
A Study of Distributed Pulse-Based Synchronization
for Device-to-Device Communication

David Tétreault-La Roche

Electrical and Computer Engineering
McGill University

Montréal

August 2016

A thesis submitted to McGill University in partial fulfillment of the
requirements of the degree of Master of Enginnering.

©David Tétreault-La Roche, August 2016

i

Abstract

The benefits of device-to-device (D2D) communication have garnered interest in both aca-

demic and industrial circles. Time synchronization is a key aspect of D2D schemes, partic-

ularly in decentralized networks where no reference time is available. Distributed phase-

locked loops (DPLL) is a common synchronization algorithm that is suited for decentral-

ized situations. In this work, we study the implementation of a DPLL algorithm in the

context of fifth generation (5G) wireless networks, where we include in our analysis sev-

eral limitations and practical aspects of D2D communication, such as transmission delays,

wideband multipath propagation, and single-carrier frequency demodulation multiple ac-

cess (SC-FDMA) modulation. We propose practical methods to compensate their effects,

and introduce new performance metrics to evaluate the merits of the synchronization al-

gorithm. Through simulations at the physical layer, which capture the effects of analog-

digital conversions, we demonstrate that time synchronization in a decentralized setting is

possible under the constraints specified by the 3rd Generation Partnership Project (3GPP)

for D2D applications.

ii

Sommaire

Les bénéfices de la communication dispositif-à-dispositif (D2D) suscitent beaucoup d’inté-

rêts dans les domaines académiques et industriels. La synchronization temporelle est un

aspect clé de la communication D2D, particulièrement dans les réseaux complètement dé-

centralisés où une référence de temps commune n’est pas disponible. L’algorithme de syn-

chronisation nommé boucles à phases asservies distribuées (DPLL) est un algorithme bien

adapté aux situations décentralisées. Dans ce mémoire, nous étudions l’implémentation

d’un algorithme DPLL dans le contexte de réseaux sans-fil de cinquième génération (5G).

Nous incluons dans notre analyse plusieurs contraintes et aspects pratiques de la com-

munication D2D, tels que le délai de transmission, la propagation par trajets multiples, et

la modulation à porteuse unique SC-FDMA. De plus, nous proposons des méthodes pour

réduire l’impact de ces aspects sur l’algorithme de synchronisation. À travers nos simula-

tions au niveau physique, qui capturent les effects des conversions analogique-numérique

nous démontrons que la synchronisation temporelle dans un réseau décentralisé est pos-

sible sous les contraintes spécifées par le 3rd Generation Partnership Project (3GPP) pour

les applications D2D.

i

Acknowledgements

This work was supported by a grant from MITACS and InterDigital Canada under the MI-

TACS Accelerate program.

I would like to thank my internship supervisor Benoit Pelletier from InterDigital, who pro-

vided valuable input on this project, and helped me navigate the complex 3GPP technical

spefications to find those that applied to this project.

Finally, this thesis would not have been possible without the guidance of my thesis super-

visor and co-supervisor, Benoit Champagne and Ioannis Psaromiligkos. Their fair criticism

and enlightening technical discussions were instrumental in the realization of this thesis.

iii

TABLE OF CONTENTS

1 Introduction 1
1.1 Litterature Survey . 2
1.2 Thesis Contributions and Organization . 5

2 System Model 6
2.1 Discrete Clock Model . 6
2.2 Signal Transmission . 8
2.3 Received Signal . 9
2.4 Problem Formulation . 10

3 Background 12
3.1 Distributed Phase-Locked-Loops . 12
3.2 Time of Reception Estimation: Two Users . 13
3.3 Time of Reception Estimation: Multi-User . 17

4 Practical Issues 19
4.1 Linear vs Circular Cross-Correlations . 19
4.2 Analog-digital Conversions . 20
4.3 Effect of Transmission Delay . 21
4.4 Effect of Wideband Multipath Propagation . 23

5 Algorithm Implementation 25
5.1 Cross-Correlation Bias Removal . 25
5.2 Drift Compensation . 26
5.3 SC-FDMA Modulation . 28
5.4 Software Implementation . 30

5.4.1 Local Algorithm Overview . 30
5.4.2 Simulator Overview . 33

6 Numerical Simulations 34
6.1 Performance Metrics . 34

6.1.1 Communication Criterion . 34
6.1.2 Stability Criterion . 35

6.2 Methodology . 36
6.3 Results . 37

7 Conclusion 43
7.1 Summary . 43
7.2 Future Work . 44

Appendices 47

Appendix A Circular Cross-correlation of a Zadoff-Chu Sequence under CFO 47

Appendix B SC-FDMA Modulation: Expanded Form 49

iv

List of Abbreviations

3GPP 3rd Generation Partnership Project

5G fifth-generation

ADC analog-to-digital

BR bias removal

CFO carrier frequency offset

CP cyclic prefix

CS cyclic suffix

D2D device-to-device

DAC digital-to-analog

DC drift compensation

DPLL distributed phase-locked loops

ISI inter-symbol interference

LOS line-of-sight

PAPR peak-to-average power ratio

RF radio frequency

SC-FDMA single-carrier frequency demodulation multiple access

SFO SC-FDMA frequency offset

SIR signal-interference ratio

TO time offset

ZC Zadoff-Chu

v

Notation table

αi Node i ’s clock skew
αi j Coupling strength between nodes i and j
ai j ,p Coupling strength between nodes i and j for path p
β Root raised cosine rolloff factor
β j Estimated slope of the θ j [ν]
β Average of β j over all j
B Number of samples to calculate the stability criterion β j

c [m] SCFDMA symbol in the time domain
C Communication ratio for the whole network
Ci j Link quality between nodes i and j
ε Correction factor
fi Node i ’s carrier frequency
∆ fi j CFO between nodes i and j
Fs Sampling rate
γ Weighting parameter in the estimator q̂ j

Γ j [ν] Filtered version of∆t j [ν]
hi j Flat fading channel coefficient between nodes i and j
hγ Drift correction filter
i Node index, generally reserved for transmitting nodes
j Node index, generally reserved for receiving nodes
κi j Discrete equivalent of∆ fi j

k Sampling index
∆λi j Normalized CFO between nodes i and j
li j Estimated location ZC sequences contained transmitted between nodes i and j
l ±i j Estimated location li j for the leading (+) or trailing (-) ZC sequences

contained in s [n]
l ±i j ,p Estimated l ±i j specific for the path p
L Factor between the lengths of the input and output of an SCFDMA modulation
m± Offsets of the ZC sequences contained in s [n]
M Number of nodes/devices
ν Time index
N Length of ZC sequences
p (t) Shaping pulse
ρi j ,p Amplitude of path p between nodes i and j
q̂ j Estimation of the average reception time of s [n] broadcasted by multiple nodes

vi

q̂ j± Estimation of the average reception time of the leading (+)
or trailing (-) ZC sequences

qi j Discrete equivalent of∆θi j

qi j ,p Transmission delay introduced by path p in multipath propagation
qP, j Weighted average of the path delays qi j ,p

Q Length of the DC filter
rx y [l] Circular cross-correlation between sequences x and y
Rx y [l] Linear cross-correlation between sequences x and y
s [n] Synchronization sequence
σQ ,i [ν] Standard deviation of the last Q correction terms∆t j [ν]
σmax Threshold standard deviation to differentiate between

the transient and drifting regime
θi [ν] Node i ’s clock phase at index ν
∆θ j [ν] Weighted average of all the phase offsets between node j and other nodes
∆θi j [ν] Phase offset between nodes i and j
τ j Weighted average of the LOS propagation delays τi j ,0

τi j ,p Delay of path p between nodes i and j
∆t j [ν] Clock correction term for node j
Ó∆t j [ν] Estimation of the clock correction term∆t j [ν]
ti (t) Node i ’s physical clock
ti [ν] Node i ’s sampled clock
t ′i j [ν] Reception time of node i ’s synchronization signal at node j
T0 Clock period
Ts Sampling period
u Root index of a ZC sequence
x (t) Pulse-shaped version of s [n]
xi (t) Synchronization signal broadcasted by node i on the νthclock tick
x̃i (t) Signal broadcasted by node i
yi j (t) νthsynchronization signal received at node j from node i
yj [k] νthdiscrete-time signal received by node j
w j [w] Discrete thermal noise at node j
z± Leading (+) or trailing (-) ZC sequences in s [n]
N Set of natural numbers
Z Set of integer numbers
R Set of real numbers
C Set of complex numbers

1

Chapter 1

Introduction

The previous years have seen an explosion in the number of wireless devices connected to

mobile networks. The introduction of powerful multimedia applications have dramatically

increased the wireless broadband demand per device. Combined, these factors have led to

an exponential growth in traffic for wireless communications [1]. Just in Western Europe,

cellular traffic is expected to increase seventyfold by 2020, when compared to the 2010 fig-

ure [2]. Other predictions are much more aggressive and estimate a thousandfold traffic

increase by 2020 in densely populated areas [1].

Current wireless networks make use of a centralized paradigm, where all communica-

tions transit through an access point. The introduction of device-to-device (D2D) commu-

nication could help offload some traffic from the access point by allowing devices within

range to interact directly. This approach also boasts other advantages, such as reduced

power consumption and lower infrastructure costs [3]. However, time synchronization be-

tween the concerned devices is an essential requirement for D2D communication in a prac-

tical setting.

There exists different approaches to acquire synchronization between devices. In this

chapter, we first review those approaches and determine which method is ideally suited

for decentralized applications, after which we outline the contributions of this thesis to the

topic.

1.1. Litterature Survey 2

1.1 Litterature Survey

Synchronization involves acquiring information about the differences between the clock of

the communicating nodes in a network, which can be done via the exchange of synchro-

nization messages. By analyzing these messages, the nodes can estimate the time offset

(TO) that exists between their respective clocks.

Synchronization approaches can be divided into two main categories: packet coupling

and pulse coupling. The former involves the transmission of timestamps between multiple

synchronizing nodes, from which optimal clock parameters can be computed via various

probability estimation [4] or optimization [4, 5] techniques.

Certain packet coupling algorithms take advantage of a master-slave relationship be-

tween two nodes in a network. These algorithms have a long history in digital communi-

cations, and are generally very robust under reasonable conditions [4, 6-8]. By exchanging

timestamps with the master node, a slave node can estimate the clock parameters of the

master node.

