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Abstract

Typical sparse echo cancellers employ adaptive filtering algorithms that update only

a small number of filter coefficients that produce the actual echo. Usually, these

algorithms provide increased convergence speed at the cost of an increase in compu-

tational complexity for locating these significant filter coefficients. Recently, a coupled

echo canceller was proposed that uses two short adaptive filters in tandem. The first

adaptive filter operates in the partial Haar domain and is solely used to estimate the

location of the channel’s dispersive region. A short time-domain filter is then cen-

tred around this estimate to cancel echo. Using two short filters instead of one long

filter not only reduces computational complexity, while substantially increasing the

convergence speed of the echo canceller.

The focus of this thesis is twofold. First, it analyzes the partial Haar echo canceller

and attempts to clarify some issues with its implementation. Second and foremost, it

identifies and proposes feasible solutions to three inherent weaknesses of the coupled

echo canceller. These include alleviating the adverse effect caused by the shift-variant

property of wavelets, improving the tracking performance of the coupled echo can-

celler in response to abrupt changes in the echo path impulse response, and extending

the original echo canceller to support the cancellation of multiple echoes. Simulations

support the resulting improvements when each of the proposed solutions is incorpo-

rated into the coupled echo canceller.
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Sommaire

Les annuleurs d’écho non denses typiques utilisent des algorithmes de filtrage adap-

tatif qui mettent à jour uniquement un nombre restreint de coefficients de filtre qui

produisent l’écho réel. Habituellement, ces algorithmes se caractérisent par une vitesse

de convergence plus rapide au détriment d’une augmentation de la complexité infor-

matique pour localiser les coefficients de filtre signifiants. Récemment, on a proposé

un annuleur d’écho couplé qui utilise deux filtres adaptatifs courts en tandem. Le

premier filtre adaptatif fonctionne dans le domaine partiel de Haar et est employé

pour estimer l’endroit où le canal présente une caractéristique dispersive. Un filtre

court dans le domaine du temps est alors centré sur cette région pour annuler l’écho.

L’utilisation de deux filtres courts au lieu d’un seul long filtre réduit non seulement

la complexité informatique, mais elle augmente également la vitesse de convergence

de l’annuleur d’écho considérablement.

Deux points principaux sont abordés dans cette thèse. D’abord, nous analysons

l’annuleur d’écho partiel de Haar et essayons de clarifier quelques problèmes reliés

à sa mise en oeuvre. En second lieu, nous identifions et proposons des solutions

appropriées à trois faiblesses inhérentes de l’annuleur d’écho couplé. Celles-ci com-

prennent la réduction des effets nuisibles causés par la variation due au décalage des

ondelettes, l’amélioration de la capacité de poursuite de l’annuleur d’écho couplé suite

à un changement brusque de la réponse impulsionnelle de l’écho, et la modification de

l’annuleur d’écho original pour permettre l’annulation des échos multiples. Lorsque

chacune des solutions proposées est incorporée à l’annuleur d’écho couplé, des simu-

lations confirment les améliorations obtenues.
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Chapter 1

Introduction

This chapter is divided into four parts. First, the telephone network environment is

introduced as a backdrop to the problem of line echo and its implications. This is

followed by a review of sparse echo cancellers that have been developed over recent

years, including a specific echo canceller which will be the focus of this work. Section

1.3 discusses the scope of this research and the contributions made. The chapter

concludes with an overview of the subsequent chapters of this text.

1.1 Line Echo in Voice Communications

The presence of echo has been and is still commonplace in today’s ever-expanding

communication infrastructure. In a telephone call scenario, the echo phenomenon can

be described by a caller as hearing a duplicate of his or her voice delayed in time.

Depending on the delay of the duplicate signal, the echo can be characterized as nearly

imperceptible for small delays to obstructing conversations when the delay is longer.

The most well known occurrence of echo is in telephone networks. A user’s phone

is connected to the local exchange or local telephone company (also termed the central

office) via a twisted pair of copper wires called the subscriber loop, terminating in

a line circuit, that connects to the public-switched telephone network (PSTN) [41].

The line circuit includes a device called a hybrid that converts the twisted pair run-

ning from a user’s premises into a four-wire connection, where each pair of wires is

separately used for transmit and receive signals.

2006/09/28
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An impedance mismatch at the far-end hybrid causes some of the transmitted

signal to leak into the near-end caller’s receive path and is perceived as a reflection

(see Fig. 1.1 with speaker A at the near-end and speaker B at the far-end) [48]. If the

distance between callers is short, the round-trip echo delay is small and the reflection

is perceived as either a slight amplification or soft reverberation. As the distance

increases (delay > 16 ms), this reverberation becomes an echo and can severely impede

the conversation. The fact that most long distance calls are routed via satellites only

makes matters worse, since the round-trip echo delay can reach up to 600 ms over

these connections.

send

rec

rec

send

Speaker A Speaker B
Hybrid A

Hybrid B

echo B

echo A

2

2

Fig. 1.1 Telephone network and line echo.

In the past, echo suppressors were installed on both the incoming and outgoing

speech paths to solve the echo problem. These devices suppress echo by classifying

the signal on the receive path as either speech or echo [48]. If the signal is classified

as echo, then it is attenuated. Usually, the classification is based on the amplitude

of the signal, which frequently leads to false classifications. This is largely one of the

reason why echo suppressors have had limited success in practice.

Echo cancellers employing adaptive filters, on the other hand, have been shown

to be more successful at cancelling line echo. By adaptively identifying the echo path

impulse response, the echo canceller can create a replica of the echo and therefore

cancel it from the received signal. The convergence speed of an adaptive filter to its

steady-state coefficients can vary, however, and depends on many factors including

the input correlation matrix and whether the echo path response is stationary or not.

In the latter case, the echo canceller should be capable of tracking rapid changes in

the impulse response.
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Another hindrance to an echo canceller is double-talk, which occurs when both

users are speaking simultaneously. Double-talk corrupts the desired signal required to

cancel the echo, and negatively affects the steady-state mode of the adaptive filter’s

operation. Although it is not too common for people to be speaking simultaneously

during a phone call, the control logic should inhibit the echo canceller when double-

talk does occur. Double-talk detection will not be considered in this thesis.

An interesting fact about advancements in improving communication quality has

been an increase in the adverse effects of echo. By adding coders and signal processing

blocks into the line circuit, processing delays ranging from 80–100 ms have been

introduced into the round trip delay of echo [48]. Therefore, line echo that was

previously perceived as a slight amplification or reverberation can now be distinctly

heard as an echo. This byproduct of increased processing delays is making the effects

of echo even worse for Voice over Internet Protocol (VoIP) telephones, which are

deployed onto the existing telephone infrastructure. In addition to the processing

delays already present in the network, these telephones also require buffering delays

for the packetization of speech, not to mention delays resulting from the sharing of

network resources with other data packets [34]. One of the well known problems

encountered in VoIP is known as ‘initial echo’, which is echo experienced at the

beginning of a phone call, while the echo canceller is still converging, allowing the

reflection of residual echo back to the speaker [26].

In addition to affecting voice communications, echo also impedes the introduction

of transmission methods such as discrete multitone modulation (DMT), which divides

the transmission channel into a set of orthogonal subchannels [9, 25]. Echo cancella-

tion is usually not necessary when different sets of subchannels are used for up- and

down-links. However, full-duplex transmission, which can significantly increase the

obtainable data rates, requires echo cancellation.

An example of a network impulse response is shown in Fig. 1.2. The response

contains a flat delay region or bulk delay equal to the round-trip time of the trans-

mitted and reflected signal (region A) . The group of non-zero coefficients following

the flat delay region is termed the dispersive region (region B), which produces the

echo. Region C is a zero-energy zone, i.e. all impulse response coefficients are zero.

Besides line echo, another type of echo known as acoustic is present in hands-free
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Fig. 1.2 Typical network impulse response.

communication. This echo results from the multiple reflections of sound emitted by

the loudspeaker (in three-dimensional space), which reach a microphone with differ-

ent delays [7]. Unlike acoustic echo, network or line echo involves specific reflection

points (impedance mismatches) placed over longer distances, along a one-dimensional

transmission medium. This makes echo path impulse responses in networks inherently

sparse compared to acoustic echo.

Although both types of echo affect telephone conversations, this thesis will only

be concerned with line echo. The main focus of this work will be based on an efficient

and fast echo canceller that takes advantage of the sparse characteristic of echo path

impulse responses in telephone networks.

1.2 Literature Review

The literature abounds with adaptive filtering algorithms that exploit the sparse char-

acteristics of line echo [33]. Most algorithms are based on finding ways to determine

which filter coefficients are actually associated with the echo, and then adapting only

these coefficients.

One of the earliest works on sparse echo cancellation is by Duttweiler [16], where

the input and desired signals are bandpass-filtered and decimated, and used by a

short (i.e. small number of coefficients) adaptive filter to locate the impulse response’s

dispersive region. If D is the decimation factor, then this approach requires only 1/D

as many taps as a traditional echo canceller. A shorter filter operating at the original

sampling rate is then centred around the dispersive region to cancel the echo. Using

this approach, only two short adaptive filters are required, compared to one long
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filter, reducing complexity and increasing convergence speed. However, Duttweiler’s

echo canceller suffers from many drawbacks as remarked by [4]. The most obvious

drawback stems from the observation that the convergence time of the echo canceller

depends on the decimated adaptive filter, which is operating D-times slower than the

rate of incoming data. Therefore, the time required to correctly estimate the delay

can be quite long. Secondly, in speech applications, the bandlimiting operation can

remove important frequency components in the signals, preventing proper convergence

of the subsampled adaptive filter.

An adaptive multiple echo canceller is proposed in [50]. It uses a full-length pri-

mary adaptive filter in parallel with a group of short secondary adaptive filters. A

monitor/control unit switches between the output of these two classes of filters, de-

pending on specific conditions. The full-length filter is used to track multiple dis-

persive regions and initially cancels echo, while each short adaptive filter is centred

around these regions once the full-length filter has sufficiently converged. One of the

biggest problems with this approach is the added complexity of the monitor/control

unit, in addition to the extra hardware and power requirements of a full length adap-

tive filter.

In [46], an algorithm based on the so-called “Scrub Taps Waiting in a Queue”

(STWQ) approach [27] for sparse channel impulse responses is proposed that uses a

two-stage adaptation process. The first part of the process estimates the flat delay

region, and the second part consists of adapting those filter coefficients using a con-

strained tap-position control. This constrained control puts a limit on which filter

taps can be updated based on their relative position within the dispersive region.

Probably one of the most well-known class of sparse echo cancellers are based

on the Proportionate Normalized Least Mean Squares (PNLMS) algorithm [17] and

its ubiquitous variants. These include the improved PNLMS (IPNLMS) [3], the

PNLMS++ [19], and the improved IPNLMS [11]. These algorithms allocate individ-

ual step-size gains in proportion to the magnitude of each filter coefficient. Therefore,

coefficients with large magnitudes converge quickly to their steady-state values, while

coefficients in the flat delay region that would normally only contribute to tap-weight

noise are updated using very small step-sizes. The only drawbacks of this algorithm

are its increased computational complexity and its degradation in performance as the
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length and/or number of dispersive regions increases.

Other attempts at improving sparse echo cancellation rely on using orthogonal

transforms such as the wavelet transform on the input data. In [24], the authors

propose using a subset of Haar wavelet coefficients to detect the significant channel

coefficients. Then, by exploiting the hierarchical structure of the dyadic wavelet

expansion, the locations of these significant coefficients are used to activate coefficients

in the remaining subsets that share the same non-zero time-support. Therefore, only

significant filter coefficients are adapted, increasing convergence speed and reducing

computational complexity.

More recently, Bershad and Bist [4] have proposed a novel way of cancelling sparse

echo, using a coupled echo canceller consisting of two short adaptive filters similar

to Duttweiler’s approach [16]. The first partial Haar filter operates on only a subset

of input Haar coefficients, and is used by a peak delay estimator to determine the

location of the echo path’s dispersive region. Unlike Duttweiler’s echo canceller [16]

which requires the design of complex bandpass filters, the Haar wavelet transform is

simpler and just as amenable to digital signal processors. The second time-domain

filter is then centred around this location to actually cancel the echo. In cases where

the bulk delay is very large and a traditional echo canceller would require a large

number of taps, this new method provides a significant reduction in computation and

memory requirements. Most importantly, by reducing the number of filter taps, the

convergence speed of the overall echo canceller is increased.

1.3 Research Objectives and Contribution

Although some of the previously-mentioned sparse adaptive filtering algorithms have

shown promising results, the coupled echo canceller proposed by Bershad and Bist [4]

uses a more novel method of incorporating channel-monitoring for sparse echo can-

cellation. Because channel-monitoring is performed in parallel with the actual echo

cancellation process, this can provide greater flexibility from a researcher’s point of

view in experimenting with new ideas to improve the overall echo canceller. With its

significant increase in convergence speed and reduced complexity, the coupled echo

canceller still suffers from a few drawbacks, however.
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First, the shift-variant property of wavelet transforms makes the performance of

the partial Haar adaptive filter highly dependent on the echo path bulk delay. As

a result, the specific value of the bulk delay can affect the amount of time it takes

the peak delay estimator to correctly estimate the location of the dispersive region,

significantly affecting the overall convergence speed of the echo canceller.

Second, the promising results shown by [4] that support the increased convergence

speed are only valid for stationary channels. The reason for this is the simulations

that produced these results assume that the filter taps are initially set to zero. In

non-stationary environments, where the bulk delay of the echo path impulse response

can abruptly change, the amount of time required by the peak delay estimator to

locate new dispersive regions can be very large.

Finally, the coupled echo canceller has only been analyzed and developed for the

case of a single dispersive region. In today’s communication networks, interfaces

between different transmission media such as copper to fibre optic cables can also

produce unwanted echo [48]. Consequently, it is not uncommon for an echo path im-

pulse response to contain multiple dispersive regions. It would therefore be necessary

to modify the original coupled echo canceller [4] to accommodate multiple echoes.

In addition to some implementation issues, this thesis looks at the above problems,

and investigates possible solutions for each. More specifically,

- To deal with the shift-variant property of wavelet transforms, a peak tendency

estimator is proposed that is based on non-Bayesian evidence theory and fuzzy

inference. The estimator categorizes a peak’s magnitude behaviour as either

increasing or decreasing. When the current peak is categorized as decreasing

and displaying jitter, then a different set of transformed input coefficients is

used to drive the partial Haar adaptive filter to a Wiener solution with a larger

peak. Deciding when to use a different transformed input vector is based on a

schedule of trial periods.

- The proposed peak tendency estimator is also used to improve the tracking

performance of the coupled echo canceller in situations where an abrupt change

in an echo path impulse response’s bulk delay occurs. Because the partial Haar

adaptive filter is not cancelling echo directly, it can be reset to zero whenever a
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change in bulk delay is detected as a decrease in the current peak magnitude.

The old peak position is used to offset the short time-domain filter until a new

peak has been found. As Bershad and Bist have shown [4], the peak delay

estimator usually locates peaks faster when the partial Haar adaptive filter is

reset to zero.

- A multiple echo canceller similar to [50] is proposed that assigns multiple agents

to overlapping regions of the partial Haar adaptive filter, with each agent per-

forming peak tendency estimation. When true peaks are found, their locations

are relayed to a central coordinator that activates or deactivates the coefficients

of a full-length time-domain filter used to cancel echo.

The performance gains of the above contributions are supported by simulation. Each

contribution to the echo canceller is tested using ITU-T G.168 [1] hybrid impulse

responses. The simulations are divided into two classes and range from specific test-

scenarios to randomly generated cases. Each class of tests is required to understand

the proposed algorithms in detail while at the same time establishing their perfor-

mance in general. It is shown that each of the proposed solutions can substantially

improve the coupled echo canceller’s performance.

1.4 Thesis Overview

This text is organized as follows: Chapter 2 begins with an overview of wavelets and

adaptive filtering theory. The aim of this chapter is to focus and narrow the breadth

of these fields within the scope of the coupled echo canceller.

Chapter 3 provides the analysis of the coupled echo canceller proposed by Bershad

and Bist [4], followed by an in depth critique of the different problems associated with

this echo canceller.

Proposed solutions to these problems are developed in Chapter 4. These include

ways of mitigating the effects of shift variance, improved tracking of abrupt changes

in bulk delays, and extending the echo canceller to accommodate multiple dispersive

regions.

Chapter 5 provides a series of simulation experiments to justify the advantages of
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the proposed solutions. These simulations are accompanied by discussions pertaining

to the results.

Finally, Chapter 6 concludes the text with a brief summary of the work, in addition

to possible future work and improvements to the proposed algorithms.
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Chapter 2

Background

This chapter provides the theoretical background necessary to understand the ensuing

discussion in Chapter 3 of the coupled algorithm proposed by Bershad and Bist [4].

Because the coupled algorithm makes use of the Haar transform, the first section

provides a brief introduction to wavelets. The second section discusses basic adaptive

filtering theory, with particular emphasis on the LMS and NLMS algorithms.

2.1 A Brief Introduction to Wavelets

The theory of wavelets and their mathematical formulation have been well established

since the early 1900s [8]. However, it has only been after the advent of improved

processing power that the full potential and flexibility of wavelets have been realized

in digital signal processing. In fact, one of the first algorithms utilizing wavelets for

signal analysis dates back to the work of Stephane Mallat [32] in the 1980s.

Wavelets can be viewed as functions that obey certain mathematical constraints

to represent other functions (signals). In addition to the time-frequency descriptive

provided by wavelet transforms, these mathematical constraints also make possible the

notion of multiresolution analysis. In other words, by properly scaling (i.e. dilating

or contracting) and shifting a wavelet function along the time-axis, it is possible to

describe the same signal with varying degrees of detail.

Unlike the class of Fourier expansions that decompose a signal in terms of sinusoids

with infinite time-support, wavelet functions are not restricted to any one class of basis

2006/09/28
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functions, and also include functions with finite time-support. This makes it possible

to construct wavelet functions to obtain signal representations that are sparse or that

emphasize certain desired properties of a signal [38]. Wavelet transforms also provide

a dual time-frequency description of a signal which is absent from Fourier analysis.

Applications of wavelets in signal processing are seemingly endless, and include

image processing, time-series analysis, sound synthesis, and data compression [21]. In

applications such as image denoising, an image is decomposed into a set of wavelet

coefficients, and those coefficients with magnitudes less than a specified threshold

are set to zero. A denoised version is then constructed using the inverse wavelet

transform of the resulting coefficients. Wavelets enjoy even more widespread use in

data compression, where their sparse representations allow the storage of a signal’s

information in very few coefficients [38].

The following section discusses the fundamentals of wavelets and their properties.

This discussion is limited to the Discrete Wavelet Transform (DWT), since its analysis

leads to practical and efficient applications in digital signal processing.

2.1.1 Discrete Wavelet Transform

The DWT arose from a necessity to overcome some of the inherent difficulties associ-

ated with the Continuous Wavelet Transform (CWT) [31]. These difficulties include

redundancy, and an uncountable number of wavelets resulting from continuous scaling

and translation variables. More importantly, however, the CWT does not lend itself to

any fast algorithms for computing the transform [31]. Although discrete wavelets are

continuous functions of time, they can only be scaled and translated in discrete steps,

such as the dyadic DWT which uses scaling steps of size 2 and will be considered here.

A. Scaling Function

The set of scaling functions is defined as

ϕj,k(t) = 2j/2ϕ(2jt− k), j, k ∈ Z, ϕ ∈ L2(R), (2.1)

where ϕ(t) is the scaling function from which all others are derived and L2(R) rep-
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resents the set of functions (of real variables) with well-defined square integrals [8].

