
, i,j¼ 0, . . . ,L ð27Þ

where the expectation is based on the data model with
parameter vector h. The CRB is of practical interest here
since the ML estimator can achieve this bound asympto-
tically under certain limiting conditions [23]. In this
section, we derive the CRB for the joint estimation of
the TOA and APDP, as represented by the unknown
parameter vector h.

To simplify the derivations, and especially manipula-
tions involving differentiation with respect to time, we
begin by introducing an equivalent integral representa-
tion for the discrete sample values at the matched filter
output. That is, we let

zðl;DÞ �
1

Nf Ts

Z To

0
rðtÞxðt�ðlþDÞTcÞ dt ð28Þ

where the template signal xðtÞ is defined by

xðtÞ ¼
XNf�1

j ¼ 0

djwðt�jTf Þ ð29Þ

This approximation is well justified for small values of Ts,
i.e., Tsr1=2B as previously assumed.

We differentiate (16) with respect to Pl and D, to
obtain

@Lðr; hÞ

@Pl
¼
@Lðr; hÞ

@SNRl

@SNRl

@Pl

¼
EpNf

s2
nð1þSNRlÞ

z2ðl;DÞNf

s2
nð1þSNRlÞ

�1

" #
ð30Þ

and

@Lðr; hÞ

@D
¼

2Nf

s2
n

XL�1

l ¼ 0

SNRl

1þSNRl
zðl;DÞz0ðl;DÞ ð31Þ

where we define

z0ðl;DÞ ¼
@zðl;DÞ

@D
¼�

M

Nf

Z T0

0
rðtÞx0ðt�ðlþDÞTcÞ dt ð32Þ

and

x0ðtÞ ¼
dxðtÞ

dt
ð33Þ

Based on (30) and (31), we can further obtain the
required second order derivatives

�E
@2Lðr; hÞ

@Pl1@Pl2

� 	
¼ 0 8l1al2 ð34Þ

�E
@2Lðr; hÞ

@P2
l

" #
¼

E2
p

ðEpPlþs2
n=Nf Þ

2

2E½zðl;DÞ2�

EpPlþs2
n=Nf

�1

 !
ð35Þ

�E
@2Lðr; hÞ

@Pl@D

� 	
¼�

2EpN2
f

s4
n

E½zðl;DÞz0ðl;DÞ�

ð1þSNRlÞ
2

ð36Þ

and

E
@2Lðr;hÞ

@2D

� 	
¼�

2Nf

s2
n

XL�1

l ¼ 0

SNRl

1þSNRl
ðE½zðl;DÞz00ðl;DÞ�þE½z0ðl;DÞ2�Þ

ð37Þ

Next, to calculate (35)–(37), we need to evaluate the
expected values E½zðl;DÞ2�, E½zðl;DÞz0ðl;DÞ� and E½zðl;DÞz00

ðl;DÞþz0ðl;DÞ2� at the true value of D.
For the transmitted pulse, since wðTcÞ ¼wð0Þ ¼ 0 is the

common case in practice, it comes naturally thatZ Tc

0

dwðtÞ

dt
wðtÞ dt¼

1

2
½w2ðTcÞ�w2ð0Þ� ¼ 0 ð38Þ

and thereforeZ Tc

0

d2wðtÞ

dt2
wðtÞ dt¼�

Z Tc

0

dwðtÞ

dt

� �2

dt ð39Þ
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After some manipulations using the (38) and (39), the
required expectations in (35)–(37) can be obtained as
follows:

E½zðl;DÞ2� ¼ EpPlþ
s2

n

Nf
ð40Þ

E½zðl;DÞz0ðl;DÞ� ¼ 0 ð41Þ

and

Efzðl;DÞz00ðl;DÞþz0ðl;DÞ2g ¼�gEpPlT
2
c ð42Þ

where the parameter

g¼
R Tc

0 dwðtÞ=dt

 �2

dtR Tc

0 wðtÞ2 dt
ð43Þ

is positive and determined by the pulse shape.
Based on (36) and (41), it follows that:

�E
@2Lðr; hÞ

@Pl@D

� �
¼ 0 8l ð44Þ

Together with (34), this implies that the Fisher informa-
tion matrix JðhÞ is diagonal. Using (35), (37), (40) and (42),
the diagonal entries of JðhÞ can be obtained as

Jl,l ¼�E
@2Lðr; hÞ

@2Pl

� �
¼

EpNf

s2
nð1þSNRlÞ

� 	2

, l¼ 0, . . . ,L�1

ð45Þ

and

JL,L ¼�E
@2Lðr; hÞ

@2D

� 	
¼

2gEpNf T2
c

s2
n

XL�1

l ¼ 0

Pl
SNRl

1þSNRl
ð46Þ

Consequently, the CRBs are given by

VarðP̂ lÞZ J�1
l,l ¼ P2

l 1þ
1

SNRl

� �2

ð47Þ

VarðD̂ÞZ J�1
L,L ¼

1

2gT2
c

XL�1

l ¼ 0

SNR2
l

1þSNRl

 !�1

ð48Þ

From the formulas in (47) and (48), it is obvious that
the CRBs depend on the SNRl. When SNRlb1, the expres-
sions for the CRB take simplified forms as follows:

VarðP̂ lÞZ J�1
l,l � P2

l ð49Þ

and

VarðD̂ÞZ J�1
L,L �

s2
n

2ð
PL�1

l ¼ 0 PlÞgEpNf T2
c

ð50Þ

Consequently, the CRB for the TOA estimate t̂ becomes

Varðt̂ÞZ s2
n

ð
PL�1

l ¼ 0 PlÞ2gEpNf

ð51Þ

We note from (49) that the standard deviation for the
APDP at the lth tap is lower bounded by the correspond-
ing power value, which is consistent with well-known
results from the theory of unsmoothed power profile
estimation [24]. Lower bounds on the estimation variance
of the APDP parameters ak and bk can be obtained in turn
by applying the chain rule for derivatives to (27) and
making use of the results in (34) and (45). As for the CRB
of the TOA in (51), it is inversely proportional to the total
average power over the L taps, i.e.,
PL�1

l ¼ 0 Pl, the ratio of
pulse energy-to-noise variance Ep=s2

n, the pulse shape
factor g in (43) and the number of frames Nf.

5. Simulation and results

5.1. Methodology

In the simulations carried out here, the frame duration
is set to Tf¼200 ns; each frame is further divided into
Nc¼400 chips of duration Tc¼0.5 ns. Unless specified
otherwise, the number of transmitted frames is set to
Nf¼60. It is also assumed that each frame is equivalent to
a single symbol. The transmitted UWB pulse w(t) is a unit-
energy Gaussian doublet [25] with duration Tc and effec-
tive bandwidth B¼4 GHz. The energy per pulse Ep is given
in terms of the SNR parameter Ep=s2

n. The assembled pulse
sequence is then filtered by a multipath UWB channel.

The channel impulse responses used in our work are
derived from the IEEE 802.15.4a typical channel models
[15]. These impulse responses are randomly generated
such that the multipath arrival times are grouped into
multiple clusters, each cluster being characterized by an
exponentially decaying average power envelope. Several
such models have been developed to fairly represent
channel conditions in different types of environments,
such as residential, office, outdoor and industrial settings.
The parameters of these models have been adjusted based
on measurements over a representative range of frequen-
cies and distances.

As mentioned in Section 3, the single cluster fitting
method utilizes the overall fading of the channel with
delay by assuming a single exponentially decaying pro-
file; therefore, this simple method can be applied to all
kinds of realistic channels. The multi-cluster fitting
method seeks to further exploit finer details present in
the APDP structure, i.e., by representing it in terms of
multiple exponentially decaying components caused by
the physical environment. When there is a clear multi-
cluster structure in the channel, this method will indeed
lead to better performance than the previous one. We
note that the multi-cluster structure is very common for
indoor UWB channels, as indicated by the measurement
results in [5].