The construction of a master-slave hierarchy in a fully distributed manner is possible

with a distributed spanning tree algorithm [6]. Combined with a master-slave synchroniza-

tion method, the use of a spanning tree allows an arbitrary topology of nodes to achieve

synchronization without running into cyclical problems. However, the behaviour of this

approach under dynamic topology and large-scale implementations is still unexplored.

Alternative packet coupling methods let go of the master-slave algorithms and rely in-

stead on each node randomly broadcasting their timestamps. This approach is specified

in the 802.11 IEEE standard [9] under the form of a channel contention algorithm, where

each node has equal probability to win the contention and broadcast its timing message.

Recent work using this mechanism has been demonstrated to be robust against fast chang-

ing topologies [7].

An important caveat of packet coupling methods is that, when a device is powered on,

its clock may be completely desynchronized with the rest of the network, making syn-

chronous communication methods unusable. Since packet coupling requires the trans-

mission of digital information, an asynchronous communication paradigm must be im-

1.1. Litterature Survey 3

plemented to utilize packet coupling methods as a first-line synchronization scheme. This

concurrent implementation is usually avoided due to its hardware complexity.

Contrasting with packet coupling methods, pulse coupling approaches are a physical-

layer solution to the synchronization problem, and have been extensively studied in the

last decade [6, 10-13]. For pulse coupling methods, every node in a network broadcasts a

short signal, or pulse, at regular intervals. By analyzing the arrival time and shape of the

received pulses, a node can correct its own clock towards a common average.

In general, packet coupling methods can achieve a high synchronization precision, while

pulse coupling are limited in precision by the sampling rate of the device [4]. Packet cou-

pling embeds the timing information in both the arrival time of the packet and the informa-

tion contained in the packet. Instead, pulse coupling algorithms rely solely on the arrival

time of the synchronization signals, and do not require the transmission of any message

proper. This avoids spending computational resources to symbol detection, and avoids

having to implement asynchronous communication system alongside synchronous sys-

tems. Pulse coupling therefore trades precision for reduced complexity, making it ideal as

a first-line synchronization method, where coarse synchronization is a sufficient require-

ment.

Certain pulse coupling algorithms often assign a unique pulse to each node in order

to individually track the synchronization of that particular node. This work instead con-

siders a unique pulse approach, where all nodes broadcast the same synchronizing signal.

This prevents the receiving nodes from identifying the transmitting node, but removes the

constraint of mapping a unique identifier to all nodes in the system, granting better scala-

bility [11].

Distributed pulse coupling algorithms can be further divided into two main algorithms:

integrate and fire, and distributed phase-locked loops (DPLL). In both approaches, each

node in the network periodically broadcasts a synchronizing pulse to its neighbours, but

the approaches process differently the received pulses.

The integrate and fire approach has each node increment its own clock by a small amount

every time a pulse is received; nodes that are late with respect to the average end up being

dragged earlier in time [6]. While heavily studied [6, 12, 13], this approach is not well suited

1.1. Litterature Survey 4

for wireless networks, where reliability is an important requirement. A single corrupted

node can easily disrupt the synchronization process by broadcasting pulses at a high rate,

triggering many clock updates for its neighbours.

In the DPLL approach, nodes compute the average reception time of all the received

pulses. Each node then compares the average reception time to its own pulse broadcast

time, and adjust its clock accordingly. Doing so, the node’s clock and pulse will move to-

wards the average reception time of the other pulses. A single corrupted node in a DPLL

scheme will have a modest impact on the whole process, as broadcasting pulses merely

shift the average, instead of triggering a network-wide clock update [10]. This inherent ro-

bustness, along with the scalability of pulse coupling approaches, makes DPLL an algo-

rithm of choice for distributed synchronization [10].

In all cases, the synchronization signals are transmitted over the air via radio frequency

(RF) carrier waves. However, the transmitting and receiving nodes rarely use precisely the

same carrier frequency for modulation and demodulation, due to physical limitations. As

a result, a carrier frequency offset (CFO) exists between the nodes. This CFO distorts the

transmitted signals, and has a significant effect on the accuracy of modern synchronization

algorithms [14, 15]. Specifically, the estimation of the Time Offset (TO) is closely affected

by the presence of a CFO.

Ideally, communicating nodes should account for both the TO and CFO between them-

selves. Recent work on the topic successfully decoupled the estimation of TO and CFO

by using identical, well crafted synchronization messages [11, 14, 16]. The combination of

DPLL with this TO/CFO decoupling was conceived in [11], leading to a distributed synchro-

nization algorithm robust against CFO. However, [11]was limited to cases where transmis-

sion delays and wideband multipath effects are negligible. Other works on DPLL [10, 17]

did not analyze in depth the impact of these effects, let alone attempt to compensate for

them.

Finally, the current wireless communication standards [18] specify that D2D services

should use a single-carrier frequency demodulation multiple access (SC-FDMA) modu-

lation scheme. The interactions between DPLL and SC-FDMA has not been analyzed in

previous work.

1.2. Thesis Contributions and Organization 5

1.2 Thesis Contributions and Organization

In this thesis, we present a discrete-time software implementation of a DPLL algorithm with

TO/CFO decoupling under realistic conditions. In comparison to previous work [10, 11, 17],

we include in our analysis several limitations and practical aspects of wireless D2D com-

munication:

• Significant transmission delays between devices;

• Wideband multipath propagation;

• Use of SC-FDMA modulation.

In particular, transmission delays and multipath propagation have a strong negative im-

pact on the quality of the synchronization. We propose modifications to the DPLL algo-

rithm to compensate for both of these effects and introduce new performance metrics

to evaluate the merit of those modifications. We further adapt the algorithm to function

properly under SC-FDMA modulation. Through our realistic simulations, which include

the effects of analog-digital conversions, we demonstrate that time synchronization in a

decentralized D2D setting is achievable under the simulation parameters specified by 3rd

Generation Partnership Project (3GPP) [18] for future fifth-generation (5G) networks.

The organization of this thesis goes as follows. Chapter II describes the system model

of the distributed synchronization problem, while Chapter III develops the background

theory for DPLL and TO/CFO decoupling. Chapter IV discusses in detail the impact of var-

ious practical limitations on DPLL. Chapter V presents the proposed improvements to the

algorithm, along with the details of our software implementation. Finally, Chapter VI in-

troduces new performance metrics, describes the simulation methodology, and discusses

the results of our numerical simulations. Chapter VII concludes this paper by summarizing

our findings and discuss further avenues of research.

6

Chapter 2

System Model

In this chapter, we present various core concepts that are critical to understand and ap-

ply the DPLL algorithm. We first see a discrete clock model, after which we present the

transceiver and receiver models used for multipath radio channels. Finally, we formulate

the synchronization problem we are aiming to solve.

2.1 Discrete Clock Model

We consider a network of M nodes indexed with i ∈ {1, 2, ..., M }, where a node can be any

device with wireless communication capabilities. Individual nodes have limited a priori

information about the rest of the network. Each node can communicate with the other

nodes via a wideband multipath fading radio channel.

Node 1

Node 2

Node 3

Node 4

Figure 2.1: Example network of M = 4 nodes with their associated links.

2.1. Discrete Clock Model 7

Asynchronous clocks

Synchronous clocks

t

Node 1

t1[ν] t1[ν+1] t1[ν+2]

T0

t

Node 2

t2[ν −1] t2[ν] t2[ν+1]

T0

t

Node 1

t1[ν] t1[ν+1] t1[ν+2]

T0

t

Node 2

t2[ν −1] t2[ν] t2[ν+1]

T0

Figure 2.2: Graphical representation of synchronous and asynchronous dis-
crete clocks. Each vertical arrow represent a clock tick at the associated time
index.

We assume that each node i has a physical clock ti , which can be modeled as a contin-

uous linear function of universal time t :

ti (t) =αi t +θi (2.1)

where θi and αi are respectively the clock phase and the clock skew [4]. This thesis focuses

on frequency-synchronized clocks, i.e., αi = 1, ∀i . Note that the DPLL algorithm can be

adapted to frequency-desynchronized clocks reasonably easily, as it has an effect on the

algorithm similar to that of a transmission delay [10], which can be compensate for.

For the purpose of synchronization, each node maintains a discrete logical clock ti [ν],

which is obtained by sampling (2.1):

ti [ν] = ti (νT0) = νT0+θi (2.2)

where ν ∈Z is the tick index and T0 the clock period.

A graphical representation of a pair of discrete clocks in different synchronicity states

is depicted in Fig. 2.2. In the asynchronous case, the clock ticks are obviously misaligned,

2.2. Signal Transmission 8

while in the synchronous case, the clock ticks are aligned but the tick indices may be dif-

ferent. For the purpose of this paper, we consider clocks i and j to be synchronized if there

exists an l ∈Z such that ti [ν] = t j [ν+ l]. This condition can be rewritten using the modulo

of the clock phases: (θi)T0
= (θ j)T0

. We can therefore assume without loss of generality that

θi is constrained within the interval [0, T0).

2.2 Signal Transmission

We assume that each node broadcasts an identical synchronization sequence s [n] ∈ C of

length N at each local clock tick. Prior to broadcasting, this sequence is mapped into an

analog baseband signal by means of digital-to-analog (DAC) conversion at the rate Fs =
1

Ts
,

where Ts denotes the sampling period, and follows the inequality N Ts � T0. That is, each

symbol s [n] is used to scale a properly shifted replica of a band-limited pulse shape p (t).

The analog equivalent of s [n] can be expressed as:

x (t) =
N−1
∑

n=0

s [n]p (t −nTs) (2.3)

A common choice for p (t) used in this paper is the root raised cosine pulse [19]:

p (t) =











sinc
�

1
2β

�

, |t |= 1
2βTs

sinc
�

t
Ts

� cos
�

πβ t
Ts

�

1− 4a 2 t 2

T 2
s

, otherwise
(2.4)

where β is the rolloff factor of the raised cosine, related the to the excess bandwidth.

We can now write the analog baseband synchronization signal transmitted by node i

on its νth clock tick:

xi (t) = x (t −ti [ν]) (2.5)

2.3. Received Signal 9

Node i transmits carrier wave modulated by its baseband signal. This is done by upcon-

verting (2.5) into the RF spectrum, which is then broadcasted to neighbouring nodes:

exi (t) = xi (t)e
j 2π fi t (2.6)

with fi being node i ’s carrier frequency.