This function has two properties. First, it is scalable in time (2jt term), and second,

at each scale, the set of functions include integer-translates k of ϕ(2jt). A small scale

index j corresponds to a coarse time-resolution, while a large scale index reflects finer

time-resolution1. In addition, for the sake of simplicity, the scale index j will only

assume non-negative values. The set of scaling functions is two-dimensional, as it

represents a given localization in time determined by k at a given scale index j, hence

the term time-frequency resolution associated with wavelets.

The time support of the function ϕ(t) is usually normalized to the interval [0, 1).

As a result, the value of k ranges from 0 to 2j − 1. As the scale index increases (finer

time resolution), the number of possible translations increases exponentially. At a

given scale index j, the subspace spanned by these functions over translations k is

denoted by

Vj = span{ϕj,k(t)}. (2.2)

Multiresolution analysis is made possible by requiring that

Vj ⊂ Vj+1. (2.3)

This means that those coefficients generated by expanding a signal at a coarser scale

can be constructed from coefficients at a finer scale. The expression that relates the

two is known as the multiresolution analysis (MRA) equation

ϕ(t) =
∑

k

h0(k)
√

2ϕ(2t− k), (2.4)

where the h0(k) denote scaling filter coefficients (more on this in the next section).

The above equation provides a recursion to construct the scaling function at a scale

index j from the next finest scale index j + 1.

1this is a consequence of defining the scaling factor as 2j instead of 2−j
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B. Wavelet Function

The wavelet function is given by

ψj,k(t) = 2j/2ψ(2jt− k), j, k ∈ Z, (2.5)

where ψ(t) is known as the mother wavelet, and the variables j and k again represent

the scale and translation indices, respectively. At a given scale index j, the subspace

spanned by these wavelet functions is denoted by

Wj = span{ψj,k(t)}. (2.6)

The set of wavelet functions span the differences between the spaces spanned by

successive scaling functions ϕ(2jt) and ϕ(2j+1t). By construction, this space is related

to Vj, and satisfies the following condition,

Vj+1 = Vj ⊕Wj, (2.7)

where ⊕ denotes a direct sum of subspaces. Equation (2.7) implies that

Vj = V0 ⊕W0 ⊕W1 ⊕ · · · ⊕Wj−1. (2.8)

Furthermore, one can conclude that in order to span Vj the initial subspace Vj0 can

have an arbitrary scale 0 ≤ j0 < j. Therefore, Vj is can also be represented by

Vj = Vj0 ⊕Wj0 ⊕Wj0+1 ⊕ · · · ⊕Wj−1. (2.9)

This makes sense intuitively because from (2.7), the span of the initial scaling functions

contain the spans of all the scaling functions with scale indices less than j0, i.e.

V0 ⊂ V1 ⊂ · · · ⊂ Vj0 . (2.10)

As a result of (2.7) and (2.9), any function g(t) ∈ L2(R) can be written as a sum of
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time-shifted versions of an arbitrary scaling function and a set of wavelet functions,

g(t) =
∑

k

cj0(k)ϕj0,k(t) +
∞∑

j=j0

∑
k

dj(k)ψj,k(t), (2.11)

where cj(k) and dj(k) are the scaling and wavelet (or difference) coefficients, respec-

tively. To make the calculation of the wavelet coefficients tractable, an important

requirement is for the wavelet and scaling functions to be orthogonal,

〈ϕj,k(t), ψj,l(t)〉 =

∫
ϕj,k(t)ψj,l(t)dt = 0, ∀j, k �= l ∈ Z (2.12)

and for the wavelet functions, whether at the same or different scale, to be orthogonal

〈ψj,k(t), ψj′,l(t)〉 =

∫
ψj,k(t)ψj′,l(t)dt = 0,

∀j = j′, k �= l ∈ Z

∀(j, k) �= (j′, l) ∈ Z
2

(2.13)

Furthermore, if the scaling and wavelet functions have unit norm in addition to the

conditions in (2.12) and (2.13), then Parseval’s relation holds true for the DWT, i.e.∫
|g(t)|2dt =

∑
k

|cj0(k)|2 +
∞∑

j=j0

∑
k

|dj(k)|2. (2.14)

Finally, the wavelet function also possesses a MRA equation that allows for the con-

struction of a coarser wavelet from the scaling function at the next higher scale

ψ(t) =
∑

k

h1(k)
√

2ϕ(2t− k), (2.15)

where the wavelet filter, h1(k) is related (by the requirement of orthogonality) to the

scaling filter in (2.4) by

h1(k) = (−1)kh0(1 − k). (2.16)

Two other very important properties of wavelet transforms are the regularity and

admissibility conditions. The regularity conditions dictate that a wavelet function’s

energy should be concentrated in both frequency and time domains, in addition to

displaying some smoothness in these domains [31]. The admissibility requirements
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state that the Fourier transform of the wavelet function is zero at the zero frequency

(the time average of the wavelet function is zero). From a spectral perspective then,

it is now apparent why scaling functions are used in conjunction with wavelets. Scal-

ing functions fill in the low-frequency ‘spectral gap’ resulting form the admissibility

conditions (an admissibility condition for scaling functions requires that their zero-

moment be non-zero). Otherwise, filling this spectral gap could only be achieved in

the limit of an infinite number of wavelet functions [31]. Therefore, wavelet functions

can be seen as band-pass filters while scaling functions correspond to low-pass filters.

Of course, all these constraints are meaningless unless there actually exists a set

of scaling and wavelet functions that satisfy the above constraints. The next section

introduces the Haar wavelet and its corresponding scaling function. Both functions

are probably the most basic of all wavelet/scaling functions.

2.1.2 An Example: The Haar Wavelet

The Haar wavelet, introduced by Alfred Haar in his 1909 thesis, is probably the most

basic of all wavelets [8]. The scaling and wavelet functions consist of shifted and

scaled versions of a square wave. The functions ϕ(t) and ψ(t) are shown in Fig. 2.1

normalized to the interval [0, 1). The equations for each are

ϕ(t) =

{
1, t ∈ [0, 1)

0, t /∈ [0, 1)
ψ(t) =

⎧⎪⎨⎪⎩
1, t ∈ [0, 1/2)

−1, t ∈ [1/2, 1)

0, t /∈ [0, 1)

(2.17)

t
0

1

1

(a)

t

1

1

− 1

0

(b)

Fig. 2.1 Haar (a) scaling and (b) wavelet functions.



2 Background 16

2.1.3 Filter Bank/Transform Matrix Interpretation of Wavelets

A consequence of the two MRA equations in (2.4) and (2.15) makes calculating the

required scale/wavelet coefficients amenable to a filter bank realization [32]. In fact,

only two types of linear time-invariant filters with impulse responses h0(−n) and

h1(−n) are required, in addition to 2:1 decimators. The output of the cascade con-

nection of h1(−n) and the decimator at scale j produces the wavelet coefficients dj,

while the output of the cascade of h0(−n) and the decimator produce the scaling

coefficients cj. From a spectral perspective, the filters h0(−n) and h1(−n) correspond

to low-pass and high-pass filters, respectively.

By cascading another stage of the above filters at the output cj, the wavelet and

scaling coefficients corresponding to the next highest scale (coarse) can be obtained.

These stages can then be added iteratively with each new stage producing wavelet

and scaling coefficients at a coarser scale. This bank of filters forms the analysis

tree shown in Fig. 2.2. The iterated bank of filters has a very significant spectral

interpretation as well. At the first stage, the input signal’s spectrum is divided into a

low frequency spectrum and a high frequency spectrum. The next stage then similarly

divides the low-frequency spectrum into a corresponding high-frequency spectrum and

low-frequency spectrum. This is shown graphically in Fig. 2.3.

cj+1

h0(−n)

h0(−n)

h1(−n)

h1(−n)

2

2

2

2

dj

cj

dj−1

cj−1

d0

c0

Fig. 2.2 Filter bank implementation of the Wavelet Transform.

One might wonder where the translation index k fits into the filter bank of Fig. 2.2.

To understand this, one has to first realize that the above iterated filter bank does not

make explicit use of the continuous-time functions, ϕ(t) and ψ(t). In fact, this filter

bank is calculating the DWT of a discrete-time signal. Recall from (2.4) and (2.15)

that the wavelet and scaling coefficients at a certain scale can be computed using
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ππ
2

π
4

π
8

ω

V0 W0 W1 W2

|H(ω)|

Fig. 2.3 Frequency bands corresponding to a dyadic wavelet decompo-
sition.

the scaling coefficients of an immediate prior scale. The discrete-time input samples

can therefore be interpreted as outputs of a prior (non-existential) low-pass filter

corresponding to scale j + 1 (see Fig. 2.2). Returning to the issue of the translation

index k, each terminal branch in Fig. 2.2 produces a sequence of wavelet/scaling

coefficients corresponding to the different translations k at every j. Of course, for each

pair of wavelet coefficients produced at scale j, one wavelet coefficient, is produced at

scale j − 1. This is a result of the 2:1 downsampling operation.

Another method of visualizing the wavelet transform is with the use of an N -by-N

transform matrix, whose first set of rows correspond to the scaling basis vector at a

predetermined initial scale, j0. If j0 = 0, the remaining rows consist of sets of rows

corresponding to the wavelet basis vector beginning with scale index j = 0 up to

jmax − 1 = log2N − 1. Each subset of rows corresponds to a group of these wavelet

basis vectors at a given scale, where each row consists of the scaling/wavelet functions

at a different translational index k = {0, . . . , 2j − 1}.
As an example, consider the simple 8-by-8 Haar transform matrix H shown below,

where the rows corresponding to a given scale have been partitioned into subsets.

H = 2−3/2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1√
2

√
2 −√

2 −√
2 0 0 0 0

0 0 0 0
√

2
√

2 −√
2 −√

2

2 −2 0 0 0 0 0 0

0 0 2 −2 0 0 0 0

0 0 0 0 2 −2 0 0

0 0 0 0 0 0 2 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.18)
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The number of rows (or vectors) within each subset is equal to 2j, where the first

two rows correspond to the scaling and wavelet basis vectors at scale index j = 0.

In addition, the vectors in each subset have a time support of length N/2j. It is

interesting to note that the orthogonality conditions in (2.12) and (2.13) carry over

to the discrete wavelet and scaling basis vectors in (2.18).

Although both filter-bank and matrix interpretations produce the same wavelet

coefficients, there is one key difference and it plays an essential role in the coupled

echo canceller. When all the discrete-time samples of a length N input signal have

been filtered using the iterated filter bank with log2N stages in Fig. 2.2, then one

scaling coefficient and N−1 wavelet coefficients are produced. However, in the matrix

transform interpretation, every new sample shifted into an input vector x produces a

new output vector Hx.

2.1.4 Shift-Variance of the Wavelet Transform

Although wavelets have proven to be a significant tool in many applications, they

do suffer from some disadvantages. One of the main disadvantages is their lack of

shift invariance. To be more specific, the DWT coefficients of a signal are not simply

related to those of the same signal shifted by one sample. This property can be seen

by either looking at the matrix representation in (2.18) or at the filter-bank in Fig. 2.2

which includes decimation operations that make the overall process time-variant.

The transform is also shift-variant across subbands (or scale). Shifting the input

redistributes the energy across different scales, and this is mainly due to the fact

that the wavelet system uses critically sampled subband decompositions, i.e. no re-

dundancy is introduced as a result of violating the Nyquist criterion. This can be

achieved because of the way aliasing artifacts are cancelled in the inverse transform

[43].

2.2 Least Mean Square Algorithm

This section presents and develops the famous least mean square (LMS) algorithm,

originally introduced by Widrow and Hoff [23, 22]. The discussion will focus solely

on the system identification problem shown in Fig. 2.4. To begin, some notation is in
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order:
n discrete time index

N length of input data vector and adaptive filter

u(n) input data vector (of length N)

y(n) adaptive filter output signal

d(n) desired response

e(n) error signal

ν(n) measurement/plant noise

w(n) adaptive weight vector (of length N)

w′ impulse response of unknown system (of length N ′)

u(n)

y(n)

−
+

e(n)

ν(n)

d(n)

w(n)

w′

Fig. 2.4 System identification using an adaptive filter.

2.2.1 Wiener-Hopf Equation

The adaptive filter shown in Fig. 2.4 is in the form of a linear combiner or finite

impulse response (FIR) filter with an adjustable weight (or coefficient) vector w(n).

For simplicity, it will be assumed that all the data is real-valued, including the input

and the tap-weights (filter coefficients). In addition, the unknown weight vector w′ is

assumed to be time-invariant. The goal of an adaptive filtering algorithm is to find

a weight vector w so as to minimize a certain cost function. A weight vector that

satisfies this condition is termed the ‘best’ weight vector.

The input data vector at time n is given by

u(n) = [u(n), u(n− 1), . . . , u(n−N + 1)]T , (2.19)
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and the weight vector is denoted by

w = [w1, w2, . . . , wN ]T . (2.20)

Each input sample is multiplied with its respective tap-weight, and the results are

added to produce the output

y(n) = wTu(n) =
N∑

k=1

wku(n− k + 1). (2.21)

The error at time n is

e(n) = d(n) − y(n) = d(n) − wTu(n), (2.22)

where

d(n) = w′Tu(n) + ν(n) (2.23)

is the output to the true system (also called the plant) to be identified by the adapta-

tion process plus an additional term that can be attributed to plant or measurement

noise denoted by ν(n), assumed to be independent of u(n).

Here, the cost function to be minimized by the best weight vector is the mean

squared error (MSE),

J = E[e2(n)]

= E[d2(n) − 2d(n)wTu(n) + wTu(n)uT (n)w]

= σ2
d − 2wTp + wTRw (2.24)

where σ2
d denotes the variance of the desired response d(n), p = E[d(n)u(n)] is the

cross-correlation between the input data vector and the desired signal, and R =

E[u(n)uT (n)] is the input autocorrelation matrix. The above equation shows that

the MSE is a quadratic function of the tap-weight vector, w. Assuming that R > 0,

this implies that J(w) exhibits a unique minimum which can be found by following

the negative gradient of J(w) with respect to w. Differentiating (2.24) with respect
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to w,
∂J(w)

∂w
= −2p + 2Rw, (2.25)

and setting the result to zero, the famous Wiener-Hopf equation is obtained for the

optimal filter weights,

wo = R−1p. (2.26)

If N ≥ N ′, it can be shown that the Wiener solution wo corresponds to the true

weight vector of the unknown system w′ padded with N−N ′ zeros, i.e. wo = [w′T0]T .

In the sequel, it will be assumed that this condition is satisfied and the adaptive filter

length is sufficient to model w′, so that the symbol w′ can be replaced by wo.

When R is nonsingular (as is usually the case), the MSE expression in (2.24) can

be written as

J(w) = σ2
d − pTR−1p + (w − R−1p)TR(w − R−1p). (2.27)

Therefore,

Jmin = min
w

J(w) = σ2
d − pTR−1p (2.28)

is satisfied for w = wo = R−1p. Expanding σ2
d,

σ2
d = E[d2(n)]

= E[(wT
o u(n) + ν(n))2]

= σ2
ν + wT

o Rwo, (2.29)

where σ2
ν is the noise power and the independence of ν(n) and u(n) has been assumed.

Therefore (2.28) becomes

Jmin = σ2
ν + wT

o Rwo − pTR−1p

= σ2
ν . (2.30)

In the ideal case, at least, the minimum MSE reduces to the measurement noise power.
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In general then, (2.24) can be written as

J(w) = Jmin + (w − wo)
TR(w − wo). (2.31)

2.2.2 LMS Algorithm

The LMS algorithm is based on the steepest-descent algorithm [22],

w(n+ 1) = w(n) − 1

2
μ
∂J(n)

∂w(n)
, (2.32)

where the tap-weights are now a function of time. Substituting (2.25) in (2.32), one

obtains the steepest descent algorithm’s update equation,

w(n+ 1) = w(n) + μ[p − Rw(n)]. (2.33)

Note that this is a deterministic equation since the quantities p and R are produced

by expectation operators.

The LMS algorithm on the other hand, approximates p and R with their instan-

taneous estimated values. As a result, the LMS update equation is given by

w(n+ 1) = w(n) + μ[d(n)u(n) − u(n)uT (n)w(n)]

= w(n) + μu(n)[d(n) − uT (n)w(n)]

= w(n) + μu(n)e(n). (2.34)

Because instantaneous, and therefore random values of the quantities p and R are

used, the LMS algorithms is a stochastic gradient algorithm.

2.2.3 Properties of the LMS Algorithm

Although the recursive form of the LMS filter in (2.34) is straightforward, its con-

vergence analysis is quite complicated (convergence usually refers to the behaviour of

the adaptive filter as it reaches its optimum solution). This can be seen by finding



2 Background 23

the closed-form expression of (2.34), assuming w(0) = 0,

w(n) = μ
n−1∑
i=0

e(i)u(i). (2.35)

The filter output y(n) can then be written as

y(n) = wT (n)u(n)

= μ
n−1∑
i=0

e(i)uT (i)u(n), (2.36)

where it is clear that y(n) is a non-linear function of the input vectors u(j), (j =

0, 1, . . . , n). The most common form of analysis of the LMS algorithm is based on

small step-size theory [22] which approximates the LMS weight error vector ε(n) =

wo − w(n), and its corresponding recursion

ε(n+ 1) = [I − μu(n)uT (n)]ε(n) − μu(n)eo(n), (2.37)

with its zero-order recursion

ε0(n+ 1) = (I − μR)ε0(n) + f0(n), (2.38)

where eo(n) = d(n) − wT
o u(n), is the output error corresponding to the Wiener so-

lution, and I is an N -by-N identity matrix. The second term in (2.37), f0(n) =

−μu(n)eo(n), is called the driving force. The eigendecomposition of the input correla-

tion matrix R is given by R = QΛQH , where Λ is the diagonal matrix of eigenvalues,

and Q is an orthogonal matrix of the respective eigenvectors. The transformed weight

error vector b(n) = QT ε0(n) consists of scalar entries known as the natural modes of

the filter. The transformed recursion in (2.38) becomes

b(n+ 1) = (I − μΛ)b(n) + φ(n), (2.39)
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where φ(n) = QT f0(n). If b(n+ 1) is decomposed into its individual components, bk,

then the expression for the kth natural mode is,

bk(n+ 1) = (1 − μλk)bk(n) + φk(n). (2.40)

A closed-form equation can be derived,

bk(n) = (1 − μλk)
nbk(0) +

n−1∑
i=0

(1 − μλk)
n−i−1φk(i), (2.41)

whose mean value and mean squared value are

E[bk(n)] = bk(0)(1 − μλk)
n (2.42)

E[|bk(n)|2] =
μJmin

2 − μλk

+ (1 − μλk)
2n
(
|bk(0)|2 − μJmin

2 − μλk

)
, (2.43)

respectively [22]. From this expression, one can determine the range of values of the

step-size μ so that the mean value of the natural modes decay to zero,

−1 < 1 − μλk < +1, ∀k. (2.44)

The corresponding range for μ is

0 < μ <
2

λmax

, (2.45)

where λmax and λmin correspond to the maximum and minimum eigenvalues, respec-

tively. The average time constant of the LMS is a useful indicator of the convergence

time of the algorithm. The constant is derived from the average eigenvalue, defined

as λav = 1
N

∑N
k=1 λk, and is given by

τav ≈ 1

2μλav

. (2.46)

For the steepest descent case, this time constant defines the amount of time it takes

on average for a natural mode to decay to 1/e of its initial value, bk(0). In fact, it can
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be shown [22] that the time constant τ of the filter ranges from

−1

ln(1 − μλmax)
≤ τ ≤ −1

ln(1 − μλmin)
. (2.47)

As a result, the convergence time of the LMS algorithm is a function of the eigenspread

(also known as the condition number), λmax/λmin of the input autocorrelation R.

