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Abstract

In this thesis, we propose and investigate novel adaptive semi-blind channel estimation

algorithms for OFDM/OQAM systems. OFDM/OQAM is regarded as a promising alter-

native to conventional CP-OFDM for multi-carrier modulation since it can provide better

spectrum efficiency, albeit at the price of increased complexity.

We first formulate a general system model of an OFDM/OQAM transceiver. Based

on this model, we review a recently proposed block based semi-blind channel estimation

method for OFDM/OQAM systems, known as the sign covariance matrix (SCM) method.

This method mainly exploits the higher-order statistical properties of the data at the re-

ceiver side but is not well-suited for applications to time-varying channels. Subsequently,

to overcome the drawbacks of this block-based technique, we propose adaptive semi-blind

channel estimation algorithms for application to OFDM/OQAM.

The proposed algorithms consist of an adaptive SCM technique obtained through ex-

ponential recursive averaging, as well as several constant modulus algorithms (CMA) for

recursive estimation. Although all the adaptive algorithms are designed to deal with time-

varying channels, they can also be used for rapid channel acquisition in the case of static or

slowly-varying channels. Furthermore, we explore the coherence bandwidth of the channel

and make use of this concept to improve the estimation accuracy via a frequency averaging

technique that can be combined with the adaptive SCM.

Simulation results validate the efficacy of the proposed adaptive estimation algorithms

over both time-invariant and varying channels, showing their robustness in terms of conver-

gence speed, tracking capability and residual estimation error in steady-state. In particular,

the CMA with recursive least squares (CMA-RLS) updating proves to be the most prefer-

able due to its excellent trade-off between convergence rate and residual error level. The

CMA-RLS also offers the best performance in tracking a time-varying channel. In addition,

simulation experiments demonstrate the effectiveness of combining the frequency averaging

technique with the proposed adaptive SCM algorithm.
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Sommaire

Dans ce mémoire, nous introduisons de nouveaux algorithmes d’estimation de canal semi-

aveugles pour les systèmes OFDM/OQAM. La modulation à porteuses muliples OFDM/

OQAM pourrait venir à remplacer la modulation plus conventionnelle de type CP-OFDM

car elle offre une meilleure efficacité spectrale, malgré sa plus grande complexité.

Nous introduisons d’abord le modèle mathématique général pour un système de trans-

mission et réception basé sur la modulation OFDM/OQAM. Nous examinons ensuite un

récent algorithme d’estimation semi-aveugle, nommé méthode de matrice de covariance à

signes (MCS). Cet algorithme exploite les statistiques d’ordre supérieur des données, mais

n’est pas approprié pour l’estimation des canaux variables dans le temps puisqu’il repose sur

l’estimation par bloc. Pour résoudre ce problème, nous proposons de nouveaux algorithmes

adaptatifs semi-aveugles pour l’estimation de canal dans les système OFDM/OQAM.

Ces algorithmes incluent une réalisation adaptative de l’algorithme MCS obtenue via

un moyennage exponentiel récursif, de même que plusieurs algorithmes à module constant

(AMC) permettant d’effectuer l’estimation récursive. En plus de permettre le suivi des

canaux variants dans le temps, comme la plupart des méthodes adaptatives, nous pouvons

utiliser ces nouveaux algorithmes afin d’effectuer l’acquisition rapide de canaux statiques.

Pour améliorer la performance d’estimation, nous explorons une technique de moyennage

fréquentiel sur la bande de cohérence du canal, technique qui peut tre combinée avec adap-

tative de l’algorithme MCS.

L’efficacité des algorithmes proposés est vérifiée via des simulations sur des canaux

variants et invariants dans le temps. Ces simulations démontrent la robustesse des nouveaux

algorithmes en termes de vitesse de convergence, de vitesse de suivi, et d’erreur résiduelle

en régime permanent. En particulier, l’AMC avec mise à jour basée sur l’approche des

moindres carrés récursive (AMC-MCR) est la méthode préférentielle, grâce à un compromis

optimal entre la vitesse de convergence et l’erreur résiduelle. La AMC-MCR offre aussi la

meilleure performance en termes de suivi d’un canal variant dans le temps. De plus, les

simulations démontrent un accroissement d’efficacité lorsque la technique de moyennage

fréquentiel est couplée à l’algorithme adaptative MCS proposés.
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Chapter 1

Introduction

In this chapter, first we provide an overview of the technical problem to be studied. Then

the existing literature aimed at solving this problem is surveyed. Next, we summarize the

contributions made by this thesis. Finally, the thesis organization along with certain math-

ematical notations are explained.

1.1 Problem Overview

Nowadays, the increasing demand for high data rate transmissions continues to call for

the search of improved signal processing techniques to enable wideband wireless commu-

nications with improved quality of service (QoS). Consideration of fundamental issues, in-

cluding frequency selective fading due to multipath propagation, demodulation complexity

and flexible multiple access, naturally leads to the use of multicarrier modulation (MCM)

techniques [1]. In the MCM scheme, the available channel bandwidth is subdivided into

several parallel subchannels over which different data streams (from one or multiple users)

are multiplexed for parallel transmission. One of the classical MCM techniques, currently

used in many standards [2], is orthogonal frequency division multiplex (OFDM) with a

cyclic prefix (CP). Using the CP as a guard interval, OFDM manages to turn a frequency

selective channel into a set of nearly flat parallel subchannels with independent noises.

This, in turn, greatly simplifies both the channel estimation and the data recovery. CP-

OFDM succeeds in reducing inter-symbol interference (ISI) compared with single carrier

modulation but at the same time, the extra CP entails a waste in transmitted power as

well as in spectral efficiency. Furthermore, the advantages of CP-OFDM come at cost of

2015/09/16
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an increased sensitivity to carrier frequency offset and symbol timing errors.

Alternatively, OFDM based on offset quadrature amplitude modulation, known as

OFDM/OQAM, has received much attention in recent years as it can mitigate these draw-

backs [3]. Nevertheless, efficient channel estimation and equalization schemes are needed

for the effective implementation of data detection on the receiver side of an OFDM/OQAM

system.

In this thesis, we seek to develop and investigate new adaptive algorithms for the semi-

blind estimation and tracking of wireless channels in OFDM/OQAM systems.

1.2 Literature Survey

Over the past few decades, MCM has been well accepted in both wired and wireless com-

munications due to its capability to realize reliable high data rate transmission and to

cope with frequency selective channels [4, 5]. As a MCM technique, OFDM converts a

single high speed data stream into multiple low speed data streams, and modulates them

onto different subcarriers, with the help of an inverse discrete Fourier transform (DFT)

operation. To preserve the orthogonality of the subcarriers, a cyclic prefix (CP) is added

as a guard interval. However, the CP leads to a loss of spectral efficiency as it contains

redundant information, which is a main drawback of CP-OFDM [6]. Other disadvantages

of CP-OFDM, such as the increased sensitivity to carrier frequency and timing errors, are

mentioned in [7, 8].

As a special type of MCM, OFDM based on offset quadrature amplitude modulation

(OQAM), referred to as OFDM/OQAM, has been considered as an alternative to CP-

OFDM [9,10]. Compared to CP-OFDM that transmits complex-valued symbols at a given

symbol rate, OFDM/OQAM transmits real-valued symbols at twice this rate [11]. In

OFDM/OQAM, every subcarrier is modulated with a staggered offset QAM symbol. In-

stead of using the cyclic prefix, OFDM/OQAM system utilizes well designed prototype

filters that, in theory, satisfy perfect reconstruction conditions [12]. In order to mitigate

ISI and achieve distortion free transmission, the receiver still requires knowledge of chan-

nel information to finalize equalization; therefore, channel estimation is an indispensable

component of an OFDM/OQAM receiver, needed prior to equalization and data detection.