2.3 Received Signal

We assume that the signal transmission from node i to node j occurs over a wideband

multipath channel with impulse response:

hi j (t) =
∑

p

ρi j ,p δ(t −τi j ,p) (2.7)

where ρi j ,p ∈ C and τi j ,p > 0 are the amplitudes and delays introduced by the p th resolv-

able path. The delay τi j ,0 corresponds a direct path transmission, which may have a corre-

sponding amplitude ρi j ,0 = 0 if there is no line-of-sight (LOS). For convenience, we also let

τi j ,p+1 >τi j ,p for all p .

Since each node broadcasts s [n] at every local clock tick, a node j receives a synchro-

nization signal xi (t) from each node i 6= j once per clock period T0. After reception, the

receiving node downconverts the overall signal from the RF spectrum to baseband. The

νth synchronization signal received at node j from node i can be written as yi j (t):

yi j (t) =
∑

p

ρi j ,p xi (t −τi j ,p)e
j 2π fi (t −τi j ,p)e − j 2π f j t

=
∑

p

ρi j ,p x (t −τi j ,p −ti [ν])e
j 2π∆ fi j t (2.8)

where∆ fi j = fi − f j is the CFO between nodes i and j . Note that in (2.8), the complex factor

e − j 2π fiτi j ,p is absorbed into ρi j ,p with no loss of generality. The CFO∆ fi j can be caused by

innate differences between the on-board oscillators of the devices, or external effects such

as Doppler shift [14, 15].

2.4. Problem Formulation 10

Over a period T0, the received signal at node j after downconversion is the superposi-

tion of the broadcasted synchronization signals of all nodes in the network. After an analog-

to-digital (ADC) conversion done with rate Fs , which includes band-limited filtering, theνth

discrete-time signal received at node j can be written as:

yj [k]=
∑

i ,i 6= j

yi j (k Ts + t j [ν])+w j [k]

=
∑

i ,i 6= j

∑

p

ρi j ,p x (k Ts −τi j ,p −∆θi j)e
j 2π

N ∆λi j k+w j [k] (2.9)

where ∆θi j = θi −θ j is the phase difference between transmitting node i and receiving

node j , w j [k] denotes the antenna noise term after sampling, and ∆λi j = N∆ fi j/Fs cor-

responds to the CFO normalized with the sequence length and sampling rate. Note that

the added term t j [ν] term in the argument of yi j allows yj [k] to be expressed in the frame

of reference of the local time of node j . The exact bounds on k are not rigid, as long as

k runs over the equivalent of T0 samples. Note that the sample with k = 0 corresponds in

time to the local clock tick. Using the bounds − Fs T0
2 ≤ k < Fs T0

2 allows the local clock tick to

be positioned in the centre of the sampling window, where we make the assumption that

Fs T0 ∈Z. This reduces edge effects that may arise from further processing of yj [k].

2.4 Problem Formulation

A synchronization algorithm would allow a node to adjust its local clock phase θ j after cal-

culating some correction from yj [k]. Accordingly, the clock model should be rewritten as:

t j [ν] = νT0+θ j [ν] (2.10)

Given the received signal found in (2.9), our goal is to devise an effective synchronization

algorithm that would allow all clocks in the network to achieve similar values of θ j [ν], i.e.:

limν→∞θ j [ν] ≈ θ0, a constant value, for all nodes j . For the purpose of practical appli-

cations in future 5G networks, this algorithm should be robust against the effects of CFO,

transmission delay, and multipath propagation. Furthermore, its behaviour through SC-

2.4. Problem Formulation 11

FDMA modulation and analog-digital conversion should be well understood and numeri-

cally verified.

12

Chapter 3

Background

The DPLL algorithm allows multiple nodes to achieve synchronization by broadcasting a

synchronization signal at each local clock tick [10]. However, DPLL requires an accurate

estimation of the reception time of the signals. Both the DPLL algorithm and reception time

estimation are discussed below. To simplify this discussion, we temporarily assume that the

nodes communicate over flat fading channels. Multipath channels are reintroduced in the

next chapter.

3.1 Distributed Phase-Locked-Loops

The DPLL algorithm [10] allows nodes in a network to achieve synchronization by updating

their clock phases based on the synchronization signals received from their neighbours. To

do this update, the algorithm calculates the offset of the local clock with respect to that of

the other nodes. Node j computes the weighted average of the time differences between

its own clock and the time of reception of the other nodes’ synchronization signals, as ex-

pressed by:

∆t j [ν] =
∑

i ,i 6= j

αi j (t
′
i j [ν]− t j [ν]) (3.1)

3.2. Time of Reception Estimation: Two Users 13

where t ′i j [ν] represents the reception time of node i ’s pulse at node j , and the coupling

strength αi j > 0 relates how strongly the nodes i and j interact with one another, with the

restriction that
∑

i ,i 6= j αi j = 1.

In the absence of transmission delays, which is the underlying assumption in [10, 11, 17],

t ′i j [ν] corresponds to the emission time of node i ’s pulse. In such a case, t ′i j [ν] = ti [ν].

Therefore, since
∑

i ,i 6= j αi j = 1, the quantity∆t j [ν] is a weighted average of the phase offsets

between the nodes:

∆t j [ν] =
∑

i ,i 6= j

αi j ∆θi j [ν] (3.2)

The quantity∆t j [ν] is used to schedule the next clock tick:

t j [ν+1] = t j [ν] +T0+ε∆t j [ν] (3.3)

which is equivalent to updating the clock phase [10]:

θ j [ν+1] = θ j [ν] +ε∆t j [ν] (3.4)

where 0 < ε < 1 scales the correction: a high ε yields a faster convergence time, but a

low ε gives a better synchronization precision. It can be shown that, using this approach,

all clocks will eventually converge to the same phase in the absence of transmission de-

lays [10, 17]. In practice, node j does not have access to θ j , as it is the offset with respect to

universal time, an arbitrary quantity. An implementation of DPLL must therefore use the

update rule in (3.3).

In the presence of transmission delays, the arrival time of the synchronization pulse

does not correspond to its transmission time: t ′i j [ν] 6= ti [ν]. This has a significant effect on

the evolution of the synchronization: this topic is developed in the next chapter in Sec. 4.3

3.2 Time of Reception Estimation: Two Users

We now turn our attention to the two-user problem, as it is a simpler problem that we

use as a building block for the multi-user problem outlined in the next section. Follow-

3.2. Time of Reception Estimation: Two Users 14

ing [11, 14], a simplified model is used here for the transmission/reception of the synchro-

nization signals. Specifically, instead of considering the transmission of the analog signal

x (t), we consider an equivalent discrete-time model that involves the transmission of a

discrete sequence s [n]. We assume here that the discrete index n corresponds to a length

of continuous time Ts .

We define s̃i j [n] as the sequence received by node j from node i when transmitted over

a flat fading channel hi j ∈ C, in the absence of transmission delay. The equation that de-

scribes s̃i j [n] shares many similarities with (2.8):

s̃i j [n] = hi j s [n −qi j]e
j 2π

N κi j n (3.5)

where qi j ,κi j ∈ Z are the discrete phase offset and the discrete carrier frequency offset

between nodes j and i , respectively [11]. They are the discrete homologues of∆θi j [ν] and

∆λi j . In this case, qi j can be directly related to the continuous phase offset via the following

equation:

qi j ≈
1

Ts
∆θi j (3.6)

We are interesting in estimating qi j from the received signal s̃i j [n].

A common choice for s [n] are the Zadoff-Chu (ZC) sequences, due to their attractive

cyclical correlation properties. The odd-length ZC sequence with non-zero integer root

index u is defined as [20]:

zu [n] = e − jπun (n+1)/N (3.7)

where the odd natural number N is the sequence period and n ∈ [0, N) is the symbol index.

We define the cyclical cross-correlation at lag l between two arbitrary complex sequences

x [n] and y [n] as:

rx y [l] =
N−1
∑

n=0

y [n]x ∗[(n + l)N] (3.8)

3.2. Time of Reception Estimation: Two Users 15

Two important features of the ZC sequences will be used in this text. The first one is their

perfect cyclical autocorrelation ZCs [20], which can be obtained by cross-correlating z [n]

with itself:

rz z [l] =Nδ[l] (3.9)

The other property of ZC sequences [20] is that sequences with different root indices u and

v weakly interact in a cross-correlation, when compared to the autocorrelation (3.9):

|rzu zv
[l]|=

p
N , ∀l (3.10)

where u and v are relative primes of one another.

Let z̃u ,i j [n] be a ZC sequence that underwent transmission from node i to j , which is

obtained from z [n] in a similar way as (3.5). The cross-correlation between z̃u ,i j [n] and

zu [n] can be used to estimate qi j . The maximum magnitude |hi j |N of this correlation oc-

curs at the lag:

`i j ¬ arg max
l

|rz̃ z [l]|= qi j −
κi j

u
(3.11)

where `i j is the lag of the peak of the cross correlation. This equation stems from the prop-

erties of ZC sequences [16, 20]; a full development can be found in Appendix A.

However, `i j is not a perfect estimation of qi j , due to its dependency on the CFO κi j .

An approach to estimate qi j in the presence of CFO was introduced in [14], and consists of

building a synchronization sequence by concatenating two ZC sequences with opposite u

parameter:

s [n] =























z-u [n +N] −N ≤ n < 0

zu [n] 0≤ n <N

0 otherwise

(3.12)

For the remainder of this discussion, we will use z− and z+ as shorthands for z-u and zu ,

respectively.

3.2. Time of Reception Estimation: Two Users 16

Before we continue, it should be mentioned that a major caveat to this approach is that

the properties of ZC sequences are defined through circular correlations, but in practical

applications, only linear correlations are usable. The linear cross-correlation is defined for

bounded sequences x [n] and y [n] as:

Rx y [l] =
∑

n∈Z
y [n]x ∗[n + l] (3.13)

In our case, the linear correlation of s [n] with any ZC sequence does not correspond to a

circular correlation. This point is not raised in [11]. Nevertheless, we noticed through nu-

merical methods that the properties of ZC sequences carry well enough when using a non-

circular cross correlations; we further expand on the topic in Sec. 4.1. For the remainder of

this chapter, we use the linear cross-correlation Rx y [l] and assume that the properties of

ZC sequences carry over to linear correlations.

The magnitude of R s̃ z±[l], the cross-correlation of s̃i j [n]with either z−, z+, yields a clearly

defined peak at `-
i j , `+i j respectively:

`±i j = qi j ∓
κi j

u
+m± (3.14)

where m+ =
N −1

2 and m− = − N −1
2 −1 are the offsets of z± with respect to the center of s [n].

Such peaks are clearly identifiable from the rest of the correlation, due to the weak interac-

tion between z+ and z−, as shown in (3.10).