In our experiments, minor modifications were made to
these IEEE channel models to allow for explicit control of
the APDP parameters, i.e., number of clusters C, and for
each cluster, shape parameters ak,bk,ck. The results pre-
sented next focus on the CM3 channel model, which is
representative of an indoor office environment; however,
similar results and conclusions were obtained with other
standard channels. The following parameter values were
used: delay spread tds ¼ 120 ns, number of taps L¼240
and maximum delay tmax ¼ 80 ns. We note that the tap
spacing of the created channel can be smaller than Tc,
while our method still works fine with the assumption of
Tc spaced taps.

Zero-mean white noise is added to the time domain
samples at the UWB channel output. At the receiver side,
the baseband antenna signal is passed through a (digital)
filter matched to a local copy of the transmitted reference
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s(t). The MF output is then sampled at the sub-Nyquist
rate 1=Tc and the resulting samples are used in the ML
estimator of t and Pl as explained in Section 3. In addition,
several TOA estimators from the recent literature are
implemented and used as benchmarks.

The TOA estimation performance is evaluated in terms
of the root mean square error (RMSE), defined asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½ðD̂Tc�t0Þ
2
�

q
where D̂ and t0 denote the estimated

integer delay and the true value of the delay, respectively.
In the Monte-Carlo simulations, the RMSE is approximated
by averaging over 1000 independent channel trials, where
in each trial a different value of t0 is selected randomly from
the interval ð0,tmax�. That is, t0 here is arbitrary and not
limited to being an integer multiple of Tc.

5.2. Results and discussion

The fitting in semi-logarithmic scale for several clus-
ters is illustrated in Fig. 2 for a particular set of observed
data with SNR¼30 dB, as obtained with a CM3 channel
displaying three identifiable clusters in its APDP structure.
The longest straight line is the basic threshold lTH1

ðiÞ,
which helps to select the first preliminary estimate D̂p

and the corresponding log values ln P̂
ð0Þ

l ðD̂pÞ, l¼ 0, . . . ,L�1.
The second longest straight line represents the new
threshold lTH2

ðlÞ, that is used in turn to detect the clusters.
Finally, the C¼3 clusters detected in this example are
fitted using the three shorter straight lines of varying
slopes.

After getting all the needed parameters, i.e., C and the

set of triplets fak,bk,ckg
C�1
k ¼ 0, the final APDP estimate P̂

ð1Þ

l

can be calculated according to the general expression in

(4). The newly estimated APDP P̂
ð1Þ

l is plotted in linear

scale in Fig. 3, along with the true APDP Pl based on the
exact parameter values. It is seen that the proposed
method provides a sufficiently accurate estimation of
the true APDP. In this figure, we also show the result of
single cluster estimation, showing that the single cluster
method can be used to provide useful information about
the rate of decay of the APDP even in this case.
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(SNR¼30 dB).
To see whether multi-cluster fitting offers any perfor-
mance advantages over single-cluster fitting, we com-
pared the average fitting error and final TOA estimation
performance as a function of the assumed number of
clusters. For each experimental trial, we generate TOA
estimates corresponding to different numbers of clusters,
specifically: fixing C¼1, 2 and 3. For each of the consid-
ered cases, we show in Fig. 4 the average fitting error

(defined by
PL�1

l ¼ 0 ml9P̂
ð0Þ

l �P̂
ð1Þ

l 92
=
PL�1

l ¼ 0 ml) as a function of

the SNR. It can be seen that multi-cluster fitting yields the
lowest fitting error, followed by 2-cluster fitting and
1-cluster fitting.

In Fig. 5 we show the corresponding RMSE of TOA
estimation. The same trend as in Fig. 4 is observed where
it is seen that multi-cluster fitting also yields the best TOA
estimation performance. It is interesting that while the
variations in the average fitting errors are relatively small,
the gain in TOA performance can be significant, especially
in the mid to high SNR range, i.e., between 15 dB and
30 dB, which is of great practical interest.
10 15 20 25 30 35 40
6.5

7

7.5

8

8.5

9

9.5

10

10.5 x 10−3

SNR (dB)

A
ve

ra
ge

 F
itt

in
g 

E
rr

or

3-clusters fitting
2-clusters fitting
1-cluster fitting

Fig. 4. Average APDP fitting error versus SNR .



