Speech Communication 87 (2017) 18-30

journal homepage: www.elsevier.com/locate/specom

Contents lists available at ScienceDirect

W,

Speech Communication

Regularized non-negative matrix factorization with Gaussian mixtures
and masking model for speech enhancement™

@ CrossMark

Hanwook Chung?* Eric Plourde®, Benoit Champagne?

aDepartment of Electrical and Computer Engineering, McGill University, Montreal, Quebec, Canada
b Department of Electrical and Computer Engineering, Sherbrooke University, Sherbrooke, Quebec, Canada

ARTICLE INFO

Article history:
Received 4 September 2015
Available online 11 November 2016

Keywords:

Single-channel speech enhancement
Supervised algorithm

Non-negative matrix factorization
Regularization

Gaussian mixture model

Masking effects

ABSTRACT

We introduce single-channel supervised speech enhancement algorithms based on regularized non-
negative matrix factorization (NMF). In the proposed framework, the log-likelihood functions (LLF) of
the magnitude spectra for both the clean speech and noise, based on Gaussian mixture models (GMM),
are included as regularization terms in the NMF cost function. By using this proposed regularization
as a priori information in the enhancement stage, we can exploit the statistical properties of both the
clean speech and noise signals. For further improvement of the enhanced speech quality, we also in-
corporate a masking model of the human auditory system in our approach. Specifically, we construct a
weighted Wiener filter (WWF) where the power spectral densities (PSD) of the speech and noise are esti-
mated from the above mentioned NMF algorithm with the proposed regularization. The weighting factor
in the WWF is selected based on a masking threshold which is obtained from the estimated PSD of
the enhanced speech. Experimental results of perceptual evaluation of speech quality (PESQ), source-to-
distortion ratio (SDR) and segmental signal-to-noise ratio (SNR) show that the proposed speech enhance-
ment algorithms (i.e., regularized NMF with and without masking model) provide better performance in
speech enhancement than the benchmark algorithms.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Speech enhancement algorithms aim to remove additive back-
ground noise from a noisy speech signal in order to improve its
quality or intelligibility. They have been an attractive research area
for decades and find diverse applications, including mobile tele-
phony, hearing aid and speech recognition, to name a few. Nu-
merous algorithms for single channel speech enhancement have
been proposed in the past, such as: Wiener filtering (Lim and Op-
penheim, 1979; Scalart and Filho, 1996), spectral subtraction (Boll,
1979; Virag, 1999), minimum mean-square error (MMSE) estima-
tion of the short-time spectral amplitude (STSA) (Ephraim and
Malah, 1984; Loizou, 2005; Plourde and Champagne, 2008; You
et al., 2005) and subspace decomposition (Ephraim and Van Trees,
1995; Hermus et al.,, 2007; Jensen et al., 1995). However, these
algorithms use a minimal amount of a priori information about
the speech and noise. Consequently, they tend to provide limited
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performance gains, especially when the speech is contaminated by
adverse noise, such as under low signal-to-noise ratio (SNR) or
non-stationary noise conditions.

Further improvements of the MMSE-based estimators have
been proposed by modeling the speech spectrum as a Rayleigh
mixture model (RMM) (Erkelens et al.,, 2007) or a Gaussian mix-
ture model (GMM) (Ding et al., 2005; Hao et al., 2010). These esti-
mators, which use model parameters derived from a training set
for the clean speech, provide a more detailed and accurate de-
scription of the speech distribution and are better suited to handle
non-stationary speech features. In contrast to the speech model,
the parameters of the noise distribution are often estimated di-
rectly from the noisy speech spectrum. These can be obtained by
using an estimation algorithm where the noise power spectral den-
sity (PSD) is calculated recursively over successive time frames
to capture non-stationary features (Cohen, 2003; Gerkmann and
Hendriks, 2012; Rangachari and Loizou, 2006). However, the noise
spectrum is modeled by a single distribution which is one of the
main limitations of the above MMSE-based estimators.

Recently, the non-negative matrix factorization (NMF) ap-
proach has been applied to various problems such as image rep-
resentation (Zafeiriou et al.,, 2006), music transcription (Bertin
et al, 2010), source separation (Virtanen, 2007a) and speech
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enhancement (Mohammadiha et al., 2013). In general, NMF is a di-
mensionality reduction tool, which decomposes a given data ma-
trix into basis and activation matrices with non-negative elements
constraint (Févotte et al, 2009; Lee and Seung, 2001). In speech
and audio applications, the magnitude or power spectrum of the
desired signal is interpreted as a linear combination of the ba-
sis vectors. In supervised learning-based NMF algorithms, the ba-
sis vectors are obtained for each source independently by employ-
ing training data, and subsequently used during the separation
or enhancement stage (Grais and Erdogan, 2013; Mohammadiha
et al., 2013). However, one of the main problems of such super-
vised algorithms is the existence of a mismatch between the char-
acteristics of the training and test data, which in turn leads to
a decreased quality of the estimated source signals. One possi-
ble remedy to this problem is to add explicit regularization terms
to the NMF cost function that incorporate some prior knowledge.
In order to account for the temporal dependency of the succes-
sive time frames, Févotte et al. (2009) model the activations by
means of Markov chain, Grais and Erdogan (2012) and Mysore and
Smaragdis (2011) use a hidden Markov model (HMM), while Grais
and Erdogan (2013) use GMMs that help the activations to follow
certain patterns. In Chung et al. (2014), both the speech and noise
spectra are modeled by a GMM, and their log-likelihood functions
(LLF) are used as regularization terms.

Besides the speech enhancement or source separation algo-
rithms which mainly focus on the perspective of signal estima-
tion and reconstruction, several algorithms incorporating modeling
aspects of the human auditory system have been proposed in or-
der to improve the perceptual quality of the estimated source sig-
nals. Specifically, these refined algorithms exploit a psychoacous-
tical property called auditory masking which refers to a process
whereby one sound is rendered inaudible due to the presence of
another sound (Fastl and Zwicker, 2007). In the case of frequency
domain (or simultaneous) masking, the threshold which models
this effect has been used for selecting parameters in spectral sub-
traction (Virag, 1999), subspace decomposition (Jabloun and Cham-
pagne, 2003), Wiener filtering (Hu and Loizou, 2004) and MMSE-
based estimator (Hansen et al., 2006; Natarajan et al., 2005). In
the NMF-based algorithms, weighted NMF update rules have been
proposed by applying a weighting matrix based on the masking
threshold to the NMF cost function (Kirbiz and Giinsel, 2013; Vir-
tanen, 2007b). For speech enhancement, the masking threshold
which determines the amount of the noise reduction is usually cal-
culated from the estimated PSD of the clean speech. This suggests
that a more accurate estimation scheme may lead to further im-
provement of the enhanced speech quality when applying a mask-
ing threshold.

In this paper, we introduce single-channel supervised speech
enhancement algorithms based on regularized NMF which are ex-
tensions of our previous work (Chung et al., 2014). The proposed
framework seeks to exploit the statistical properties of both the
clean speech and noise, an approach which is widely used in tra-
ditional speech enhancement algorithms. This is achieved in two
ways: i) by representing the corresponding magnitude spectra,
which capture the general (high-level) characteristics of the signals,
with the help of GMMs motivated by Ding et al. (2005) and Hao
et al. (2010), and ii) by adding regularization terms that incorpo-
rate this a priori information to the NMF cost function in the en-
hancement stage. The proposed method, therefore, can be inter-
preted as a combination of the NMF and statistical model-based
approaches. During the training stage, by using an isolated train-
ing set for each type of clean speech and noise, we estimate the
basis matrices in the NMF model via multiplicative update rules
(Lee and Seung, 2001) and the parameters of the GMMs via the
expectation-maximization (EM) algorithm (Bishop, 2006; Demp-
ster et al, 1977). For the GMM, we propose to use normalized

spectral values in order to handle the magnitude difference be-
tween the training and test data, similar to the work of Grais and
Erdogan (2013). In the enhancement stage, the LLFs of the clean
speech and noise magnitude spectra are added as regularization
terms to the NMF cost function and the activation matrix of the
noisy speech is estimated. Consequently, the PSDs of the clean
speech and noise are obtained and the enhanced speech is recon-
structed using Wiener filtering.

For further improvement of the enhanced speech quality, we
incorporate the masking effects of the human auditory system in
our approach. Specifically, we construct a weighted Wiener filter
(WWF) where the PSDs of the speech and noise are estimated
from the above mentioned NMF algorithm with the proposed reg-
ularization. The weighting factor in the WWEF is selected based
on a masking threshold which is obtained from the estimated
PSD of the speech based on Painter and Spanias (2000). Experi-
mental results of perceptual evaluation of speech quality (PESQ)
(Recommendation, 2001), source-to-distortion ratio (Vincent et al.,
2006) and segmental signal-to-noise ratio (SNR) show that the
proposed speech enhancement algorithms provide better perfor-
mance in speech enhancement than the benchmark algorithms.

The rest of the paper is organized as follows. In Section 2, we
briefly review the basic principles of NMF-based single channel
speech enhancement. The proposed NMF training stage with GMM
parameter estimation is described in Section 3. In Section 4, the
proposed modifications to the enhancement stage, including NMF
algorithm with regularization, masking threshold estimation and
perceptually motivated NMF algorithm for speech enhancement
are explained. Experimental results are presented in Section 5 and
finally, a conclusion is given in Section 6.