Taking the average between `-
i j and `+i j yields a biased estimate of qi j :

`-
i j +`

+
i j

2
=

1

2

�

�

qi j +
κi j

u
+m−

�

+
�

qi j −
κi j

u
+m+

�

�

= qi j −
1

2
(3.15)

This method allows the accurate estimation of the reception time qi j even in the presence

of CFO.

3.3. Time of Reception Estimation: Multi-User 17

3.3 Time of Reception Estimation: Multi-User

In a multi-user setting, node j receives all the transmitted synchronization signals s̃i j [n]

from the neighbouring nodes i :

yj [n] =
∑

i ,i 6= j

hi j s [n −qi j]e
j 2π

N κi j n +w j [n] (3.16)

Cross-correlating this received signal with z+ and z− yields multiple peaks, one for each

node i that transmitted a synchronization signal. These peaks are located at lags `±i j . We

can obtain an estimate q j±, q̂ j±, as the weighted average of the lags l of the cross-correlation:

q̂ j± ¬

∑

l l |Ryj z±[l]|
γ

∑

l |Ryj z±[l]|γ
(3.17)

where γ is a weighting parameter. Since the terms that correspond to the peaks located

at `±i j dominate the rest of the terms, we can approximate (3.17) by considering only those

terms. This simplifies q̂ j± to the weighted average of the peaks generated by each transmit-

ting node i [11]:

q̂ j± ≈

∑

l l |hi j N δ[l −`±i j]|
γ

∑

l |hi j N δ[l −`±i j]|γ

=

∑

i ,i 6= j `
±
i j hγi j

∑

i ,i 6= j hγi j

=
∑

i ,i 6= j

αi j

�

qi j ∓
κi j

u
+m±

�

(3.18)

whereαi j =
|hi j |γ

∑

i ,i 6= j |hi j |γ
are the weights of this average. Similar to (3.15), by taking a biased av-

erage between the two estimations q̂ j - and q̂ j+, it is possible to recover a unbiased weighted

average of all the qi j :

q̂ j =
1

2
(q̂i -+ q̂i+) +

1

2
≈
∑

i ,i 6= j

αi j qi j (3.19)

3.3. Time of Reception Estimation: Multi-User 18

An estimation for the continuous variable ∆t j [ν] can be obtained from the discrete esti-

mate q̂ j by using (3.6):

Ó∆t j [ν] = Ts q̂ j (3.20)

Applying the clock-update equation found in (3.4) with this estimation of ∆t j [ν] leads to

converging clock phases even in the presence of strong CFO [11]. A big advantage of this

approach is its scalability: it does not increase in complexity as the number of nodes in-

creases, since computing (3.17) does not depend on M .

19

Chapter 4

Practical Issues

The previously described DPLL algorithm works well for dense networks [10, 11], in the

special case where transmission delays and wideband multipath propagation are absent.

However, the use of DPLL in the presence of delays and multipath can prevent nodes from

achieving time synchronization. In this chapter, before addressing those aspects, we first

investigate if linear correlations and analog-digital conversion affect the performance of

the synchronization algorithm.

4.1 Linear vs Circular Cross-Correlations

As discussed in Sec. 3.2, “the time of reception” estimation specified properties of ZC se-

quences, which in theory hold only for circular correlation, while the correlation used in

practice would be linear. We noticed through numerical studies that the properties of ZCs

apply reasonably well with linear correlation.

Through numerical methods, we observed that the equation for `i j found in (3.11) holds

well for κ<N /4 when using linear correlations, which is well below the CFO encountered

in practice [14]. Furthermore, compared to circular correlations, linear correlations of ZCs

with different root indices presented in (3.10) exhibit amplitude oscillations, but maintain

the upper bound of
p

N . An typical example of the linear cross correlation between s [n]

and z+[n] can be found in Fig. 4.1. In all cases, the cross-correlation will have a similar

shape to the one pictured. The use of linear correlation introduces artifacts, but the overall

4.2. Analog-digital Conversions 20

shape of the cross-correlation is very clear: the autocorrelation peak at l = `+i j is clearly

identifiable from the remaining values of the |R s̃i j z+[l]|. Due to that, the approximation

used in Sec. 3.2, where we only considered the dominant peaks, is still reasonable for linear

correlations. This is especially true for larger values of N and γ.

Note that the graph presented in Fig. 4.1 is representative of the overall shape |R s̃i j z+[l]|

will have with varying values for N , γ, or κi j

The artifacts could still have a negative effect on the synchronization algorithm. The

cross-correlation bias-removal method discussed in section Sec. 5.1 attempts to lessen this

effect.

4.2 Analog-digital Conversions

As described in Chapter 2, node i passes the sequence s [n] through a DAC to obtain the

signal x (t), which is then broadcasted. A receiver first samples the received analog sig-

−50 0 50
l

0

10

20

30

40

50

60

70

|R
sz

u
[l

]|

Figure 4.1: Example cross-correlation of s [n]with zu [n], with N = 63. The main
peak is located at l =±31 and has a height of N

4.3. Effect of Transmission Delay 21

nal into a discrete sequence. Ideally, this sampling should be synchronized with the main

peak of the shaping pulse, but in the presence of a timing offset, the sampling may be mis-

aligned. This leads to low signal-interference ratio (SIR), due to signal loss and increased

inter-symbol interference (ISI) [19].

In the presence of ISI, the output of an ideal ADC is a linear combination of s [n] with

time-shifted copies of itself [19], i.e. a smeared version of s [n]. Note that we are not con-

cerned with s [n] itself but instead with its cross-correlation with z±[n]. Since cross-correla-

tion is a linear operator, the smearing of the input transfers to the output: misaligned sam-

pling causes some broadening of the peaks in |Rs z±[l]|. However, the the overall algorithm

is largely unaffected by this effect due to the weighted-average nature of the time of recep-

tion estimation.

We numerically tested that the algorithm described in the previous chapter can be used

with discrete time signals sampled from the received analog signals, with minor negative

impact on the quality of the synchronization.

4.3 Effect of Transmission Delay

Recall thatτi j ,0 is the transmission delay between nodes i and j . Equation (3.2) is no longer

accurate, as the reception time of the synchronization signal does not correspond to its

transmission time anymore. In this case, we have t ′i j [ν] = ti [ν] +τi j ,0. Equation (3.2) be-

comes [10]:

∆t j [ν] =
∑

i ,i 6= j

αi j (ti [ν] +τi j ,0− t j [ν])

=
∑

i ,i 6= j

αi j∆θi j [ν]

︸ ︷︷ ︸

+
∑

i ,i 6= j

αi jτi j ,0

︸ ︷︷ ︸

= ∆θ j [ν] + τ j (4.1)

Here, τ j depends only on the coupling strengthαi j and the topology of the network, which

we both assume to be static in time.

4.3. Effect of Transmission Delay 22

When we apply the DPLL algorithm in the presence of transmission delays, two regimes

can be identified: the transient regime (τ j �∆θ j [ν]) where the algorithm progresses as if

there is no transmission, and the drift regime (τ j ≈∆θ j [ν]), where the phases of the nodes

constantly drift forward in time. These regimes are illustrated in Fig. 4.2.

It can clearly be seen from Fig. 4.2 that the phases of the clocks not only keep increasing,

but do so at different rates. Over time, the phases keep moving away from one another, and

thus the synchronization is not maintained. In the next chapter, we discuss a method to

compensate for this drift.

0 5 10 15 20 25
Time (T0)

0.0

0.2

0.4

0.6

0.8

1.0

θ i
 (
T
0
)

Transient Drifting

Figure 4.2: Evolution of the phases θ j [ν] of multiple interacting nodes j . Each
node applies the DPLL algorithm described in Sec. 3.1. The two main regimes
are roughly highlighted. See Chapter 6 for simulation setup.

4.4. Effect of Wideband Multipath Propagation 23

4.4 Effect of Wideband Multipath Propagation

Channels used in practical applications are not flat fading. Instead, consider the discrete

multipath channel response:

hi j [n] =
∑

p

ρi j ,p δ[n −qi j ,p] (4.2)

where ρi j ,p ∈ C and qi j ,p ∈ Z are the amplitude and delay introduced by the p th path be-

tween nodes j and i , and δ[n] corresponds to the Kronecker delta function.

The estimation method proposed in (3.17) approximated the cross-correlation Ryj z±[l]

by only considering the peaks as significant. In the presence of multipath propagation, a

single peak from node i contributes P peaks in Ryj z±[l]. We denote those peaks’ location

in the cross-correlation as `±i j ,p , which are related to the delay-less lag `±i j defined in (3.14)

with the following equation:

`±i j ,p = `
±
i j +qi j ,p (4.3)

Akin to (3.17), the weighted average of the cross-correlation can be approximated by only

considering the peaks of the correlation:

q̂ j± =

∑

l l |Ryj z±[l]|
γ

∑

l |Ryj z±[l]|γ

≈

∑

l l |ρi j ,p N δ[l −`±i j ,p]|
γ

∑

l |ρi j ,p N δ[l −`±i j ,p]|γ

=

∑

p ,i ,i 6= j
(`±i j +qi j ,p) |ρi j ,p |γ

∑

p ,i ,i 6= j
|ρi j ,p |γ

=
∑

i
i 6= j

αi j

�

qi j ∓
κi j

u
+m±

�

+
∑

p ,i
i 6= j

ai j ,p qi j ,p (4.4)

where αi j =
∑

p |ρi j ,p |γ
∑

p ,i
i 6= j

|ρi j ,p |γ
and ai j ,p =

|ρi j ,p |γ
∑

p ,i
i 6= j

|ρi j ,p |γ
can be understood as pair-specific and path-

specific weights.

4.4. Effect of Wideband Multipath Propagation 24

Note that the second term in (4.4) depends on the paths and topology of the network,

which we assume to be static in time. Taking a biased average of q̂i+ and q̂i− yields:

q̂ j =
1

2
(q̂i++ q̂i−) +

1

2

≈
∑

i ,i 6= j

αi j qi j +
∑

p ,i
i 6= j

ai j ,p qi j ,p

︸ ︷︷ ︸

=
∑

i ,i 6= j

αi j qi j + qP, j (4.5)

This is similar to the result in (3.17), with an additional bias term qP, j . The continuous

estimation Ó∆t j [ν] defined in (3.20) now becomes:

Ó∆t j [ν] = Ts q̂ j

≈
∑

i ,i 6= j

αi j ∆θi j +Ts qP, j

=∆θ j +Ts qP, j (4.6)

Since qP, j is static in time, this equation has the same form as (4.1). We conclude that the

impact of multipath propagation is no different from that of simple transmission delay: it

should create a drift in the phases of the clocks. Therefore, the effects of multipath propa-

gation should be properly corrected by the drift compensation algorithm described in the

next chapter.