To derive an MSE equation similar to (2.31) within the context of the LMS algo-

rithm, w is replaced by a time-varying form w(n). Applying the eigenvalue decom-

position R = QΛQH , the expected value of the squared error, given w(n), is

E[e2(n)|w(n)] = Jmin +
N∑

k=1

λk|bk(n)|2. (2.48)

The above equation, however, is stochastic because it depends on the random quan-

tities bk(n), (k = 1, 2, . . . , N). In order to obtain an expression for the mean square

error, the expectation of (2.48) is taken with respect to w(n) resulting in the expres-

sion

J(n) ≈ Jmin + tr[RK0(n)]

≈ Jmin +
N∑

k=1

λkE[|bk(n)|2], (2.49)

where K0(n) = E[ε0(n)εT
0 (n)] is the correlation matrix of the zero-order weight error

vector and using (2.43), the steady-state MSE is given by

J(∞) ≈ Jmin

(
1 +

μ

2

N∑
k=1

λk

)
. (2.50)

In the steepest descent case, where the driving force φ(n) is absent from the natural

mode recursion [22], the MSE in (2.48) decays to Jmin as the modes decay to zero.

However, the stochastic nature of the LMS produces a larger steady-state MSE, as

shown in the above equation.
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2.2.4 Normalized LMS Algorithm

One of the drawbacks of the LMS algorithm is gradient noise amplification. From

(2.34), the direction and magnitude of the tap update vector μu(n)e(n) is proportional

to the input data vector u(n) [22]. Therefore, any large increase in u(n) causes an

undesirable increase in the LMS update equation (2.34).

To overcome this problem, the normalized LMS algorithm (NLMS) normalizes the

weight update term in (2.34) by ||u(n)||2,

w(n+ 1) = w(n) +
μ

‖u(n)‖2u(n)e(n). (2.51)

The above equation satisfies the principle of minimal disturbance [22] which states

that the squared Euclidian norm of the tap-weight update vector ‖Δw(n + 1)‖2 =

‖w(n+1)−w(n)‖2 should be minimized, subject to the constraint that the posterior

error ẽ(n) = d(n) − wT (n+ 1)u(n) equals zero.

To analyze the stability of the NLMS, the second moment convergence bounds

on the step-size will be used [2]. Unlike the first moment weight-convergence bounds

found in (2.45), the second moment bounds on the step size are given by

0 < μ <
2

tr(R)
. (2.52)

Because of the normalization factor ‖u(n)‖2, the resulting Wiener-Hopf equation has

the form,

w̄o = E
[u(n)uT (n)

‖u(n)‖2

]−1

E
[u(n)d(n)

‖u(n)‖2

]
= R̄

−1
p̄, (2.53)

where a term ā denotes the normalized version of that term. As a result, tr(R̄) = 1

and the second moment convergence bounds for the NLMS algorithm are given by [2]

0 < μ < 2. (2.54)

The optimal step-size is usually chosen as μopt = 1, and corresponds to the maximum

non-oscillatory decay of the natural modes in (2.42).
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Chapter 3

Coupled Echo Cancellation

This chapter focuses on the coupled echo canceller proposed by Bershad and Bist

[4]. The first section introduces the echo canceller, and establishes formulae for its

update equations and convergence properties. The second section provides an in

depth analysis of the echo canceller, targeting its major weaknesses. The last section

then analyzes some of the implementation issues associated with the coupled echo

canceller.

3.1 Coupled Adaptation of Bershad and Bist

As mentioned in the introduction, recent sparse adaptive algorithms such as the

PNLMS and its variants exploit the sparse characteristic of network echo paths by

making modifications to the tap-weight update equations of the NLMS filter. Al-

though these algorithms are designed to operate optimally in sparse environments1,

they still require that all filter coefficients be updated. Bershad and Bist have pro-

posed a coupled setup using two short adaptive filters operating in parallel [4]. The

first filter operates in the transform domain on only a subset of input Haar coefficients,

and is used by a peak delay estimator to determine the location of the channel’s dis-

persive region. A second time-domain filter is centred around this location to actually

cancel the echo.

1In fact, as the number of non-zero filter coefficients increases, the PNLMS converges slower than
the NLMS [3].

2006/09/28
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There are numerous advantages to using shorter filters. These include faster con-

vergence since fewer parameters (in this case filter coefficients) need to be estimated,

and a reduction in computational and memory requirements. As a result, the coupled

echo canceller makes use of only two short adaptive filters, at the additional cost of

computing the partial Haar transform of the input.

3.1.1 Structure of the Partial Haar Dual Adaptive Filter

The structure of the coupled echo canceller (also known as the partial Haar dual

adaptive filter) is shown in Fig. 3.1. The upper branch, consists of a partial Haar

transform matrix denoted by Hq of size q × N and a length-q (≤ N) partial Haar

adaptive filter. The term partial Haar reflects the fact that the transform only consists

of a subset of Haar basis vectors corresponding to a scale index j, where q = 2j. These

basis vectors span the sample interval of length N , which is set to match the maximum

length of the unknown echo path impulse response. At time sample n, a new sample

u(n) is shifted into the input data vector (2.19) of length N and a new transformed

input vector z(n) = Hqu(n) of length q is calculated. The partial Haar adaptive filter

input

Delay
Bulk

Peak Delay
Estimator

Hq

u(n)

z(n)

−

−

+

+

eH(n)

e(n)

d(n)

v(n)

w(n)

Fig. 3.1 Coupled echo canceller.

v(n) of length q is a scaled-down version of the full echo path impulse response, and
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is used solely to track changes in the echo path impulse response. The peak delay

estimator tracks the location of the dispersive region by locating the peak magnitude

of the partial Haar impulse response.

In the lower branch of the echo canceller, the estimated location of the dispersive

region is used to offset (using an appropriate bulk delay) a short time-domain filter

w(n) of length L so that it is properly centred around the dispersive region. The

length of the time-domain filter is set to match the longest expected dispersive region

in the echo path.

3.1.2 Effect of the Complete Haar Transform on the Wiener Solution

This subsection deals with the effect of the complete Haar transform on the Wiener

solution. Let HN denote the orthogonal N×N Haar transform matrix, i.e. HT
NHN =

HNHT
N = IN , and z(n) = HNu(n) is the transformed input vector of length N . The

optimal Haar weight vector is denoted by vo (in this case, the length of vo is N). The

resulting Wiener-Hopf equation is given by

Rzzvo = pz, (3.1)

where Rzz = E[z(n)zT (n)] = HNRuuH
T
N represents the autocorrelation matrix of

z(n), and pz = E[z(n)d(n)] = HNpu is the cross-correlation vector between z(n) and

the desired signal d(n). Solving for vo,

vo = R−1
zz pz

= {HNRuuH
T
N}−1HNpu

= HNR−1
uuHT

NHNpu

= HN

[
R−1

uupu

]
= HNwo. (3.2)

As a consequence of the orthogonality property of the Haar transform matrix, the

Wiener solution corresponding to the transformed input data vector is simply the

Haar transform of the time-domain Wiener solution. In fact, it is possible to recover

the optimal time-domain Wiener solution by pre-multiplying (3.2) by HT
N .
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3.1.3 Effect of the Partial Haar Transform on the Wiener Solution

It was seen in the previous section that by transforming the input with the set of

Haar basis vectors, the Wiener solution is also transformed. When only a subset of

Haar basis vectors at a scale index j is used to transform the input, the situation is

somewhat different. Unlike the complete Haar transform matrix, Hq (q < N) is only

row-wise orthogonal, i.e. HqH
T
q = Iq �= HT

q Hq.

The terms Rzz and pz have the same interpretation as in the previous section,

except all quantities are now based on the partially transformed input z(n) = Hqu(n)

(q < N). The resulting Wiener-Hopf equation becomes

vo = R−1
zz pz

= {E[z(n)zT (n)]}−1E[z(n)d(n)]

= {E[Hqu(n)uT (n)HT
q ]}−1E[Hqu(n)d(n)]

= {HqRuuH
T
q }−1Hqpu. (3.3)

The above equation cannot be simplified any further, mainly because the partial

Haar transform matrix is only row-wise orthogonal. If one assumes, however, that the

input is white with Ruu = σ2
uIN , then

vo = {Hqσ
2
uH

T
q }−1Hqpu

= Hqpu/σ
2
u

= Hqwo. (3.4)

The result is similar to the complete Haar transform, provided the input samples are

uncorrelated. However, it is not possible to recover the original Wiener solution. In

addition, it is interesting to observe that no transformation of the desired signal d(n)

is necessary.

Now that the effect of the partial Haar transform on the Wiener solution has been

investigated, consider its effect on the minimum mean square error Jmin, which is

calculated by taking the expected value of the minimum squared error, eHo(n), of the
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partial Haar adaptive filter,

Jmin = E[e2
Ho(n)]

= E[
(
d(n) − vT

o z(n)
)2

]

= E[
(
wT

o u(n) + ν(n) − vT
o z(n)

)2
]

= E[
(
ν(n) + wT

o u(n) − wT
o HT

q Hqu(n)
)2

]

= E[
(
ν(n) + wT

o

[
IN − HT

q Hq

]
u(n)

)2
], (3.5)

Assuming the input u(n) is white and uncorrelated with the measurement noise ν(n),

Jmin = σ2
ν + σ2

uw
T
o (IN − HT

q Hq)(IN − HT
q Hq)

Two

= σ2
ν + σ2

uw
T
o (IN − HT

q Hq)wo

= σ2
ν + σ2

u(‖wo‖2
2 − ‖vo‖2). (3.6)

Unlike the optimal steepest descent case in (2.30), the minimum MSE of the partial

Haar filter contains the additional term σ2
u(‖wo‖2−‖vo‖2) ≥ 0. Intuitively, this makes

sense, since the partial Haar transform spans only a subspace of the N -dimensional

space, and so the resulting excess MSE can be attributed to the partial Haar trans-

form’s rank deficiency, i.e. to those basis vectors not included in the partial transform.

Note that when q = N , the second term on the righthand side of (3.6) vanishes.

Bershad and Bist [4] argue that this increase in minimum MSE is not very sig-

nificant since the partial Haar-domain filter is only being used to locate a dispersive

region. However, as will be seen in Section 3.2 this can deteriorate the echo canceller’s

convergence performance.

3.1.4 Transient Behaviour of the Partial Haar Adaptive Filter

For the following and subsequent sections, six assumptions made by [4] are used to

simplify the analysis. These include the Independence Theory assumptions,

A1. The sequence of tap input vectors u(n), u(n− 1),. . . , are independent.

A2. u(n) is independent of d(k) for k < n.
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A3. d(n) depends on u(n) but not on d(k), for k < n.

Additional assumptions are used to simplify the analysis,

A4. The sequences of input samples u(k) and desired responses d(m) are zero-mean

jointly Gaussian.

A5. u(n) is stationary and white, i.e. E[u(n)uT (n)] = σ2
uIN .

Finally, to make the analyze of the peak delay estimator easier, it is assumed that

A6. The partial Haar weight vector, v(n), is a jointly Gaussian random vector.

The partial Haar LMS weight recursion formula adapted from (2.34) is given by

v(n+ 1) = v(n) + μeH(n)z(n) (3.7)

where

eH(n) = d(n) − zT (n)v(n). (3.8)

Replacing (3.8) into (3.7) yields

v(n+ 1) = [Iq − μz(n)zT (n)]v(n) + μd(n)z(n), (3.9)

Taking the expectation of both sides of (3.9), and using A1 and A5 along with (3.3),

E[v(n+ 1)] = [1 − μσ2
u]E[v(n)] + μσ2

uvo. (3.10)

The closed-form expression for the solution of the above equation is

E[v(n)] = (1 − μσ2
u)

nv(0) + [1 − (1 − μσ2
u)

n]vo. (3.11)

Therefore as n increases and provided that 0 < μ < 2/σ2
u, the expected weight vector

approaches the optimal partial Haar weight vector vo.
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Next, the expression for the weight vector covariance matrix Q(n) is obtained so

as to characterize the correlation between the jointly Gaussian tap-weights (from A6):

Q(n) = E[v(n)vT (n)] − E[v(n)]E[vT (n)]

= E[v(n)vT (n)] − [1 − (1 − μσ2
u)

n]2vov
T
o , (3.12)

where it has been assumed that v(0) = 0. It is shown in [4] that

Q(n) = [α(n) + γ(n)]Iq + [β(n) − (1 − μσ2
u)

2n]vov
T
o , (3.13)

where

ρ(n) = (1 − 2μσ2
u + μ2σ4

u(q + 2))n (3.14)

α(n) =

(
μJmin

2 − μσ2
u(q + 2)

)
[1 − ρ(n)] (3.15)

β(n) = (1 − 2μσ2
u + 2μ2σ4

u)
n (3.16)

γ(n) =

(
vT

o vo

q

)
[ρ(n) − (1 − 2μσ2

u + 2μ2σ2
u)

n]. (3.17)

For large n and 0 < μ < 2/(q+2)σ2
u, the covariance matrix converges to the first term

on the righthand side of (3.13),

Q(n) ≈ [α(n) + γ(n)]Iq, (3.18)

and the tap weights of the adaptive filter are uncorrelated. The above result simplifies

the analysis of the peak delay estimator in the next section.

3.1.5 Peak Delay Estimator

The peak delay estimator plays a central role in the coupled echo canceller. It esti-

mates the location of the dispersive region, allowing the short-time domain filter to be

centred around it. Although the short time-domain filter can tolerate a small degree

of jitter around a true peak location, false peak detections can cause the greatest

convergence problems for the short-time adaptive filter.

By A6, the partial Haar-domain tap weights are assumed to be independent Gaus-
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sian variables with probability density function (PDF)

φ(v) =
1√

2πσw

e−v2/2σ2
w . (3.19)

The analysis by Bershad and Bist [4] further assumes that all the filter coefficients have

variance σ2
w (from (3.18))) and zero mean, except for the tap weight corresponding to

the peak which has a mean value of m. Note that both m and σ2
w are functions of time.

This weight is assumed to be Gaussian with a non-zero mean value corresponding

to the peak’s tap-weight value. Let vi correspond to the peak tap weight, so the

remaining weights are v1, v2, . . . , vi−1, vi+1, . . . , vq. The PDF can then be divided into

two groups,

f(v) =

{
φ(v), l �= i, 1 ≤ l ≤ q

φ(v −m), l = i
(3.20)

Given that the value of the peak is Zi, the probability that the absolute value of

this peak is greater than the remaining filter coefficients is

P{|vi| > |vl| for all l ∈ {1, 2, . . . , q}, l �= i|vi = Zi}

=
∏
l=1
l �=i

P{|vi| > |vl||vi = Zi}

=

q∏
l=1
l �=i

∫ Zi

−Zi

φ(v)dv

=

[∫ Zi

−Zi

φ(v)dv

]q−1

=

[
1√

2πσw

∫ Zi

−Zi

exp

(
− v2

2σ2
w

)
dv

]q−1

. (3.21)

The probability of correct detection then becomes (integrating the expression in (3.21)

over the PDF corresponding to Zi)

P{|vi| > |vl| for all l ∈ {1, 2, . . . , q}, l �= i}

=
1√

2πσw

∫ ∞

−∞
exp

(
− (Zi −m)2

2σ2
w

)[
1√

2πσw

∫ Zi

−Zi

exp

(
− v

2σ2
w

)
dv

]q−1

dZi. (3.22)



3 Coupled Echo Cancellation 35

3.2 Critical Analysis of the Haar-domain Adaptive Filter

This section provides an in depth look at the significant drawbacks of the coupled

echo canceller [4]. These include its dependence on the echo path’s bulk delay, the

problem of tracking dispersive regions in non-stationary environments, and the lack

of provision for locating multiple dispersive regions.

3.2.1 Effect of the Bulk Delay on the Partial Haar Impulse Response

In Section 3.1.3 the effect of transforming a white input signal (prior to filtering)

with the partial Haar transform on the optimal Wiener solution was studied. It was

shown that the resulting Wiener solution is simply the partial Haar transform of the

time-domain Wiener solution. Recall from Section 2.1, however, that one of the main

disadvantages of wavelet transforms is their lack of shift invariance. In other words,

depending on the bulk delay of the dispersive region, the transformed Wiener solution

can be quite different, changing the peak delay estimator’s performance.

To see why the wavelet transform is not shift invariant, consider the signal

x(n) = hj,1(n). (3.23)

where hj,1(n) represents the second row (translation index starts at k = 0) of the

2j × N submatrix of the complete Haar transform matrix corresponding to a scale

index j. Let N = 32 and j = 3 (or q = 23 = 8), so that the non-zero time-support of

each h3,k(n) (for k = 0, 1, . . . , 2j − 1) is N/q = 4 samples. The transform coefficients

obtained by projecting the signal x(n− l) onto this subset of basis vectors is denoted

by dl
j(k) for l = {0, 1, . . . , N/q − 1}. Figure 3.2 shows each resulting set of transform

coefficients dl
3(k) for 0 ≤ k, l ≤ 3.

One can note that in the case of d0
3(k), the single non-zero coefficient occurs at

k = 1. This is expected since x(n) equals the basis vector h3,1(n), and so d0
3(1) =

‖x(n)‖2. In addition, because the set of basis vectors are orthonormal, the resulting

norm is unity. If l = 1, the time-support of x(n − 1) is no longer restricted to a

single basis vector. Instead, the last sample of x(n− 1) leaks into the non-zero time-

support of the nearby vector hj,2(n). As a result, the energy of x(n) is now distributed

over two wavelet coefficients and so both d1
3(1) and d1

3(2) are non-zero in this case.
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Furthermore, by Parseval’s relation (2.14), |d1
3(1)|2, |d1

3(2)|2 < 1. In other words, the

peak magnitude for this case is smaller than for d0
3(k).

As l increases, the energy of x(n − l) is distributed across both the second and

third wavelet basis vectors, h3,1 and h3,2. When l = 4, x(n − 4) = hj,2(n), the

subsequent observations for l = {4, 5, 6, 7} are identical to the case for l = {1, 2, 3, 4}
in Fig. 3.2. In other words, although the DWT is not strictly shift invariant [8, 43],

it is periodically invariant with a period of N/q.
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Fig. 3.2 Examining the lack of shift invariance of the wavelet transform
for N = 32, q = 8, corresponding to (a) l = 0 (b) 1 (c) 2 (d) 3 sample(s).

From the above observations, one can conclude that for a given echo path impulse

response, the partial Haar Wiener solution depends on the bulk delay. In addition, it

turns out that for q = 2j, there actually exist N/q unique partial Haar transformed

impulse responses. Furthermore, the respective peak magnitudes of each of these

transformed impulse responses can be different, and consequently the amount of time
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it takes the peak delay estimator to correctly estimate the location of a dispersive

region varies. This can significantly affect the overall convergence speed of the cou-

pled echo canceller. For example, consider the set of N/q = 1024/256 partial Haar

transforms of an echo path impulse response containing an ITU-T G.168 hybrid im-

pulse response m5(n) in Fig. 3.3. One can clearly observe that the third case displays
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Fig. 3.3 Set of transformed impulse responses corresponding to m5(n).

a diminished peak. In addition, as a result of measurement noise and the effect of

the partial Haar transform on the minimum MSE in (3.6), the peak delay estimator

takes a longer time to locate small peaks. To support this claim, consider the family

of CDF curves in Fig. 3.4 corresponding to the time to correctly locate the dispersive

region for four different bulk delays (each curve is identified by its peak magnitude).

It is apparent from this figure that it takes the peak delay estimator a larger number

of input samples to correctly locate a smaller peak. For example, for the curve corre-

sponding to a peak magnitude of 0.0166, the peak delay estimator can barely locate

the peak after 103 input samples. An algorithm will be proposed in the next chapter

to escape such suboptimal cases.
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Fig. 3.4 Probability of correctly (Pc) estimating peak delays.