F. Shang et al. / Signal Processing 93 (2013) 1317–13271326
Fig. 6 shows the TOA estimation performance of the
proposed multi-cluster fitting-based method as a function
of the SNR for different values of the number of frames Nf.
As expected, the TOA estimation accuracy improves as the
number of frames increases, due to the averaging opera-
tion that reduces the effect of noise.

Next, we compare the proposed TOA estimator with the
WMESS, DW-MESS [13] and ML with partial channel
information (MLP) [14] estimators. Since these methods
require a priori knowledge of the APDP, we evaluate their
performance with the true APDP (used to generate the CM3
channels) and with the estimated APDP obtained using the
proposed multi-cluster method in Section 3.2. For a fair
comparison, all the methods use the same sub-Nyquist
sampling period of 0.5 ns. The window length for the
reference methods is set to 120 ns, which is equal to the
channel delay spread tds. The other parameter values are
the same as for the proposed method. Fig. 7 shows the
performance of the four methods under consideration as a
function of the SNR. We can see that the proposed method
achieves a better accuracy than the previously proposed
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methods when the latter use the estimated APDP. Even
when they use the true APDP, the proposed method out-
performs WMESS and performs closely to the other two
methods at high SNR.

We also investigate the behavior of the proposed
approach under low levels of IFI. To this end, we consider
an extended version of the CM5 channel model of total
duration tds ¼ 280 ns, which now exceeds the frame dura-
tion Tf¼200 ns. The tail portion of the response that extends
over the next frame, consisting of the paths with delay in
excess of 120 ns, is linearly scaled so that its energy E2 is
equal to a given percentage of the energy E1 within the
frame, as represented by r¼ E2=E1. The comparative results
obtained with the various sub-Nyquist TOA estimators
under consideration in this study, are presented in Fig. 8,
which shows the RMSE of the TOA estimates as a function of
r at an operating SNR of 25 dB. If the level of IFI level is not
too large, all the sub-Nyquist estimators can still work
properly and maintain the same, or a slightly degraded level
of performance. However, when the IFI becomes too large,
all the TOA estimators will degrade significantly.
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Finally, Fig. 9 compares the RMSE performance of the
proposed TOA estimator as a function of the SNR when
different time resolutions are used to obtain a finer
estimate by searching around the initial estimate D̂Tc.
The CRB for TOA estimation derived in Section 5 is also
shown for reference. From this figure, we conclude that
conducting a fine local search using a higher sampling
rate can significantly improve the estimation perfor-
mance. However, this improvement comes at a slightly
higher implementation cost.
6. Conclusion

We proposed and investigated a joint sub-Nyquist
ML-based estimator of the TOA and APDP to UWB impulse
radio applications. A parametric model was assumed for
the APDP and its parameters were estimated jointly with
the unknown TOA by exploiting the interplay between the
ML and LS approaches. This is in contrast to the previous
sub-Nyquist methods which require a priori knowledge of
the APDP. Through simulations, we showed that the
proposed TOA estimator has a good accuracy and can
outperform earlier methods when using the same esti-
mated APDP. While the joint estimation of the APDP adds
to the complexity, the increase is still reasonable since all
digital processing is done at the lower chip (sub-Nyquist)
rate. The accuracy of the proposed TOA estimator could be
improved by fine search with a higher sampling rate.

References

[1] R. Want, An introduction to RFID technology, IEEE Pervasive
Computing 5 (2006) 25–33.

[2] C. Xu, C.L. Law, TOA estimator for UWB backscattering RFID system
with clutter suppression capability, EURASIP Journal on Wireless
Communications and Networking (2010) 14. http://10.1155/2010/
753129.
[3] D. Dardari, A. Conti, U. Ferner, A. Giorgetti, M. Win, Ranging with
ultrawide bandwidth signals in multipath environments, Proceed-
ings of the IEEE 97 (2009) 404–426.

[4] Z. Sahinoglu, S. Gezici, I. Güvenc, Ultra-wideband Positioning
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