25

Chapter 5

Algorithm Implementation

Some of the aspects presented in the previous chapter have an important impact on the

DPLL algorithm. We present here two additions to DPLL: the cross-correlation bias re-

moval method and the drift Compensation algorithm. The former removes the artifacts

discussed in Sec. 4.1, while the latter compensates for both the transmission delay and mul-

tipath propagation that exists between the synchronizing nodes. In addition, we explore

an adaptation of the algorithm to SC-FDMA modulation. Finally, we discuss in details the

inner workings of our software implementation.

5.1 Cross-Correlation Bias Removal

The artifacts located at the bottom of Fig. 4.1 stem from the imperfect correlation properties

of ZC sequences in linear correlation. Removing said artifacts from Ryj z±[l]may improve

the convergence of the algorithm, which can be done by clipping to zero the values below

some threshold. This clipped cross-correlation |R̃yj z±[l]| can be written as:

|R̃yj z±[l]|=











|Ryj z±[l]| |Ryj z±[l]|>
p

Amax

0 otherwise
(5.1)

where Ama x = maxl (|Ryj z±[l]|). This approach is motivated from the observation that ar-

tifacts are proportional to
p

N , while the peaks are proportional to N . In practice, the

5.2. Drift Compensation 26

threshold should be set to a value slightly larger than
p

Amax, due to the oscillation seen

at the edges of the processing artifacts. This threshold still scales proportionally with
p

N .

5.2 Drift Compensation

The drift regime is due to the bias termτ j found in (4.1), which would be zero in the absence

of transmission delays. Averaging multiple consecutive values of∆t j [ν] yields a rough es-

timate of τ j . To compensate for the drift, let us define a filtered correction∆Γ j [ν]:

∆Γ j [ν] =∆t j [ν]−
1

Q

ν
∑

k=ν−Q

∆t j [k]

=∆t j [ν]−τ j −
1

Q

ν
∑

k=ν−Q

∆θ j [k] (5.2)

which is a FIR filter of length Q with impulse response:

hΓ [n] =























Q −1
Q n = 0

−1
Q 0< n <Q

0 otherwise

(5.3)

Essentially, this filter estimates the bias from the last Q values of ∆t j [ν], and removes it

from the current value.

Clearly, (5.2) is far from ideal, as it only accurately removes the bias τ j if ∆θ j [ν] van-

ishes after averaging, which is rarely the case in either regime. In particular, if this filter is

applied during the transient regime, it fails to properly correct forτ j sinceτ j �∆θ j [ν]: the

contribution of∆θ j [ν]dwarfs the contribution fromτ j . This compensation should only be

employed during the drift regime, where τ j ≈∆θ j [ν]. Therefore, the current regime must

be determined before applying (5.2).

We observe that the correction terms ∆t j [ν] has a significantly smaller variance in the

drift regime, compared to the transient regime. This is due to the reduction in magnitude

of ∆θ j as iterations progress. Let σQ ,i [ν] be the standard deviation of ∆t j [ν] over the last

5.2. Drift Compensation 27

Q iterations

σQ ,i [ν] =

√

√

√

1

Q

ν
∑

l=ν−Q

�

∆t j [l]−µQ

�2
(5.4)

where µQ =
1
Q

∑ν

k=ν−Q∆t j [k] corresponds to the arithmetic mean of∆t j [k] over the last Q

estimates. We consider a node to be in the drift regime if σQ ,i [ν] is below some threshold

σmax. An appropriate threshold can be estimated empirically.

Therefore, if a node has been in the drift regime forQ steps, the filtered correction∆Γ j [ν]

is used in place of the regular correction ∆t j [ν] in the clock update equation in (3.4). In

practice, this filter is instead applied on the estimated correction Ó∆t j [ν], as the quantity

∆t j [ν] is unavailable during synchronization. The overall Drift Compensation algorithm

is presented in Alg. 1. Our numerical simulations presented in the next chapter show that

this algorithm successfully prevents the nodes’ phase from drifting.

Require: drift_counter = 0 (Initialization)
1: function DRIFT_COMPENSATION_FILTER

2: ComputeσQ ,i [ν] from (5.4)
3: ifσQ ,i [ν]<σmax

4: if drift_counter<Q
5: drift_counter← drift_counter + 1
6: return Ó∆t j [ν]
7: else
8: Compute Ó∆Γ j [ν] from (5.2)
9: return Ó∆Γ j [ν]

10: else
11: drift_counter = 0
12: return Ó∆t j [ν]

Algorithm 1: Drift compensation algorithm, applied after every calculation of
Ó∆t j [ν]. Note that the algorithm only modifies the correction term ∆t j [ν] if it
detects that the node has been in the drift regime for Q samples or more.

Note that (5.3) corresponds to a simple FIR highpass filter. Since we are trying to remove

a static term from (4.1), a more sophisticated highpass filter with a deep notch at frequency

0 could be thought of as a better solution than (5.3). However, our testing showed that

popular choices for highpass filters (Butterworth, elliptic, FIR Remez, etc) did not produce

viable results. This is likely caused by the large magnitude of the taps of such filters coupled

with the strong feedback that exists between the nodes as they apply the DPLL algorithm.

5.3. SC-FDMA Modulation 28

5.3 SC-FDMA Modulation

SC-FDMA modulation is commonly used today in wireless uplink transmission due to its

attractive peak-to-average power ratio (PAPR), compared to multicarrier approaches. A

block diagram of SC-FDMA modulation can be found in Fig. 5.1. The length-Ns sequence

s [n] is modulated to the length-Nc sequence c [m] through the following transformation:

c [m] = IDFTNc









01×ai

Sk

01×bi









(5.5)

where Sk =DFTNs
(s [n]), ai is the mapping offset, and bi =Nc −Ns −ai is the rest of the zero

padding. The mapping offset is a value assigned to different users, and allows them to

transmit their signals on a different set of subcarriers. For the remainder of this discussion,

we assume that both Nc and ai are integer multiples of Ns .

During initial synchronization in a D2D network, the mapping offset ai is unknown at

the receiving node j . Therefore s [n] cannot be retrieved through conventional SC-FDMA

DFT
Ns

IDFT
Nc

Se
ri

al
-t

o
-p

ar
al

le
l

s [n]

s [0]

s [Ns −1]

..
.

S0

SNs

. . .

. .
.

. .
.

C0

Ca -1

Ca

Ca+Ns -1

Ca+Ns

CNc -1

0

0

0

0

c [0]

c [Nc −1]

. .
.

Pa
ra

lle
l-

to
-s

er
ia

l

c [m]

Figure 5.1: SC-FDMA modulation block diagram. Here, Sk = DFTNs
(s [n]) and

Ck =DFTNc
(c [m]) are the discrete Fourier coefficients of the input and output

sequences.

5.3. SC-FDMA Modulation 29

demodulation. To recover s [n], we first look at the expanded form of c [m]:

c [m] =
1

Nc
e π j m

Nc
(2ai+Ns−1)

Ns−1
∑

n=0

s [n]sincl(n −m
L)e

− jπn (1− 1
Ns
) (5.6)

where sincl(n) =











Ns n = 0

sin(πn)
sin(πNs

n) otherwise

where L is such that Nc =LNs , L ∈Ns. The full mathematical development can be found in

Appendix 2. From this expansion, c [m] can be thought of as an interpolated, frequency-

shifted version of s [n], with interpolating function the sinc-like function sincl(m). On the

receiving side, downsampling by a factor of L can directly recover an exact replica of s [n],

barring for the complex exponential factors. These exponentials contribute to DPLL in an

equivalent manner to a CFO; since the DPLL algorithm we use is CFO-robust, the presence

of these exponentials is inconsequential. This systematic frequency offset will be hence-

forth called SC-FDMA frequency offset (SFO).

Akin to Sec. 4.2, downsampling an interpolated sequence with some misalignment can

be though of as a problem, but this is not a concern for our purpose. This is because we

not concerned with the individual values of s [n], but instead with its cross-correlation with

z±[n]. As previously discussed, misalignment in the downsampling leads to a broadening

of the cross-correlation peaks, which does not significantly affect the time of reception es-

timation due to its weighted average nature.

In the multi-user case, an added L-decimation at the receiver yields a signal of the same

form as (3.16), that is, a linear superposition of the different synchronization signals, with

added inter-symbol interference and SFO.

Overall, the CFO-robust DPLL algorithm described in the previous chapters can be eas-

ily adapted to the presence of SC-FDMA modulation.

5.4. Software Implementation 30

5.4 Software Implementation

Up to this point, we saw many aspects that affect the DPLL algorithm in practice. Previous

work do not consider them at all [10, 11, 17]. In this section, we present a software imple-

mentation that incorporates these aspects. We first discuss the implementation details of

the DPLL algorithm executed at each node, and then its integration to the simulator as a

whole.

It should be noted that we implemented the DPLL algorithm with the assumption that

nodes could broadcast and receive signals at the same time (full-duplex). Of course, this

is not possible in practice with today’s radio equipment, which is half-duplex. We want

to emphasize that the use of a full-duplex scheme in our software implementation, while

impractical, was a conscious choice to limit the scope of this work, as we wanted to limit

our focus on the aspects described on in the previous chapters.

The half-duplex limitation has been the object of decades of research, with many solu-

tions appearing over time, such as time duplexing, frequency duplexing or echo cancella-

tion. Regarding DPLL, we are confident that the algorithm can be adapted to half-duplex

schemes using one of the various existing solutions. This is further corroborated by recent

work on the topic, which successfully achieved synchronization in a distributed setting us-

ing DPLL in conjunction with a random broadcasting scheme for the synchonization sig-

nals [21]. Ultimately, a full-duplex implementation allowed us to obtain results that are

independent of a particular half-duplex solution.

5.4.1 Local Algorithm Overview

Each node in the system applies the following synchronization algorithm locally, indepen-

dently of other nodes. The synchronization process is divided into time windows that are

roughly T0 wide, called adjustment windows, which are depicted in Fig. 5.2. Each adjust-

ment window is positioned such that the local clock tick is approximately located halfway

inside the window; this is done to minimize edge effects when estimating the correction

∆t j [ν]. In each adjustment window, the node broadcasts its synchronization signal once

while listening for incoming signals from other nodes. The incoming signals are aggregated

5.4. Software Implementation 31

into yj [k], from which the quantity ∆t j [ν] is estimated. The clock phase is then updated

with this estimate of∆t j [ν]. In turn, this new clock phase then affects the time of transmis-

sion of the next synchronization signal; therefore, it also affects the location and length of

the next adjustment window.