However, all the attractive features of OFDM/OQAM come at the price of a relaxation

of the orthogonality conditions that only hold in the real field. Hence, the simplicity of
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the channel estimation in CP-OFDM is lost in OFDM/OQAM systems [13]. Consequently,

OFDM channel estimation methods may not be suitable for application to OFDM/OQAM

systems. A specific problem of intrinsic interference among adjacent subcarriers and sym-

bols has to be solved, which is a main issue in OFDM/OQAM channel estimation.

Earlier works on OFDM/OQAM investigate training-based techniques as solutions to

channel estimation. One of them is preamble-based where a block of pilot symbols precede

the data in each burst [14–16]. Specific structures of preamble have been proposed, thereby

leading to assorted channel estimation methods. In [14], two different preamble-based

methods are proposed, namely the interference approximation method (IAM) and pairs of

real pilots (POP). Motivated by the IAM method and awareness of its suboptimal nature, a

general theoretical framework for IAM preamble design is formulated in [15] and [16]. Beside

the preamble-based technique, another training-based technique introduces scattered pilots

among the data symbols throughout the burst [17–19]. Authors of [17] find an appropriate

combination of the data in the vicinity of each scattered pilot to cancel the interference while

an iterative channel estimation method is provided in [18]. In [19], the pilots are scattered

in the shape of a quincunx over the frame for a better coverage of the time-frequency space.

In general, training based techniques mainly aim at cancelling the undesired interference

from neighbours and improve estimation performance accordingly. However, they are not

necessarily desirable in real life due to the high expense of sending pilots, which amounts

to an inefficient use of precious bandwidth resources.

Based on considerations above, a semi-blind channel estimation technique is proposed

to handle the fading channel [20], where statistical properties present in received signal

components are explored. In particular, the real property of the transmitted symbol is

fully exploited to blindly identify the channel-induced rotations. An essential part of this

technique is the estimation and use of the sign covariance matrix (SCM), which leads to

channel phase estimation over each subcarrier. Both channel phase (through the SCM)

and amplitude are approximated by block averaging over multiple symbol times. Only one

symbol per tone per block is required to resolve a trivial sign ambiguity, thereby reducing

the pilot overhead for estimation purpose, as compared to previous training-based methods.

Nevertheless, block processing as in [20] is plagued by a number of limitations. Instead

of being distributed over time, computational resources tend to be used unevenly, where

most the stringent part of the estimator computations needs to be carried out rapidly after

the data accumulation within a block. Additional memory is needed to buffer the received
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data during the channel estimation phase, after which equalization and data detection

for the given block can be applied. Block processing relies on the assumption that the

underlying channel under estimation remains nearly constant during a block. Therefore,

it is mostly useful for the case of time-invariant or slowly fading channel, but is not well

suited to the estimation and tracking of fast time-varying channels, as often encountered

in wireless environments with mobile users or scatterers.

1.3 Thesis Contributions

Traditionally, channel estimation techniques for OFDM/OQAM may be classified into two

categories, namely: training-based methods and semi-blind or blind methods. Training-

based methods send training sequences or pilots at regular intervals, thereby consuming

bandwidth and decreasing spectrum efficiency. Blind channel estimation methods, on the

other hand, appear attractive since they avoid the use of training symbols. However,

existing blind methods use second-order and higher-order cyclostationary statistics to yield

the unique channel estimation up to an ambiguity factor, as represented by one or more

unknown scalars. In practice, this ambiguity could be resolved by using a short training

sequence; hence these methods are often referred to as semi-blind. However, second-order or

higher-order statistics based methods need a relatively long data-record length for accurate

channel estimation. For example, the semi-blind method in [20] is based on data block,

which, for reasons explained above leads to uneven use of computational resources and

additional memory requirements. More importantly, it becomes impractical under rapidly

time-varying channel conditions. The goal of this thesis is to propose and study new

semi-blind adaptive algorithms to cope with the estimation of both time-invariant and

time-varying channel in OFDM/OQAM systems.

Unlike the block-processing approach in [20], we propose four different adaptive algo-

rithms to handle the OFDM/OQAM channel estimation. These algorithms can be classified

into two categories. The first one, referred to as Adaptive SCM, is based on the existing

SCM of [20], but uses exponential smoothing as opposed to block processing in the estima-

tion of certain required quantities. The second category, referred to as constant modulus

algorithms (CMA), is based on the constant modulus formulation for recursive channel

estimation, which exploits certain symmetry in the digital data modulation. A variety of

CMA can be devised depending on the cost function and search direction strategy. In this
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thesis, three CMA are considered, as listed below:

• Gradient-based least mean square (CMA-LMS-Grad)

• Gauss-Newton based least mean square (CMA-LMS-GN)

• Recursive least squares (CMA-RLS)

These adaptive algorithms store the most recent channel estimate only and update it

recursively by processing the current observations. The main advantages of adaptive al-

gorithms not only lie in faster estimation of time-invariant (stationary) channels, but also

in effective acquisition and tracking of time-varying (non-stationary) channels. Only a few

pilots per tone are needed at an early stage of adaptation to resolve the sign ambiguity

present in the initial estimate. Simulation results confirm the efficacy of the proposed adap-

tive algorithms for both time-invariant and time-varying channel conditions. Among the

newly proposed adaptive algorithms, the CMA-RLS proves to have the best performance in

terms of initial convergence speed, steady-state error and tracking capability. In addition,

to further improve the estimation accuracy, a frequency averaging technique that takes

advantage of the coherence bandwidth is appended as a modification to the Adaptive SCM

algorithm.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 reviews basic concepts of multicar-

rier modulation, gives a mathematical description of the OFDM/OQAM system model and

then explains block based channel estimation technique in [20] thoroughly. On the basis

of the system model derived in Chapter 2, the four adaptive semi-blind channel estima-

tion algorithms are developed in Chapter 3 by recursively minimizing a specific objective

function. In this chapter, we also introduce the so-called multi-modulus extensions of the

proposed algorithms, as well the combination with a simple frequency averaging technique,

which in theory gives rise to enhance estimation. Simulation results are presented and

discussed in Chapter 4 to demonstrate the performance of the proposed adaptive channel

estimation algorithms when applied to OFDM/OQAM systems. Finally, Chapter 5 draws

conclusions of the whole thesis and indicates possible research directions for the future.
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Notation. Vectors and matrices are denoted by bold lower-case and upper-case letters,

respectively. Superscript T represents transposition. <,= specify the real and imaginary

parts of a complex quantity. The expectation operator is denoted by E(.). The complex

conjugate of a complex number z is denoted by z∗. ‖ · ‖ is used for the 2-norm of a vector.
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Chapter 2

Block based Channel Estimation for

OFDM/OQAM Systems

In this chapter, we first review the fundamentals of multicarrier modulation, including

OFDM and OFDM/OQAM schemes. Then a recently proposed semi-blind channel esti-

mation method, referred to as block based SCM algorithm, is reviewed for application to

OFDM/OQAM. Finally, the limitations of this block based SCM algorithm are discussed

briefly.

2.1 Overview of Multicarrier Modulation

2.1.1 General MCM

In the past decades, there has been much research and development work aiming at increas-

ing data rates of wireless transmissions while improving quality of services. In turn, in-

creased transmission rates have led to new and ever more demanding applications, spurring

the need for further improvements in data rates, and it seems that this trend will con-

tinue [21].

To boost high data rates in broadband wireless transmissions, multicarrier modulation

(MCM) systems have been extensively studied and used in many applications [4]. The basic

idea behind MCM transmission schemes is to use multiple subcarriers to transmit data in

parallel across a wideband channel. Equivalently, the wideband frequency selective channel

is divided into several parallel subchannels with flat or mildly selective fading, facilitating

2015/09/16
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channel estimation and equalization. As a result, in a MCM system with the same data rate

as a single carrier system, the symbol duration is longer, which translates into reduced inter

symbol interference (ISI) and improved system performance with respect to probability of

error. In addition, the division of the whole bandwidth into many subchannels also provides

scalability and flexibility when configuring the communication link [5].