2. NMF-based speech enhancement

For a given matrix V = [vy;] € R¥*L, NMF finds a local optimal
decomposition V= WH, where W = [w;,;,] € RE*M is a basis ma-
trix, H = [hy,] € RM*L is an activation matrix, R denotes the set of
non-negative real numbers and M is the number of basis vectors,
typically chosen such that KM + ML « KL (Févotte et al., 2009; Lee
and Seung, 2001). The factorization is obtained by minimizing a
suitable cost function, denoted as 7 (V,WH). By expressing the
gradient of the cost function as the difference of two non-negative
terms such that V7 (V,WH) = V*+7(V,WH) — V-7(V,WH), so-
lutions can be obtained iteratively using the following heuristic
multiplicative update rules (Bertin et al., 2010; Févotte et al., 2009;
Grais and Erdogan, 2013):

Vi 7 (V, WH) ,
_we 7 _HY A
vigwwm' 0 e g rw W) ()

where the operator ® and the quotient line respectively denote
element-wise multiplication and division, and the <« refers to an
iterative overwrite. Among various cost functions, the most widely
used one is the Kullback-Leibler (KL) divergence (e.g., FitzGerald
et al., 2008), defined as

WeWs V. J(V,WH)

K L

T (V.WH) = Dy (V. WH) £ 33 (v In g vl +[WHI )
k=1 1=1

(2)
where [ - ];; denotes the (k, I)th entry of its matrix argument. The
update rules of the NMF with KL-divergence based on (1) are given
as
(V/(WH))H' W' (V/(WH)) 3)

1H' w1
where 1 is a K x L matrix with all entries equal to one, the opera-
tor / denotes element-wise division and the superscript T denotes

W—~Weg R H<~H®
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matrix transpose. The scale indeterminacies of W and H can be
prevented by including a normalization step which leaves the cost
function unchanged (Févotte et al., 2009). Specifically, at the end
of each iteration, we can use the [;-norm to normalize the column
vectors of the basis matrix, W, and scale the row vectors of the ac-
tivation matrix, H, accordingly, e.g., Cichocki et al. (2006); Zafeiriou
et al. (2006). As for the initialization of W and H, positive random
numbers are commonly used (Févotte et al.,, 2009). Numerical in-
stability due to division by zero or taking the logarithm of zero,
which may appear in the KL-divergence in (2) or in the update
rules given by (3), can be avoided in a practical implementation by
adding a small positive number, e.g., 10720, to the various denom-
inators in (2) and (3) and the numerator of the log function in (3),
e.g., (Cichocki et al., 2006; Lefevre et al., 2011).

Note that the update rules given in (1) do not guarantee the
convergence to a stationary point in general (Févotte et al., 2009).
Nevertheless, they are widely used due to the simplicity of their
derivation and implementation, especially in diverse regularized
algorithms, e.g., Virtanen (2007a), Grais and Erdogan (2013). By
adding an additional regularization term to the KL-divergence, we
can construct a regularized cost function as,

J(V, WH) = Dy, (V, WH) + &R (W, H) (4)

where o > 0 is a regularization coefficient and R(W, H) denotes
a regularization term. An iterative solution algorithm is easily ob-
tained using the update rules given in (1). Various approaches for
choosing the regularization term have been introduced by consid-
ering sparsity (Virtanen, 2007a), temporal continuity (Bertin et al.,
2010; Virtanen, 2007a), harmonicity of music signals (Bertin et al.,
2010) and statistical priors (Chung et al., 2014; Grais and Erdogan,
2013).

In single-channel speech enhancement, the observed noisy
speech signal can be expressed in the time-frequency domain via
the short-time Fourier transform (STFT) as (O’Shaughnessy, 1987),

Y(k, 1) = Sk, 1) + N(k, ) (5)

where Y(k, 1), S(k, 1) and N(k, 1) respectively denote the STFT of
the noisy speech, clean speech and noise for the kth frequency bin
of the Ith time frame. We assume that the magnitude spectrum
of the noisy speech can be approximated by |Y(k, )| ~ |S(k, )| +
IN(k,D)|, as it is a practical assumption widely used in NMF-based
audio and speech signal processing (Grais and Erdogan, 2013; Mo-
hammadiha et al., 2011; Virtanen, 2007a). Throughout this paper,
we will use the following notations to represent the magnitude
spectrum matrices of the different signals under consideration:
V = [vy] € RE*L where v, is the magnitude spectral value for the
kth frequency bin of the Ith time frame, K is the number of fre-
quency bins and L is the number of time frames. Furthermore, we
shall use the subscripts or superscripts Y, S and N, respectively,
to indicate the noisy speech, clean speech and noise (as in, e.g.,
v{] = |Y(k,1)|). We also adopt a similar convention for the basis
and activation matrices.

In general, NMF-based supervised speech enhancement algo-
rithms consist of two stages (Grais and Erdogan, 2013; Moham-
madiha et al., 2013). During the training stage, by applying (3) to
the training data Vs e REXLS and Vy eRIiXLN separately, the ba-
sis matrices for both the clean speech and noise, Wg = [wf(m] €

REXMS and Wy = [wh ] e REXMN, are obtained. The activation ma-
trices for the clean speech and noise, which are computed along
with the basis matrices, are discarded after the training stage. In
the enhancement stage, by fixing these basis matrices as Wy =
[Ws Wy] e R’iX(MSJrMN), the activation matrix of the noisy speech
is estimated, ie., Hy = [f{§ ﬁL]T € RiMﬁMN)XLY, by applying the
NMF activation update in (3) to the noisy speech magnitude spec-
trum Vy e REXLY. Note that the regularized NMF algorithm can be

applied instead to exploit some prior knowledge of the signals,
where the update rules can be derived by using the heuristic mul-
tiplicative update rules given in (1) based on the cost function
given in (4). Once the activation matrix of the noisy speech is ob-
tained, the clean speech spectrum can be estimated using a Wiener
filter (WF) as (Févotte et al., 2009; Kirbiz and Giinsel, 2013; Mo-
hammadiha et al., 2011),

§-_ D gy (6)

Ps + Py

where Ps = [Bs(k, )] and Py = [By(k, )] e XY respectively de-
note the estimated power spectral density (PSD) matrices of the
clean speech and noise and Y = [Y(k, )] € CK*ly denotes the ma-
trix of noisy speech STFT coefficients. Hence, the estimated clean
speech in (6) makes use of the phase from the initial noisy speech
in Y.'The PSDs can be obtained via temporal smoothing of the
NMF-based periodograms as given by Kwon et al. (2015),

Bs(k, 1) = tsPs(k, 1 — 1) + (1 — T5) ((WsHs]y)? (7)

By(k, 1) = tnBy(k, 1 — 1) + (1 — ) ((WxHN])? (8)

where 7g and 7y are the temporal smoothing factors for the
speech and noise, respectively. Finally, the enhanced speech signal
in the time-domain is reconstructed by applying an inverse STFT
on (6) followed by the overlap-add method (O’Shaughnessy, 1987).

3. Proposed training stage

In the proposed framework, a priori knowledge about the mag-
nitude spectra of the clean speech and noise is captured by distinct
GMMs. As a brief overview of the training stage, we first estimate
the basis and activation matrices for the clean speech and noise
independently using isolated training data. To this end, we con-
sider the KL-divergence given in (2) and apply the resulting update
rules in (3), leading to factorizations Vs = WsHg and Vy = WyHy.
Subsequently, the GMM parameters for the speech and noise are
estimated from the corresponding NMF parameters. The details of
this computation, which is identical for the speech and noise, are
further developed below where for convenience in notation, the
subscripts S and N are dropped.

In Ding et al. (2005) and Hao et al. (2010), the probability den-
sity function (PDF) of the clean speech spectrum is modeled by
a GMM. Motivated by this approach, we model the PDFs of the
magnitude spectra for both the clean speech and noise by distinct
GMMs.? Therefore, we can expect that a more detailed and accu-
rate statistical description is provided for the noise as well as the
clean speech. In the proposed algorithm, we consider the prod-
uct WH, which is an approximation of V, as the observation ma-
trix for the parameter estimation of the magnitude spectrum PDF,?
since we intend to introduce a clear connection with the regular-
ization term shown in (4). Specifically, by expressing the observa-
tion as WH, we can directly differentiate the regularization term
with respect to H while deriving the update rule given by (1) dur-
ing the enhancement stage (a detailed derivation will be presented
in Section 4.1). Moreover, in order to handle the magnitude differ-
ence between the training and test data, we consider normalized

1 According to (6), only the magnitude of the noisy speech Y(k, I) is modified
during the enhancement stage. This approach is common in most of the literature
on speech enhancement (O’Shaughnessy, 1987).

2 Alternatively, we can model the PDF of the magnitude spectra by a RMM (e.g.,
Erkelens et al., 2007) or Gamma mixture model (e.g., Virtanen and Cemgil, 2009),
which remain an interesting avenue for our future explorative work.