3.2.2 Assessing Tracking Capability

Bershad and Bist [4] prove the merits of using their coupled configuration by calculat-

ing the echo canceller’s mean time to correctly locate a dispersive region. It is shown

on average that this time does not exceed more than 200 samples at 8 kHz when

employing a partial Haar NLMS algorithm. These results, as promising as they may

appear, only represent the case when the partial Haar adaptive filter has been initial-

ized to zero, i.e. v(0) = 0, and the echo path is stationary. They do not consider what

happens when the echo path impulse response abruptly changes during the course of

the echo canceller’s steady-state operation. The latter case will be considered in this

section.

To begin, consider the number of samples required for the average filter coefficient

to converge to its Wiener solution. The analysis is similar to [12]. Taking the expected

value on both sides of the LMS update equation in (3.7),

E[v(n+ 1)] = E[v(n)] + μ[pz − Rzzv(n)], (3.24)

where pz = Rzzvo. Replacing pz with Rzzvo, and solving for the mean weight error
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vector E[v(n+ 1)] − vo,

E[v(n+ 1)] − vo = (Iq − μRzz)(E[v(n)] − vo). (3.25)

Then the closed-form expression for E[v(n)] − vo is

E[v(n)] − vo = (Iq − μRzz)
n(v(0) − vo). (3.26)

Assuming v(0) = 0, the above can be rewritten as

E[v(n)] = [Iq − (Iq − μRzz)
n]vo. (3.27)

If the input u(n) is white, i.e. E[u(n)uT (n)] = σ2
uIN , then Rzz = E[z(n)zT (n)] =

HqE[u(n)uT (n)]HT
q = σ2

uIq (recall from subsection 3.1.3 that HqH
T
q = Iq), and

E[v(n)] = [1 − (1 − μσ2
u)

n]vo. (3.28)

For the above equation to converge in the mean, the range of μσ2
u is constrained to

the open interval (0, 2). However, only the subinterval (0, 1) will be considered here

since it represents a monotonic rather than oscillatory convergence of the filter tap

weights.

The convergence of the mean lth tap weight E[vl(n)] (1 ≤ l ≤ q) to a threshold γl

(0 < γl < |vol|) can be expressed as

|E[vl(n)]| = |1 − (1 − μσ2
u)

n||vol| ≥ γl. (3.29)

Since only the range (0, 1) of μσ2
u is being considered, it follows that |1−(1−μσ2

u)
n| =

1 − (1 − μσ2
u)

n for all n, and so (3.29) can be rewritten as

(1 − μσ2
u)

n ≤ 1 − γl/|vol|. (3.30)

Solving for the smallest integer value that satisfies (3.30),

n =
⌈ ln [|vol|/(|vol| − γl)]

ln (1 − μσ2
u)

−1

⌉
. (3.31)
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Because the denominator in (3.31) is fixed, the overall number of samples required

for the lth filter coefficient to converge depends on the difference |vol| − γl. Therefore,

as this difference decreases (or as γl approaches |vol|), n increases. In addition, if the

difference is kept constant for all filter taps, i.e. ε = |vol|− γl, then n only depends on

the magnitude |vol|. In this case, the larger the optimal magnitude, the longer it takes

the filter coefficient to converge. Consequently, for small ε, the overall convergence

time of the adaptive filter is equal the longest coefficient convergence time.

One might argue that by using a relative threshold defined as γl = |vol|(1− ε), the

dependence of (3.31) on |vol| is lost. In other words, this measure leads one to conclude

that the convergence times of all filter coefficients are equal. However, considering

the difference |vol| − |vol|(1 − ε) = |vol|ε, one realizes that this value depends on |vol|.
Therefore, the definition of convergence here will be related to an absolute threshold.

Because this thesis is concerned with sparse impulse responses, most filter coeffi-

cients will be zero, and therefore, it is more interesting to comment on the behaviour

of the maximum peak magnitude. Consider, therefore, a maximum peak magnitude

at index i, i.e. (|voi| > |vol| for all l ∈ {1, 2, . . . , q}, l �= i). Let γo < |voi| denote a

threshold that lies in a small vicinity of |voi|, and let no denote the minimum number

of samples required for E[vi(n)] to exceed γo. Similarly, let γm denote the minimum

threshold such that γm > |vol| for all l �= i, and nm is the number of samples required

for E[vi(n)] to exceed γm. Since γm ≤ γo, one can conclude from (3.31) that this

implies nm ≤ no.

Now consider a non-stationary channel, where the echo path impulse response has

remained constant for some time, the partial Haar adaptive filter has converged, and

the current dispersive region is found. Initially, the time for locating the dispersive

region will correspond to the case in the previous paragraph. However, what happens

when there is an abrupt change in the echo path impulse response, particularly with

respect to the bulk delay? In this case, the mean time to locate the new dispersive

region can be longer, and is actually related to the magnitude of the old peak.

To be more specific, consider the following example: at time n = n′, the echo path

impulse response abruptly changes from vo1 to vo2, with peak magnitudes |v1
oj| and

|v2
ok|, respectively, where |v2

ok| = β|v1
oj| (β > 0) and j �= k, i.e. the bulk delay has

changed. The analysis will proceed using (3.26) as a starting point. For the jth filter
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tap is

E[vj(n+ n′)] − v2
oj = (1 − μσ2

u)
n(vj(n

′) − v2
oj). (3.32)

In this case, vj(n
′) ≈ v1

oj and the optimal tap weight v2
oj = 0, and so the above

equation becomes

E[vj(n+ n′)] = (1 − μσ2
u)

nv1
oj. (3.33)

For the kth filter tap, vk(n
′) = 0, and so its weight error update equation becomes

E[vk(n+ n′)] = [1 − (1 − μσ2
u)

n]v2
ok. (3.34)

The time to properly estimate the new peak position corresponding to vo2 is

equal to the time required for new mean peak magnitude to just exceed the old

mean peak magnitude, i.e. when E[vj(n + n′)] ≤ E[vk(n + n′)]. Therefore, unlike

the case considered by [4], where the peak only has to compete with neighbouring

coefficient noise, in non-stationary environments, new peaks also have to compete

with the presence of older peaks. The time at which the peak detector begins tracking

the new peak can then be found

E[vj(n+ n′)] ≤ E[vk(n+ n′)]

(1 − μσ2
u)

n|v1
oj| ≤ [1 − (1 − μσ2

u)
n]|v2

ok|
(1 − μσ2

u)
n|v1

oj| ≤ β[1 − (1 − μσ2
u)

n]|v1
oj|

n =
⌈ ln (1 + 1/β)

ln (1 − μσ2
u)

−1

⌉
. (3.35)

The number of samples required for the initial peak vj(n) to exceed a threshold γm,

such that vj(n) is characterized as the global maximum can be found by replacing l

with j and γk with γm in (3.31). Then comparing (3.35) and (3.31), the number of

samples required by the new peak magnitude to exceed the old peak is greater than

the initial time to locate the old peak when

1 + 1/β ≥ |v1
oj|/(|v1

oj| − γm) (3.36)
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or

β ≤ (|v1
oj| − γm)/γm. (3.37)

In other words, if the ratio between the magnitudes of the new peak and old peak

(β) is less than or equal to the relative difference between the old peak magnitude,

|v1
oj|, and γm, then the time to locate a new peak after an abrupt change in impulse

response is greater than or equal to locating the old peak initially with v(0) = 0.

This is often the case in practice.

The question remains, then, as to whether there is a way to speed up the tracking

ability of the coupled configuration in non-stationary environments. Fortunately, the

answer is yes. In Section 4.4, an algorithm is developed that provides significant

improvements in tracking speed.

3.2.3 Cancelling Multiple Echoes

The peak delay estimator analyzed in [4] assumes the presence of a single dispersive

region. This greatly simplifies the estimation process because the adaptive filter coef-

ficient associated with a global maximum directly indicates the location of this region.

In its present form, the coupled echo canceller of Bershad and Bist [4] does not sup-

port multiple echoes, and this section will look at the main requirements necessary to

make it possible.

A major difficulty arises from the fact that knowledge about the number of dis-

persive regions in a channel is usually unavailable a priori. Therefore, in a multiple

peak delay estimation scenario, the task not only involves finding local maxima from

the partial Haar filter, but also requires the classification of these maxima as peaks.

In addition, assumptions on the maximum number of dispersive regions will need to

be made to make the multiple echo canceller practically realizable.

A second requirement for such an adaptive filter is concerned with the shift-variant

property of wavelets. In Section 3.2.1, this problem was analyzed from the point of

view of a single dispersive region. It was seen that, depending on the bulk delay,

the partial Haar Wiener solutions can display peaks of varying magnitude, and this

in turn determines how fast a dispersive region is located. The same is true for

multiple echoes, and since the number of dispersive regions may not be known initially,
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some filter coefficients might be falsely categorized as coefficient noise, and therefore

ignored. This can adversely affect the echo canceller’s performance.

Finally, an algorithm that cancels multiple echoes will also require a dynamic

mechanism to allocate resources to dispersive regions that have been correctly located.

These resources may include a set of short time-domain adaptive filters or a method for

activating/deactivating regions of a full-length adaptive filter in response to locating

new echoes.

Obviously, the task of multiple echo cancellation within the framework of [4] will

require working around these problems in order to perform correctly and efficiently. In

Section 4.5, an attempt at incorporating multiple echo cancellation into the coupled

echo canceller will be pursued.

3.3 Implementation Issues

3.3.1 Positioning the Short Time-Domain Filter

Echo cancellers that employ two short adaptive filters operating in tandem [4, 16],

usually centre a short time-domain filter around a dispersive region, based on its

estimated location. The term ‘centre’ is somewhat vague and requires further clar-

ification. From an ideal perspective, the term ‘centring’ means offsetting the short

time-domain adaptive filter so that it is correctly aligned with the dispersive region.

One has to acknowledge, however, that any centring of the short time-domain

filter is based on a peak location estimate from an adaptive filter operating in the

partial Haar domain. Therefore, there are two factors that can potentially affect

the proper centring of the short time-domain adaptive filter. First, the bulk delay

estimate is based on the location of a peak, which usually results in an offset that is

larger than the true bulk delay. In addition, the location of a peak depends on which

set of partial Haar basis vectors is used, as each set emphasizes a specific frequency

band. Therefore, depending on the particular spectral-temporal characteristic of the

dispersive region, a peak’s location can change simply by using a different subset of

wavelet coefficients.

Second, the partial Haar adaptive filter is subsampled by an amount that depends

on its length q, requiring the peak delay estimate be appropriately scaled before
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centring the short time-domain filter. Therefore, the task of centring the short time-

domain adaptive filter is not straightforward.

Let B denote the value of the true, but unknown bulk delay (in samples) of the

time-domain echo path impulse response, and D represents a peak delay estimate,

D = (i− 1)N/q + 1, (3.38)

where i ∈ {1, 2, . . . , q} represents the filter-tap index corresponding to the peak and

the term N/q is required due to the fact that the partial Haar adaptive filter is sub-

sampled. A better estimate of the bulk delay that takes into account the previously-

mentioned effects is given by

B̂ = D − �fL�, D > �fL�. (3.39)

The term fL > 0 represents a correction term, and L denotes the length (in samples)

of the short time-domain adaptive filter. The value of f (0 < f < 1) determines

what fraction of the short time-domain filter length is subtracted from the peak delay

estimate, D, to properly centre it around the dispersive region.

Finding a suitable value of f , requires an understanding of the possible effects of

improperly setting it. If the resulting bulk delay estimate B̂ is too small, then the

short time-domain filter will only contain the head of the impulse response, discarding

the tail section. On the other hand, if the bulk delay is too large, then a portion of

the head is omitted from the short time-domain adaptive filter. Usually the latter

case is more detrimental to echo cancellation since the head of the echo path impulse

response contains the most power.

An example of an ITU-T G.168 [1] hybrid impulse response is shown in Fig. 3.5.

Consider a scenario utilizing this impulse response, where N = 1024 and the true

bulk delay is B = 600 samples. Three partial Haar adaptive filters of lengths q =

{256, 128, 64} are used to test the effect of using different values of f in the [0,1]

interval. The graph in Fig. 3.6 shows the squared weight-error (Euclidean) norm

between the short time-domain adaptive filter w after convergence (plus the estimated

bulk delay B̂) and the true impulse response wo, for f ∈ [0, 1]. As f increases, the

bulk delay B̂ decreases. Figure 3.6 shows that for a given q, no unique value of f
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Fig. 3.5 ITU-T G.168 hybrid impulse response.

exists that makes ‖w − wo‖2 ≈ 0. This result shows that the coupled echo canceller

is generally robust to any delay estimation jitter around the true peak. In addition,

the intervals of zero squared norm change for different q. It is also interesting to note

that these intervals shift as the length q decreases (scale decreases). For example, for

q = 256, a permissible interval of f is (0.05, 0.37), while for q = 128 the interval is

(0.2, 0.53).

Therefore, it seems that the rule of thumb for setting f is the following: if q is large

(larger scale), then f ≈ 0.25 while for smaller q, f ≈ 0.5. For simulation purposes

(as will be seen in Chapter 5) it is imperative to select a proper value of f in order

to obtain reliable data. Of course, the above conclusions only serve as guidelines and

are based on empirical results.

3.3.2 Partial Haar NLMS Algorithm

For the most part, the stochastic behaviour of the partial Haar-domain adaptive filter

is analyzed with respect to the LMS algorithm in [4], and a majority of the simulations

utilize the LMS algorithm with a fixed step size. In Chapter 2, it was shown that

the LMS suffers from gradient noise amplification when the input samples become

too large. The goal of this section, therefore, is to discuss how the NLMS algorithm

can be applied to the partial Haar domain, beginning with the complete Haar NLMS

algorithm:

v(n+ 1) = v(n) + Δv(n), (3.40)
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Fig. 3.6 The mean-squared weight error plotted for three different par-
tial Haar adaptive filter lengths q = 256, 128, 64.

with

Δv(n) =
μ

‖z(n)‖2z(n)eH(n) (3.41)

eH(n) = d(n) − zT (n)v(n), (3.42)

where z(n) = HNu(n) is the transformed input vector and v(n) is the weight vec-

tor. Because HN is an orthogonal matrix (HT
NHN = HNHT

N = IN), it follows that

‖z(n)‖2 = zT (n)z(n) = uT (n)HT
NHNu(n) = ‖u(n)‖2. In addition, the convergence

behaviour of both filters is the same, since the eigenvalues of the transformed input

correlation matrix are equal to the eigenvalues of the original autocorrelation matrix.

This can be shown by observing the characteristic equation,

0 = det[λI − Rzz]

= det[HN(λI − Ruu)H
T
N ]

= det[λI − Ruu]. (3.43)
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An interesting observation can be made when analyzing the term z(n)eH(n) in (3.41).

First, expand eH(n) as

eH(n) = d(n) − uT (n)HT
Nv(n). (3.44)

Since v(n) = HNw(n), where w(n) is the time-domain weight vector, this implies

that

eH(n) = d(n) − uT (n)w(n), (3.45)

which is the same as the time-domain error.

The partial Haar NLMS recursion formula is given by

vq(n+ 1) = vq(n) + Δvq(n), (3.46)

where zq = Hqu(n) and

Δvq(n) =
μ

‖zq(n)‖2zq(n)eq(n) (3.47)

eq(n) = d(n) − zT
q (n)vq(n). (3.48)

Writing eq(n) in terms of eH(n),

eq(n) = d(n) − zT
q (n)vq(n) + zT (n)v(n) − zT (n)v(n)

= eH(n) + ȳq(n), (3.49)

where ȳq(n) is defined as

ȳq(n) � zT (n)v(n) − zT
q (n)vq(n). (3.50)

Replacing (3.49) in (3.48), the partial Haar weight update vector becomes

Δvq(n) =
μ

‖zq(n)‖2zq(n)(eH(n) + ȳq(n)). (3.51)

Taking the expectation of the squared-Euclidean norm of (3.41) and (3.51) given
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u(n), and assuming eH(n) and ȳq(n) are uncorrelated, yields

E[‖Δv‖2] =
μ2

‖u(n)‖2E[e2
H(n)] (3.52)

E[‖Δvq‖2] =
μ2

‖zq(n)‖2 (E[e2
H(n)] + E[ȳ2

q ]). (3.53)

As a result, E[‖Δvq‖2] ≥ E[‖Δv‖2]. Indeed, there are two factors that contribute to

this relation: first, the extra term E[ȳ2
q ] on the righthand side of (3.53), and second,

the fact that ‖zq(n)‖2 ≤ ‖u(n)‖2. The latter relation’s proof is given by

‖u(n)‖2 = ‖HNu(n)‖2

= |c0(n)|2 + ‖H1u(n)‖2 + . . .+ ‖HN/4u(n)‖2 + ‖HN/2u(n)‖2

≥ ‖Hqu(n)‖2

= ‖zq(n)‖2, 1 ≤ q ≤ N/2, (3.54)

where c0(n) represents the Haar scaling coefficient (j = 0) at time n.

The main conclusion to be drawn from the above analysis is that since ȳq(n)

is unavailable, one possible way to decrease (3.53) is to use the normalizing factor

‖u(n)‖2 instead of ‖zq(n)‖2. This is the approach taken in this work.

3.3.3 Complexity Analysis of the Coupled Echo Canceller

Referring to the block diagram in Fig. 3.1, the coupled echo canceller is composed

of three main units: partial Haar transform, partial Haar adaptive filter, and short

time-domain adaptive filter.

In [4] there is no clear indication of how the partial Haar transform of the input

data block is computed. The transform is introduced in matrix form, and it leaves one

with the impression that the transformed data block is calculated using the matrix-

vector multiplication z(n) = Hqu(n). Furthermore, one can recall from Section 3.1.1

that this transformation needs to be computed every iteration, i.e. for z(n), z(n +

1),. . . , which can be computationally expensive.

The rows of the q × N transform matrix Hq each have a non-zero time support

of length N/q samples. The computational cost of calculating the transformed input
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data vector using the multiplication Hqu(n) can be broken down as follows. For

each basis vector, N/q − 1 additions and N/q multiplications are required, which

results in a total of N − q additions and N multiplication operations. The number of

multiplications can be reduced to 1 multiplication per iteration, resulting in a total

of N − q + 1 arithmetic operations per input sample2.

The partial Haar adaptive filter employing the NLMS algorithm requires 2q + 3

multiplications, 2q + 2 additions, and 1 division operation per input sample. The

normalizing factor is assumed to be calculated using the recursion ‖u(n)‖2 = ‖u(n−
1)‖2−u2(n−N)+u2(n), which only requires 2 multiplication and addition operations

per input sample.

The length-L short time-domain adaptive filter requires 2L+2 multiplications and

2L additions. The reduced number of multiplications and additions results from the

fact that the normalizing factor of the short-time domain filter can be approximated

as L‖u(n)‖2/N .

Therefore, the total computational complexity of the coupled echo canceller using

standard vector-matrix multiplication to calculate the partial Haar transform of the

input is

4q + 6︸ ︷︷ ︸
PH−NLMS

+ 4L+ 3︸ ︷︷ ︸
ST−NLMS

+N − q + 1︸ ︷︷ ︸
Hqu(n)

= N + 4L+ 3q + 10, (3.55)

in addition to the overhead of locating the peak3. As an example, consider a data block

of length N = 1024 using a length q = 128 adaptive filter and a short time-domain

adaptive filter of length L = 128 at a sampling rate of 8 kHz. If the echo canceller is

implemented on a floating point DSP, then the chip would have to be capable of 15.4

million floating point operations per second (MFLOPS). Since there is little margin

for reducing the computational complexity of the two adaptive filters, the first section

of Chapter 4 will be devoted to finding a more efficient way of calculating the partial

Haar transform.

2Because the partial Haar wavelet functions consist of scaled ±1s (see one of the subset of rows
in equation 2.18), the number of multiplications per iteration can be reduced to 1 if the same scaling
factor is applied to the output of the partial Haar adaptive filter.