Fig. 2.1 illustrates the parallel transmission scheme taking place at the transmitter of

a generic MCM system. A serial bit stream with rate R, in bit per second (bps) is firstly

converted to M parallel low speed data streams with rate R/M bps. Each sub-stream then

goes through the following chain of operations:

• Symbol Mapper: where groups of bits are mapped to M-ary symbols within a given

constellation;

• Pulse shaping filter: which is used to convert the M-ary symbols into analog pulse

code modulation waveforms.

• Modulation: where each baseband substream is shifted to the desired frequency sub-

band by multiplication with cos(2πfmt), where fm is the corresponding carrier fre-

quency.

g(t)

g(t)

g(t)

x(t)

x0 x0(t)

x1(t)

xM−1(t)

x1

xM−1

Serial-to-
Parallel
Converter
(S/P)

Symbol
Mapper

Symbol
Mapper

Symbol
Mapper

R bps

×
×

×

cos(2πf0t)

cos(2πf1t)

cos(2πfM−1t)

R
M

bps

R
M

bps

R
M

bps

. . . . . . . . . . . .

+

. . . . . .

Fig. 2.1 Transmitter schematic diagram in general MCM

Following this sequence of operations, the various subband signals are added for transmis-

sion over the wideband channel. At the receiver (not shown), a corresponding sequence

of operation takes place to recover the transmitted data stream from the received analog

front-end signal.
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2.1.2 OFDM

Orthogonal frequency division multiplexing (OFDM) is the flagship of the MCM techniques.

It splits a high-rate data stream into a number of lower rate streams that are transmitted

simultaneously over a number of subcarriers by exploiting properties of the discrete Fourier

transform (DFT) [22]. These subcarriers are uniformly spaced in frequency and are orthog-

onal to each other. By choosing an appropriate number of subcarriers for transmission, the

bandwidth of these parallel subchannels is smaller than the corresponding coherence band-

width of the entire frequency selective channel. Therefore, each subchannel experiences

flat fading, and low-cost (i.e. single-tap) channel estimation and equalization techniques

can be applied to each of these subchannels for the purpose of data detection. To prevent

the subcarriers from losing their orthogonality, however, a cyclic prefix (CP) is needed in

OFDM modulation. In effect, a properly selected CP elegantly turns severely frequency

selective channels into flat fading ones at the subcarrier level.

Currently, OFDM is widely applied in several standards, for example, the WiFi standard

[23], which is based on the various iterations of IEEE 802.11, uses OFDM for its highest

throughput profiles. Moreover, the Long Term Evolution (LTE) standard [24] uses OFDM

for the downlink - that is, from the base station to the terminal to transmit the data over

many narrow subbands of 180KHz each, instead of spreading one signal over the complete

5MHz bandwidth.

Fig. 2.2 shows a simplified flowchart of the CP-OFDM system. At the transmitter

side (Tx), by using serial-to-parallel (S/P) converter, the transmitted bit stream is split

into multiple substreams of M -ary symbols, typically taken from a quadrature amplitude

modulation (QAM) constellation. After the S/P conversion, the parallel substreams of

OFDM symbols across the frequency domain go through an OFDM modulator, in which the

Inverse Discrete Fourier Transform (IDFT) is applied, resulting in a vector of time-domain

digital samples. Following these operations, a CP is added which extends the length of this

vector prior to its conversion from parallel to serial form. Finally, the resulting sequence of

time-domain samples is shaped by Tx filter (rectangular filter) and sampler for transmission

over the radio channel. At the receiver side (Rx), the reverse sequence of operations take

place, that is: Rx filtering and sampling; conversion from serial to parallel form; removal of

the CP; mapping to frequency domain via DFT; channel equalization and detection (E/D);

followed by the final conversion from parallel to serial. In practice, the required DFT and
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IDFT operations are implemented in the form of a fast Fourier transform (FFT) algorithm

and its inverse, the IFFT, respectively. By adding and later removing the CP, wideband ISI

S/P IDFT Add

CP

P/S Tx filter

Channel

Rx filterS/PRemove
CP

DFTE/D
ŝ(t)

Transmitter

Channel

Receiver

. . . . . . . . .

. . . . . .

+noise

s(t) x(t)

P/S

. . .
and sampler

E/D

E/D

Fig. 2.2 CP-OFDM

and inter carrier interference (ICI) can be eliminated, which is one of the main motivations

for using OFDM as an efficient mean to deal with dispersive channels.

However, the OFDM scheme also has its drawbacks [6]. One of its main disadvantages is

related to the use of the CP. Indeed, since the CP is removed at the Rx side, the information

contained in the CP is not utilized. Hence, the elimination of ISI and ICI comes at the

cost of a reduction of the effective transmission rate, i.e. system capacity, which is due to

adding the redundant CP message.

2.2 OFDM/OQAM

2.2.1 Pulse Shaping and Real Orthogonality

CP-OFDM is by far the most widely used of finding numerous application in both wireless

and wireline communications. However, it uses rectangular pulse shaping on each subcar-
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rier, leading to high out-of-band radiance, as well as ingress interference. Moreover, the

OFDM system sacrifices data transmission rate because of the insertion of CP.

To overcome the aforementioned drawbacks, researchers have been looking into different

MCM techniques. Recently, OFDM based on offset quadrature amplitude modulation

(OQAM), referred to as OFDM/OQAM, has been considered as a promising alternative to

conventional CP-OFDM for transmission over multi-path fading channels [3]. Similar to

OFDM, subcarriers of the signal overlap each other in frequency to achieve a high spectral

efficiency in OFDM/OQAM. However, in OFDM/OQAM, each subcarrier is modulated

with a staggered OQAM symbol, i.e., the real and imaginary parts of each QAM symbol

are processed separately with double the symbol rate. Another main difference comes from

the pulse shaping. Instead of rectangular pulses as in OFDM, OFDM/OQAM utilizes a well

designed prototype filter which has a desirable time and frequency localization property.

Frequency shifted versions of the prototype filter are used to implement the filter banks

needed for data modulation and demodulation, i.e., the synthesis filter bank (SFB) used

for modulation of the data substreams on the individual subcarriers in the Tx, and the

analysis filter bank (AFB) needed for the reverse operation at the Rx [9]. OFDM/OQAM

does not use any CP and offers the possibility to use different prototype filters, enabling

a more efficient use of channel resources. Furthermore, the orthogonality constraint for

OFDM/OQAM is relaxed, being limited to the real field while for OFDM, it has to be

satisfied in the complex field. However, while channel estimation and equalization is fairly

simple in CP-OFDM, real orthogonality has a considerable impact on channel estimation in

OFDM/OQAM. In particular, the presence of subcarriers interference prior to equalization

has to be solved by new channel estimation techniques.

2.2.2 Transceiver System Configuration

For the purpose of comparison between CP-OFDM and OFDM/OQAM, the main process-

ing blocks of an OFDM/OQAM transceiver system are depicted in Fig. 2.3 [10, 21]. On

the Tx side, the system consists of the following components:

• S/P and P/S conversion: same as in OFDM;

• Complex to real (C2R) conversion: where each complex QAM symbol of duration T0

is converted to a pair of real OQAM symbols with duration T0/2;
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• SFB: where the individual real symbol substreams are modulated on their correspond-

ing subcarrier with proper time offset.

On the Rx side, besides S/P and P/S conversion blocks, the system also includes

• AFB: where the received substreams are individually demodulated on their corre-

sponding subcarrier;

• Real to complex (R2C) conversion: which performs the reverse operation as the C2R

block;

• Equalization and detection (E/D): where the channel effects are removed and data

detection is applied.

S/P C2R P/S
gm,n(t)

SFB

Channel h(τ, t)

AFB

g∗m,n(t)

Complex Symbols

. . . . . . . . . . . . . . . . . .