3 Indeed, we could verify through independent experiments that there was no
significant difference in the enhancement performance when considering either V
or WH as the observation matrix.
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observations where the columns of WH are normalized by their [;-
norm,* similar to Grais and Erdogan (2013). Specifically, we define
the normalized column of the observation matrix as,

‘_’l a [WH]I

Zm hml
where [-]; denotes the Ith column of its matrix argument. Note
that the l;-norm of [WH];, i.e., >, [WH]y,;, simply turns into Xmhpy,
since the basis vectors are normalized with respect to the I;-norm,
ie, > Wiy =1 for m e {1, ..M}. The GMM is defined in terms of
the following parametric model for the PDF of V,

(9)

I
> aN Vi %) (10)

i=1

p(Vi|0) =" p(2)p(V|z) =

where I is the number of Gaussian components, z = [z;, ..., z]T is
an I-dimensional vector of discrete latent variables z; € {0, 1} with
Yizi=1, and the set 0 £ {g;, u;, X; }1 ; consists of the GMM pa-
rameters. The marginal distribution over z is specified in terms
of the mixing coefficients g; £ p(z; = 1). The conditional PDF of V,
given a particular value for the latent variable z; is a K-dimensional
Gaussian distribution such that p(V)|z; = 1) = N (V;| ;. ;) where
jt; =[] is the mean vector and X; is the covariance matrix. In
this work, we ignore possible correlations between different spec-
tral components and therefore consider diagonal covariance matri-
ces for simplicity, ie., X; = diag{ai?k}. Recall that the entries of the

observation matrix V = [i,] are magnitude spectral values which
are strictly non-negative, while the GMM can in theory assign non-
zero probability to negative values. Nevertheless, modeling matrix
V by a GMM is perfectly reasonable if the mean value of its entries
exceed the corresponding standard deviation by a significant mar-
gin. More specifically, if say u; y > 30; y for every Gaussian com-
ponent i =1,...,I, then we can safely assume that B[V < 0]
In effect, we have been able to verify that this condition is gener-
ally satisfied in our experimental work.

The parameter set 6 = {g;, u;, X; } _, can be estimated using the
expectation-maximization (EM) algorlthm (Bishop, 2006; Demp-
ster et al,, 1977). For a given observation V=[Vy,Vy, ...V ] =[],
where the column vectors V, are assumed to be drawn indepen-
dently, the LLF can be written as,

L(V|0) £ In p(V|6)
L 1
=Y In { S gN Vi, Ei)}
- tia

L 1 O
= > Y| B o pngy )
=1 i=1 !

where q(z;) is an arbitrary probability distribution. The inequality
holds for any choice of q(z;) due to Jensen’s inequality (Cemgil,
2009; Hao et al.,, 2010). Note that £g(V|#) defines a lower bound
on L£(V|#) where the equality holds for q(z) = p(z = 1|V, 8),
which is the posterior distribution of latent variable z; given the
observation V,. The EM algorithm is an iterative procedure which
consists of two steps. During the expectation step (E-step), the pos-
terior distribution of each latent variable given the observation is
calculated, which is shown as

gON W ", ZD)
Y gPN W, 2D)

where the superscript (r) denotes the rth iteration. In the maxi-
mization step (M-step), by fixing the posterior distribution to y”(r),

v\ L p(zi =11V, 07) = (12)

4 Note that this normalization step differs from the one included in the NMF up-
date introduced in Section 2, where we normalize the basis matrix and scale the
activation matrix accordingly to avoid the scale indeterminacy.

the parameter set § which maximizes £g(V|@) is determined. In
effect, since y(r) in (12) does not depend on @, this is equivalent
to the maximization criterion of the expectation of the complete
data LLF with respect to the posterior distribution,

L
Lc(V]9) & ZZV,{” In{giV (Vi i, Z)}- (13)
=1 i=1
The solution of the M-step can be obtained in closed form as,

gy = 1¢ YO,
r+ r
ST

L) S Vi P

oD = =& i

l Y vy

- 1

2 (r+1) _ Zl:l 7/,'1 )(vkl (r+ ))2

Oik = (,) (14)
Zl 1Ya

As for the initialization of 8, we apply k-means clustering to V,
which is an iterative algorithm aiming to partition the observa-
tions into clusters, such that each observation belongs to the clus-
ter with the nearest mean (Bishop, 2006). The number of clusters
is set equal to I, the number of Gaussian components in the GMM,
while the cluster mean values are initialized randomly.

At this point, we emphasize the main difference between the
above proposed training algorithm and the one presented in our
previous work (Chung et al., 2014). In the latter, we considered
joint training of W, H and 6, where we used a regularized cost
function as in (4) in which the regularization term was the ex-
pected LLF given in (13). We observed that the regularization coef-
ficient o not only determines the convergence behavior of the iter-
ative update but that it also affects the enhancement performance.
Hence, selecting an appropriate value for this coefficient is difficult.
In addition, the iterative update using the joint training converges
slowly and hence requires a more extensive computational effort.
For these reasons, we chose to consider here instead a sequential
form of training, which is found to be simpler and more efficient
in both terms of computation and enhancement performance.

4. Proposed enhancement stage

In this section, we introduce the proposed regularized NMF al-
gorithms. The LLF of the magnitude spectra for both the clean
speech and noise based on distinct GMMs are included as regular-
ization terms in the NMF cost function, which will be discussed in
Section 4.1. For further improvement of enhancement performance,
we incorporate a masking model of the human auditory system in
our approach, which will be provided in Section 4.2. Specifically,
we construct a WWF where the PSDs of the speech and noise are
estimated by using the method in Section 4.1, and the weighting
factor in the WWF is selected based on a masking threshold which
is obtained from the estimated PSD of the clean speech.

4.1. Regularized NMF with Gaussian mixtures

In the proposed enhancement stage, the activation matrix of
the noisy speech Hy = [HE H,E]T is estimated using the regularized
NMF algorithm based on (1) and (4), by fixing the basis matrices
Wy = [Ws Wy]| and the GMM parameter sets of the clean speech
and noise, 65 = {g5, u5, X7}, and Oy = {g, uN, =N} | which are
obtained during the tralmng stage. Spec1ﬁcally, the LLFs of the
clean speech and noise based on (11), i.e., £(Vs|fs) and £(Vy|0y).
are used as regularization terms. The proposed regularized cost
function is shown as,

J = Dk (Vy, WyHy) — Ry (Wy, Hy) (15)
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where Dy (-) is the KL-divergence given in (2) and Ry (Wy, Hy) is
the proposed regularization term written as,

Ry (Wy, Hy) = asL(Vs|0s) + anL(Vy|0y) (16)

where £(-|-) is given in (11) and Vs, Vy are the normalized clean
speech and noise spectra defined by (9). The values o > 0 and
oy > 0 are the regularization coefficients for the clean speech and
noise, respectively. The optimal choices for ag and oy depend on
the input SNR as well as the speaker, the type of noise and regular-
ization term. In this paper, however, we do not consider such de-
pendencies (except the type of regularization term), and use con-
stant values for simplicity, as we found indeed that the optimal
choices mostly depend on the regularization term. Note that a neg-
ative sign is applied to the regularization term in (15), since the
latter will represent a reward as opposed to a penalty.

For the derivation of the update rule of Hy, we first compute
the gradient of Dk, (Vy, WyHy) with respect to Hy. This gradient is
shown as

Vi, Dk = Vﬁy Dy — Vi, Dr1 (17)

where the dependence of Dg;(Vy, WyHy) on Vy and WyHy is
omitted for notational convenience, and the values on the right-
hand side are

Vi D = Wyl (18)

Vi, Dk = WY (Vy/(WyHy)) (19)

where 1 is a K x Ly matrix with all entries equal to one. Note
that (18) and (19) appear respectively in the denominator and nu-
merator in (3). Next, we derive the gradient of the regularization
term Ry (Wy,Hy) in (16) with respect to Hy. Note that by using
the equality in (11), i.e., £(V|@) = L5(V|#) for q(z;) = y;. the gra-
dient of £(V|0) is identical to that of £5(V|@), which is equivalent
to the gradient of £-(V|#). Consequently, the gradient of (16) can
be shown in terms of the gradients of £-(Vs|fs) and £c(Vy|6s)
with respect to Hg and Hy, respectively, as,

| s Vi £ (Vs|0s)
Vi, Ry (Wy, Hy) = [anHNCC(‘_,NlaN)} (20)

where Lc(+]-) is the expected LLF given in (13). As we can see from
(9), the observations Vg and Vy are expressed in terms of the cor-
responding basis and activation matrices. Hence, using (13), we can
derive the gradients of the expected LLF with respect to the acti-
vation matrix in (20), which is shown as

VuLc = V;[,C — V;lﬁc (21)
where H stands for either Hs or Hy, and the dependence of

Lc(V|0) on V and @ is omitted for convenience. In (21), the entries
of the gradient terms on the right-hand side are

2
[V;‘CC]ml ZZ%I zk (Mt k= %)
=1 i=1 !