3Depending on what method is used for peak location, this overhead can entail up to q − 1
comparison operations to locate the peak using a brute force method. This work will make no
assumptions concerning how the maximum peak is found.
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Chapter 4

Improving the Coupled Echo

Canceller

This chapter begins with a section on efficiently calculating partial Haar coefficients.

This is followed by a brief introduction to non-Bayesian evidence theory and fuzzy

logic systems. The chapter then responds to the three issues identified and discussed in

Section 3.2, which include the dependence of the peak delay estimator’s performance

on the bulk delay, improved tracking performance, and the cancellation of multiple

echoes.

4.1 Efficient Calculation of the Partial Haar Transform

Coefficients

In Section 3.2.1, it was observed that although the wavelet transform is not exactly

shift-invariant, it does exhibit periodic shift invariance. At time n, the transformed

input data vector is given by z(n) = Hqu(n). Consider the length N + N/q data

vector s(n), which at time n+N/q is given by

s(n+N/q) =

(
u′(n)

u(n)

)
, (4.1)

2006/09/28



4 Improving the Coupled Echo Canceller 51

where

u′(n) = [u(n+N/q), u(n+N/q − 1), . . . , u(n+ 1)]T . (4.2)

To compute the Haar transform of s(n + N/q), a partial Haar transform matrix H′
q

of size (q + 1) × (N +N/q) is constructed using Hq as follows

H′
q =

(
h 0

0 Hq

)
, (4.3)

where h is a length-N/q row vector containing the non-zero portion of any row of

Hq (see (2.18)). The length q + 1 transformed input data vector z′(n + N/q) =

H′
qs(n+N/q) is given by

z′(n+N/q) =

(
h 0

0 Hq

)(
u′(n)

u(n)

)
=

(
hu′(n)

z(n)

)
. (4.4)

Notice that the above calculation makes use of z(n), an input vector transformed N/q

samples ago. In fact, the new transformed input vector, z(n + N/q), corresponds to

the first q elements of z′(n+N/q). Therefore, if z(n) is stored,

z(n+N/q) =

(
hu′(n)[

Iq−1,0
]
z(n)

)
, (4.5)

where Iq−1 is the (q − 1) × (q − 1) identity matrix and 0 is a zero column vector of

length q − 1.

Equation (4.5) provides an efficient way of calculating the partial Haar transform

of a new input data vector by using the first q− 1 entries of a previously transformed

vector, and requires the calculation of only a single partial Haar coefficient per it-

eration. Therefore, to exploit the relationship in (4.5) requires the development of

an iterative algorithm, the matrix version of which will be developed below for times
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n+N/q − 1 to n+N/q. Let

Z(n+N/q − 1) =

⎛⎜⎜⎜⎜⎝
zT (n+N/q − 1)

zT (n+N/q − 2)
...

zT (n)

⎞⎟⎟⎟⎟⎠ (4.6)

denote the transformed input matrix of size N/q× q. At time n+N/q, a new partial

Haar transform coefficient is computed, z(n+N/q) = hu′(n). The first q − 1 entries

of the last row are reused and assigned to the last q − 1 entries of the first row. The

last row is then discarded and the N/q most recent rows are shifted down into the

matrix. The new transformed input matrix becomes

Z(n+N/q) =

⎛⎜⎜⎜⎜⎝
z(n+N/q), zT (n)[Iq−1,0]T

zT (n+N/q − 1)
...

zT (n+ 1)

⎞⎟⎟⎟⎟⎠ , (4.7)

The above can be seen as a vector form of the à Trous algorithm [42, 30] which is also

known as the Redundant DWT (RDWT)1. It requires onlyN/q−1 addition operations

and 1 multiplication per input sample at the expense of increased storage. Using this

form of the partial Haar transform reduces the overall computational complexity from

(3.55) to give the final complexity of

4q + 6︸ ︷︷ ︸
PH−NLMS

+ 4L+ 3︸ ︷︷ ︸
ST−NLMS

+ N/q︸︷︷︸
Hqu(n)

= N/q + 4L+ 4q + 9 (4.8)

arithmetic operations per iteration. If, for example, N = 1024 and q = 128, (4.8)

reduces (3.55) by 889 arithmetic operations per iteration, and at 8 kHz, the resulting

processor only requires 8.33 MFLOPS, a reduction of almost fifty percent!

Some might argue that the last sample of each of the last N/q − 1 rows of the

transformed input matrix can be discarded to save memory, and this is true. However,

each of these stored vectors plays a significant role in increasing the coupled echo

1It can also be seen as a classic polyphase implementation for a filter bank.
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canceller’s flexibility. At time n + N/q, the first row of Z in (4.7) corresponds to

the current partial Haar transform of the input. The second row corresponds to the

transformed input vector of the previous iteration. This row is also equivalent to

using a shifted form of the transform at time n+N/q, with a shift of one sampleThe

third row, corresponds to a partial Haar transform shifted right by two samples,

and so forth. Therefore, from Section 3.2.1, depending on which row is used as an

input to the partial Haar adaptive filter, the filter will converge to one of N/q partial

Haar Wiener solutions (as seen in Section 3.2.1). In other words, each row of Z(n)

corresponds to one of the N/q shifted partial Haar transforms. Although the above

algorithm trades computational cost with an increase in memory, this memory can be

put to good use.

Recall from Section 3.2.1 that depending on the bulk delay, the partial Haar adap-

tive filter can converge to one of N/q transformed Wiener solutions, each containing

a different peak magnitude. For peaks with small magnitudes the amount of time

required by the peak delay estimator to correctly estimate the location of a dispersive

region was shown to be very long in some cases, slowing down the convergence of the

echo canceller. The formulation in (4.7) effectively provides a way of selecting an al-

ternate partial Haar input, and consequently a different Wiener solution. If the peak

delay estimator is exhibiting too many false peak detections and jitters in the peak

delay estimates, then a different transformed input can be used to steer the partial

Haar adaptive filter towards a Wiener solution with a larger peak magnitude. The

issue of when to decide to make such a change is discussed and developed in the next

sections.

Before delving into the heart of this chapter, a definition is in order. A shift

context (which will simply be referred to as a context) will be defined as which row of

the transformed input matrix in (4.7) is being used to drive the partial Haar adaptive

filter (the first row corresponds to the first context, and so forth). With respect to the

time-domain impulse response’s bulk delay, a context will be categorized as optimal

if the resulting partial Haar Wiener solution has a large peak, which allows the peak

delay estimator to quickly locate the peak (as shown in Fig. 3.4). The opposite is true

for suboptimal contexts.
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4.2 Preliminary Background

4.2.1 Non-Bayesian Evidence Theory

There are two factors that can make applying a probabilistic model of peak classifica-

tion to adaptive filter tap weights difficult. First, the steady-state peak magnitude is

not known a priori, and second, the coefficient variance which is governed by equations

(3.14)-(3.18) depends on Jmin and vo which are unknown. Although these parameters

can be estimated during the filter’s steady-state operation, this can be costly. More

importantly, as discussed in Section 3.2.2, the average time to detect a peak is usually

much smaller than the convergence time of the filter, making estimation superfluous

during steady-state.

Bayesian methods of inference or detection assume an underlying probability

model in addition to prior distributions [20],[6],[37]. Belief function theory or ev-

idence theory, on the other hand, provides a non-Bayesian formalism to deal with

combining different sources of beliefs as well as quantifying uncertainty. Applications

of evidence theory include statistical inference, medical diagnostics, expert systems,

and risk/decision analysis [29]. The subsections below attempt to provide an overview

of belief function theory and the pertinent rules of combination.

A. Basic Belief Masses

The frame of discernment or universe of discourse [13],

Θ = {θi, i = 1, ..., n} (4.9)

is defined as the finite (only the finite case will be considered here) set of hypotheses2

or basic elements of the frame. Furthermore, let R denote the Boolean algebra3 of

subsets of Θ with respect to the union and intersection operations. The choice of R

determines the exclusivity of the elements of Θ. As will be seen later, this affects the

way sources of beliefs are combined.

The basic units of belief in evidence theory are known as basic belief masses

2Such as a set of propositions: {“It rained today”,“It snowed today”,. . .}.
3For convenience in notation the term {θi} ∈ R is identified as θi.
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(bbm), which are computed using basic-belief assignments (bba) (also termed the m-

function). Basic belief assignments are unique to a given point of reference, source, or

evidential corpus [45] (which could represent a person or sensor, for example). This

assignment determines the distribution of an initial unitary belief mass among the

propositions of R. Mathematically, the bba is defined as∑
A∈R

m(A) = 1,

m(∅) = 0. (4.10)

where ∅ denotes the empty set. The first equation states that the sum of the bbas

over all subsets of the Boolean algebra sum to 1, while the second equation ensures

that the empty set has no belief mass assigned to it. The m-function usually includes

a subscript to indicate the evidential corpus to which the assignment belongs.

Most interpretations of evidence theory such as Smets’ Transferable Belief Model

(TBM) [45] are solely based on justifiable evidence. For example, consider a frame

of discernment given by Θ = {θ1, θ2} with R = {∅, θ1, θ2,Θ}. Initially, m(Θ) = 1.

The availability of evidence leading to an assignment m(θ1) = 0.5 does not imply

that m(θ2) = 1 − m(θ1) = 0.5 (although this is required by one of the axioms of

probability [36]). All it signifies is that a value of 0.5 from the original belief mass

m(Θ) = m({θ1, θ2}), is transferred to θ1, and the remaining 0.5 remains allocated to

m(Θ) (m(θ2) is still 0). Those bbms with m(A) > 0 are termed focal propositions or

elements of Θ.

B. Dezert-Smarandache Theory

Dezert-Smarandache Theory (DSmT) provides a framework for combining different,

sometimes conflicting sources of beliefs. Unlike Dempster-Schafer theory (DST),

which assumes the exclusivity of hypotheses, i.e. θ1 ∩ θ2 = ∅, DSmT extends DST by

being able to deal with cases where non-exclusive hypotheses can exist [14].

There exist two models for combining beliefs in DSmT theory: the free DSm model

and the hybrid DSm model [15]. Only the free DSm model will be considered here.

This model assumes an exhaustive set of elements in Θ, but makes no additional
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assumptions concerning the exclusivity of these elements, i.e. it is not assumed that

θi ∩ θj = ∅ for i �= j. This makes DSmT perfect for applications that include fuzzy

variables, where membership functions can overlap (membership functions will be

discussed in Section 4.2.2).

Unlike DST, which is based on the power set, the free DSmT model is based on

what Dezert [15] terms the hyper-power set, denoted by DΘ, which includes the set

of all subsets that can be constructed from the elements of Θ using the ∩ and ∪
operators4. The corresponding cardinality of DΘ is bounded above by 22|Θ|

. The free

DSm combination rule is given by

m(C) =
∑

A,B∈DΘ,
A∩B=C

m1(A)m2(B). (4.11)

The DSmT rule of combination seems expensive if one considers the cardinality of

the hyper-power set DΘ. However, in most applications, this computational cost is

reduced since the number of focal elements is much smaller than |DΘ|. In addition,

if the cardinality of Θ is small, the complexity is further reduced.

C. Pignistic Transform

Most proponents of belief-based evidence theory agree that basic belief masses have to

be converted into probabilities before using them in decision-making processes. Smets’

[44] argues that the framework of belief functions consists of two levels. The credal (of

beliefs) level where basic belief masses are distributed, combined and updated, and a

Pignistic or decision-making level where belief masses are converted into probabilities.

In DST-like frameworks such as Smets’ TBM [45], the original Pignistic Transform

is given by

P{θi} =
∑

A∈PΘ

|θi ∩ A|
|A| m(A), A ∈ PΘ, (4.12)

which maps θi ∈ Θ into a number P{θi} ∈ [0, 1], where P{·} is the Pignistic proba-

bility function, and PΘ is the power-set defined over Θ. Here, an earlier version of a

4For example, if Θ = {θ1, θ2}, then PΘ = {∅, θ1, θ2,Θ} and DΘ = {∅, θ1, θ2,Θ, θ1 ∩ θ2} with
|DΘ| = 5.
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Pignistic Transform developed by Dezert in the context of DSmT will be used [13].

This transform is defined as

P{θi} =
∑

A∈DΘ

αθi
(A)m(A). (4.13)

where the αθi
(A) are weighting coefficients that represent the inclusion or exclusion

of a proposition A in θi. In the case of Θ = {θ1, θ2}, the Pignistic probabilities are

given by

P{θ1} = m(θ1) + 0.5m(θ1 ∪ θ2) + 0.5m(θ1 ∩ θ2) (4.14)

P{θ2} = m(θ2) + 0.5m(θ1 ∪ θ2) + 0.5m(θ1 ∩ θ2). (4.15)

The coefficients 1 and 0.5 can be found by referring to the Venn diagram in Fig. 4.1.

For example, the proposition θ1 ∩ θ2 consists of one unit a2 which is shared by both

θ1 θ2

a1 a2 a3

Fig. 4.1 Venn diagram representing the free DSm model.

θ1 and θ2 and is assigned a weight of 1/2. Therefore, αθ1(θ1 ∩ θ2) =
1/2
|{a2}| = 0.5.

Similarly, αθ2(θ1 ∩ θ2) = 0.5. Proposition θ1 ∪ θ2 consists of three units a1, a2 and a3.

Therefore, αθ1(θ1 ∪ θ2) =
1/2 + 1 + 0
|{a1, a2, a3}| = 0.5, where the 1/2-term is again due to the

sharing of a2 between θ1 and θ2, the 1-term occurs because a1 is only a subset of θ1,

and the 0-term occurs because a3 is not a subset of θ1.

4.2.2 Basics of Fuzzy Set and Systems Theory

In most cases, bbms are assigned by experts in a given field, making the task of

assigning beliefs unrealistic in the absence of these experts. Instead, as presented

in [47], this work will make use of a fuzzy interface to generate bbms. This interface

incorporates expert opinion in the form of fuzzy membership functions.
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In contrast to crisp sets where an element is either included or excluded from a

set, fuzzy sets define an element’s degree of set membership [35]. This degree of mem-

bership is determined by a membership function μA(x), where x is a crisp value in a

universe of discourse5 (discrete or continuous) and A is a fuzzy set that represents a

linguistic description. For example, consider a universe of discourse X which equals

the temperature reading of a thermometer between 0 ◦C and 100 ◦C. A crisp temper-

ature reading is denoted by x, where x ∈ X . Now consider the fuzzy sets represented

by the linguistic terms ‘cold’,‘moderate’,‘warm’, and ‘hot’. A membership function

μl(x), l ∈ {cold,moderate,warm, hot}, is associated with each set and determines the

membership grade of x with respect to that set.

In mathematical terms, whereas the value of a crisp membership function is

μcrisp(x) ∈ {0, 1} depending on whether x ∈ A or not, the value of a fuzzy mem-

bership function, μfuzzy(x), lies in the interval [0, 1]. The degree of membership (or

membership grade) can vary from no membership at all (μfuzzy(x) = 0) to full mem-

bership (μfuzzy(x) = 1). Depending on the application, membership functions can

vary in shape and support [49]. For the present application, piecewise-linear mem-

bership functions will be used.

One of the most important properties of fuzzy systems is their rule-base and infer-

ence mechanism. The rule-base consists of a set of IF-THEN (antecedent-consequent)

statements that represent some form of prior human knowledge that describes the be-

haviour of a system. Unlike traditional logic, fuzzy inferences can be made even when

rules are only partially satisfied [28, 35]. This is in stark contrast to crisp logic, where

a rule is satisfied only if a premise of interest matches an implication’s antecedent

exactly [35].

At the heart of a fuzzy inference system is a fuzzy composition rule such as Zadeh’s

max-min rule [35]

μC′(y) = max
x∈X

min
i

(μA′(x), μAi×Ci
(x, y)), y ∈ Y , (4.16)

where the fuzzy sets Ai and Ci respectively correspond to the antecedent and con-

sequent (A → C) of the rule-base’s ith rule. The apostrophe is used to signify

5This universe of discourse should not be confused with the frame of discernment in Section 4.2.1.
Here, the universe of discourse is just a membership functions’ domain of crisp inputs



4 Improving the Coupled Echo Canceller 59

that the antecedent Ai of a relation might only be partially satisfied by a fuzzy set

A′, resulting in a different consequent C ′. The term μA×C(x, y) is a fuzzy relation

defined as a two dimensional membership function over the cartesian product, i.e.

μA×C : X × Y → [0, 1].

Fuzzy relations provide a measure for the degree of association between fuzzy sets,

and are derived from the IF-THEN rules contained in the rule-base. Depending on

how implications are defined, the mathematical form of μA×C is different. In this

thesis, the relation between the antecedent and consequent of the ith rule will be

defined as

μAi×Ci
(x, y) = min(μAi

(x), μCi
(y)), x ∈ X , y ∈ Y , (4.17)

which is also one of many fuzzy intersection rules. Using the above formula, Zadeh’s

max-min compositional rule can be rewritten as [28]

μC′(y) = max
i

min{max
x∈X

min(μA′(x), μAi
(x)), μCi

(y)}, y ∈ Y . (4.18)

The reformulation in (4.18) provides a simple interpretation of the max-min com-

positional rule in (4.16) given by [35]

μY(y) = μX (x) ◦ G, (4.19)

where μX (x) and μY(y), are vectors containing membership grades of the fuzzy sets

belonging to the universes of discourse X and Y , respectively, and ◦ denotes the max-

min composition operation. G is a relational matrix that can be constructed from

(4.18) and the membership functions μAi
(x),μCi

(x). Details for constructing G will

be delayed to the next section when the peak tendency estimator is developed.

Equation (4.19) provides an alternate interpretation of (4.16) as a form of vector-

matrix multiplication. However, unlike traditional vector-matrix multiplication, the

multiplication and addition operations are replaced by the min and max operators,

respectively (other compositional rules also exist, such as the max-product composi-

tional rule).
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4.3 Escaping Suboptimal Contexts

In Section 3.2.1, it was shown that each of the N/q contexts results in a Wiener

solution that exhibits a different peak magnitude. For contexts that produce peaks

of sufficient magnitude, the peak delay estimator can quickly locate a peak as its

magnitude exceeds those of its neighbouring coefficients. However, in some instances

the filter is operating in a context that produces a very small peak, which during

the course of the partial Haar filter’s convergence can not be distinguished from the

neighbouring coefficient noise. This drastically increases the time required to correctly

estimate the location of a dispersive region. Sometimes, the correct bulk delay can

not be found due to the persistent jitter present in the delay estimate.

Efforts to design shift-invariant wavelets or wavelets capable of providing improved

peak detection to solve this problem can still suffer from the above problem. A good

example of this is the complex wavelet transform that uses two wavelet functions that

form a Hilbert transform pair. The magnitude of the resulting complex coefficients

is almost shift-invariant [39, 40], but nevertheless, can also result in Wiener solutions

with very small peaks.

In the following sections, an algorithm is developed that deals with the problem of

suboptimal contexts, and consists of two stages. First, it determines when the filter

is operating in an optimal context based on a peak’s behaviour, and second, if the

current context is classified as suboptimal, it uses a form of scheduling to decide when

to escape the current context. Tackling the second problem is more difficult than the

first, because making the decision about when to use a different context is difficult in

a framework such as adaptive filtering. Unlike classical signal detection theory, the

convergence behaviour of adaptive filters includes transients. This makes it difficult

to make reliable decisions.

4.3.1 Quantifying a Peak Discernibility Measure

The terms ‘optimal’ and ‘suboptimal’ that describe the peak delay estimator’s per-

formance in a given context can be associated with some properties of the partial

Haar adaptive filter. These properties mainly include fast estimates of a true peak’s

location, in addition to absence of jitter in these estimates. Peak jitter is commonly
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associated with the transient portion of the filter’s learning curve where the prominent

filter coefficient magnitudes have not had time to surpass neighbouring tap weights.