Alg. 2 presents a rough overview of the DPLL implementation locally executed at each

node, with the proposed modifications shown as options. After being powered on, the node

applies the DPLL algorithm and corrects its local clock, but only begins broadcasting after

D clock updates. This prevents nodes that are powering on from corrupting the ongoing

synchronization process of already synchronizing nodes.

In practice, node j does not have access not θ j [ν], which is why the Wait actions do not

directly depend on θ j [ν]. This approach is equivalent to the clock update rule specified

in (3.3). To track the behaviour of the system, the following is added as line 21 of Alg. 2:

θ j [ν]← (θ j [ν] + correction)To
(5.7)

The variable θ j [ν] should be understood as a bookkeeping variable, and has no effect on

the synchronization itself.

t
ε∆t j [0]0th adjustment window

t j [0]t ′ j [0]

T0
2

T0
2

∆t j [0]

t j [1]t ′ j [1]

T0
2 −ε∆t j [0]

T0
2

∆t j [1]

Figure 5.2: Graphical representation of the time of reception and transmission
of the synchronization signals. Here, node j ’s signal is represented with the
thick arrow, and corresponds to t j [ν]. The various reception times t ′i j [ν] are
represented with the smaller arrows, and their average by a solid line labelled
with t ′ j [ν] =

∑

i ,i 6= j αi j t ′i j [ν]. The different adjustment windows corresponds to
the area between the dashed lines. Each successive correction approaches the
local clock tick closer to the average received clock tick from the other nodes in
the network.

5.4. Software Implementation 32

In our simulations, all actions happen instantaneously; only Wait commands make

the simulated universal time move forward. A physical implementation would necessar-

ily have non-zero processing time to many of the proposed steps. To simulate this aspect,

we assumed that processing would last at most T0/10 time; this is represented on line 19

of Alg. 2. To understand why the thresholding value is −2T0/5, note that the earliest possi-

ble correction is −T0/2. which would make the next clock tick happen instantaneously. Any

correction inferior to −T0/2 must therefore be deffered to the next period. Adding T0/10 to

that, and we obtain −2T0/5.

Prior to broadcasting, node i interpolates the synchronization sequence s [n] with a

root-raised cosine pulse, oversampled by a factor of η. SC-FDMA modulation is then ap-

plied, if applicable. This pseudo-analog signal is then broadcasted to node j . The signal

is processed to account for the multipath and the CFO that exists between nodes i and j .

The TO is not directly applied, but is instead a consequence of the fact that the broadcast

1: ν = 0, broadcast_counter = 0, correction = 0
2: while True
3: ν ← ν+1
4: Begin aggregating yj [k]
5: Wait T0/2 + correction
6: if broadcast_counter <D
7: broadcast_counter← broadcast_counter + 1
8: else
9: Broadcast the synchronization signal.

10: Wait T0/2
11: Stop aggregating yj [k]
12: Option: Apply L-Decimation on yj [k] if SC-FDMA modulation is used
13: Option: Apply Bias removal on yj [k]. See (5.1)
14: Compute Ó∆t j [ν] from yj [k]
15: if Option: Drift Compensation
16: correction← ε·DRIFT_COMPENSATION_FILTER() See Alg. 1
17: else
18: correction← ε ·Ó∆t j [ν]
19: if correction < −2T0/5
20: correction← correction+T0

Algorithm 2: Summary of the algorithm applied locally by each node in the net-
work, where all actions other than Wait happen instantaneously.

5.4. Software Implementation 33

time corresponds to the current clock time of node i . This broadcast process is repeated

for all nodes.

5.4.2 Simulator Overview

The simulation first randomly initializes the clock phases, antenna noise samples, and

multipath parameters in the network. Each node j is then turned on at universal time

t j ,start = θ j [0] + l j To , where l j is a randomly picked integer. It is at that time t j ,start that the

nodes begin executing Alg. 2.

To truly simulate the DPLL algorithm, a software implementation of Alg. 2 must be ex-

ecuted concurrently at each node. We highlight here how this concurrent execution was

implemented. We define events as the principal sets of actions executed by the local algo-

rithm, namely, the broadcast event and the∆t j estimation event. Put another way, an event

can be understood as the sequence of actions between two Wait commands in Alg. 2. The

execution of an event leads to the creation of a new event. More specifically, a broadcast

event creates an estimation event, which in turn creates a broadcast event. These events

are inserted in the event list, such that the event list is always in chronological order. This

can be summarized as:

1: Initialize event list with a Broadcast event for each node, at times t j ,start+
T0
2 .

2: while t < tfinal

3: Increase universal time t to the next scheduled Event in the event list.
4: Remove Event from the event list
5: NewEvent← Execute Event.
6: Insert NewEvent at the appropriate chronological location in the event list.

where tfinal is the simulation stoppage time specified by the user. It should be understood

that each node always has at least one event in the event list. This approach truly emulates

the passage of time within the simulation while being reasonably performant.

34

Chapter 6

Numerical Simulations

The CFO-resistant DPLL algorithm was implemented and tested using numerical methods.

In this chapter, we first introduce new metrics to evaluate the performance of the synchro-

nization algorithm. We then elaborate on the precise methodology used in our simulations.

Finally, we present our results, which highlight the impact of the various modifications to

the DPLL algorithm proposed in the previous chapter.

6.1 Performance Metrics

Multiple metrics can be used to evaluate the convergence of a distributed synchronization

algorithm. A commonly used metric is the standard deviation of the phasesθ j [ν]. However,

it does not directly reflect each node’s capacity to communicate after synchronization. For

this task, we shall define a communication ratio as the fraction of the number of usable

links in the network. Furthermore, two other metrics will be introduced to monitor the

presence of a drift in the phases of the nodes.

6.1.1 Communication Criterion

The utilization of cyclic prefixes (CPs) and cyclic suffixes (CSs) enables wireless devices to

tolerate some forward or backward lag between the expected and actual reception time of

a signal. Let Oi j be the overall time offset between receiving node j and transmitting node

6.1. Performance Metrics 35

i :

Oi j =∆θi j +τi j ,b (6.1)

where ∆θi j is the previously defined phase offset and τi j ,b is the delay of the path that

would be used for communication, where we define this b th path as having the highest

magnitude across all paths p: |ρi j ,b |=maxp |ρi j ,p |.

Furthermore, let tp and ts be the respective duration of the cyclic prefix and suffix. A

pair of nodes can be considered able to communicate if their overall time offsets are within

the bounds prescribed by tp and ts . Let the link quality Ci j be the bidirectional usability of

the link between nodes i and j :

Ci j =











1 −ts ≤Oi j , Oj i < tp

0 otherwise
(6.2)

The communication ratio C can then be used to evaluate the synchronization state of the

whole network. It is defined as the ratio between the sum of all Ci j over the total number

of potential links:

C =

∑

i< j Ci j

1
2 (M 2−M)

(6.3)

Note that by definition, 0 ≤ C ≤ 1, where a value of 1 indicates that all the links in the

network can be used. This quantity represents the fraction of all usable link pairs in the

system, and can therefore be used to evaluate the overall quality of the synchronization.

6.1.2 Stability Criterion

An easy way to determine the stability of the network’s synchronization is to look at the

evolution of the clock phase θ j [ν] after the system reached the drift regime. As an example,

if we look at Fig. 4.2, we are interested in the values of θ j [ν] once all nodes have entered the

drift regime. Letβ j be the estimated slope of θ j [ν]over the last B samples of θ j [ν], counting

down from the end of the simulation. We considerβ andσ2
β to be the arithmetic mean and

variance of the slopes across all nodes. Ideally, this slope should be zero for all nodes. If

however drift exists, having the same drift rate can be sufficient for communication, as the

6.2. Methodology 36

phase offset would remain the same over time. Thus, the drift can be characterized by the

statistics of β :

• |β |: The absolute value of β represents the significance of the overall network drift. A

large value points at a systematic error in the synchronization algorithm.

• σ2
β : Represents the spread of the drift across all nodes. A low value corresponds to a

network were most clocks are drifting in the same way, whereas a high value implies

that each node in the network is drifting in a different manner.

The slope β j is in units of time
time ; we will express it in milliseconds per seconds.

6.2 Methodology

The simulations described here were done using Python and its scientific computing li-

braries Numpy/Scipy, under the technical specifications for LTE Advanced D2D proximity

services [18]. These include the pathloss model, probability of LOS between nodes, shad-

owing, multipath parameters, thermal noise power, transmission power, spatial distribu-

tion, and others. It should be noted that [18] stipulate an average node velocity of 3m/s ,

Deployment parameters
Number of nodes M 40
Channel model According to TR 36.843 [18, Table A.2.1.2]
Carrier frequency Fc 2 GHz
Sampling rate Fs 30.72 MHz
Node velocity -
Spatial distribution Uniform over a 500m x 500m square
Range of fi j (CFO) [14] Uniform over [−20, 20] kHz
Noise power -101 dBm
Antenna noise figure 9 dB
Antenna gain 0 dBi
Transmission power 23 dBm
Shadowing standard deviation 7 dB
Shadowing correlation i.i.d.

Table 6.1: List of deployment parameters. All the parameters presented here
were obtained from [18] unless otherwise specified. The exception to this rule
is the node velocity, which was assumed to be zero.

6.3. Results 37

Algorithm parameters
Clock period T0 3.26 ms
Start time factor l j Uniform ∈ [0, 15]
Correction scaling ε 0.5
DC filter length Q 6
Weighting parameter γ 2
Broadcast delay D 4
SC-FDMA length L 8
SC-FDMA offset ai Uniform ∈ [0, L)
ZC length N 31
Stoppage time tfinal 140T0

Table 6.2: Simulations parameters pertaining to the DPLL algorithm imple-
mented at each node. It includes the parameters for the modifications de-
scribed in the previous chapter.

but was omitted for this work, as we considered static networks. Otherwise, the parame-

ters specified in [18] were respected and properly implemented. Table 6.1 contains all the

deployment parameters used for our simulations.

The algorithm presented in this work also involved several parameters. The values for

these parameters are presented in Table 6.2, which were empirically determined to be good

compromises between computational load, realism, and quality of synchronization. It

should be noted that our implementation generally reached a drift regime in approximately

25 iterations, where each iteration lasts approximately T0 time. This led us to choosing a

stoppage time of tfinal = 140T0, to ensure the simulation exited the converging regime.