(W ]kl

(22)

(VaLlclm = (23)

Z Z yllal k (ka + M, k)

k=1 i=1

where y; is the posterior distribution given in (12) and ¢, =
Y m hm is the normalizing factor. Specifically, y; is computed
based on Wy and Ws obtained during the training stage and Hy es-
timated in the previous multiplicative update iteration. Note that,
based on the concept of the lower bound in (11) and the objective
used in the M-step given by (13), the posterior y; is considered as
a fixed constant value during the derivations of (22) and (23).°

5 Alternatively, we can derive the gradient terms directly from (16), which also
lead to (22) and (23).

Based on the heuristic multiplicative update rules given in (1),
the update rule of Hy can be written as,

. Vi Di(Vy, WyHy) + Vi Ry (Wy, Hy)

Hy « By @ 2 . v - (24)
Vi, Di (Vy. WyHy) + Vi Ry (Wy, Hy)

where V:lyDKL(Vy,WyHy) and V;lyDKL(Vy,WyHy) are given
in (18) and (19). The components V;l—yRy(Wy,Hy) and
VﬁyRy(Wy,Hy) are easily found by substituting (21) into (20).
That is,

y [ sV £c(Vs|6s)

Vi, Ry (Wy. Hy) = |:an i Lc(Uy|Oy) (23)
_ _ | sV Lc(Vs|Os)

Vi, Ry Wy, Hy) = |:an EC(VN|0N)i| (26)

where VJr LC( [) in (25) and Vﬁ()ﬁc(-l») in (26) are given in

(22) and (23) respectively.

It is easy to show that the update rule given in (24) takes on
non-negative values. In fact, since the posterior distribution and all
elements of the mean vector and the diagonal entries of the covari-
ance matrix are non-negative, the values given in (22) and (23) are
non-negative. Moreover, the values in (18) and (19) are also non-
negative, and therefore the activation matrix is updated under the
non-negative elements constraint.

After estimating the activation matrix of the r101sy speech the
smoothed PSDs of both the clean speech and noise, Ps and Py, are
obtained by using (7) and (8). Then the clean speech spectrum is
estimated by Wiener filtering as given in (6). This proposed algo-
rithm based on regularized NMF with Gaussian mixtures will be
referred to as RNG.

4.2. RNG with weighted Wiener filtering

In this subsection, we describe our second method which
uses @ WWE. First, the masking threshold estimation is described
in Section 4.2.1, and then we introduce the proposed WWEF in
Section 4.2.2.

4.2.1. Masking threshold estimation

The masking effect, which is a psychoacoustical property of
the human auditory system, has been employed in diverse ap-
plications such as audio and speech coding (Painter and Spanias,
2000) and speech enhancement (Hu and Loizou, 2004; Jabloun
and Champagne, 2003; Virag, 1999). Masking refers to a process
where one sound is rendered inaudible (maskee) due to the pres-
ence of another sound (masker) (Fastl and Zwicker, 2007). The
masking properties are modeled using a masking threshold, where
the components below the threshold are not perceived. There are
two main masking phenomena, simultaneous (spectral) and non-
simultaneous (temporal) masking. The former occurs whenever
two or more stimuli are simultaneously presented to the auditory
system. The latter takes place in the time domain, where the mask-
ing occurs both prior and after the onset and offset of the masker
with finite duration (Fastl and Zwicker, 2007). In this paper, we
only consider the simultaneous masking effect.

Simultaneous masking can be explained in terms of critical
band analysis which is a central mechanism in the inner ear. The
critical band is specified by means of the so-called Bark scale,
which is a perceptual measure relating acoustical frequency to the
nonlinear perceptual resolution, in which one Bark covers one crit-
ical band. The analytical expression of the mapping function from
the frequency f [kHz] to the Bark frequency b [Bark] is shown as

b(f) = 13 arctan(0.76f) + 3.5 arctan[(f/7.5)?]. (27)
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We followed the procedure introduced in Painter and Spanias
(2000) for evaluating the masking threshold in the Ith time frame,
where we here briefly summarize the different steps involved
in the computation; further implementation details are given in
Painter and Spanias (2000).

(1) Spectral analysis and normalization: The PSD is normalized
and presented in dB scale as,

P(k, 1) = 90.302 + 10log;o[ s (k, 1)/L2] (28)

where L,, denotes the analysis window length for the STFT,

the constant 90.302 is used for the power compensation,

and P(k, 1) is the estimated clean speech PSD given in (7).
(2) Identification of tonal and non-tonal maskers: Tonal maskers
are identified according to the local maxima of the normal-
ized PSD, P(k,1). A single non-tonal (noise-like) masker for
each critical band is then identified by summing the energy
of the spectral components which have not contributed to a
tonal masker.
Reorganization of maskers: Any tonal or non-tonal maskers
below the absolute hearing threshold (AHTH) are discarded,
where the AHTH in dB versus frequency f [kHz] is shown as

—
w
~

Ta(f) = 3.65f708 — 6.5e 0633 1 10-3 f4 (29)

Next, any pair of maskers within a distance of 0.5 Bark are
replaced by the stronger of the two.

(4) Individual masking threshold: The individual masking thresh-
old at frequency bin i due to a tonal masker at frequency bin
j is given in dB as

Tim (i, j) = Pim (j) — 0.275 b(f) + SE(, j) — 6.025 (30)

where Py (j) is the level of tonal masker, f; [kHz] is the cor-
responding frequency of the jth bin, b(f;) denotes the Bark
frequency given in (27) and SF(i, j) is the spreading func-
tion which accounts for the inter-band masking. The latter

is given as
17A, — 0.4P () + 11, —3<Ap<-1
o ) (0.4Pm(j) + 6) Ay, —1<A,<0
SEED =1 2174, ) 0<A,<1
(0.15Pm(j) = 17)Ap = 0.15Pm (j), 1<Ap <8
(31)

where Aj, = b(f;) —b(f;). Similarly, the masking threshold
of a non-tonal masker is given as,

Tam (i, j) = Pum(j) — 0.175 b(f;) + SF(i, j) — 2.025 (32)

where Pyn(j) is the non-tonal masker level. The spreading
function used in (32) is identical to (31) where Pn(j) is
replaced by P, (j). The above computation of the masking
thresholds Tgpu(i, j) for tonal maskers and Tym(i, j) for non-
tonal ones are repeated for each frame; whenever such a
computed threshold value falls below the AHTH, it is re-
placed by the latter.

Global masking threshold: Finally, the resulting individual
masking thresholds are summed linearly along with the
AHTH to obtain the global masking threshold in dB in the
kth frequency bin, which is shown as,

—
wu
N

N[m
Ty(k.1) = 10log, (100»10%) +3 1001 mtkin

n=1

Nnm
+Z 100,1Tnm(k-jn)> (33)

n=1
where Nyn and Ny, respectively denote the number of tonal
and non-tonal maskers and j is the frequency bin location
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Fig. 1. Example of masking threshold (dotted: normalized power spectrum of a fe-
male speaker, solid: masking threshold, dashed: absolute hearing threshold).
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Fig. 2. SDR, SIR and SAR values for different weighting factors in WWF.

of the nth masker. An example of the global masking thresh-
old is illustrated in Fig. 1, where we considered a speech sig-
nal of a female speaker.

4.2.2. Weighted Wiener filtering
A generalized Wiener filtering has been introduced in Lim and
Oppenheim (1979), which is shown as,

Pk, D)

A0 ohicn) YD 4

St 1) = (

where 1 and v are tuning parameters. For simplicity, we will fix
v to 1 in the proposed framework, and refer to the resulting
method as weighted Wiener filtering (WWF) (Spriet et al., 2005).
The weighting factor n is known to control the trade-off between
noise reduction and speech distortion. For a large n, for instance,
more noise reduction is performed at the expense of increased
speech distortion, and vice versa. This phenomenon is illustrated
in Fig. 2 where we computed different objective measures while
varying n from 1 to 20. The objective measures considered are the
source-to-interference ratio (SIR), source-to-artifact ratio (SAR) and
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source-to-distortion ratio (SDR) (Vincent et al., 2006).° The noisy
speech was generated by adding a factory noise to selected clean
speech files’ at a 5 dB input SNR, and the results were obtained by
averaging over different speakers. For each noisy speech, the clean
speech and noise PSDs were computed from the proposed RNG
method introduced in Section 4.1, followed by temporal smoothing
given in (7) and (8). As we can see from Fig. 2, the results obtained
for the different objective measures vary greatly as a function of n
and therefore, an appropriate selection of the weighting factor is
necessary.

In contrast to using a constant value as the weighting factor in
(34), it has been proposed to select different weighting factor for
each time-frequency bin, i.e., n(k, I), based on the masking thresh-
old computed for each of these bins. Gustafsson et al. (1998) pro-
posed a heuristic approach where the linear estimator of the clean
speech spectrum was derived, aiming to mask the distortion of the
residual noise which is defined as the difference between the ac-
tual and residual noise powers. This estimator was extended in Hu
and Loizou (2004) by solving an optimization problem which min-
imizes a related error criterion. Defraene et al. (2012) proposed to
use an exponential function to map the so-called noise-to-mask ra-
tio (NMR) into the weighting factor, where the NMR in dB, ®(k, I),
is defined as the log distance from the minimum masking thresh-
old in one critical band to the noise level (Painter and Spanias,
2000):

Dk, 1) =By, 1) — rlniCnTg(k, )] (35)
keCp

where C, is the set of frequency bins for the bth critical band and
Py(k, 1) is the normalized PSD given in (28).

For all these algorithms, a zero weighting factor is applied
when the noise power is lower than the masking threshold, i.e.,
n(k,1) =0 for Ty(k, 1) > Py(k, I). However, this strict condition lim-
its the performance, since the masking threshold is calculated from
an inaccurate estimate of the clean speech PSD. Although we can
expect that a more accurate clean speech PSD can be obtained
by using the proposed RNG method, we further suggest to relax
this strict condition by taking into account in a continuous way
the case where the noise power is even lower than the masking
threshold. This approach can be regarded as a soft decision on the
weighting factor.