Therefore, in most cases, the absence of peak jitter indicates the prominence of a peak

tap-weight.

False peak detections occurring during steady-state operation of the partial Haar

filter can be attributed in part to the low peak magnitude (relative to neighbouring

coefficients) of the corresponding context. In severe suboptimal cases, the peak delay

estimator is sometimes tracking nothing more than coefficient noise.

One can therefore conclude that a measure of ‘optimality’ should include both

stability of the maximum peak location as well as the fast discernibility of the peak.

In addition, since the average time to detect a peak is usually much smaller than the

convergence time of the partial Haar filter (as shown in Section 3.2.2), one would like

to correctly locate a peak before the filter has converged. Usually, the magnitude

itself is a good indicator of the stability of a peak’s location, although simply relying

on magnitude lends no information about discernibility, which is a relative property

that should take into account the magnitudes of neighbouring filter coefficients.

The proposed peak measure makes use of two observations. First, searching for

a maximum peak using a distributed approach can result in lower latency. Second,

local maxima found by each of these distributed units can be used as parameters to

measure the discernibility of a global maximum. In this work, a peak discernibility

measure is calculated as follows: partition the filter coefficients into three contiguous

groups of roughly the same size; find the maximum peak magnitude for each of the

three groups; the global maximum is found by selecting the maximum among the

three maxima. The peak discernibility measure (or PDM) is defined as

PDM = 1 − cmin

cmax

, (4.20)

where cmin is the minimum among the three maxima found, and cmax corresponds to

the global maximum that is fed to the peak detector.

As the global peak magnitude increases, cmax increases and the PDM approaches

1. Similarly, if the global maximum is comparable to cmin, then the PDM is close to

0. The block diagram for calculating the PDM is shown in Fig. 4.2.
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Partial Haar Adaptive Filter Coefficient Groups

Group 1 Group 2 Group 3

max1

max2
max3

Sort

cmax cmin

1 − cmin/cmax

Fig. 4.2 Block diagram of peak discernibility measure (PDM) calcula-
tion.

The reason for partitioning the filter into three groups rather than two, can be

explained as follows. If a partial Haar-domain dispersive region falls directly on the

boundary separating two partitions, it is highly possible that each partition’s maxi-

mum will be associated with the dispersive region. If the partial Haar transform of

the dispersive region contains multiple peaks, this can produce an invalid PDM, since

cmin does not represent tap-weight noise. On the other hand, when the filter is divided

into three partitions, there is an extra degree of freedom in that cmin is usually not

associated with the dispersive region, and therefore results in a more reliable PDM.

4.3.2 Constructing a Fuzzy Interface

By properly defining membership functions for characterizing the presence of a small

or large peak, a system can be developed for tracking peak magnitude tendencies as

either increasing or decreasing by combining fuzzy set theory and the DSmT rule of

combination. This information can be used to solve many of the problems associated

with the coupled echo canceller of Section 3.1. In addition, fuzzy theory and belief

functions can be combined to explicitly quantify uncertainty. The fuzzy interface

considered here is similar to [47] and consists of two membership functions, S and

L, which correspond to the linguistic variables ‘small’ and ‘large’, respectively. The

universe of discourse is the [0, 1] interval corresponding to possible values of the PDM.

There are numerous methods, both online, and offline, for constructing mem-

bership functions [18]. Here, an offline approach based on cumulative distribution

functions (CDFs) of the PDM values in various situations is considered. This ap-

proach constructs piecewise-linear membership functions to approximate CDFs whose
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closed-form expressions do not exist or are difficult to derive. Zadeh has noted that

membership functions do not need to be precise, and this somewhat empirical method

is not unreasonable when peak tendency is being estimated [51].

The two CDFs considered here are the following: φs(x) corresponds to the values of

the PDM at the instant when peak delay is correctly estimated, and φn(x) corresponds

to those PDM values before peak delay jitter occurs (the subscripts s and n refer to

signal and filter coefficient noise, respectively). The ideal membership functions are

derived as

μS(x) = 1 − φn(x) (4.21)

μL(x) = φs(x), (4.22)

where x ∈ [0, 1] is a possible value of the PDM in (4.20). The reason for using

1 − φn(x) has to do with the fact that if a PDM x′ causes a peak delay jitter, then

it is highly possible that a value x < x′ will cause jitter as well. The CDFs φs(x)

and φn(x) are found by running a large number of simulations over varying SNRs

(10 to 60 dB in increments of 10 dB) and ITU-T G.168 impulse responses [1]. The

resulting membership functions are shown in Fig. 4.3, together with their piecewise

linear approximations. Observing these membership functions, one notes that their

intersection point occurs somewhere around a PDM value of 0.2. In addition, their

slope magnitudes are relatively large in this region. In practice, it is advisable to

take a more pessimistic approach to constructing membership functions, largely due

to uncertainties. This can be accomplished by reducing the slopes of the piecewise

linear functions, and shifting the intersection point towards a larger PDM value.

The resulting membership functions are shown in Fig. 4.4. Each employs a pair of

different linear functions. Not only does such an interface produce better results

in uncertain environments, but by spacing out the two membership functions, the

categories of small and large peak magnitudes are spaced further apart. This reduces

false classifications and allows for smoother tracking of transitions between the two

extremes.

The fuzzy interface can now be used to find bbms corresponding to an input PDM
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Fig. 4.3 Linear piecewise membership functions derived from φs(x) and
1 − φn(x) (based on simulation).
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Fig. 4.4 A robust approximation of membership functions.
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value x′,

m(L) = μL(x′) (4.23)

m(S) = μS(x′) (4.24)

m(S ∪ L) = 1 −m(S) −m(L). (4.25)

The bbm value, m(S ∪L), results from the fact that fuzzy membership grades do not

necessarily sum up to 1 for a given x, and this term represents uncertainty [5].

4.3.3 Suboptimal-Context Escape Algorithm

The goal of the suboptimal-context escape algorithm is to categorize the tendency of

the peak magnitude, in order to make a decision about the operating context of the

partial Haar adaptive filter. If the peak is classified as noise for a certain amount of

time, then the context should be changed.

The algorithm makes use of an architecture similar to that of [47] where DSmT,

together with fuzzy inference, is used to track the tendencies of a moving target in

passive sonar based on the amplitude of a signal emitted by the target. The adopted

system is shown in Fig. 4.5, and makes use of two peak magnitude behavioural models.

Fuzzification
Interface

Fuzzified
DSm Update

DSm UpdateIncreasing
Increasing Increasing

Decreasing

Decreasing Decreasing

New Meas.

Prediction

Prediction

PDM(n+ 1)

PDMFuzzy Inference

Fuzzy Inference

Fuzzy Rule Base

Fuzzy Rule Base

Fuzzified State

Fuzzified State

Estimate at n

Estimate at n

Decreasing Peak

Increasing Peak

Fig. 4.5 Block diagram of Peak Tendency Estimator.

The first model (top) is that of a peak magnitude that increases over time, and

results in the proper detection of the dispersive region. The second model (bottom)
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corresponds to a decreasing peak magnitude, which can be used to detect filter coef-

ficient noise. Each behavioural model consists of its own rule-base that describes the

peak magnitude’s tendency. For a true peak, the transition of the peak magnitude

increases over time with a transition S → S → L → L, while a decreasing (small)

peak is characterized by the transition L → L → S → S. The respective rule-bases

are shown in Table 4.1.

Table 4.1 Fuzzy Rule Bases
Rule No. Increasing PDM Decreasing PDM

1: If PDM(n) = S then PDM(n + 1) = S If PDM(n) = L then PDM(n + 1) = L
2: If PDM(n) = S then PDM(n + 1) = L If PDM(n) = L then PDM(n + 1) = S
3: If PDM(n) = L then PDM(n + 1) = L If PDM(n) = S then PDM(n + 1) = S

The entries of relational matrices in Table 4.2 are found by using the rule-base in

Table 4.1 and the fuzzy interface in Fig. 4.4 (for completeness, the sets S ∪ L and

S ∩ L have been included, although they can be ignored in general). For an entry

gA′→C′ , where A′, C ′ ∈ {S, L}, one of two things can happen. Either A′ and C ′ exactly

match the antecedent (A) and consequent (C) of a rule, or only C ′ matches a rule’s

consequent, i.e., A′ �= A. For example, the entry gS→S in Table 4.2, matches the first

rule of the increasing PDM rule-base in Table 4.1, i.e. A′ = A and C ′ = C. Therefore,

the term maxx∈X min(μA′(x), μAi
(x)) in (4.18) reduces to

max
x∈X

min(μS(x), μS(x)) = max
x∈X

(μS(x)) = 1. (4.26)

Hence, [gS→S] = 1, as shown in the table. Now consider what happens when the

implication A′ → C ′ is not present in the rule-base. In such a case, one has to match

C ′ with the consequent of a rule. For example, L→ S is not present in the increasing

PDM rule-base (Table 4.1). Therefore, one has to utilize a rule whose consequent

equals S, which corresponds to the first rule. In this case,

max
x∈X

min(μL(x), μS(x)) = max
x∈X

(μL×S(x)) = 0.2, (4.27)

and the corresponding entry gL→S = 0.2.

At time n, the peak magnitude is characterized by the pair of fuzzy PDM values
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Table 4.2 Fuzzy graphs corresponding to two models of peak behaviour.
(a) Increasing Peak, Ginc

n→ n+ 1 S S ∪ L L S ∩ L
S 1 0 1 0

S ∪ L 0 0 0 0
L 0.2 0 1 0

S ∩ L 0 0 0 0

(b) Decreasing Peak, Gdec

n→ n+ 1 S S ∪ L L S ∩ L
S 1 0 0.2 0

S ∪ L 0 0 0 0
L 1 0 1 0

S ∩ L 0 0 0 0

corresponding to the two models μinc(n|n) and μdec(n|n), where

μM(n|n) = [m(S),m(S ∪ L),m(L),m(S ∩ L)]M , M = inc or dec. (4.28)

Using (4.16), a state prediction of each model can be obtained,

μinc(n+ 1|n) = μinc(n|n) ◦ Ginc (4.29)

μdec(n+ 1|n) = μdec(n|n) ◦ Gdec. (4.30)

Each prediction requires normalization for use in the DSmT combination step.

At time n + 1, a new vector of fuzzy PDM values is obtained from (4.23)-(4.25),

and is denoted by mn+1 = [m(S),m(S ∪L),m(L),m(S ∩L))]. This new input is then

combined with μinc(n+1|n) and μdec(n+1|n) using the DSmT rule of combination in

(4.11) to find the updated fuzzy state vectors μinc(n+ 1|n+ 1) and μdec(n+ 1|n+ 1),

respectively.

Making a decision about the peak magnitude’s tendency then involves converting

each set of updated bbms into their Pignistic probabilities PM from (4.14)-(4.15) with

θ1 = S and θ2 = L. At any time instant, a decision about the correct behavioural

model is based on the model with the smallest entropy given by

HM
pig(P

M) = −
∑

A∈{S,L}
PM{A} ln(PM{A}), (4.31)

where PM{A} ln(PM{A}) = 0 for PM{A} = 0. The peak-tendency estimation algo-

rithm is shown in Fig. 4.6.

Escaping a suboptimal context, however, also requires deciding when to act on the
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Given : μM (n|n),GM ,M = {inc,dec}.
Input : PDM(n + 1).

// new observation: 2 comp., 4+, 2×
mn+1(S) = μS(PDM(n + 1));1

mn+1(L) = μL(PDM(n + 1));2

mn+1(S ∪ L) = 1 − mn+1(S) − mn+1(L);3

mn+1(S ∩ L) = 0;4

for each model M = {inc,dec} do5

// prediction-normalization (mpred(S ∪ L) = mpred(S ∩ L) = 0):3 comp., 1+, 1/

μM (n + 1|n) � [mpred(S),mpred(S ∪ L),mpred(L),mpred(S ∩ L)] = μM (n|n) ◦ GM ;6

μM (n + 1|n) = μM (n + 1|n)
mpred(S) + mpred(L) ;

7

// state updating using (4.11): 6×, 3+
mupd(S) = mpred(S)mn+1(S) + mpred(S)mn+1(S ∪ L);8

mupd(S ∪ L) = 0 mupd(L) = mpred(L)mn+1(L) + mpred(L)mn+1(S ∪ L);9

mupd(S ∩ L) = mpred(S)mn+1(L) + mpred(L)mn+1(S);10

// new state vector

μM (n + 1|n + 1) = [mupd(S),mupd(S ∪ L),mupd(L),mupd(S ∩ L)];11

// Pignistic transform (4.14)-(4.15): 2+, 2×
PM{S} = mupd(S) + 0.5mupd(S ∪ L) + 0.5mupd(S ∩ L);12

PM{L} = mupd(L) + 0.5mupd(S ∪ L) + 0.5mupd(S ∩ L);13

// Pignistic entropy (4.31): 1 comp.

HM
pig = −PM{S} ln(PM{S}) − PM{L} ln(PM{L});14

end15

Fig. 4.6 Peak-tendency estimation algorithm.

information provided by the above system. Particularly in the case of the partial Haar

adaptive filter, this can prove to be difficult and should be based on the convergence

behaviour of the adaptive filter. This, in turn, depends on a multitude of factors

such as the input statistics, channel conditions, and most importantly, the context

within which the filter is operating. In [24], this time is set to some multiple of the

average time constant of the adaptation algorithm, to give the filter sufficient time to

converge.

The approach developed here is slightly more involved due to the fact that there

are N/q contexts. Therefore, instead of waiting for a certain number of time samples

until the filter converges, the proposed method uses a schedule of N/q waiting times

to sequentially test each context. The waiting times are derived so as to reduce the



4 Improving the Coupled Echo Canceller 69

average time spent waiting for a context that allows for the successful estimation of

a dispersive region’s location.

The above problem, is not unique to suboptimal context escaping, but can be

generalized to a theory of testing a finite set of alternatives. For example, consider

being given a problem with a unique solution S, and a reward R for solving the

problem. Assume there are J different ways this problem can be solved, and each one

leads to this one solution, i.e. all approaches produce the same reward. However, each

approach Aj (j = 1, . . . , J), is associated with a random cost (with respect to time)

Cj with distribution Fj. In other words, each approach requires a different amount

of time to reach the solution. Although the different approaches Aj are known, the

unique mapping M : Ai → Fj between each approach and its corresponding cost

distribution is unknown.

The problem is to find an optimal schedule consisting of J trial periods τ =

{τ1, . . . , τJ} to sequentially attempt each alternative so that the average time spent

reaching the solution is minimized, subject to the constraint that the probability of

eventually finding the solution using this schedule is greater than or equal to some

confidence threshold. The problem is further restricted in that once an alternative

has been attempted without success for a period of time greater than the current trial

period, it is discarded and never revisited again.

Applying the above analysis to suboptimal-context escaping is not straightforward.

The main reason is that not only is the mapping between contexts and their distribu-

tions unknown, but the distributions are also unknown. Therefore, the best that can

be done is to find a schedule based on some prior knowledge about correct estimation

times. In other words, this schedule should ensure that the partial Haar adaptive

filter stay in an optimal context, while only remaining in suboptimal contexts as a

last resort.

A schedule that satisfies the above requirements consists of a sequence of non-

decreasing trial periods, i.e. τ1 ≤ τ2 ≤ . . . ≤ τN . The non-decreasing property is

critical here because the number of contexts that can successfully lead to a correct

estimate of the peak delay should increase after each failed attempt. At the same time,

beginning the schedule with shorter waiting times escapes any suboptimal contexts

earlier in the peak delay estimation process, while at the same time successfully staying
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in optimal contexts.

The individual trial times or periods of the scheduling policy remain to be deter-

mined. The first trial period should be related to the number of samples required

to properly detect the global peak in an optimal context. As will be seen in Chap-

ter 5, optimal contexts usually require less than a 200 samples to correctly detect a

peak using an NLMS algorithm with a step-size μ = 1 and a sampling rate of 8 kHz.

Therefore, the first trial period can be set to approximately 150 samples.

Setting the final trial period (N/q) is usually based on the amount of time willing

to be spent operating in a worst-case context. This time period should not be set too

long, and can be set somewhere between 400–500 samples. The remaining trial periods

can be uniformly distributed between the minimum and maximum trial periods. To

summarize, the algorithm begins by monitoring the peak tendency using the smallest

trial period. If the peak tendency is classified as decreasing for a period of time

greater than this trial period and jitter occurs in the peak delay estimate, then the

filter is reset to zero and a new context is attempted for the next trial period. This is

repeated until the peak delay is correctly estimated. One issue has been ignored,

and that is what happens when none of the contexts provide a correct peak using the

given schedule? The approach used here re-tests all contexts in the same order as the

previous test, beginning with the second-shortest trial time. The suboptimal-context

escape algorithm is shown in Fig. 4.7.

4.4 Improved Tracking of the Partial Haar Adaptive Filter

In Section 3.2.2, the tracking of a dispersive region after an abrupt change in the echo

path impulse response was seen as a competition between filter coefficient magnitudes.

Changes in an echo path impulse response can be associated with a change in the bulk

delay, or a phase roll, where the impulse response coefficients change signs [50].

When the partial Haar adaptive filter is initialized to zero, a peak’s magnitude

only has to compete with the low-magnitude coefficient noise of the surrounding taps,

which makes its detection easy and fast. In the event of an abrupt change in the

echo path impulse response, however, a new peak might have to compete with the

decreasing magnitude of an old peak. Therefore, although the echo path impulse



4 Improving the Coupled Echo Canceller 71

Given: H inc
pig and Hdec

pig from peak tendency estimator (see Fig. 4.6),
schedule, τ = {τ1, τ2, . . . , τN/q},
partial Haar peak indices at times n and n + 1: index(n), index(n + 1),
peak-tendency counters: counter inc and counter dec,
context variable, context.

Initial: (at n = 0), counter inc = counter dec = 0, k = 1, T = τ1, context = 1, v(n) = 0.

// at time n + 1 . . .

if Hdec
pig < H inc

pig then1

counter dec = counter dec + 1;2

else3

counter inc = counter inc + 1;4

end5

// if the current trial time is exceeded and peak jitter occurs
// ∧ denotes the logic-and operation and mod(·) the modulus operation
if (counter dec ≥ T ) ∧ (|index(n + 1) − index(n)| > 10) then6

v(n + 1) = 0;7

k = min(k + 1, N/q);8

T = τk;9

context = mod(context, N/q) + 1;10

// re-testing if all trial times have failed
if k == N/q then11

k = 1;12

end13

counter dec = 0;14

counter inc = 0;15

end16

// schedule and counter resetting
if counter inc ≥ T then17

k = 1;18

T = τ1;19

counter dec = 0;20

counter inc = 0;21

end22

Fig. 4.7 Suboptimal-Context Escape Algorithm.
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response has changed, the peak delay estimator will take longer to locate the peak

corresponding to the new impulse response. The goal of this section is to reduce the

amount of time it takes the peak delay estimator to track new dispersive regions in

these situations.

One of the key properties of the coupled echo canceller structure in Fig. 3.1 is

that the partial Haar filter is not being used to actually cancel echo. This allows

some degree of flexibility in manipulating the operation of the filter, particularly for

purposes of enhanced tracking performance.

Analyzing equations (3.33) and (3.34) in the event of a change in the echo path

impulse response, one finds that although the location of the new peak as well as

its steady-state magnitude is unknown, the new steady-state magnitude of an old

peak is approximately zero. Therefore, if a decrease in the current peak’s magnitude

is detected (which usually signals a change in the echo path impulse response), it

may be simpler to reset the whole partial Haar filter to v(n) = 0. This allows

for the new peak to solely compete with the low-magnitude coefficient noise of its

neighbouring taps instead of the decreasing magnitude of the previous peak. As a

result, the performance gains shown by Bershad and Bist [4] in the stationary case

can be extended to cases where abrupt changes in the echo path impulse response

occur.