. . . . . .

x(t)

y(t)

Ym,n

Transmitter

Receiver

noise w(t)

R2CP/S

E/D

am,n

+

S/P
. . .

E/D

E/D

. . .. . .. . .

Fig. 2.3 OFDM/OQAM transceiver system model

Compared with CP-OFDM, OFDM/OQAM removes CP related blocks but add more

sophisticated filter bank blocks, which represents a crucial change in system design.

2.2.3 Baseband Mathematical System Model

In this section, according to [20], we derive the mathematical system model of OFDM/OQAM

to which the channel estimation algorithms can be further applied.
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On the basis of transceiver system configuration in Fig. 2.3, we can write the output

signal of the OFDM/OQAM synthesis filter bank (SFB) as follows [20,25]

x(t) =
∞∑

n=−∞

M−1∑
m=0

am,ngm,n(t) (2.1)

where

gm,n(t) = g(t− nτ0)ej2πf0mtejφm,n (2.2)

M is the total number of subcarriers, am,n is the real symbol transmitted over the m-th

subcarrier at the n-th time instance, g(t) is a real-valued prototype filter, φm,n = π
2
(n+m)

stands for the phase term, f0 = 1/T0 is the subcarrier spacing and τ0 = T0/2 denotes the

half symbol delay. In general, the prototype filter is of finite duration Tp = KT0, where K

is a small integer, and is symmetrical in time, i.e. g(Tp − t) = g(t). The sequence of real

data symbols am,n is modelled as a zero-mean random process, independent over time n

and frequency m, with variance σ2
a = E{a2

m,n}.
After transmission over the noisy radio channel, the baseband version of the received

signal y(t) can be written as

y(t) =

∫ τmax

0

h(τ, t)x(t− τ)dτ + w(t) (2.3)

where h(τ, t) denotes the equivalent baseband impulse response of the slowly fading fre-

quency selective channel at current time t and delay τ , with maximum delay spread τmax,

and w(t) is an additive white Gaussian noise with zero-mean and variance σ2
w. Upon

substitution of (2.1) into (2.3), and under the assumption that the prototype function has

relatively low variations in time over the interval [0, τmax], that is, g(t−τ−nτ0) ≈ g(t−nτ0),

y(t) can be equivalently written in the form

y(t) =
∞∑

n=−∞

M−1∑
m=0

Hm(t)am,ngm,n(t) + w(t) (2.4)

where

Hm(t) =

∫ τmax

0

h(τ, t)e−j2πf0mτdτ (2.5)

After y(t) passes through the analysis filter bank (AFB), the received signal in the
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frequency domain can be further expressed as

Ym,n =

∫ ∞
−∞

y(t)g∗m,n(t)dt

=
∞∑

q=−∞

M−1∑
p=0

ap,q

∫ ∞
−∞

Hp(t)gp,q(t)g
∗
m,n(t)dt+Wm,n

(2.6)

where Wm,n =
∫∞
−∞w(t)g∗m,n(t)dt is the corresponding white Gaussian noise in the frequency

domain. Due to the orthogonality properties of g(t), it follows that the noise term Wm,n

has zero-mean and variance σ2
w.

Under distortion-free channel, perfect reconstruction of the real symbols at the Rx side

is obtained thanks to the following real orthogonality condition [14]:

<{
∫ ∞
−∞

gm,n(t)g∗p,q(t)dt} = δm,pδn,q (2.7)

where δm,p denotes the Kronecker delta function. Indeed, suppose the channel impulse

response (CIR) does not change appreciably within the prototype filter duration, so that

Hp(t) ≈ Hp(qτ0) , Hp,q, t ∈ [qτ0, qτ0 +Tp]. Using this approximation and substituting (2.7)

into (2.6), then (2.6) simplifies to

Ym,n = Hm,nam,n + j
∑

(p,q)6=(m,n)

Hp,qap,qG
m,n
p,q +Wm,n (2.8)

where we define

Gm,n
p,q = ={

∫ ∞
−∞

gm,n(t)g∗p,q(t)dt} (2.9)

In (2.8), Hp,q is the so-called channel frequency response (CFR) where the indices p and q

respectively identify the the subcarrier frequency and time instance. The coefficients Gm,n
p,q

provides a measure of the correlation or match between gm,n(t) and gp,q(t). Equation (2.8)

is the most frequently used OFDM/OQAM system model in the literature.

2.3 Block based Sign Covariance Matrix (SCM) Algorithm

In this section, we review the block based SCM algorithm to address the channel estimation

in OFDM/OQAM systems, as presented in [20].



2 Block based Channel Estimation for OFDM/OQAM Systems 15

If the prototype filter g(t) has a good time-frequency localization property, the level of

the correlation |Gm,n
p,q | decays rapidly as the distance between (p, q) and (m,n) increases.

On this basis, let us define a neighbourhood Ωm,n of a given center point (but excluding

the latter) such that Gm,n
p,q ≈ 0 if (p, q) /∈ Ωm,n ∪ {(m,n)}. Then, if we assume that the

channel coefficients Hp,q are nearly constants within the neighbourhood Ωm,n, we have that

if (p, q) ∈ Ωm,n Hp,q ≈ Hm,n (2.10)

This condition will be satisfied if the channel is slowly-varying and the frequency separation

between the sub-carriers is small, i.e. large value of M for a given fixed system bandwidth.

Then (2.8) becomes

Ym,n ≈ Hm,n(am,n + j
∑

(p,q)∈Ωm,n

Gm,n
p,q ap,q) +Wm,n (2.11)

For convenience, let us define the self-interference

bm,n =
∑

(p,q)∈Ωm,n

Gm,n
p,q ap,q (2.12)

and effective transmitted data on the m-th subcarrier and the n-th time instant.

Xm,n = am,n + jbm,n (2.13)

Hence, we can rewrite (2.11) as

Ym,n = Hm,nXm,n +Wm,n (2.14)

Separating the real part and imaginary part of each quantity in (2.14), we obtain[
Y <m,n
Y =m,n

]
︸ ︷︷ ︸

ym,n

=

[
H<m,n −H=m,n
H=m,n H<m,n

]
︸ ︷︷ ︸

Hm,n

[
am,n

bm,n

]
︸ ︷︷ ︸

xm,n

+

[
W<
m,n

W=
m,n

]
(2.15)

where the superscript < and = indicate real and imaginary parts, and where ym,n, Hm,n

and xm,n denote the (real-valued) received signal vector, 2× 2 channel matrix and effective
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transmitted signal vector.

Define the spatial sign vector as

ỹm,n =

{
ym,n

‖ym,n‖ if ‖ym,n‖ 6= 0

0 if ‖ym,n‖ = 0
(2.16)

We can write the spatial sign covariance matrix as [26]

Cm,n = E{ỹm,nỹTm,n} (2.17)

The dominant eigenvector of Cm,n, i.e., the one associated with its largest eigenvalue, is

then computed and denoted as um,n. Note that the rotation present in the received signal

is induced by the channel matrix Hm,n in (2.15). Since the spatial sign covariance is

rotation equivariant [27], the first column of the channel matrix may be computed as the

dominant eigenvector of Cm,n [26]. Specifically, it can be shown that um,n is aligned to

vector [H<m,n, H
=
m,n]T , except for a scalar difference in magnitude. Therefore we have

[
H<m,n, H

=
m,n

]T
= εm,n|Hm,n|um,n, εm,n ∈ {−1,+1} (2.18)

where εm,n is a sign ambiguity for the m-th subcarrier at time n.