In advance of describing the proposed method, we summarize
several intuitive aspects, which should be considered for selecting
the weighting factors in the WWEF, as follows. When Tg(k, 1) is low,
the noise signal (maskee) is easily perceived due to the low mask-
ing capability of the speech signal (masker). The emphasis then
should be put on reducing this perceivable noise. Consequently, a
high weighting factor is necessary in the WWE. On the contrary, if
Tg(k, 1) is high, the noise is easily masked by the speech. Hence, a
small weighting factor is selected. Note that these aspects hold for
both the cases where the NMR is either positive or negative. The
difference is that a much smaller weighting factor for the case of
negative NMR is necessary compared to the positive NMR.

In the proposed WWEF, the weighting factor is selected through
a heuristic approach using a sigmoid function as a mapping from
the NMR to the weighting factor. The motivation for using the sig-
moid function is to limit the range of the weighting factor to be

6 For a given target source, the interference refers to unwanted signal compo-
nents such as noise, whereas the artifact refers to components caused by other
phenomena, such as e.g., forbidden distortion. In speech enhancement applications,
these measures can be interpreted as follows: the SIR and SAR are proportional
to the amount of noise reduction and inversely proportional to the speech distor-
tion, respectively, while SDR measures the overall quality of the enhanced speech
(Mohammadiha et al., 2013)

7 Further details about various speech and noise files used in our experimental
work are described in detail in Section 5.
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based on a sigmoid function.
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selected, therefore avoiding extreme values that could lead to in-
stability (Fig. 3). The proposed mapping function is given by

2B1(k, 1)
kD = S Bk, DO, D)
where B1(k, I), B2(k, I) > 0 are tuning parameters and the NMR,
®(k, 1), is given in (35). The value B1(k, I) defines the range of n(k,
) € (0, 281(k, 1)) and B,(k, I) determines the slope of the sigmoid
function. For simplicity of the implementation, we consider a con-
stant slope, i.e., B, (k, 1) = B, and identical values of B(k, I) across
the frequency bins for a given time frame, i.e., 81 (k,1) = B1(1).
The value B4(l) is calculated using the following function,

Bi(l) = pre RO (37)

where pq, p > 0 are tuning parameters and R(I) is defined as

(36)

R(I) = 10log;, M (38)
Pk D

The underlying motivation for using the form given in (37) and
(38) is similar to the approach introduced in Kodrasi et al. (2015).
That is, a small weighting factor is selected for a high input SNR.
Specifically in the proposed method, the input SNR for a given time
frame of the noisy speech is estimated from R(l) given in (38),
which is then applied to determine the range of n(k, 1) through
B1(1) given in (37).

The proposed enhancement algorithm based on the regularized
NMF with Gaussian mixtures and weighted Wiener filtering will
be referred to as RNG-WWF. A simplified block diagram of both
the RNG and RNG-WWF methods is illustrated in Fig. 4. We note
that for both algorithms, the same training approach as described
in Section 3 is employed.

5. Experiments

In this section, a performance evaluation of the proposed meth-
ods is presented.

5.1. Methodology
We used clean speech from the TSP (Kabal, 2002) and Grid

Corpus (Cooke et al., 2006) databases and noise from the NOI-
SEX database (Varga and Steeneken, 1993), where the sampling
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Table 1

A comparison between different perceptually-motivated and/or weighting methods.

Reference Gain function, G(k, 1)

Sk, 1) =Gk, DY (k. 1))

Description

Gustafsson et al. (1998)  min 7}""* ) +¢,1
Py(k, 1)

-1
[ By (k. 1)
(1 +max< m — 1,0))
By(k. 1)
Pk, 1) +n(k, Py (k. 1)

Hu and Loizou (2004)

Defraene et al. (2012)

Kodrasi et al. (2015)
Proposed

Heuristic gain function, aiming to mask the distortion of the residual noise
Gain function obtained by minimizing an error criterion (extension of Gustafsson et al., 1998)
Heuristic mapping from the NMR to n(k, I) (hard decision)

Curvature-based optimization for the estimation of n(k, I)
Heuristic mapping from the NMR to n(k, I) (soft decision)

rate of all signals was adjusted to 16 kHz. For the clean speech,
20 speakers (10 males and 10 females) were selected from the TSP
and 34 speakers (17 males and 17 females) from the Grid Corpus
databases for a total of 54 speakers. For the noises, we selected
the buccaneer 1, hfchannel, babble and factory 1 noises from the
NOISEX database. Each clean speech and noise signal was divided
into three disjoint groups: i) training data, used for estimating the
NMF and GMM parameters, ii) validation data, used for selecting
the regularization coefficients and tuning parameters, and iii) test
data, used for final verification. Specifically, the training data con-
sisted of approximately 2 min (50 sentences) and 8 min (350 ut-
terances) of long speech segments for each speaker from the TSP
and Grid Corpus databases, respectively, as well as 3 min segment
for the noises. The validation data consisted of 12 s (5 sentences)
and 20 s (15 utterances) of speech for each speaker from the TSP
and Grid Corpus databases, respectively, and 30 s of noise from the
NOISEX database. The same partitioning was used for the test data.
The noisy speech signals were generated from the test and valida-
tion signals by scaling and adding the noise to the clean speech
(based on the estimated variances of the time-domain signals) to
obtain input SNRs of 0, 5 and 10 dB. The STFT analysis was im-
plemented by using a Hanning window of 512 samples with 50 %
overlap. After enhancement, the estimated clean speech signal in
the time-domain was reconstructed by applying the inverse STFT
on its spectrum followed by the overlap-add method.

Regarding the implementation of the proposed algorithms, we
considered a speaker-dependent (SD) application, where one basis
matrix and associated GMM parameter set were trained for each
speaker. We used M = 80 basis vectors and I = 8 Gaussian compo-
nents in the GMM for both the clean speech and noise. The values
of (75, Ty) = (0.4,0.9) were chosen empirically using the valida-
tion set and used as the temporal smoothing factors in (7) and
(8). For the regularization coefficients o and «y in (16), we ex-
amined different values from 0.0005 to 0.1 and obtained good
results in the range [0.005, 0.01]. Hence, we selected (os,ay) =
(0.005, 0.01). We also examined several choices for the tuning pa-
rameters in the proposed weighting function (36), i.e. p;, p and
B>. We first fixed p; to 4, 5 and 6, based on the results shown
in Fig. 2. For each value of p;, we then considered various choices
of B1 and p, and determined the ones that gave the highest SDR
values. Good results for both 8, and p, were found around [0.005,
0.1]. Ultimately, we chose 8, = 0.01 and (p1, p3) = (5,0.1) for the
experiments.

We used the PESQ (Recommendation, 2001), SDR (Vincent
et al., 2006), as well as the segmental SNR as the objective mea-
sures of performance. The PESQ attempts to predict overall per-
ceptual quality in mean opinion score (MOS) and the SDR mea-
sures the overall quality of the enhanced speech in dB by consid-
ering both the speech distortion and noise reduction as explained
in Section 4.2.2. For all the measures, a higher value indicates a
better result.

5.2. Benchmark algorithms

To evaluate the speech enhancement performance of the newly
proposed algorithms, we compared them against several algo-
rithms from the literature. Basic settings such as the STFT analysis
and synthesis, number of basis vectors and Gaussian components
in the GMM, and masking threshold calculations, when applica-
ble, were kept identical for all the benchmark and proposed algo-
rithms. Also, we considered the SD application for all NMF-based
algorithms.

The benchmark algorithms were categorized into two groups.
The purpose of the first group was only to compare the enhance-
ment performance of the proposed WWF (i.e.,, RNG-WWEF) to that
of other perceptually-motivated and/or weighting methods. Specif-
ically, we considered the algorithms proposed by Gustafsson et al.
(1998), Hu and Loizou (2004), Defraene et al. (2012), Kodrasi et al.
(2015); in the sequel, we shall refer to each algorithm using the
names of its authors for simplicity. Although the algorithms in
Defraene et al. (2012) and Kodrasi et al. (2015) were proposed
for multi-channel speech enhancement, they can still be applied
in the current single-channel framework. We used the following
tuning parameters for these algorithms: a trade-off control param-
eter £ =0.1 in Gustafsson et al. (1998), (y,d,€) = (0.2,0.9,0.9)
in Defraene et al. (2012) and («, )= (1,2) in Kodrasi et al.
(2015) (see the references for the meaning of these notations).
For all the benchmark algorithms and RNG-WWF method, we
employed identical PSDs of the clean speech and noise, which
were estimated using the RNG method. The salient features of
the benchmarks and proposed algorithms are summarized in
Table 1.

The purpose of the second group was to compare the en-
hancement performance of the proposed algorithms with that of
various speech enhancement algorithms, which are given below.
Note that, for all NMF-based algorithms, except the proposed RNG-
WWEF method which requires a weighting factor, we used the
same reconstruction method introduced in Section 2, i.e., comput-
ing smoothed PSDs and Wiener filtering, for fair comparison.

(1) Short-time spectral amplitude estimator (STSA): We imple-
mented the well-known classical STSA estimator proposed
by Ephraim and Malah (1984). A smoothing factor of 0.98
in the decision-directed (DD) method for a priori SNR esti-
mation was used. The noise PSD was estimated using an al-
gorithm described in Gerkmann and Hendriks (2012) with a
value of 0.8 for the smoothing factor.