Unless otherwise specified, all results presented in the next section used the parameters

specified in Table 6.1 and Table 6.2.

6.3 Results

In this section, we investigate the impact of our algorithm modifications using numerical

simulations. We consider five configurations, where each configuration has a different sub-

set of options, activated or not. 1500 simulations were executed per configuration. Each

simulation had different randomized initialization parameters. At the end of the simula-

6.3. Results 38

DC BR SC Cavg Cstd |β |avg σ2
β ,avg

- - - 0.378 0.102 0.323 0.0134
Ø - - 0.641 0.108 0.00657 5.65e-05
Ø Ø - 0.608 0.109 0.00722 5.98e-05
Ø - Ø 0.63 0.106 0.00712 9.17e-05
Ø Ø Ø 0.621 0.106 0.00664 0.000239

Table 6.3: Convergence metrics for various configurations of the synchroniza-
tion algorithm. The configuration options are DC for Drift Correction, BR for
Bias Removal, and SC for SC-FDMA modulation. Each configuration was sim-
ulated 1500 times.

tions, the performance metrics discussed earlier in this chapter were computed. The result

of the simulations were then averaged per configuration, which can be found in Table 6.3.

The drift compensation (DC) algorithm had a very positive impact on both the drift

magnitude |β | and the drift spread σ2
β , when compared to the unmodified algorithm de-

scribed in [11]. It also had significantly higher synchronization quality, as demonstrated

by the increase of the average communication ratio Cavg and the reduction in its standard

deviation. Due to its ability to prevent clock drift, both the bias removal and SC-FDMA

modulation were studied in simulations were DC was concurrently enabled. The second

line in Table 6.3 will henceforth be referred as the base case.

The application of bias removal (BR) had a clear negative effect on the performance

metrics when compared to the base case. The average communication ratio diminished

while the average drift magnitude increased. The processing artifacts shown in Fig. 4.1

are not as detrimental as we originally hypothesized. It should be noted that BR removes

the effect noise term w [k] from the cross-correlation under most circumstances. We no-

ticed, for simulations without BR, that setting the noise power to −∞dB led to a poorer

synchronization performance. It is possible that the presence of noise helps achieving a

better synchronization, and would explain the poorer performance of the synchronization

algorithm with BR enabled.

SC-FDMA had a slight impact on the synchronization quality, with a small reduction in

both Cavg and its standard deviation Cstd, when compared to the base case. In spite of this,

6.3. Results 39

0 5 10 15 20 25
Time (T0)

0.0

0.2

0.4

0.6

0.8

1.0

θ i
 (
T
0
)

No DC

0 5 10 15 20 25
Time (T0)

0.0

0.2

0.4

0.6

0.8

1.0

θ i
 (
T
0
)

Q = 7

0 5 10 15 20 25
Time (T0)

0.0

0.2

0.4

0.6

0.8

1.0

θ i
 (
T
0
)

Q = 14

Figure 6.1: Example time evolution of θ j [n]. The top graph has no DC applied.
The bottom graphs has the DC enabled, with the middle graph having a filter
length of Q = 7. The bottom has a DC filter length of Q = 14. Unlike the rest of
the results presented in this section, the simulations presented in these graphs
had a clock period of T0 = 120µs , in order to give a better visual effect for the
reader.

6.3. Results 40

the SC-FDMA modulation does not substantially impair the network’s capacity to synchro-

nize, and can therefore be used safely in conjunction with the DPLL algorithm.

To highlight the dramatic impact of the DC algorithm, we re-ran the synchronization

simulation depicted Fig. 4.2, but this time with the DC algorithm enabled; this is presented

on Fig. 6.1. Note that the simulations depicted in Fig. 6.1 used the same initialization values,

including the same noise samples. Clearly, the DC was successful in stopping the drift and

stabilizing the clock phases: the mean slope |β | for the Q = 7 simulation is 0.08 m s
s , while

the mean slope for the Q = 14 simulation is 0.07 m s
s . This is a clear improvement to the

mean slope of 0.52 m s
s found in Fig. 4.2. It should be explicit from the figure that having

a longer filter length Q leads to a delayed compensation of the drift, which in turn often

results in a poorer synchronization quality, as the clock phases θi [ν], as the clock phases

are more spread out. We determined empirically through many simulations that a filter

length of Q = 6 used for the results presented in Table 6.3 yielded both good stability and

good synchronization quality.

10 15 20 25 30 35
Number of nodes M

0.4

0.5

0.6

0.7

0.8

0.9

C

Figure 6.2: Communication ratio as a function of number of nodes. Each dat-
apoint represents the average of 150 simulations, with associated standard de-
viation.

6.3. Results 41

We now test the behaviour of the algorithm under different settings. The simulations

presented until the end of this chapter all used the DPLL algorithm where both the DC

algorithm and SC-FDMA modulation were applied.

We first change the density of the node distribution. Fig. 6.2 show the communication

ratio C for the DPLL algorithm as a function of number of node. Changing the number

of node did not have a significant impact on quality of synchronization. Synchronization

quality seems to be mostly independent from the density of nodes in the network.

We limited our previous simulations to happen in a 500m x 500m square area, as pre-

scribed by 3GPP. However, real-world applications may have a larger area requirement. Pre-

sented on Fig. 6.3 is the communication ratio C for the DPLL algorithm as a function of area

size, where M = 35 nodes populated the network. It is clear that larger areas lead to poorer

synchronization performances, which can be explained by the increased path loss between

the nodes.

500 750 1000 1250 1500
Side of square area (Meters)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C

Figure 6.3: Communication ratio as a function of area size. Each datapoint rep-
resents the average of 150 simulations, with associated standard deviation.

6.3. Results 42

Finally, we varied the length of the ZC sequences used in the algorithm. Having a longer

ZC sequence yields higher peak in the cross-correlation Ry z±[l]. This effect is evident at

shorter sequence lengths, which have a worse Ca g . We would expect a continuing increase

in Ca v g as but is not observed at higher N , as depicted in Fig. 6.4. A average reduction of 10

points in communication ratio can be observed between the best (N = 25) and the longest

(N = 260) tested ZC lengths. We are unsure as to what precisely causes this decrease.

0 50 100 150 200
Length of ZC sequence N

0.3

0.4

0.5

0.6

0.7

C

Figure 6.4: Communication ratio as a function the length of the ZC sequence
used. Each datapoint representes the average of 150 simulations, with associ-
ated standard deviation.

43

Chapter 7

Conclusion

7.1 Summary

This work examined several limitations and aspects that affect a fully distributed synchro-

nization algorithm under constraints specified by 3GPP for D2D applications. We first pre-

sented a comprehensive summary of existing synchronization algorithms before outlining

a CFO resistant version the DPLL algorithm proposed in [11]. Unlike previous work on the

topic, we considered in our analysis the effects of transmission delay, multipath propaga-

tion, and SC-FDMA modulation. These aspects had a significant impact on the synchro-

nization algorithm. Accordingly, we designed modifications to the original algorithm to

compensate for them.

A software simulator was then created expressly for the purpose of testing the proposed

modifications. It properly imitates the concurrent nature of a distributed algorithm, where

many devices perform actions at the same time. Furthermore, we attempted to make the

simulator as realistic as possible by including the effects of analog-digital conversions nor-

mally present in real-world hardware. In the same vein, parameters such as channel model

or noise power closely reflected the current requirements set by 3GPP for D2D proximity

services [18].

We demonstrated that some of our modifications to the CFO-resistant DPLL algorithm

proposed in [11] significantly increased the quality and stability of the network’s synchro-

nization in realistic scenarios. In particular, the effects of transmission delays and multi-

7.2. Future Work 44

path propagation were properly compensated by the DC algorithm. We further demon-

strated that the synchronization algorithm could easily be adapted for SC-FDMA modu-

lation at the transmitter. However, our proposed BR algorithm did not result in a better

synchronization. To enable this comparison of algorithms, we devised new performance

metrics to evaluate the quality of a network’s synchronization.

7.2 Future Work

There are many different avenues on which the topics presented in this work could be ex-

tended. We noticed that having fewer nodes in the network often led to better synchroniza-

tion. Therefore, in larger networks, it may be beneficial to limit the number of broadcasting

nodes; non-broadcasting nodes, or quiet nodes, would execute the rest synchronization al-

gorithm as normal. However, the decision of which nodes are to be quiet is a non-trivial

problem, especially considering that the decision process should ideally be implementable

in a distributed manner.

The analysis and results presented in this work considered static D2D networks. Many

real-world applications are likely to have very fluid networks, where nodes can move or be

turned off at any time. Modifying the synchronization algorithm to which such conditions

would be a significant step for future research.

Throughout our analysis, we made no mention of the time required for a network to

achieve the drift regime. In fact, we avoided the topic of convergence time altogether, as

we desired to maintain the focus on the quality of a network’s synchronization. While our

implementation could reach a drift regime quickly enough, certain applications may re-

quire careful analysis of the convergence time of this algorithm. Particularly, in the more

fluid networks described above, having a better convergence time is likely to lead to better

tracking in the event of large network changes.

Finally, we assumed in our analysis that the nodes in the network did not move. This

allowed us to have static channel coefficient. Practical applications would require testing

the merits of this algorithm in the presence of mobile nodes.

45

Bibliography

[1] Nokia Siemens Networks. (2011) 2020: Beyond 4G Radio Evolution for the Gigabig Experience.

[Online]. Available: http://ch.networks.nokia.com/file/15036/2020-beyond-4g-radio-evolution-for-

the-gigabit-experience

[2] A. Osseiran, V. Braun, T. Hidekazu, P. Marsch, H. Schotten, H. Tullberg, M. Uusitalo, and M. Schellman,

“The Foundation of the Mobile and Wireless Communications System for 2020 and Beyond: Challenges,

Enablers and Technology Solutions,” in Vehicular Technology Conference (VTC Spring), June 2013, pp.

1–5.

[3] X. Chen, L. Chen, M. Zeng, X. Zhang, and D. Yang, “Downlink Resource Allocation for Device-to-Device

Communication Underlaying Cellular Networks,” in Symp. on Personal Indoor and Mobile Radio Com-

mun. (PIMRC), Sept 2012, pp. 232–237.

[4] Y.-C. Wu, Q. Chaudhari, and E. Serpedin, “Clock Synchronization of Wireless Sensor Networks,” IEEE

Signal Processing Mag., vol. 28, no. 1, pp. 124–138, Jan 2011.