So far, except for sign ambiguity, we still lack the knowledge of the magnitude |Hm,n| to
finalize the estimation of Hm,n. By further analysis of (2.12), the basic statistical properties

of interference term bm,n can be derived as follows [20]:

E{bm,n} =
∑

(p,q)∈Ωm,n

Gm,n
p,q E{ap,q} = 0

σ2
b = E{b2

m,n} =
∑

(p,q)∈Ωm,n

|Gm,n
p,q |2E{a2

p,q}

≈ σ2
a

∑
(p,q) 6=(m,n)

|Gm,n
p,q |2 = σ2

a

(2.19)

That is, the self-interference is zero-mean with variance σ2
b equal to that of the transmitted

symbols am,n. In the derivation of the last line in (2.19), we include the small interfer-

ence terms outside the neighbourhood Ωm,n and utilized a key property of the real-valued
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prototype filter, that is [14] ∑
(p,q)6=(m,n)

|Gm,n
p,q |2 = 1 (2.20)

We further note that E{am,nbm,n} = 0 and that

HT
m,nHm,n = |Hm,n|2I2 (2.21)

where I2 is an identity matrix with dimension 2. Given these basic results, the power of

received signal Ym,n in (2.14) is expressed as

Pm,n = E{|Ym,n|2} = |Hm,n|2(E{a2
m,n}+ E{b2

m,n}) + σ2
w

= |Hm,n|22σ2
a + σ2

w

(2.22)

where σ2
w is noise power. Therefore, the channel magnitude |Hm,n| can be easily computed

via

|Hm,n| =
√
Pm,n − σ2

w

2σ2
a

(2.23)

After |Hm,n| and um,n are obtained, the subchannel estimate [H<m,n, H
=
m,n]T in (2.18) can

be obtained, up to the sign ambiguity.

In practice, if the channel remains nearly constant over a data block with length N ,

Hm,n, Pm,n and Cm,n are independent of time n and can be denoted as Hm, Pm and Cm

respectively, so as the dominant eigenvector um and the sign ambiguity εm. In this case, the

average power can be estimated by time averaging the square magnitudes of the received

signal values on that same subchannel, that is

P̂m =
1

N

N∑
n=1

|Ym,n|2 (2.24)

In the same way, the spatial sign covariance matrix Cm,n in (2.17) can be estimated as

Ĉm =
1

N

N∑
n=1

ỹm,nỹ
T
m,n (2.25)

where N is the number of symbols for time averaging.
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Block based SCM is easy to implement and the estimation procedure can be summa-

rized in 2.3.1. While it is presented only for the m-th subband, in practice, it has to be

implemented separately, so that P̂m, Ĉm and Hm are obtained for each frequency index

m = 1, 2, . . . ,M . The resolution of the sign ambiguity εm requires transmitting a single

Algorithm 2.3.1 Block based SCM

1: P̂m = 1
N

∑N
n=1 |Ym,n|2

2: Ĉm = 1
N

∑N
n=1 ỹm,nỹ

T
m,n

3: |Hm| =
√

P̂m−σ2
w

2σ2
a

4: Compute um, which is the dominant eigenvector of Ĉm

5:
[
H<m, H

=
m

]T
= εm|Hm|um

real pilot symbol on that subcarrier over a given period of time.

The initially obtained estimate of CFR is denoted as ȟblock = [H1, H2, H3, . . . , HM ]T .

To further reduce the estimation noise in ȟblock, the low rank property of the channel can

be exploited. Suppose we know the length L of CIR, where L�M is assumed. Then, the

CFR ȟblock can be converted to a time-domain CIR via IDFT, truncated to an appropriate

length L and zero-padded, and finally converted back to the frequency domain by applying

a DFT. This procedure produces an enhanced estimate of the CFR, denoted as ĥblock,

since the truncation in the time-domain amounts to the removal of estimation noise. The

procedure can be expressed in matrix form as follow:

ĥblock = FFHȟblock (2.26)

where F is an M × L partial DFT matrix with entries Fm,l = 1√
M
e−j2πml/M .

2.4 Limitations of Block based SCM

The block based SCM algorithm is semi-blind because it requires a pilot per tone per block

to resolve the sign ambiguity. Still, compared to conventional training based techniques,

SCM leads to a significant reduction in the number of required training pilots. However,

block based SCM as in [20] is plagued by a number of limitations.

Small number M of subcarrier: We recall that the system model equation (2.11) is

derived under the assumption (2.10). For a given (i.e. fixed) system bandwidth, as the
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number M of subcarriers is reduced, the frequency separation between them increases.

Eventually, when this separation reaches a value comparable to the channel coherence

bandwidth, (2.10) is not satisfied and (2.11) no longer holds. In this case, the use of the

above SCM estimator cannot be fully justified; in practice, it is observed that for too small

values of M , its performance will deteriorate to some extent. To overcome this issue, it is

necessary to replace (2.11) by a more accurate, coupled model in which received data on

tone m depends, in addition to Hm,n, on surrounding (but different) values of Hp,q in the

neighbourhood of (m,n). This falls outside the scope of this thesis but remains a possible

avenue for future work.

Small data block size N : From a statistical perspective, the value of block length N

has a great impact on the estimation of P̂m (2.24) and Ĉm (2.25). Block processing highly

relies on the assumption that the underlying channel remains nearly constant during a

block. Under this assumption, the use of a larger value of N improves the quality of the

above estimates, which in turn reduces the estimation errors in the CFR. In practice, this

assumption limits the block length and for smaller values of N , the estimated CFR will

be less accurate. This issue can be partly solved by the frequency averaging technique to

be proposed in Section 3.4. Nevertheless, block processing is mostly useful for the case

of time-invariant or slowly fading channels, but is not well suited to the estimation and

tracking of fast time-varying channels. This behaviour is to be contrasted with the adaptive

estimation algorithms proposed in the next chapter.

2.5 Chapter Summary

In this chapter, a general overview of MCM was given at first, then the classical CP-OFDM

technique was briefly introduced. Given the drawbacks of CP-OFDM, OFDM/OQAM is

currently considered as alternative and its general structure was described with compari-

son to CP-OFDM. The mathematical system model for OFDM/OQAM was subsequently

derived in detail. Based on this model, we reviewed and analysed the block based SCM

channel estimation algorithm proposed in [20]. Finally, the limitations of this algorithm

were briefly mentioned, which motivate us to propose new adaptive estimation algorithms

in the next chapter.
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Chapter 3

Adaptive Semi-blind Channel

Estimation

In this chapter, we first propose four adaptive algorithms to address the channel estimation

problem for OFDM/OQAM systems, including Adaptive SCM and three constant modu-

lus algorithms (CMA). The CMA are then further extended to multi-modulus algorithms

(MMA) in order to accommodate higher order symbol constellations. Finally, we investi-

gate the combination of the block based SCM and Adaptive SCM algorithm with a simple

frequency averaging technique, to improve estimation performance.

3.1 Adaptive SCM

In Chapter 2, we reviewed the block based SCM algorithm for semiblind channel estimation

in OFDM/OQAM systems. It can be concluded from (2.17), (2.18) and (2.23) that the

unknown channel coefficient Hm,n for the m-th subcarrier can be jointly determined by

Pm,n and Cm,n up to a sign ambiguity. In the original SCM algorithm, these quantities are

assumed to remain constant over a data block, say for symbol index n = 0, . . . , N − 1, and

they are estimated by time averaging as in (2.24) and (2.25). However, this approach is

hardly applicable in a time-varying environment where the channel coefficients Hm,n change

during a data block. As explained earlier, in such a situation, a more effective approach is

to us an adaptive algorithm for the estimation and tracking of Hm,n.

Hence, an idea comes to us naturally that if the required quantities, i.e., Pm,n and Cm,n

can be updated efficiently as the symbol time n increases, the corresponding channel esti-

2015/09/16
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mate of Hm,n can also be refreshed through the main sequence of operations in the SCM

algorithm, which involves computation of the dominant eigenvector of Cm,n to determine

the phase rotation and final magnitude computation via (2.23). We note that when con-

sidering such an adaptive estimation scheme, subscript n cannot be ignored because the

values of Hm,n, Pm,n and Cm,n are intrinsically time-dependent. Now the problem comes

down to designing efficient update procedures for the recursive estimation of Pm,n and Cm,n.