(2) Spectral subtraction with masking properties (SSM): We con-
sidered a spectral subtraction algorithm with masking prop-
erties proposed in Virag (1999). The noise PSD in this
approach was also estimated using the algorithm from
Gerkmann and Hendriks (2012) with 0.8 for the smoothing
factor.
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Fig. 5. Examples of proposed weighting factor. Each column from left to right respectively correspond to input SNR of 0, 5 and 10 dB. Each row from top to bottom shows
the noisy speech magnitude spectrum, time-frequency representation of the proposed weighting factor and the weighting factor at the time frame of 1.3 s and 2.1 s.

(3) Standard NMF: The standard NMF algorithm based on KL-

(4

(5

~

N

divergence introduced in Section 2 was evaluated, which
will be referred to as NMF.

Regularized NMF: In order to compare with other
regularization-based NMF algorithms, we chose an
algorithm proposed by Grais and Erdogan (2013), where the
column vectors of the activation matrix of the clean speech
and noise are modeled by distinct GMMs. We employed
the sequential form of training, and used the regularization
coefficients of (as, ay) = (0.005,0.001) in our experiments
as they provided good results. This method will be referred
to as RNMF-AGM.

Weighted NMF (WNMF): We evaluated a perceptually
weighted NMF (WNMF) algorithm introduced in Virtanen
(2007b), where the perceptual weighting matrix was con-
structed (based on the masking threshold) as in Nikunen
and Virtanen (2010). Although the WNMF algorithm was
originally proposed for an unsupervised application, we ap-
plied it in a supervised manner. That is, the basis matrices
for the clean speech and noise were obtained independently
during the training stage. In the enhancement stage, the
WNMF activation update was applied to the noisy speech,
where the masking threshold was calculated from the noisy

speech. Although the masking threshold can be obtained
from the estimated clean speech PSD by first applying a
simple speech enhancement scheme (Defraene et al., 2012;
Virag, 1999), we followed the original paper, since we ob-
served similar results when using the masking threshold ei-
ther computed from the noisy or estimated clean speech
PSD.

5.3. Results

We first illustrate an example of the proposed weighting factor
n(k, 1) for different input SNRs in Fig. 5. In this particular exam-
ple, a male speech is degraded with buccaneer 1 noise at 0, 5 and
10 dB input SNR. We can make the following observations:

o The values of n(k, 1) around 3 kHz, which corresponds to the
intense ringing sound of the buccaneer 1 noise, are larger com-
pared to the other frequencies;

» For a given time-frequency bin, n(k, I) decreases as the input
SNR increases from O to 10 dB;

e The values of n(k, I) at the time frame of 2.1 s (a speech-
absence period) are larger than the ones at 1.3 s (a speech-
presence period).



H. Chung et al./Speech Communication 87 (2017) 18-30 27

o
o
o -
.2

a oe® PG .I:"’ -
N oot s - I Bnininied Noisy

. ety Lot s

X Rt e +=af==- Const. n = 0.1
5 P R
gt e === Const. n =2
RIPtiRs A3 -
LS et =-§-= Gustafsson et al.
Pt -

st 7 -©= Hu etal.

St

s ’,a’ —-A-= Defraene et al.

,;” -------- Kodrasi et al.
0 s ‘ Proposed
0 5 10
Input SNR [dB]

o
I,
o s
2 PR | === Noisy
6 ‘,.::.:;‘;:" /,f’ «+=4=-- Const. = 0.1
:::" /" ==:3-=- Const. n=2
4 ’,¢/ —-@-= Gustafsson etal.
’,¢’ =-©-=Hu etal
2 - —-A:= Defraene etal.
[ Kodrasi et al.
0 -7 ) Proposed
0 5 10
Input SNR [dB]

[}
S
o
=z
w
©
I
o
x el
g) Pets ,‘::8 ~27 | ===+ Const. n =0.1
@ of PR Lt
n ‘,a:‘_‘:_=:$" ”¢’ =¥+ Const. =2
PRttt e —-@-— Gustafsson et al.
PRttt -
2 ‘f:“.;‘::a‘ ”¢ =-©-= Hu etal

:2::" Ptag =+A:= Defraene et al.

: ,;" -------- Kodrasi et al.

-~ Proposed

4 .
0 5 10

Input SNR [dB]

o
k=3
o
P4
w -
s %
c . R
[ - . :F':g" —=== Noi
£ of .= LT noisy
> : st ==+ Const. n = 0.1
[0 PR Sttt
2 Rt +==3¢=- Const. =2
PRt -

-_‘_:;:' - _-=""| =-é-- Gustafsson et al.

e _

- - —-+@-= Hu etal.

-
ot _-" —-A:= Defraene etal.
e R Kodrasi et al.
-
4 == ‘ Proposed
0 5 10

Input SNR [dB]

Fig. 6. SDR and segmental SNR comparisons for factory 1 (top) and hfchannel (bottom) noises.

These phenomena are essentially due to the estimated input
SNR R(I) given by (38). That is, as we intended, a larger value of
n(k, 1) is selected based on (36) and (37), for a lower value of R(I).
Consequently, the noise components will be further suppressed in
the corresponding time-frequency bins.

We compared the proposed RNG-WWF method with other
methods in the first group of benchmark algorithms in order to
verify the performance of the proposed weighting method. Av-
erage SDR and segmental SNR values over all speakers for fac-
tory 1 and hfchannel noises, with 0, 5 and 10 dB input SNRs, are
displayed in Fig. 6. We can see that in all cases, the proposed
weighting scheme provides the best results. It is worth noting that
the perceptually-motivated benchmark algorithms showed a worse
performance than using a constant weighting factor of n =2, and
tend to show similar quality to using n = 0.1. This is mainly due
to the hard decision on the weighting factor such that n(k,l) =0
for By(k, 1) < Tz (k, 1), which leads to S(k,1) =Y (k, 1), ie., the noise
components are not reduced in such time-frequency bins. There-
fore, it is verified through experiments that employing soft deci-
sion on the weighting factor, i.e., applying non-zero value on 7(k,
1) for Py(k, 1) < Tg(k,1), improves the enhancement performance.
Similar results were also found for the babble and buccaneer 1
noises.

Regarding the benchmark algorithms in the second group and
the proposed algorithms, the average results over all speakers of
the three objective measures (i.e., PESQ, SDR and segmental SNR)
are shown for each noise type, respectively, in Tables 2-5. The
values in bold indicate the best performance along the row. As
it can be observed, the best enhancement results were obtained
with the proposed RNG-WWF method for all the different noise
types and input SNRs. Moreover, the RNG method generally pro-
vided better results than the benchmark algorithms except in spe-
cific cases, e.g., segmental SNR for the factory 1 noise at 0 dB input
SNR. Among the benchmark algorithms, the STSA and SSM which
used no training data provided reasonable results for babble and
factory 1 noises compared to the NMF-based algorithms. However,
they resulted in poorer performances for buccaneer 1 and hfchan-
nel noises. Among the NMF-based benchmark algorithms, which
used training data to obtain some prior knowledge of the clean
speech and noise, it was found in general that the RNMF-AGM
provided slightly better results compared to the NMF and WNMF
methods (except in some cases, e.g., slightly better PESQ results us-
ing the WNMF method for the buccaneer 1 and factory 1 noises).
If we only compare between the two proposed methods, the RNG-
WWF method provided much better results than the RNG method,
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Table 2
Average results for buccaneer 1 noise.
Input  Eval. Noisy STSA SSM NMF WNMF RNMF RNG RNG
SNR -AGM -WWF
0dB PESQ 1.25 1.58 1.61 1.79 1.83 1.81 1.98 2.22
SDR 0.02 431 425 5.25 5.74 543 6.13 7.92
SNRseg -397 -027 -056 013 115 0.28 1.79 3.18
5dB PESQ 1.54 1.94 1.99 218 2.21 2.20 235 247
SDR 5.01 8.56 8.79 9.75 9.63 9.92 1059  11.38
SNRseg  —-049  2.79 2.78 3.58 4.07 3.75 4.40 6.17
10dB  PESQ 1.89 2.32 2.39 2.53 2.55 2.55 2.64 2.69
SDR 10.01 12.43 12.97 13.80 13.23 13.91 1459 14.85
SNRseg  3.48 6.14 6.47 714 7.28 733 8.06 9.19
Table 3
Average results for hfchannel noise.
Input Eval. Noisy ~ STSA SSM NMF  WNMF RNMF RNG RNG
SNR -AGM -WWF
0 dB PESQ 1.23 1.50 1.59 1.78 1.71 179 2.01 2.30
SDR 0.03 711 7.62 732 6.97 7.51 8.31 9.88
SNRseg ~ -3.97 195 2.35 1.64 2.16 1.81 2.56 5.46
5dB PESQ 145 1.92 2.04 215 2.08 2.16 2.35 2.51
SDR 5.02 10.80 1166 11.50  10.85 11.66 1237  13.05
SNRseg  -0.50 4.96 5.78 512 5.22 5.30 6.20 8.35
10 dB  PESQ 175 2.31 2.46 2.50 243 2.52 2.63 2.70
SDR 10.01 14.12 1519 1512 1444 15.22 1591 1611
SNRseg  3.47 791 9.03 8.58 8.48 8.74 9.67 11.09
Table 4
Average results for babble noise.
Input Eval. Noisy STSA SSM NMF WNMF RNMF RNG RNG
SNR -AGM -WWF
0 dB PESQ 1.52 1.68 1.62 1.77 1.72 1.78 1.81 1.84
SDR 0.02 2.76 2.69 3.06 2.52 3.18 3.36 4.55
SNRseg  —-3.48 -057 -065 -036 -034 -032 -029 128
5dB PESQ 1.86 2.05 2.02 2.16 211 217 2.20 2.24
SDR 5.01 739 7.53 7.70 6.80 7.89 8.12 8.53
SNRseg  0.05 244 2.58 2.79 2.54 2.94 3.09 4.06
10dB  PESQ 2.22 2.42 243 2.53 247 2.55 2.56 2,59
SDR 10.01 11.52 11.90 11.53 10.38 11.73 1217 12.21
SNRseg ~ 4.05 5.84 6.23 5.91 5.66 6.16 6.66 7.07
Table 5
Average results for factory 1 noise.
Input Eval. Noisy STSA SSM NMF WNMF RNMF RNG RNG
SNR -AGM -WWF
0dB PESQ 1.36 1.68 1.66 174 1.80 1.76 1.80 1.98
SDR 0.02 4.44 416 4.34 429 4.54 4.49 6.60
SNRseg  -3.72  0.28 0.17 -014 028 0.12 -010 199
5 dB PESQ 1.70 2.09 2.10 215 218 216 219 234
SDR 5.01 8.62 8.69 9.07 8.53 9.24 9.27 10.48
SNRseg  -0.21  3.21 3.34 333 319 3.53 3.42 4.99
10dB  PESQ 2.07 245 2.50 2.53 2.52 2.54 2.54 2.64
SDR 10.01 1249 1291 13.33 12.42 13.37 13.61 14.22
SNRseg  3.78 6.48 6.91 6.91 6.46 6.96 712 8.13