In order to prevent the algorithm from constantly resetting the partial Haar adap-

tive filter, the reset operation should only be performed every TRS samples. In addi-

tion, a reset is only deemed necessary when a decrease in magnitude is detected for

a peak whose tendency has been in an increasing state for an amount of time greater

then Tinc. It is usually the case that TRS < Tinc.

One remaining problem, however, is that the improved tracking algorithm might

falsely detect a change in the impulse response. This is due to the stochastic driving

force φk(n) in (2.40) that causes the filter coefficients to display a form of Brownian

motion around the optimal solution [22, 36]. In order to prevent these false alarms, the

algorithm cannot simply reset the filter to zero. Instead, it also stores the position of

the previous peak before resetting the filter, and feeds this position to the bulk delay

unit. Once the new peak tendency has been increasing for an amount of time equal to

Tinc, the algorithm uses the location of the new peak to centre the short time-domain
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filter. The value of Tinc is set so as not to cause jitter in the peak delay estimate being

fed to the bulk delay in the case of a false alarm.

Figure 4.8 shows the improved tracking algorithm combined with the suboptimal-

context escaping algorithm.

4.5 Distributed Peak Detection for Cancellation of Multiple

Echoes

Cancellation of multiple echoes can be a difficult task, particularly since no prior

information is available concerning the number of dispersive regions. The method

proposed here is based on a coordinator-multi-agent architecture similar to [10].

The proposed multiple echo canceller is based on two assumptions,

1. There is an average bound on the length of dispersive regions in the time domain.

2. The delay between reflections is larger than this upper bound so that almost no

overlap occurs between the dispersive regions of the channel impulse response.

The first assumption is reasonable and is backed by empirical data [1]. Most network

hybrid impulse responses range from 3–12 ms, or a corresponding length of 24–96

samples at a sampling rate of 8 kHz [1]. To simplify the current analysis and the

ensuing simulations in Chapter 5, the length of the dispersive region will be taken

as L = 128 samples at 8 kHz, which is the assumed length of the short time-domain

filter. The second assumption prevents problems where a delay between echoes is

such that there is a 30–50 percent overlap between dispersive regions, in which case

assumption one is violated, since the combined echoes can interpreted as one longer

dispersive region. A block diagram of the multiple echo canceller is shown in Fig. 4.9.

The partial Haar adaptive filter is divided into N/L partitions, each of length

qL/N , where L is the expected length of a dispersive region in the time-domain

(as well as the length of the short time-domain adaptive filter). Associated with each

partition is a region that overlaps with its left-hand neighbouring partition. Of course,

the first (leftmost) region simply corresponds to that partition.

The amount of overlap is set so as to create a region-length that is divisible by

3. The second assumption stated at the beginning of this section ensures that at
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Given: See given data in Fig. 4.7,
rerouting variables peak reroute, TRS , Tinc and counter,
maximum-magnitude tap-weight at time n + 1, vmax(n + 1),
current overall maximum tap-weight magnitude and position, max peak and
max index.

Initial: (at n = 0), v(0) = 0, counter inc = counter dec = 0, k = 1, T = τ1, context = 1,
max peak = 0, max index = 1.

// at time n + 1 . . .
insert : lines 1-16 from Fig. 4.7

// schedule and counter resetting
if counter inc ≥ T then

k = 1;
T = τ1;

end

// re-routing of peak location: old vs. new
if (peak reroute == 1) ∧ (counter inc < Tinc) then // use old peak position

index(n + 1) = max index;
else // use new peak position

peak reroute = 0;
counter = counter + 1;

end
// poll the maximum peak magnitude for any decrease
if counter ≥ TRS then

counter = 0;
if |vmax| ≥ max peak then

max peak = |vmax|;
end
if (|vmax| < max peak) ∧ (counter inc ≥ Tinc) then

peak reroute = 1;
k = 1;
T = τ1;
counter dec = 0;
counter inc = 0;
v(n + 1) = 0;
max index = index(n + 1);
max peak = 0;

end
end

Fig. 4.8 Improved tracking algorithm with suboptimal-context es-
caping.
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α

Fig. 4.9 Multiple echo cancellation system architecture.

Partitions

Regions

Fig. 4.10 Illustrating the difference between partitions and overlapping
regions.
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most one dispersive region can be located within any given region. The reason for

including such a constraint will become clearer later when the issue of dispersive

regions occurring near boundaries of partitions is considered. The difference between

partitions and regions is shown in Fig. 4.10.

For example, in the case of a length N = 1024 time-domain filter (see Fig. 4.9)

and corresponding partial Haar filter of length q = 256, the number of partitions

is N/L = 1024/128 = 8 where each partition is of length q/8 = 256/8 = 32. To

make the region-lengths divisible by 3, each region contains its respective partition

and 7 samples from its left-hand neighbour’s partition, resulting in a region length of

32 + 7 = 39 which is divisible by 3.

Associated with each region is an agent Ai that runs a distributed version of the

suboptimal-context escape algorithm. Although similar to the single-echo version of

the algorithm, the distributed form departs slightly in its calculation of the PDM,

which is given by

PDMi = 1 − min(ci max, c̃)

ci max

. (4.32)

Unlike the case of a single dispersive region in Section 4.3.3, each agent sends ci min

to the coordinator (see Fig. 4.9) where c̃ is calculated as c̃ = maxi ci min. The term

min(ci max, c̃) is necessary because c̃ > ci max in some cases, making the original PDM

negative. Part of the motivation for using cooperative, rather than independent agents

has to do with conserving the global characteristic of the PDM.

Escaping suboptimal contexts is complicated by the presence of multiple echoes,

since each agent has control over only a finite number of tap weights. Therefore,

if a certain agent requires a context switch, only its corresponding partition’s con-

text should be changed. This is where the efficient calculation of the partial Haar

coefficients from Section 4.1 comes into play, since each set of coefficients is readily

available.

In case a peak occurs near a boundary between two partitions, it would be neces-

sary for the two partitions sharing this boundary to remain in the same context. This

is because depending on the contexts at the boundary of two partitions, the partial

Haar transform matrix can lose its row-orthogonality, since basis functions can over-

lap at these boundaries depending on the contexts selected. There are two cases that

can result from two neighbouring partitions operating in different contexts.
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In the first case, the context number of an agent’s partition is greater than or

equal to the context number of its left neighbour, in which case no overlap occurs at

the boundary. In the second case, the context number is less than its left neighbour’s

number, resulting in overlap and smearing of the transformed Wiener solution in (3.4)

at the boundary. Therefore, overlapping regions ensure the same operating context

for two contiguous agents that share a peak near their boundary.

Peak
Discernibility

Measure

Peak
Tendency
Estimation

Active/
Inactive

Fig. 4.11 Multiple echo cancellation agent architecture.

Figure 4.11 shows the architecture of each agent, which consists of three stages

that are repeated every iteration. The first step consists of calculating the PDM

associated with the peak located in each agent’s region. Depending on the dominant

peak behavioural model, each agent is classified as active or inactive. This information

is stored in a length-N/L indicator vector a of active agents. If ai = 1, then agent Ai

is classified as active; otherwise if ai = 0, the agent is deemed inactive. If agent i’s

peak tendency has been in an increasing state for more than Tinc samples, then ai is

set to 1, and the agent is classified as active. Tinc, is used to prevent false or transient

classifications of agents.

Using information about the state of an agent (active or inactive), the central

coordinator does one of two things. If none of the agents are active, i.e. ai = 0 for

all i, then the coordinator signals for all N time-domain adaptive filter coefficients

to be updated. If, however, at least one of the agents is active, then the coordinator

uses the peak locations of those agents to update only certain tap-weights of the

time-domain adaptive filter. The activated tap-weights are centred around the peak

delay estimates provided by each of the active agents. Therefore, the NLMS update

equation of the time-domain adaptive filter is modified to

w(n+ 1) = diag(α)[w(n) +
μ

‖diag(α)u(n)‖2 e(n)u(n)]. (4.33)
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where α is a length-N indicator vector whose elements αi are used to either activate

specific regions of the time-domain adaptive filter, or to simply update the entire

adaptive filter.

Unfortunately, the improved tracking algorithm in Section 4.4 cannot be incorpo-

rated into the multiple echo canceller. In the case of multiple echo cancellation, a

Given: Tinc, τ = {τ1, τ2, . . . , τN/q},
For each agent j,

peak indices at times n and n + 1: index(j, n), index(j, n + 1)
contexts: context(j)
peak-tendency counters: counter inc(j) and counter dec(j).

Initial: (at n = 0), counter inc(j) = counter dec(j) = 0, k(j) = 1, T (j) = τ1,
context(j) = 1 for all j.

// at time n + 1 . . .
the coordinator returns c̃ from the broadcasted values ci min of each agent ;
a = 0N/L;
α = 0N ;
for each of the N/L agents do

calculate PDM(n + 1) according to (4.32);
insert : code from Fig. 4.6
insert : lines 1-16 from Fig. 4.7

if counter inc(j) ≥ T (j) then
k(j) = 1;
T (j) = τ1;

end
// activate or deactivate an agent
aj = 0;
if counter inc(j) ≥ Tinc then

aj = 1;
set the appropriate elements of α to 1 using (3.39);

end
end

// if none of the agents are activated
if

∑
ai == 0 then

α = 1;
end

use (4.33) to update the time-domain adaptive filter ;

Fig. 4.12 Multiple echo canceller.

detected change in the current peak can also be associated with the disappearance of

the current reflection in the given parition. Therefore, resetting a single partition is

not feasible.
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Chapter 5

Simulation Results and Discussion

Chapters 3 and 4 looked at the major drawbacks of the echo canceller introduced by

Bershad and Bist [4], and proposed feasible solutions to these problems. The current

chapter uses simulation experiments to build upon these critiques and proposals in

two ways. First, it exemplifies the argued pitfalls of the original system, which include

convergence and tracking issues. At the same time, the merits of the proposed algo-

rithms in tackling these issues are shown. In addition to simulations, this chapter also

analyzes the computational complexities of two of the main algorithms in Chapter 4.

5.1 Experimental Methodology

The following section introduces simulation parameters and the various filtering algo-

rithms that will be used to compare with the algorithms proposed in Chapter 4.

5.1.1 Simulation Data

The set of hybrid impulse responses used in the following simulations are taken from

Annex D of the ITU-T G.168 Recommendation for digital network echo cancellers

[1]. There are eight hybrid impulse responses mi(n) (for i = 1, 2, . . . , 8) of lengths

Li that range from 64 to 128 samples at 8 kHz. It is assumed that mi(n) = 0 for

n /∈ {0, 1, . . . , Li − 1}. Impulse responses i = 1 to 4 were generated from a network

hybrid simulator, while the last four consist of measured impulse responses from

telephone networks in North America.

2006/09/28
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The echo path impulse responses g(n) are generated according to [1]

g(n) = (10−ERL/20ki)mi(n− Δ), (5.1)

where ERL is the echo return loss, ki is a scaling factor that depends on mi(n), and Δ

represents the bulk delay. In addition, the Recommendation provides guidelines for

testing echo cancellers, which includes different values of various parameters including

the ERL. For the purpose of the presented simulations an ERL of 15 dB will be

assumed for all hybrid impulse responses. Furthermore, ERL is not adjusted with

bulk delay so as not to over-complicate the discussion. The value of Δ will be set

so that the length of the bulk delay plus the dispersive region does not exceed 1024

samples.

The length of the partial Haar adaptive filter will be q = 256, unless stated

otherwise. Longer filters (q = 512) will not be considered here since their use is

computationally expensive, while the resulting performance of shorter filters is simply

not up to par with intermediate cases (q = 128 or 256). The short time-domain

adaptive filter length is set to L = 128 to match the longest dispersive region. When

using a full time-domain adaptive filter in the multiple echo case, its length is set to

N = 1024 to match the longest possible echo path impulse response.

The input u(n) is a zero-mean Gaussian process with unit variance. The additive

measurement noise ν(n) is also a white Gaussian process of zero-mean and variance

σ2
ν = 10−SNR/10. The samples of ν(n) are also assumed to be uncorrelated with the

input. The SNR is set to 30 dB, unless stated otherwise. All simulation data and

programs were generated and written in MATLABR©.

A note should be made concerning the terms ‘optimal’, ‘best’, ‘suboptimal’, and

‘worst’ associated with the partial Haar adaptive filter’s (shift) context. Optimal and

suboptimal contexts correspond to those combinations of contexts and bulk delays

that produce fast and slow localizations of dispersive regions, respectively. The best

and worst contexts of a given impulse response produce the fastest and slowest lo-

calization of a dispersive region, respectively. The above categories will only be used

when the input is uncorrelated and Gaussian, and are obtained by applying the N/q

shifted-versions of the partial Haar transform to an echo path impulse response of

interest. The contexts can then be sorted according to the resulting partial Haar
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peak magnitudes, where the largest magnitude corresponds to the best context, for a

given impulse response.

5.1.2 Adaptive Filtering Algorithms

The original coupled echo canceller, which is also termed the partial Haar dual adap-

tive filter in [4], will be abbreviated as PHDAF. When validating the performance of

each of the proposed improvements, different filtering algorithms will be used used

for comparison. Of course, deciding which algorithms to benchmark against depends

on which modification is being tested.

When testing the merits of escaping suboptimal contexts, the proposed suboptimal-

context escape algorithm (SCE-PHDAF) will be compared to both the PHDAF, in

addition to the NLMS. In this case, the NLMS will simply serve as a reference. In

the case of studying the performance of the improved tracking algorithm with sub-

optimal context escaping (IT-PHDAF), the learning curves of the IT-PHDAF will be

compared to both the PHDAF and NLMS.

Although the PHDAF does not support multiple echoes, the multiple echo can-

celler’s (ME-PHDAF) performance will be compared to it in the case of a single echo.

In addition to comparing the ME-PHDAF to the NLMS algorithm, an ideal-NLMS

(INLMS) algorithm will also be used to provide an optimal performance bound on

the ME-PHDAF for the multiple echo case. The INLMS algorithm is the standard

NLMS algorithm, except in that it adapts only those filter coefficients centred around

the locations of the true impulse response’s dispersive regions. This corresponds to

the case where prior knowledge about the echo locations exists.

The step-size used here is μ = 1 for all forms of the NLMS algorithm (these include

all forms of the partial Haar adaptive filter, the INLMS, and short-time domain filters),

and corresponds to the optimal step-size of the NLMS algorithm. At the beginning

of each run, the input data vector is initialized with the first N input samples.

Concerning the calculation of the normalizing factor ‖u(n)‖2 in Section 3.3.2, some

remarks are in order. First, this power term is calculated using an efficient recursion

on the input data block

‖u(n)‖2 = ‖u(n− 1)‖2 − u2(n−N) + u2(n). (5.2)
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The above equation may suffer from linear error buildup as n increases. However, for

the purposes of these simulations, it was found that the simulation lengths used were

not sufficiently long enough to cause instability.

5.2 Suboptimal-Context Escaping

Studying suboptimal-context escaping requires the use of specific examples, in addi-

tion to simulations that can reliably support the merits of using the SCE-PHDAF in

general. The simulations shown below all use an input data vector of length N = 1024

with a partial Haar adaptive filter of length q = 256 and a schedule (see 4.3.3),

τ = {150, 250, 300, 400}. The NLMS algorithm is used as a basis of comparison

for both the proposed algorithm and PHDAF. The initial context is set to 1, which

corresponds to no shifting of the partial Haar basis vectors.

5.2.1 Specific Cases

Figures 5.1(a) and (b) show the learning curves corresponding to an echo path impulse

response using ITU-T G.168 hybrid model m5(n) under the best and worst bulk delays

(for the initial context), respectively. The curves represent an ensemble of 200 runs

for each simulation.

For the best-case bulk delay (Fig. 5.1(a)), both the SCE-PHDAF and PHDAF

show identical learning curves reaching steady state at around k = 750 compared to

the NLMS which converges at around k = 5000. Of course, this is related to the fact

that the NLMS adapts a far larger number of coefficients (1024 compared to 128). In

the case of a worst-case bulk delay (Fig. 5.1(b)), the PHDAF never seems to reach

steady-state, while the proposed SCE-PHDAF converges much faster, nearly as well

as in the optimal case, requiring about k = 1000 samples to converge.

5.2.2 General Case

The previous learning curves have shown promising performance gains for the SCE-

PHDAF in specific cases. However, to fully accept the above results requires a more

exhaustive test. Figure 5.2 shows the learning curves averaged over a thousand dif-

ferent echo path impulse responses. Each run randomly selects one of eight ITU-T
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G.168 hybrid impulse response with equal probability, and uniformly selects a bulk

delay in the interval [0,895]. The performance of the proposed echo canceller does

not appear as impressive as in the specific cases, although it is still faster than the

PHDAF. Again, the NLMS performs the poorest of all.

In addition to learning curves, the mean time for each echo canceller (proposed and

PHDAF) to correctly estimate the location of a dispersive region was compared for

different SNRs. Each row in Table 5.1 consists of the average and standard deviation

over 500 random runs similar to the general case. In all cases, the proposed algorithm

finds the dispersive region faster (the mean time is smaller) and more consistently (the

standard deviation is much smaller). Although both PHDAF and the proposed echo

canceller display similar mean times to convergence at very low SNR, the standard

deviation of the PHDAF is three times larger.

5.2.3 Discussion

Three major observations need to be made concerning the results in Figs. 5.1-5.2.

First, the specific simulations in Fig. 5.1 show that the proposed algorithm adds

flexibility to the PHDAF in that it does not get trapped in suboptimal contexts. At

the same time the proposed algorithm remains in optimal contexts. This behaviour

may significantly increase the convergence speed of the echo canceller, as observed.

Second, the results in Fig. 5.2 also provide additional insights into the wavelet

transform. It turns out that out of the 1000 runs, only 6.4% actually consisted of a

worst-case combination of bulk delay and hybrid impulse response. This explains why

the PHDAF and the proposed algorithm’s learning curves in Fig. 5.2 are somewhat

similar. However, in specific cases, like Fig. 5.1(b), the difference between the PHDAF

and SCE-PHDAF is substantial, with the SCE-PHDAF showing great improvements.

Finally, Table 5.1 reveals the robustness of using a fixed schedule τ together with

a peak tendency estimator for different values of SNR. Of course, if the SNR does not

change much over a specific channel, then schedules can be constructed specifically

for those cases.
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Fig. 5.1 ITU-T hybrid response m5(k) learning curves using a: (a) best

and (b) worst-case bulk delay for the initial context used. (SNR = 30 dB)
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Fig. 5.2 Learning curves over 1000 runs, with randomly-selected

(equiprobable) hybrid impulse responses and uniformly-selected bulk de-

lays. (SNR = 30 dB)

Table 5.1 Comparison of mean times and standard deviation to cor-

rectly estimate the peak delay for different SNRs.

SCE-PHDAF PHDAF

SNR (dB) Mean Std. Mean Std.

30 91.5 75.4 121.1 203.0

20 107.7 86.4 214.5 664.0

15 167.4 138.3 362.7 1067.7

10 421.4 387.1 531.7 1177.2
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5.3 Improved Tracking of Changes in an Echo Path

The simulations described below consist of four scenarios where an abrupt change in

the bulk delay, and possibly the hybrid impulse response occurs around time k = 5200.

The waiting periods TRS and Tinc are set to 32 and 128 samples, respectively. Again,

the initial context in Fig. 4.8 is set to 1. Each scenario is categorized according to the

optimality of its bulk delays (before and after the change) with respect to the initial

shift context. For example, ‘best-to-best’ denotes a change from a best bulk delay

to another best-case bulk delay relative to the initial context. The adaptive filtering

parameters are the same as in the previous section.