Specifically, suppose that previous estimates of Pm,n−1, Cm,n−1 are available, then given

the current received signal sample ym,n, we seek simple relationships that will allow us to

use this new information to update these previous estimates at time n − 1 into new ones

at time n.

We now introduce a widely used update procedure for this kind of situation, which

is called exponential smoothing and mathematically characterized by the generic formula

given below:

Sn = αSn−1 + (1− α)Xn (3.1)

where α, with 0 < α < 1, is the smoothing factor, Sn and Sn−1 denote the current and

previous estimates, and Xn is the current observation. According to (3.1), the current

estimate is expressed as a simple weighted sum of the previous estimate and the new

observation. The difference equation (3.1) can be explicitly solved for Sn in terms of all

the past and current values of Xk, for k = 0, 1, . . . , n. In this way, it can be shown that

exponential smoothing amounts to applying a weight proportional to αn−k to Xk.

Based on the exponential smoothing (3.1), recursive estimates of Pm,n and Cm,n can be

obtained as
Pm,n = αPm,n−1 + (1− α)‖ym,n‖2

Cm,n = αCm,n−1 + (1− α)ỹm,nỹ
T
m,n

(3.2)

where ym,n denotes the real-valued signal vector and ỹm,n is the spatial sign vector, defined

in (2.15) and (2.16), respectively.

After we have obtained Pm,n and Cm,n as above, the instantaneous estimate of the

channel coefficient Hm,n can be generated via the main steps of the SCM algorithm exposed

in Section 2.3. This includes the determination of the dominant eigenvector of Cm,n,

denoted as um,n, and the determination of the channel magnitude from Pm,n, leading to

[
H<m,n, H

=
m,n

]T
= εm|Hm,n|um,n (3.3)



3 Adaptive Semi-blind Channel Estimation 22

where εm ∈ {−1,+1} is the sign ambiguity for the corresponding channel coefficients Hm,n

on the m-th frequency subband.

Based on the analysis above, the Adaptive SCM algorithm can be summarized as 3.1.1.

While it is presented only for the m-th subband, in practice, it has to be implemented

separately, so that Pm,n, Cm,n and Hm,n are properly updated for each frequency index

m = 1, 2, . . . ,M .

Algorithm 3.1.1 Adaptive SCM

Initialization: Pm,0 = 0,Cm,0 = 0
1: for n = 1, 2, . . .
2: Pm,n = αPm,n−1 + (1− α)‖ym,n‖2

3: Cm,n = αCm,n−1 + (1− α)ỹm,nỹ
T
m,n

4: |Hm,n| =
√

Pm,n−σ2
w

2σ2
a

5: Compute um,n, which is the dominant eigenvector of Cm,n

6:
[
H<m,n, H

=
m,n

]T
= εm|Hm,n|um,n

7: end

If we assume that the modulated data are transmitted over a time-invariant channel, as

time n increases, the channel estimate Hm,n in the m-th subband will gradually converge

to a steady state value, which we can denoted as Hm. The resulting estimate of the CFR

after convergence can be represented by the vector ȟ = [H1, H2, . . . , HM ]T . Following this

step, further processing of ȟ, as exposed in (2.26), can be applied to obtain an enhanced

estimate, denoted as ĥ. As explained earlier, this amounts to the application of lower rank

IDFT and DFT matrices to the initial estimate, in order to implement truncation in the

time domain. However, if the data is transmitted over a time-varying channel, Algorithm

3.1.1 can be used effectively for the initial acquisition and tracking of the channel. In this

case, at every symbol time n, we can form an instantaneous CFR vector, which we denote

as ȟn = [H1,n, H2,n, . . . , HM,n]T . The latter can be further enhanced via low-rank DFT

processing as above, yielding the time-dependent CFR vector ĥn. Specifically,

ĥn = FFHȟn (3.4)

where F is the partial DFT matrix as defined in (2.26). The main issue regarding the

application of Algorithm 3.1.1 relates to the determination of the ambiguity parameter

εm ∈ {−1,+1} for the m-th subband. In effect, this sign ambiguity in the calculation
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of the dominant eigenvector could be time-dependent, as represented by εm,n. If this was

the case, then the resolution of the ambiguity would require the use of one pilot per tone

per time iteration, thereby rendering the algorithm useless. In practice, however, we find

that by properly normalizing the eigenvector um,n, i.e. by enforcing its first entry to be

non-negative, the sign ambiguity becomes independent of the time n. In this case, we

find that only a few pilot symbols per tone are needed at an early stage of the adaptation

process (i.e. after matrix Cm,n has started to converge) to determine the value of εm, which

then remains constant for long stretch of time. This aspect will be further investigated via

simulations in Chapter 4.

3.2 Constant Modulus Algorithms (CMA)

Extracting communication signals from interference is particularly important in the design

of modern wireless communication systems. The constant modulus (CM) criterion offers

a bandwidth efficient approach to tackle this problem [28]. Constant Modulus Algorithms

(CMA) exploit the low modulus fluctuation displayed by most communication signals, such

as frequency modulation (FM), phase modulation (PM), etc. CMA are often used in the

blind or semi-blind channel equalization to recover transmitted symbols from the received

signals which are corrupted by interference. In practice, if we adopt a zero-forcing (ZF)

equalization technique followed by data detection on the receiver, the equalizer coefficients

are actually closely linked to the channel coefficients [29]; hence, the determination of the

equalizer coefficients is in effect equivalent to the problem of channel estimation. From this

perspective, CMA can be applied to channel estimation in a proper way.

Recall our system model in (2.15), i.e.,[
Y <m,n
Y =m,n

]
︸ ︷︷ ︸

ym,n

=

[
H<m,n −H=m,n
H=m,n H<m,n

]
︸ ︷︷ ︸

Hm,n

[
am,n

bm,n

]
︸ ︷︷ ︸

xm,n

+

[
W<
m,n

W=
m,n

]
︸ ︷︷ ︸

vm,n

(3.5)

From (3.5), we find that received signal consists of the channel information Hm,n, source

symbol am,n, self-interference bm,n and noise vm,n. Let us define the channel vector for the
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m-th subband at symbol time n as

hm,n =

[
H<m,n
H=m,n

]
∈ R2 (3.6)

where we note that ‖hm,n‖2 = |Hm.n|2. Multiplying both sides of (3.5) by hTm,n, we obtain

hTm,nym,n = |Hm,n|2am,n + hTm,nnm,n (3.7)

In this way, we elegantly remove the self-interference bm,n thanks to the real orthogonal

matrix Hm,n, while the remaining term is due to the additive noise only. Equation (3.7)

can be further simplified through normalization by ‖hm,n‖2, leading us to define

zm,n =
hTm,n
‖hm,n‖2

ym,n

= am,n +
hTm,n
‖hm,n‖2

nm,n

(3.8)

This procedure amounts to equalization, which removes the channel filtering imposed on

transmitted symbols, so that only the transmitted symbol corrupted by filtered noise are

present in the equalized signal. Equation (3.8) shows that zm,n can be regarded as an

approximation to the transmitted symbol am,n, which becomes more accurate as the noise

power becomes smaller, corresponding to a larger signal-to-noise ratio (SNR). In fact,
hm,n

‖hm,n‖2 is the ZF equalizer since it directly makes use of the channel information.

In the present context, a CMA aims to solve an optimization problem with respect to

unknown weight vector w ∈ R2, formulated as

min
w

E[(wTym,n)2 − γ]2 (3.9)

where γ reflects the constant modulus of the transmitted symbols am,n, and the optimal

solution to this problem is denoted as wm,n. This criterion attempts to minimize the

dispersion of the modulus of the equalized output, i.e. wTym,n, away from a constant γ. By

making use of an expectation operator, this criterion indeed attempts to minimize the effect

of noise on a statistical basis. For instance, in the case of binary phase shift keying (BPSK),

which corresponds to 4QAM modulation in OFDM/OQAM, symbols am,n ∈ {−1,+1} and
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we can set γ = 1.