which further validates that using the proposed weighting factor
improves the enhanced speech quality.

Fig. 7 illustrates the magnitude spectra of clean, noisy and en-
hanced speech for several benchmark and proposed algorithms.
In this particular example, a female speech is degraded with
buccaneer 1 noise at 0 dB input SNR. As we can see, the pro-
posed RNG-WWF method could reduce the background noise sig-
nificantly, and especially during the speech-absence periods where
the noise is further reduced.

Informal listening tests were also conducted to compare the
performance of the benchmark algorithms in the second group
and the proposed algorithms. It was generally found that the lat-
ter, and especially the RNG-WWF method offered the best per-
formance, both in terms of noise reduction and speech distortion.
More specifically, the STSA and SSM gave an enhanced speech with
reasonable quality for the babble and factory 1 noises although
some musical noise was found in the SSM method. However, they
both failed to remove high frequency components in the buccaneer
1 noise which resulted in a highly annoying ringing sound. The
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Fig. 7. Example of magnitude spectra of the clean, noisy and estimated clean speech for the benchmark and proposed algorithms. A female speech is degraded with

buccaneer 1 noise at 0 dB input SNR.

enhanced speech with the benchmark NMF algorithms, i.e.,, NMF,
RNMF-AGM and WNMF, was perceived as being similar to that ob-
tained with the STSA and SSM for babble and factory 1 noises, but
of better quality for buccaneer 1 and hfchannel noises. Focusing on
the proposed algorithms, the RNG method could remove more low
frequency noise than the benchmark algorithms, whereas the high
frequency components were further removed using the RNG-WWF
method. Consequently, the enhanced speech using the RNG-WWF
method was perceived as having much better quality than the one
using the RNG method.

6. Conclusion

New single-channel speech enhancement algorithms based on
regularized NMF have been introduced. In the proposed frame-
work, a priori knowledge about the magnitude spectra of the clean
speech and noise is captured by distinct GMMs, where normalized
spectra are employed to handle the magnitude difference between
the training and test data. The corresponding LLFs are included as
regularization terms in the NMF cost function during the enhance-
ment stage. Further improvement of the enhanced speech qual-
ity was obtained by exploiting the masking effects of the human
auditory system. Specifically, we constructed a weighted Wiener
filter where the weighting factor is selected based on the mask-

ing threshold calculated from estimated clean speech PSD. In ad-
dition to informal listening tests and visual inspection of spectro-
grams, experimental results using three different objective mea-
sures (PESQ, SDR, and segmental SNR) showed that the proposed
speech enhancement algorithms could provide better performance
than the benchmark algorithms for several types of noises and in-
put SNRs.

References

Bertin, N., Badeau, R., Vincent, E., 2010. Enforcing harmonicity and smoothness in
Bayesian non-negative matrix factorization applied to polyphonic music tran-
scription. IEEE Trans. Audio Speech Lang. Process. 18 (3), 538-549.

Bishop, C.M., 2006. Pattern Recognition and Machine Learning. Springer.

Boll, S., 1979. Suppression of acoustic noise in speech using spectral subtraction.
IEEE Trans. Acoust. Speech Signal Process. 27 (2), 113-120.

Cemgil, A.T., 2009. Bayesian inference for nonnegative matrix factorisation models.
Comput. Intell. Neurosci, no. 4, Article ID 785152, pp. 1-17.

Chung, H., Plourde, E., Champagne, B., 2014. Regularized NMF-based speech en-
hancement with spectral components modeled by Gaussian mixtures. In: IEEE
International Workshop on Machine Learning for Signal Processing, Reims,
France, pp. 1-6.

Cichocki, A., Zdunek, R., Amari, S.-i,, 2006. New algorithms for non-negative ma-
trix factorization in applications to blind source separation. In: IEEE Interna-
tional Conference on Acoustics Speech and Signal Process, Toulouse, France,
pp. 621-624.

Cohen, I, 2003. Noise spectrum estimation in adverse environments: Improved
minima controlled recursive averaging. IEEE Trans. Speech Audio Process. 11 (5),
466-475.


http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0001
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0001
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0001
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0001
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0002
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0002
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0003
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0003
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0004
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0004
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0005
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0005
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0005
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0005
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0006
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0006
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0006
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0006
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0007
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0007

30 H. Chung et al./Speech Communication 87 (2017) 18-30

Cooke, M., Barker, J., Cunningham, S., Shao, X., 2006. An audio-visual corpus for
speech perception and automatic speech recognition. ]J. Acoust. Soc. Am. 120
(5), 2421-2424.

Defraene, B., Ngo, K., van Waterschoot, T., Diehl, M., Moonen, M., 2012. A psychoa-
coustically motivated speech distortion weighted multi-channel Wiener filter
for noise reduction. In: IEEE International Conference on Acoustics Speech and
Signal Process, Kyoto, Japan, pp. 4637-4640.

Dempster, A.P,, Laird, N.M., Rubin, D.B., 1977. Maximum likelihood from incomplete
data via the EM algorithm. J. R. Stat. Soc. Ser. B 39 (1), 1-38.

Ding, G.-H., Wang, X., Cao, Y., Ding, F, Tang, Y., 2005. Speech enhancement based
on speech spectral complex Gaussian mixture model. In: IEEE Acoustics Speech
and Signal Process, Pennsylvania, USA, pp. 165-168.

Ephraim, Y., Malah, D., 1984. Speech enhancement using a minimum-mean square
error short-time spectral amplitude estimator. IEEE Trans. Acoust. Speech Signal
Process. 32 (6), 1109-1121.

Ephraim, Y., Van Trees, H.L., 1995. A signal subspace approach for speech enhance-
ment. IEEE Trans. Speech Audio Process. 3 (4), 251-266.

Erkelens, ]., Jensen, ]., Heusdens, R., 2007. Speech enhancement based on Rayleigh
mixture modeling of speech spectral amplitude distributions. In: European Sig-
nal Processing Conference, Poznan, Poland, pp. 9-65.

Fastl, H., Zwicker, E., 2007. Psychoacoustics: Facts and Models, vol. 22. Springer Sci-
ence & Business Media.

Févotte, C., Bertin, N., Durrieu, J.-L., 2009. Nonnegative matrix factorization with the
Itakura-Saito divergence. With application to music analysis. Neural Comput. 21
(3), 793-830.

FitzGerald, D., Cranitch, M., Coyle, E., 2008. On the use of the Beta divergence for
musical source separation. In: Irish Signals and Systems Conference, Galway,
Ireland.

Gerkmann, T., Hendriks, R.C., 2012. Unbiased MMSE-based noise power estimation
with low complexity and low tracking delay. IEEE Trans. Audio Speech Lang.
Process. 20 (4), 1383-1393.

Grais, E.M., Erdogan, H., 2012. Hidden Markov models as priors for regularized non-
negative matrix factorization in single-channel source separation. In: Annual
Conference of the International Speech Communication Association. ISCA, Port-
land, USA, pp. 1536-1539.

Grais, E.M., Erdogan, H., 2013. Regularized nonnegative matrix factorization using
Gaussian mixture priors for supervised single channel source separation. Com-
put. Speech Lang. 27 (3), 746-762.

Gustafsson, S., Jax, P, Vary, P, 1998. A novel psychoacoustically motivated audio
enhancement algorithm preserving background noise characteristics. In: IEEE
International Conference on Acoustics Speech and Signal Process, Washington,
USA, pp. 397-400.