5.3.1 Results

Best-to-best (Fig. 5.3(a)): Initially, both proposed IT-PHDAF and PHDAF converge

very fast, similar to the previous section. However, after an abrupt change in bulk

delay occurs, the IT-PHDAF resets the partial Haar filter, resulting in a convergence

rate similar to the initial case. In contrast, the PHDAF requires almost 1500 samples

to converge.

Worst-to-worst(Fig. 5.3(b)): Again, the IT-PHDAF converges quickly both ini-

tially and after a change in bulk delay, while the convergence characteristics of the

PHDAF are poor in both stages.

Best-to-worst(Fig. 5.4(a)): Initially, both echo cancellers converge optimally. How-

ever, after the abrupt change in bulk delay, the PHDAF requires much more time to

begin to converge after a sudden change in the bulk delay. This plateau-region ex-

tends for almost 2000 samples as compared to only about 1000 samples in Fig. 5.3(a).

The IT-PHDAF, on the other hand, converges faster and its learning curve behaves

similarly to the case in Fig. 5.3(a).

Worst-to-best(Fig. 5.4(b)): Again, the initial learning curves’ behaviour is similar

to the initial case in Fig. 5.3(b). However, at the transition point, the IT-PHDAF is

slightly slower than the PHDAF, although both converge very quickly (requiring less

than 1000 samples).
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5.3.2 Discussion

The above results can be explained using the theory presented in Section 3.2.2. Only

the behaviour at the transition points will be discussed since the initial behaviours

were already explained in Section 5.2.

In Figures 5.3(a) and 5.4(a), the PHDAF’s learning curve exhibits a plateau after

the change in bulk delay. The length of this plateau equals the amount of time it takes

the new peak’s magnitude to exceed the decreasing magnitude of the old peak. The

plateau region is slightly longer in Fig. 5.4(a) (which corresponds to a best-to-worst

transition) because the time required by the peak delay estimator to track the new

peak (which is very small) equals the amount of time it takes the old peak to become

buried in coefficient noise, unlike the case in Fig. 5.3(a) where a new peak emerges

while the old peak is decreasing. This can also be explained using (3.37), where β ≈ 0

for the abrupt change in Fig. 5.4(a), and therefore, tracking this change takes longer.

In both of the above cases, the IT-PHDAF converges much faster because it resets

the partial Haar adaptive filter once it detects a decrease in old peak’s magnitude.

Its converge time is still not as fast as in the initial case, however, because of Tinc. To

elaborate, the new peak has to be categorized as increasing for Tinc samples before its

index is accepted. During this time, the bulk delay unit continues to use the old peak

location to offset the short time-domain filter.

In the worst-to-worst case of Fig. 5.3(b), it is interesting to observe that the

PHDAF’s learning curve does not exhibit a plateau as in Fig. 5.3(a). The reason

for this, is that since the initial bulk delay is a worst-case delay, there is not much

competition between the peak magnitudes before and after the transitions, and so

they behave similarly.

In the final worst-to-best case, the PHDAF converges slightly faster after the

abrupt change in bulk delay than the proposed algorithm. The reason is that a worst-

case context is almost equivalent to a filter initialized to zero, i.e. v(n) ≈ 0. Once

the bulk delay changes to an optimal value with respect to the initial context, the

emergence of a new peak does not have to compete with the presence of an old peak.

There are two reasons why the IT-PHDAF requires a slightly longer amount of

time to converge in the worst-to-best case. First, the improved tracking algorithm

requires that a new peak’s tendency be in an increasing state for Tinc samples until
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it switches to the new peak’s location. And second, the context escaping algorithm

initially makes a context switch in response to the worst-case bulk delay. After the

abrupt change in echo path impulse response, the new context might not be optimal

with respect to the new bulk delay as the initial context.

5.3.3 Computational Complexity

The bulk of the suboptimal-context escaping and improved tracking algorithms’ com-

putational complexity lie with the peak tendency estimator of Fig. 4.6. Table 5.2

shows the number of arithmetic operations per iteration required by the peak ten-

dency estimator, the suboptimal-context escaping echo canceller, and the improved

tracking echo canceller (which includes suboptimal-context escaping). Since only the

incremental increase in complexity over the PHDAF is of interest here, the complexity

values of the first three columns of Table 5.2 (PTE SCE-PHDAF, IT-PHDAF) do not

include the complexity associated with the PHDAF. The values in the second and

third columns of Table 5.2 include the respective values corresponding to the peak

tendency estimator. The last column is used as a reference to compute the percent-

age increase of incorporating either suboptimal-context escaping or improved tracking

algorithms into the PHDAF.

Arithmetic operations associated the the PTE can be reduced drastically since

many bbm terms such as mn+1(S ∩L), mpred(S ∪L), mpred(S ∪L), mpred(S ∩L), and

mupd(S ∩L) (see Fig. 4.6) are zero throughout the PTE’s operation. Calculating the

new PDM value requires one division and addition operation. The remaining number

of arithmetic operations are shown in Fig. 4.6 for each stage.

It appears that calculating the Pignistic entropies in (4.31) requires the use of

two logarithm operations which are computationally expensive. However, the SCE-

PHDAF and IT-PHDAF only need to measure the peak tendency (see line 15 of

Fig. 4.7), which only involves a comparison of the Pignistic entropies H inc
pig and Hdec

pig .

This calculation makes no direct use of the actual values. Therefore, an alternate mea-

sure that preserves the relationship between the two Pignistic entropies and requires

only a single comparison operation is given by

H̃M
pig = min(PM{S}, PM{L}), M = {inc, dec}. (5.3)
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From information theory, the entropy of a source of two symbols is maximum when

the occurrence of these symbols is equiprobable [38]. As the probability of one symbol

decreases, the entropy of the source decreases. Therefore, the peak tendency model

with the smallest minimum probabilityalso has the smallest entropy associated with

its Pignistic probabilities.

To compare the percentage increase in complexity of the IT-PHDAF to that of

the PHDAF employing an efficient partial Haar transform as in Sec. 4.1, consider

an example. Letting N = 1024, q = 256, and L = 128, the percentage increase in

complexity is 61/1548 = 3.94%, which is an acceptable amount.

The above results have therefore shown that either suboptimal-context escaping or

improved tracking (with suboptimal-context escaping) can considerably improve the

performance of the coupled echo canceller without a drastic increase in computational

complexity.

Table 5.2 Number of arithmetic operations per iteration - single dis-
persive region

PTE SCE-PHDAF IT-PHDAF PHDAF

Addition 17 18 18 2q + 2L + N/q + 1
Multiplication 18 18 18 2q + 2L + 6
Division 3 3 3 1
Comparison 11 16 22 0
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Fig. 5.3 Tracking behaviour of the IT-PHDAF compared to the

PHDAF and NLMS algorithm: (a) Best-to-Best change in bulk delay for

the initial context used; (b) Worst-to-worst change in bulk delay. (SNR

= 30 dB)
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Fig. 5.4 Tracking behaviour of the IT-PHDAF compared to the

PHDAF and NLMS algorithm: (a) Best-to-worst case change in bulk

delay for the initial context used; (b) Worst-to-best context change in

bulk delay. (SNR = 30 dB)
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5.4 Multiple Echo Cancellation

The multiple echo canceller (ME-PHDAF) of Section 4.5 is tested using a partial Haar

adaptive filter of length q = 256, and a full time-domain adaptive filter of length N =

1024. Again, the dispersive regions length is assumed to be L = 128. This requires

1024/128 = 8 agents operating in parallel to classify and locate dispersive regions.

As mentioned in Section 4.5, although the suboptimal-context escaping algorithm is

used by each agent, the improved tracking algorithm can not be integrated into the

multiple echo canceller. The number of samples a peak has to be characterized as

increasing before its corresponding agent is categorized as activate equals Tinc = 128

samples in Fig. 4.12.

5.4.1 Results

Cancelling multiple echoes is not directly supported by the PHDAF. Nevertheless,

the learning curves in Figures 5.5(a) and (b) compare the ME-PHDAF’s performance

with a single dispersive region for the two cases in Fig. 5.1. Each learning curve was

averaged over 200 runs. In the case of more than one dispersive region, the PHDAF

will not converge.

For the best-case bulk delay in Fig. 5.5(a), the PHDAF is slightly faster than

the ME-PHDAF, although both echo canceller’s require only around 1000 samples to

converge. However, again, the distributed form of the suboptimal-context escaping

algorithm allows the ME-PHDAF to converge much faster in a worst-case bulk delay

in Fig. 5.5(b). One can also observe that the steady-state MSE of the ME-PHDAF is

slightly lower than that of the PHDAF.

Figure 5.6(a) shows the performance of the multiple echo canceller when the num-

ber of dispersive regions in the echo path impulse response is 2. The learning curves

are averaged over 600 runs consisting of bulk delays and dispersive regions which are

selected according to

h(n) = g1(n) + g2(n), (5.4)



5 Simulation Results and Discussion 93

where h(n) is the echo path impulse response, and

g1(n) = (10−15/20ki)mi(n− Δ1)

g2(n) = (10−15/20kj)mj(n− Δ2) i, j equiprobable in {1, 2, . . . , 8}
Δ1 = 320 + r1

Δ2 = 640 + r2 r1, r2 equiprobable in {0, 1, 2, 3}. (5.5)

The INLMS filter represents the ideal case where prior knowledge about the location

of these 2 dispersive regions is available, and provides the best possible performance

in this case.

Two observations can be made from the above simulation. First, for k < 500, the

ME-PHDAF’s learning curve follows the NLMS, after which its convergence speed

increases, reaching the INLMS curve’s steady-state MSE at around k = 2500. Second,

the multiple echo canceller displays a lower steady-state MSE again.

Figure 5.7(a) shows the performance of the multiple echo canceller when the num-

ber of dispersive regions in the echo path impulse response is 3. The learning curves

were averaged over 1000 runs, and involved random bulk delays as well as randomly-

selected dispersive regions given by

h(n) =
3∑
i

gi(n), (5.6)

where

gi(n) = (10−15/20kγi
)mγi

(n− Δi), γi equiprobable in {1, 2, . . . , 8}
Δ1 = 320 + r1

Δ2 = 640 + r2

Δ3 = 890 + r3 r1, r2, r3 equiprobable in {0, 1, 2, 3}. (5.7)

For three dispersive regions, the learning curves converge slower for both INLMS and

ME-PHDAF, and the MSE slightly increases for samples k < 1000 for the proposed

algorithm.
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5.4.2 Discussion

Three main observations can be made concerning the multiple echo canceller. The first

concerns Fig. 5.5(a), and involves explaining why the ME-PHDAF is slightly slower

than the PHDAF in this case. This phenomenon is a result of the ME-PHDAF’s

waiting of Tinc samples before it activates an agent and switches from a full time-

domain adaptation (which follows the NLMS learning curve) to a single dispersive

region (learning curve is similar to the PHDAF).

Second, in Fig. 5.6(a), it is observed that the ME-PHDAF’s learning curve follows

that of the NLMS algorithm initially. The reason is that the multiple echo canceller

updates all N = 1024 taps of the time-domain echo canceller whenever none of the

agents signals that it has correctly found a peak. In Fig. 5.7(a), the MSE actually

increases initially as a result of initially locating fewer than 3 dispersive regions.

A third observations is the lower MSE values obtained by using the ME-PHDAF.

To explain this, one has to remember that the ME-PHDAF does not make any as-

sumptions about the number of occurring dispersive regions, (although assumptions

made during the development of the canceller set an upper bound on the maximum

number of dispersive regions to N/L). Therefore, during each simulation run, the

number of active agents can change even after the partial Haar adaptive filter has

converged. To appreciate this, consider the bar graph in Fig. 5.6(b), which shows the

distribution over 600 random runs (see (5.4) and (5.6)) with respect to the dominant

number of activated agents (this data excludes instances where the entire time-domain

filter is adapted). Based on this graph, one can observe that the dominant number of

activated agents ranges from 2 to 6 with the most frequent numbers equal to 2 and

3. The reason for this is that one of the dispersive regions is intentionally placed near

the border of two partitions.

Figure 5.7(b) shows a similar distribution for the case of 3 dispersive regions. In

this case, a dominant number of dispersive region for a run is 2 < 3. Fortunately this

case only occurs with probability 0.001.

Many of the sparse echo cancellers reviewed in Section 1.2, have shown a degrada-

tion in performance (sometimes worse than the NLMS) as the number of dispersive

regions increases. The ME-PHDAF, on the other hand, performs better than the

NLMS algorithm as the above results have shown. The cost of obtaining this im-
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provement is analyzed in the next section.

5.4.3 Computational Complexity

The computational complexity of the ME-PHDAF is shown in Table 5.3. For brevity,

the results do not include the added complexity of the partial Haar adaptive filter of

length q. The order of complexity of the ME-PHDAF is around N/L times the com-

plexity of the SCE-PHDAF in Table 5.2. For example, if N = 1024 and L = 128, this

results in an eight-fold increase in the number of arithmetic operations, which might

be considered unacceptable. To reduce the computational load, the ME-PHDAF can

be programmed to allow only one agent to estimate its peak tendency every input

sample. In other words, the agents time-share the peak tendency estimator. This also

requires scaling the trial periods in the schedule τ by N/L and relevant counters in

Fig. 4.12. The number of arithmetic operations per iteration required by this efficient

form of the multiple echo canceller (the ME-PHDAF-E) is also shown in Table 5.3.

To compare the complexity of the ME-PHDAF to that of the NLMS, consider

an example. Letting N = 1024, q = 256, and L = 128, the percentage increase

in complexity per iteration over the NLMS algorithm is (1034 + 455)/4102 = 36%,

which is quite significant. The value 1034 is the cost of the partial Haar adaptive

filter and transform. Comparing the ME-PHDAF-E to the NLMS under the same

conditions yields a percentage in complexity of 26.5%. The larger part of the increase

in percentage of the multiple echo canceller can be attributed to using a full time-

domain adaptive filter of lengthN . The above complexity is still less than the multiple

echo canceller proposed in [50], which uses a length N adaptive filter to track the echo

path impulse response instead of a short partial Haar adaptive filter.

Table 5.3 Number of arithmetic operations per iteration - multiple dis-
persive regions

ME-PHDAF ME-PHDAF-E NLMS

Addition 18N/L 18 2N + 2
Multiplication 18N/L 18 2N + 3
Division 3N/L 3 1
Comparison 18N/L − 1 16 + N/L 0
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Fig. 5.5 ITU-T hybrid response m5(k) learning curves using a multiple

echo canceller and the PHDAF: (a) best-case bulk delay; (b) worst-case

bulk delay. (SNR = 30 dB)
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Fig. 5.6 (a) Learning curves over 600 runs using two random hybrid

impulse responses and random bulk delays (SNR = 30 dB); (b) Cor-

responding percentage of dominant number of agents activated in 600

simulations.
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Fig. 5.7 (a) Learning curves over 1000 runs using three random hybrid

impulse responses and random bulk delays (SNR = 30 dB); (b) Cor-

responding percentage of dominant number of agents activated in 1000

simulations.
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Chapter 6

Conclusion

6.1 Thesis Overview and Summary of Results

This thesis has looked at some of the issues of sparse echo cancellation utilizing a

coupled configuration that employs the partial Haar wavelet transform [4]. It began by

analyzing the convergence properties of the coupled configuration, and clarified some

implementation issues which include positioning the short time-domain adaptive, a

partial Haar NLMS algorithm, and the overall complexity of the original coupled echo

canceller [4].

Furthermore, the bulk of this work has presented three major weaknesses of the

coupled echo canceller [4]. First, the partial Haar adaptive filter converges to one

of N/q Wiener solutions with different peak magnitudes, depending on a dispersive

region’s bulk delay. This can seriously hinder the peak delay estimator from correctly

centring the short time-domain adaptive filter around the dispersive region. It was

shown that for small peaks, it takes the peak delay estimator longer to correctly

locate a dispersive region. In pathological cases, the peak delay estimator may take

an extremely large number of input samples to locate a dispersive region. Second, it

was analytically shown that in most instances, the peak delay estimator takes much

longer to track an abrupt change in the echo path impulse response than to initially

locate a peak. Finally, the coupled echo canceller proposed by Bershad and Bist [4]

can not properly cancel multiple echoes.

To support the improvements developed to counter each of these drawbacks, a se-

2006/09/28
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ries of simulation tests were run in MATLAB R©. Different ITU-T G.168 hybrid impulse

responses were used to construct echo path impulse responses to test the proposed

algorithms. These algorithms included the suboptimal context escaping algorithm

(SCE-PHDAF), the improved tracking algorithm (IT-PHDAF), and a multiple echo

cancelling version (ME-PDHAF) of the original coupled echo canceller.

The suboptimal context escape algorithm did not seem to provide dramatic im-

provements in convergence speed in the general case, since the worst-case contexts only

made up a small percentage of the simulation runs. It was shown that for specific

cases, the coupled echo canceller employing suboptimal context escaping was much

faster than the original coupled echo canceller. In addition, the coupled echo canceller

employing suboptimal context escaping was shown to out-perform the original echo

canceller as the SNR dropped from 30 to 10 dB.

The improved tracking algorithm, which includes suboptimal context escaping was

tested under four scenarios of abrupt change in the echo path impulse response. Each

scenario depended on the optimality of the bulk delays (before and after the change)

with respect to the initial context. In all but one scenario, the proposed improved

tracking algorithm was shown to be faster than the original coupled echo canceller

at a small increase in computational complexity (the bulk of this complexity was

attributed to the peak tendency estimator). In these cases, the speed up in tracking

ranged from approximately 500 to 2000 input samples. The case where the proposed

algorithm was shown to be slower was attributed to the waiting time Tinc discussed

in Section 4.4.

The multiple echo canceller was also shown to be sufficiently faster, as compared

to the NLMS algorithm. The multiple echo canceller was first tested on an echo

path impulse response consisting of a single dispersive region. It was shown that for

a worst-case bulk delay, the multiple echo canceller converged much faster than the

original coupled echo canceller [4], while for the best-case bulk delay the proposed

echo canceller was slightly slower due to Tinc. In the case of two and three dispersive

regions, the multiple echo canceller required around 500 input samples to converge to

the same steady-state MSE as an ideal NLMS algorithm, which had prior knowledge

about the locations of the dispersive region. Although much faster than the NLMS

algorithm to reach steady-state, the multiple echo canceller was shown to be costly in
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terms of arithmetic operations. An efficient form was therefore mentioned which can

result in similar performance to the original multiple echo canceller, but at a lower

computational cost.

6.2 Future Work

This thesis has tried to look at adaptive signal processing in a different way, com-

bining belief-based evidence theory with fuzzy inference to incorporate a form of

‘self-awareness’ into an echo canceller. Incorporating forms of expert knowledge can

help devices such as echo cancellers make decisions about their performance in differ-

ent environments. And, if there is support to do so, these devices can then change

the way they function to improve their performance within a specific environment

without the aid of an external operator.

Foreseeable work with regards to the coupled echo canceller in addition to the

proposed algorithms include:

- A more robust approach to decision making in suboptimal-context escaping that

does not rely on a set of trial periods, but on some characteristic of the echo

canceller’s performance. This might require some assumptions about the noise

power, MSE, etc.

- Increasing the flexibility of the multiple echo canceller so that it does not have

to rely on one or more of the assumptions listed in Section 4.5.

- Extending the echo canceller with a subsystem that uses a form of spectral

correlation to determine which subset of partial Haar basis vectors is suitable

for a given echo path impulse response. This is especially important for impulse

responses that are not rich in spectral content [24].

- Analyzing the coupled echo canceller with other classes of adaptive filter algo-

rithms and different combinations thereof for the partial Haar and short time-

domain adaptive filter.

Of course, one of the challenges faced with realizing some of the above proposals will

be keeping the added computational costs as low as possible.
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