With the above choice of γ, the optimal solutions wm,n to (3.9) can be obtained, which

is called the CM based equalizer. In [30], it is proved that when the channel matrix has

orthogonal columns, which in our case corresponds to (2.21), the minima of CM criterion

satisfy the ZF conditions. This means that the CM based equalizer is equivalent to the ZF

equalizer, i.e.,

wm,n = cm,n
hm,n
‖hm,n‖2

(3.10)

where cm,n is a scalar; furthermore, when the SNR is large, cm,n ≈ εm,n = ±1. Thus

we propose to use εm,n
wm,n

‖wm,n‖2 as an estimate of hm,n. For simplicity, the estimate is still

denoted by hm,n, i.e.,

hm,n ≈ εm,n
wm,n

‖wm,n‖2
(3.11)

Therefore, if we can solve (3.9) for the optimal equalizer vector wm,n, the corresponding

channel estimate hm,n can be obtained directly up to a sign ambiguity εm,n. It will be

illustrated in Section 4.3.1 that for slow-varying channels, after the initial transient period,

the ambiguity parameter εm,n will display a constant behaviour and hence can be considered

as time-independent. On this basis, the sign ambiguity εm,n is replaced by εm in the sequel

for simplicity.

In the following subsections, we investigate different search strategies to solve the CM

criterion (3.9) and determine the optimal wm,n in an adaptive manner. This includes

gradient-based least mean square (LMS), Guass-Newton based LMS and the recursive least

squares (RLS) adaptation.

3.2.1 Gradient-based LMS

Due to its computational simplicity, the stochastic gradient descent (SGD) approach is

often employed to minimize the CM cost function (3.9). In this thesis, for convenience, the

resulting gradient-based LMS algorithm is referred to as CMA-LMS-Grad.

The main steps in the algorithm derivation can be summarized as follows:

• Expanding the argument of the expectation operator in (3.9);

• Replacing the statistical expectation with instantaneous estimation,

• Calculating the gradient of the error function with respect to the weight vector w
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• Using the gradient to update the previous weight estimate wm,n−1 by making a small

step in the negative direction of the gradient.

These steps, which make use of matrix calculus in the derivation of the gradient, are

described in more details in [31]. The resulting equation for the recursive update of w are

obtained as follows:

wm,n = wm,n−1 − µym,n(z2
m,n − 1)zm,n (3.12)

where zm,n is the equalizer output based on the previous weight vector wm,n−1, i.e. 1,

zm,n = wT
m,n−1ym,n (3.13)

and µ is a positive step size which should be carefully selected. A small step size value will

lead to a smaller residual error after convergence but a slower convergence rate, whereas

a large step size may improve convergence speed but eventually result in an oscillatory or

unstable behaviour in the estimated weight vector. The choice of an optimal step size is

investigated in [32]. Once the weight vector wm,n for the m-th subband has been updated

at symbol time n, the corresponding channel vector can be obtained as in (3.11), where

εm = ±1 is the sign ambiguity.

The initialization and update procedure of the resulting CMA-LMS-Grad algorithm is

summarized in 3.2.1. While it is presented only for the m-th subband, in practice, it has

to be implemented separately for each subband m = 1, 2, . . . ,M .

Algorithm 3.2.1 CMA-LMS-Grad

Initialization: wm,0 = [1, 0]T

1: for n = 1, 2, . . .

2: zm,n = wT
m,n−1ym,n

3: wm,n = wm,n−1 − µym,n(z2
m,n − 1)zm,n

4:
[
H<m,n, H

=
m,n

]T
= εm

wm,n

‖wm,n‖2

5: end

In the absence of a priori knowledge, the algorithm can be initialized with a non-

zero vector, taken here as [1, 0]T . Same as for the Adaptive SCM algorithm in Section

3.1, only a few pilot symbols per tone are needed at an early stage of the adaptation

1The definition of zm,n is different with that in (3.8). Here, zm,n represents the equalizer output.
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process to determine the value of εm, which can then be assumed to remain constant for

a long stretch of time, as will be illustrated through simulations in Chapter 4. At every

symbol time n, the resulting instantaneous estimate of the CFR can be represented by the

vector ȟn = [H1,n, H2,n, . . . , HM,n]T . Furthermore, it can be enhanced via low-rank DFT

processing as in (3.4), where the enhanced estimate is denoted as ĥn.

Some researchers proposed other gradient-based CMA to improve the convergence speed

or to reduce the steady state residual level. For example, the normalized constant modulus

algorithms (NCMA) in [33] prove to be useful for the reduction in steady state error.

3.2.2 Gauss-Newton based LMS

The CMA-LMS-Grad uses the stochastic gradient as the search direction and as such, it is

characterized by a slow convergence rate. To address this issue, in this section, we extend

the regular Gauss-Newton method to solve the stochastic non-linear least squares (NLS)

problem (3.9). For convenience, since the search direction is based on the Gauss-Newton

method, the resulting algorithm will be referred to as CMA-LMS-GN in this thesis.

To begin with, let us review the regular (i.e. non-stochastic) Gauss-Newton method,

as introduced in, e.g. [34]. In many applications such as in the global positioning system

(GPS), the observation model is non-linear and has the following form:

y = f(w) + v (3.14)

where y ∈ RN is the measurement or observation vector, f : RM → RN is a non-linear

differentiable function, w ∈ RM is an unknown parameter vector and v is an additive noise

vector. A typical approach to tackling the estimation of w is to solve the following NLS

problem

min
w
‖y− f(w)‖2 (3.15)

The solution ŵ is referred to as the NLS estimator of the true parameter vector w.

In the Gauss-Newton method, the above problem is simplified through linearization of

the objective function. Specifically, let w(k−1) denote the estimate of w obtained after k−1

iterations of the procedure. The Taylor series expansion of f(w) about w(k−1) gives

f(w) = f(w(k−1)) + J(w(k−1))(w−w(k−1)) +O(‖w−w(k−1)‖2) (3.16)
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where J(w) is the N ×M Jacobian matrix of f at a point w. If we use the linear part of

(3.16) as an approximation to f(w) in (3.15), the latter simplifies into the following linear

LS problem

min
w
‖y− f(w(k−1))− J(w(k−1))(w−w(k−1))‖2 (3.17)

By defining p = w−w(k−1), (3.17) can be expressed more compactly as

min
p
‖y− f(w(k−1))− J(w(k−1))p‖2 (3.18)

This is an ordinary linear LS problem and its solution2 p can be found by QR factorization

or singular value decomposition (SVD) [34]. Once the optimal solution, say p(k) has been

obtained, the updated weight vector w(k) can be calculated as

w(k) = w(k−1) + p(k) (3.19)

This is the general procedure for the regular Gauss-Newton method. Due to its approximate

nature, convergence is not guaranteed and in some cases, the objective function may not

decrease at every iteration. To overcome this difficulty, alternatively, a damped Gauss-

Newton method is proposed which scales down the search step p(k), i.e.,

w(k) = w(k−1) + βp(k) (3.20)

where β, with 0 < β < 1 represents the scale factor.

Now, we seek to apply the Gauss-Newton method to the stochastic NLS problem in

(3.9). To this end, as was the case of the CMA-LMS-Grad, we first replace the statistical

expectation with instantaneous estimation. The resulting deterministic NLS problem is

given by

min
w

(|wTym,n|2 − 1)2 (3.21)

Comparing (3.15) and (3.21), we can find the correspondence between quantities appearing

in these two equations. Specifically, the constant value 1 in (3.21) corresponds to y in (3.15),

while the term (wTym,n)2, which depends on the unknown weight vector w, corresponds to

the non-linear function f(w). Hence, if we use wm,n−1 obtained at time n− 1 as the initial

2Note that if N < M , the problem is under-determined and the solution may not be unique. In this
case, we take the minimum 2-norm solution.