Hansen, ].H., Radhakrishnan, V., Arehart, K.H., 2006. Speech enhancement based on
generalized minimum mean square error estimators and masking properties of
the auditory system. IEEE Trans. Audio Speech Lang. Process. 14 (6), 2049-2063.

Hao, J., Lee, T.-W., Sejnowski, TJ., 2010. Speech enhancement using Gaussian scale
mixture models. IEEE Trans. Audio Speech Lang. Process. 18 (6), 1127-1136.

Hermus, K., Wambacq, P, Hamme, H.V., 2007. A review of signal subspace speech
enhancement and its application to noise robust speech recognition. EURASIP ].
Appl. Signal Process. 2007 (1), 195.

Hu, Y., Loizou, P.C., 2004. Incorporating a psychoacoustical model in frequency do-
main speech enhancement. IEEE Signal Process. Lett. 11 (2), 270-273.

Jabloun, F., Champagne, B., 2003. Incorporating the human hearing properties in the
signal subspace approach for speech enhancement. IEEE Trans. Speech Audio
Process. 11 (6), 700-708.

Jensen, S.H., Hansen, P.C., Hansen, S.D., Serensen, ].A., 1995. Reduction of broad-band
noise in speech by truncated QSVD. IEEE Trans. Speech Audio Process. 3 (6),
439-448.

Kabal, P, 2002. TSP Speech Database. Technical Report. McGill University. 09(02)

Kirbiz, S., Giinsel, B., 2013. Perceptually enhanced blind single-channel music source
separation by non-negative matrix factorization. Digital Signal Process. 23 (2),
646-658.

Kodrasi, 1., Marquardt, D., Doclo, S., 2015. Curvature-based optimization of the
trade-off parameter in the speech distortion weighted multichannel Wiener fil-
ter. In: IEEE International Conference on Acoustics Speech and Signal Process,
Brisbane, Australia, pp. 315-319.

Kwon, K., Shin, JW.,, Kim, N.S., 2015. NMF-based speech enhancement using bases
update. IEEE Signal Process. Lett. 22 (4), 450-454.

Lee, D.D., Seung, H.S., 2001. Algorithms for non-negative matrix factorization. In:
Advances in Neural Infomation Processing Systems, pp. 556-562.

Lefevre, A., Bach, F, Févotte, C., 2011. Online algorithms for nonnegative matrix fac-
torization with the itakura-saito divergence. In: IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics, New York, USA, pp. 313-316.

Lim, J.S., Oppenheim, A.V., 1979. Enhancement and bandwidth compression of noisy
speech. Proc. IEEE 67 (12), 1586-1604.

Loizou, P.C., 2005. Speech enhancement based on perceptually motivated bayesian
estimators of the magnitude spectrum. IEEE Trans. Speech Audio Process. 13 (5),
857-869.

Mohammadiha, N., Gerkmann, T., Leijon, A., 2011. A new linear MMSE filter for sin-
gle channel speech enhancement based on nonnegative matrix factorization. In:
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics,
New York, USA, pp. 45-48.

Mohammadiha, N., Smaragdis, P, Leijon, A., 2013. Supervised and unsupervised
speech enhancement using nonnegative matrix factorization. IEEE Trans. Audio
Speech Lang Process. 21 (10), 2140-2151.

Mysore, G.J., Smaragdis, P., 2011. A non-negative approach to semi-supervised sep-
aration of speech from noise with the use of temporal dynamics. In: IEEE In-
ternational Conference on Acoustics Speech and Signal Process, Prague, Czech,
pp. 17-20.

Natarajan, A., Hansen, J.H., Arehart, K.H., Rossi-Katz, ]., 2005. An auditory-mask-
ing-threshold-based noise suppression algorithm GMMSE-AMT [ERB] for lis-
teners with sensorineural hearing loss. EURASIP J. Appl. Signal Process. 2005,
2938-2953.

Nikunen, J., Virtanen, T. 2010. Noise-to-mask ratio minimization by weighted
non-negative matrix factorization. In: IEEE International Conference on Acous-
tics Speech and Signal Process, Texas, USA, pp. 25-28.

O'Shaughnessy, D., 1987. Speech Communication: Human and Machine. IEEE Press.

Painter, T., Spanias, A., 2000. Perceptual coding of digital audio. Proc. IEEE 88 (4),
451-515.

Plourde, E., Champagne, B., 2008. Auditory-based spectral amplitude estimators for
speech enhancement. IEEE Trans. Audio Speech Lang. Process. 16 (8), 1614-1623.

Rangachari, S., Loizou, P.C., 2006. A noise-estimation algorithm for highly non-sta-
tionary environments. Speech Commun. 48 (2), 220-231.

Recommendation, 1., 2001. Perceptual evaluation of speech quality (PESQ), an objec-
tive method for end-to-end speech quality assessment of narrowband telephone
networks and speech codecs. ITU-T Recommendation, p. 862.

Scalart, P., Filho, J.V., 1996. Speech enhancement based on a priori signal to noise
estimation. In: IEEE International Conference on Acoustics Speech and Signal
Process, Atlanta, USA, Vol. 2, pp. 629-632.

Spriet, A., Moonen, M., Wouters, J., 2005. Stochastic gradient-based implementation
of spatially preprocessed speech distortion weighted multichannel Wiener fil-
tering for noise reduction in hearing aids. IEEE Trans. Signal Process. 53 (3),
911-925.

Varga, A., Steeneken, HJ., 1993. Assessment for automatic speech recognition. II.
NOISEX-92: a database and an experiment to study the effect of additive noise
on speech recognition systems. Speech Commun. 12 (3), 247-251.

Vincent, E., Gribonval, R, Févotte, C., 2006. Performance measurement in blind
audio source separation. IEEE Trans. Audio Speech Lang. Process. 14 (4),
1462-1469.

Virag, N., 1999. Single channel speech enhancement based on masking properties of
the human auditory system. IEEE Trans. Speech Audio Process. 7 (2), 126-137.

Virtanen, T., 2007a. Monaural sound source separation by nonnegative matrix fac-
torization with temporal continuity and sparseness criteria. IEEE Trans. Audio
Speech Lang. Process. 15 (3), 1066-1074.

Virtanen, T,, 2007b. Monaural Sound Source Separation by Perceptually Weighted
Non-negative Matrix Factorization. Technical Report. Tampere University of
Technology..

Virtanen, T., Cemgil, A.T., 2009. Mixtures of gamma priors for non-negative matrix
factorization based speech separation. In: Independent Component Analysis and
Signal Separation. Springer, pp. 646-653.

You, C.H., Koh, S.N., Rahardja, S., 2005. S-order MMSE spectral amplitude estimation
for speech enhancement. IEEE Trans. Speech Audio Process. 13 (4), 475-486.
Zafeiriou, S., Tefas, A., Buciu, I, Pitas, 1., 2006. Exploiting discriminant information
in nonnegative matrix factorization with application to frontal face verification.

IEEE Trans. Neural Netw. 17 (3), 683-695.


http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0008
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0008
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0008
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0008
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0008
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0009
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0009
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0009
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0009
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0009
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0009
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0010
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0010
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0010
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0010
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0011
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0011
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0011
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0011
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0011
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0011
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0012
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0012
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0012
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0013
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0013
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0013
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0014
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0014
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0014
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0014
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0015
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0015
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0015
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0016
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0016
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0016
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0016
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0017
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0017
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0017
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0017
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0018
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0018
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0018
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0019
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0019
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0019
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0020
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0020
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0020
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0021
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0021
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0021
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0021
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0022
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0022
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0022
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0022
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0023
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0023
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0023
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0023
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0024
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0024
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0024
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0024
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0025
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0025
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0025
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0026
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0026
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0026
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0027
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0027
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0027
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0027
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0027
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0028
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0028
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0028
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0029
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0029
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0029
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0030
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0030
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0030
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0030
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0031
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0031
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0031
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0031
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0032
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0032
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0032
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0033
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0033
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0033
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0033
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0034
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0034
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0034
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0035
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0035
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0036
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0036
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0036
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0036
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0037
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0037
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0037
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0037
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0038
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0038
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0038
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0039
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0039
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0039
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0039
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0039
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0040
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0040
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0040
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0041
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0041
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0042
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0042
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0042
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0043
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0043
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0043
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0044
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0044
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0044
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0045
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0045
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0046
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0046
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0046
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0047
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0047
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0047
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0047
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0048
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0048
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0048
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0049
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0049
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0049
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0049
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0050
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0050
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0051
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0051
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0052
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0052
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0053
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0053
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0053
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0054
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0054
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0054
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0054
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0055
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0055
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0055
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0055
http://refhub.elsevier.com/S0167-6393(15)30014-5/sbref0055

	Regularized non-negative matrix factorization with Gaussian mixtures and masking model for speech enhancement
	1 Introduction
	2 NMF-based speech enhancement
	3 Proposed training stage
	4 Proposed enhancement stage
	4.1 Regularized NMF with Gaussian mixtures
	4.2 RNG with weighted Wiener filtering
	4.2.1 Masking threshold estimation
	4.2.2 Weighted Wiener filtering


	5 Experiments
	5.1 Methodology
	5.2 Benchmark algorithms
	5.3 Results

	6 Conclusion
	 References