[5] A. Bletsas, “Evaluation of Kalman Filtering for Network Time Keeping,” IEEE Trans. Ultrason. Ferroelectr.

Freq. Control, vol. 52, no. 9, pp. 1452–1460, Sept 2005.

[6] S.-L. Chao, H.-Y. Lee, C.-C. Chou, and H.-Y. Wei, “Bio-Inspired Proximity Discovery and Synchronization

for D2D Communications,” IEEE Commun. Lett., vol. 17, no. 12, pp. 2300–2303, December 2013.

[7] W. Sun, M. Gholami, E. Strom, and F. Brannstrom, “Distributed Clock Synchronization with Application

of D2D Communication Without Infrastructure,” in Proc. 2013 Globecom Workshops, Dec 2013, pp. 561–

566.

[8] W. Sun, E. Strom, F. Brannstrom, and M. Gholami, “Random Broadcast Based Distributed Consensus

Clock Synchronization for Mobile Networks,” IEEE Trans. Wireless Commun., vol. 14, no. 6, pp. 3378–

3389, June 2015.

[9] D. Goodman and R. Myers, “3G Cellular Standards and Patents,” in Wireless Networks, Communications

and Mobile Computing, 2005 International Conference on, vol. 1, June 2005, pp. 415–420 vol.1.

http://ch.networks.nokia.com/file/15036/2020-beyond-4g-radio-evolution-for-the-gigabit-experience
http://ch.networks.nokia.com/file/15036/2020-beyond-4g-radio-evolution-for-the-gigabit-experience

BIBLIOGRAPHY 46

[10] O. Simeone and U. Spagnolini, “Distributed Synchronization in Wireless Networks,” IEEE Signal Pro-

cessing Mag., vol. 25, no. 5, pp. 81–97, 2008.

[11] M. Alvarez, B. Azari, and U. Spagnolini, “Time and Frequency Self-Synchronization in Dense Coopera-

tive Network,” in 48th Asilomar Conf. on Signals, Syst. and Compt., Nov 2014, pp. 1811–1815.

[12] Y.-W. Hong and A. Scaglione, “A Scalable Synchronization Protocol for Large Scale Sensor Networks and

its Applications,” IEEE J. Sel. Areas Commun., vol. 23, no. 5, pp. 1085–1099, May 2005.

[13] A. Tyrrell, G. Auer, and C. Bettstetter, “Emergent Slot Synchronization in Wireless Networks,” IEEE Trans.

Mobile Computing, vol. 9, no. 5, pp. 719–732, May 2010.

[14] M. Gul, X. Ma, and S. Lee, “Timing and Frequency Synchronization for OFDM Downlink Transmissions

Using Zadoff-Chu Sequences,” IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 1716–1729, March 2015.

[15] W. Yang, M. Hua, J. Zou, J. Hu, J. Zhang, and M. Wang, “On the Frequency Offset Effect on Zadoff-Chu

Sequence Timing Performance,” in Procs. 2014 World Telecommun. Congr., June 2014, pp. 1–5.

[16] J. Zhang, C. Shen, G. Deng, and Y. Wang, “Timing and Frequency Synchronization for Cooperative Relay

Networks,” in Fall 2013 Vehicular Technology Conf., Sept 2013, pp. 1–5.

[17] M. Cremasehi, O. Simeone, and U. Spagnolini, “Distributed timing synchronization for sensor networks

with coupled discrete-time oscillators,” in 2006 Ann. IEEE Commun. Soc. Sensor, Ad Hoc Commun., and

Networks, vol. 2, Sept 2006, pp. 690–694.

[18] “Technical Specification Group Radio Access Network; Study on LTE Device to Device Proximity

Services,” 3rd Generation Partnership Project (3GPP), TR 36.843, Mar. 2014, Sections A.2.1.1 - A.2.1.2.

[Online]. Available: www.3gpp.org/ftp/Specs/archive/36_series/36.843/36843-c01.zip

[19] J. Proakis and M. Salehi, Digital Communications, ser. McGraw-Hill International Edition. McGraw-

Hill, 2008.

[20] D. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Inf. Theory, vol. 18,

no. 4, pp. 531–532, Jul 1972.

[21] M. A. Alvarez and U. Spagnolini, “Half-duplex scheduling in distributed synchronization,” IEEE Int. Conf.

on Communs. 2015, pp. 6240–6245, June 2015.

www.3gpp.org/ftp/Specs/archive/36_series/36.843/36843-c01.zip

47

Appendix A

Circular Cross-correlation of a

Zadoff-Chu Sequence under CFO

Let z [n]be an odd-length zadoff-chu sequence, and let z ′[n]be the same sequence affected

by some arbitrary carrier frequency offset∆λ:

z [n] = e − jπun (n+1)/N , N odd (A.1)

z ′[n] = z [n]e j 2π
N ∆λn (A.2)

The cyclical cross-correlation between the two sequences can be written as:

rz z ′[l] =
N−1
∑

n=0

z [(n + l)N](z
′[n])∗ (A.3)

Since z [n] is periodic with period N , the modulo operator can be omitted. Substituting in

the definitions of both sequences, we obtain:

rz z ′[l] =
N−1
∑

n=0

e − jπu (n+l)(n+l+1)/N e jπun (n+1)/N e − j 2π
N ∆λn (A.4)

=
N−1
∑

n=0

e γu (n ,l) (A.5)

A. Circular Cross-correlation of a Zadoff-Chu Sequence under CFO 48

where γu (n , l) can be simplified as:

γu (n , l) =
jπ

N

�

−u (n + l)(n + l +1) +un (n +1)−2∆λn
�

(A.6)

= −
jπ

N

�

ul (l +1) +2n (ul +∆λ)
�

(A.7)

Substituting γu (n , l) back into (A.5), we obtain:

rz z ′[l] =
N−1
∑

n=0

e −
π j u

N l (l+1)e −
2nπ j

N (ul+∆λ) (A.8)

= z [l]
N−1
∑

n=0

(e −
2π j
N (ul+∆λ))n (A.9)

= z [l]
1− e −2π j (ul+∆λ)

1− e −
2π j
N (ul+∆λ)

, ul+∆λ
N 6∈Z (A.10)

= z [l]
e −π j (ul+∆λ) sin(π(ul +∆λ))

e −
π j
N (ul+∆λ) sin(πN (ul +∆λ))

(A.11)

= z [l]e −π jα(1− 1
N)sinc(α) (A.12)

where α= ul +∆λ and sinc(x) = sin(πx)
sin πx

N

Note the restriction on using the geometric series in (A.10), where ul+∆λ
N 6∈ Z. In such

cases, the exponential simplifies to 1, meaning that rz z ′[
k N−∆λ

u] =N z [l] , k ∈Z

49

Appendix B

SC-FDMA Modulation: Expanded Form

The length-N sequence s [n] is SC-FDMA modulated to the length-M sequence c [m]with

the following transformation:

c [m] = IDFTM









01×a

Sk

01×b









(B.1)

c [m] = IDFTM (Ck) (B.2)

where Sk =DFTN (s [n]), Ck =DFTM (s [m]), a is the mapping offset, and b =M −N −a is the

rest of the zero padding. For the remainder of this discussion, we assume that both M and

a are integer multiples of N , namely: M = LN , L ∈ N and a = I N , I ∈ N. We will also

assume that a < (L −1)M .

B. SC-FDMA Modulation: Expanded Form 50

Expanding the IDFT in (B.1), we obtain:

c [m] =
1

M

M−1
∑

k=0

Ck e 2π j k m (B.3)

=
1

M

a+N−1
∑

k=a

Sk e 2π j k m (B.4)

=
1

M

a+N−1
∑

k=a

N−1
∑

n=0

s [n]e −2π j k n
N e 2π j k m

M (B.5)

=
1

M

N−1
∑

n=0

s [n]
a+N−1
∑

k=a

W k (B.6)

where W = e −2π j (n
N −

m
M). It can be simplified to:

W = e −2π j (n
N −

m
M) (B.7)

= e −2π j n L−m
N L (B.8)

= e −2π j p
N (B.9)

where p = n L−m
L = n −m

L is a simplification done to lighten the notation in the following

equations.

The sum over k in (B.6) can be interpreted as a geometric series:

a+N−1
∑

k=a

W k =W a 1−W N

1−W
(B.10)

=W a 1− e −2π j p

1− e −2π j p/N
(B.11)

= e −2πa j p
N e −π j p (1− 1

N)
sin(πp)

sin(πp/N)
(B.12)

B. SC-FDMA Modulation: Expanded Form 51

The complex exponentials can be simplified to:

=
�

e −2πa j p
N
��

e −π j p (1− 1
N)
�

(B.13)

=
�

e −2πa j (n
N −

m
M)
��

e −π j (n−m
L)(1−

1
N)
�

(B.14)

=
�

e −2π j LN n
N
��

e 2π j a m
M
��

e −π j n (1− 1
N)
��

e π j m
L (1−

1
N)
�

(B.15)

=
�

e π j m
M (2a+N−1)

��

e −π j n (1− 1
N)
�

(B.16)

Pluging everything back into c [m], we obtain:

c [m] =
1

M
e π j m

M (2a+N−1)
N−1
∑

n=0

s [n]
sin(π(n −m

L))
sin(πN (n −

m
L))

e − jπn (1− 1
N) (B.17)

This can be interpreted as an interpolation formula with the sinc-like function sincl(x) =
sin(x)

sin(x/N) , along with some carrier frequency offset.

	Introduction
	Litterature Survey
	Thesis Contributions and Organization

	System Model
	Discrete Clock Model
	Signal Transmission
	Received Signal
	Problem Formulation

	Background
	Distributed Phase-Locked-Loops
	Time of Reception Estimation: Two Users
	Time of Reception Estimation: Multi-User

	Practical Issues
	Linear vs Circular Cross-Correlations
	Analog-digital Conversions
	Effect of Transmission Delay
	Effect of Wideband Multipath Propagation

	Algorithm Implementation
	Cross-Correlation Bias Removal
	Drift Compensation
	SC-FDMA Modulation
	Software Implementation
	Local Algorithm Overview
	Simulator Overview

	Numerical Simulations
	Performance Metrics
	Communication Criterion
	Stability Criterion

	Methodology
	Results

	Conclusion
	Summary
	Future Work

	Appendices
	Appendix Circular Cross-correlation of a Zadoff-Chu Sequence under CFO
	Appendix SC-FDMA Modulation: Expanded Form