3 Adaptive Semi-blind Channel Estimation 29

point for iteration, and only one iteration is performed, the updated weight vector wm,n is

calculated as

wm,n = wm,n−1 + βpm,n (3.22)

where pm,n is the optimal solution to an ordinary linear LS problem given by

min
p
|1− (wT

m,n−1ym,n)2 − J(wm,n−1)p|2. (3.23)

In (3.23), J(wm,n−1) is the 1 × 2 Jacobian matrix (which in this case corresponds to the

gradient vector) of (wT
m,n−1ym,n)2 at a given point wm,n−1. The latter can be calculated

explicitly as

J(wm,n−1) = 2wT
m,n−1ym,ny

T
m,n (3.24)

In practice, since J(wm,n−1) is a row vector, the LS problem (3.23) is under-determined and

admits a one-dimensional subspace of solutions. Among these, a unique optimal solution

can be obtained by enforcing a minimum 2-norm condition. The resulting solution is given

by

pm,n =
1− (wT

m,n−1ym,n)2

J(wm,n−1)JT (wm,n−1)
JT (wm,n−1). (3.25)

Once the weight vector wm,n for the m-th subband has been updated at symbol time

n, the corresponding channel vector can be obtained as in (3.11), where εm = ±1 is the

sign ambiguity. The resulting algorithm, referred to as CMA-LMS-GN in this thesis, is

summarized in 3.2.2 for the m-th subband, where as before, m = 1, 2, . . . ,M .

Algorithm 3.2.2 CMA-LMS-GN

Initialization: wm,0 = [1, 0]T

1: for n = 1, 2, . . .

2: zm,n = wT
m,n−1ym,n

3: Jm,n = 2zm,ny
T
m,n

4: pm,n =
1−z2m,n

Jm,nJ
T
m,n

JTm,n

5: wm,n = wm,n−1 + βpm,n

6:
[
H<m,n, H

=
m,n

]T
= εm

wm,n

‖wm,n‖2

7: end

Similar to the CMA-LMS-Grad, this algorithm is initialized with a non-zero weight
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vector, taken here as wm,0 = [1, 0]T . Only a few pilot symbols per tone are needed at

an early stage of the adaptation process to resolve the sign ambiguity εm, which can then

be assumed to remain constant over time, as will be further discussed in Chapter 4. The

resulting instantaneous estimate of the CFR at time n can be represented by the vector

ȟn = [H1,n, H2,n, . . . , HM,n]T , which can be enhanced via low-rank DFT processing as in

(3.4), where the enhanced estimate is denoted as ĥn.

3.2.3 Recursive Least Squares (RLS)

Due to its use of instantaneous estimates and stochastic gradient approach, the LMS algo-

rithm has a relatively slow convergence rate, and its behaviour largely relies on the step size

µ. The RLS discussed in this section offers an alternative to the LMS: its convergence rate

from initialization is typically faster than LMS but at the expense of higher complexity.

Here, we first provide an overview of the standard RLS algorithm and then consider its

application to the CM criterion.

The underlying cost function of the RLS algorithm is given by

C(w) =
n∑
i=1

λn−i|wTyi − di|2 (3.26)

where λ is a forgetting factor with 0 < λ < 1, used to control the memory of the algorithm,

yi is the input vector and di is the desired output at time i. According to the least squares

(LS) theory, the optimal weight vector w is found by [35]

wn = Φ−1
n tn (3.27)

where

Φn =
n∑
i=1

λn−iyiy
T
i

tn =
n∑
i=1

λn−iyidi

(3.28)

In (3.28), Φn is the (scaled) correlation matrix of the input vectors y, while tn is the

cross-correlation vector between the input and the desired output di. By expressing the

defining equations for Φn and tn as first order difference equations and applying the matrix
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inversion lemma [35], the standard RLS update procedure can be formulated as

qn = Pn−1yn

gn = qn/(λ+ yTnqn)

en = dn −wT
n−1yn

wn = wn−1 + gnen

Pn = λ−1Pn−1 − λ−1gny
T
nPn−1

(3.29)

where Pn is often initialized as a scaled identity matrix, i.e., P0 = δ−1I with δ > 0.

Now we combine the CM criterion with the RLS approach and apply the update pro-

cedure above to our problem. Replacing the statistical expectation operator in (3.9) with

an exponentially weighted time average, the corresponding CMA attempts to minimize the

cost function

Cm(w) =
n∑
i=1

λn−i(|wTym,i|2 − 1)2 (3.30)

We note that this cost function is not quadratic in w, but instead involves 4th powers of

the entries of this vector. Hence, it is not possible to directly apply the RLS algorithm

(3.29) to this problem. To overcome the limitation, it is proposed in [28] to approximate

the above cost function by a new one that only involves second powers in w, and is given

by

C ′m(w) =
n∑
i=1

λn−i(wTym,iy
T
m,iwm,i−1 − 1)2 (3.31)

Note that in the above cost function, the quantities wm,i−1, for i = 1, ..., n, are available

from previous iterations.

Now, since (3.31) is quadratic in the unknown quantities, the update of w can proceed

as in the derivation of the standard RLS algorithm in (3.29). The main differences are that

the original input yi in (3.26) is replaced by zm,i = ym,iy
T
m,iwm,i−1, and the desired output
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di is set to a constant 1. On this basis, the RLS algorithm equations (3.29) become [28]

zm,n = ym,ny
T
m,nwm,n−1

qm,n = Pm,n−1zm,n

gm,n = qm,n/(λ+ zTm,nqm,n)

em,n = 1−wT
m,n−1zm,n

wm,n = wm,n−1 + gm,nem,n

Pm,n = λ−1Pm,n−1 − λ−1gm,nz
T
m,nPm,n−1

(3.32)

For the m-th subband, the corresponding channel vector hm,n can be obtained from (3.11)

once wm,n has been updated at time n. The resulting algorithm, referred to as CMA-RLS

in this thesis, is summarized in 3.2.3 for the m-th subband, m = 1, 2, . . . ,M .

Algorithm 3.2.3 CMA-RLS

Initialization: wm,0 = [1, 0]T ,Pm,0 = δ−1I, δ = small positive constant

1: for n = 1, 2, . . .

2: zm,n = ym,ny
T
m,nwm,n−1

3: qm,n = Pm,n−1zm,n

4: gm,n = qm,n/(λ+ zTm,nqm,n)

5: Pm,n = (Pm,n−1 − gm,nz
T
m,nPm,n−1)/λ

6: em,n = 1−wT
m,n−1zm,n

7: wm,n = wm,n−1 + gm,nem,n

8:
[
H<m,n, H

=
m,n

]T
= εm

wm,n

‖wm,n‖2

9: end

For more advanced forms of OFDM/OQAM modulations, such as M-QAM with M ≥ 16

where am,n ∈ {±1,±3, . . . ,±(
√
M − 1)}, the constant γ in (3.9) can be set as [36,37]

γ =
E(|am,n|4)

E(|am,n|2)
(3.33)

However, in such situations, modifications can be made to the CM cost function (3.9) that

leads to better estimation performance; this is further discussed as the multi-modulus case

in Section 3.3.
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3.3 Multi-modulus Algorithms (MMA)

In OFDM/OQAM systems, each subcarrier is modulated with a staggered offset QAM

symbol, i.e., the real and imaginary parts of the QAM symbols are transmitted separately

with half symbol duration. For illustrative purposes, Fig. 3.1 displays the 4QAM and

16QAM symbol constellations. In the case of the 4QAM constellation, after separation,

-1 1

1

-1

ℜ

ℑ

(a) 4QAM

-3

-3 -1 1 3 ℜ

ℑ

1

-1

3

(b) 16QAM

Fig. 3.1 QAM symbol constellations

the transmitted real symbols am,n ∈ {−1, 1}; hence, am,n satisfies the constant modulus

property and γ in (3.9) is equal to 1.

However, when it comes to the 16QAM constellation, the new symbols am,n ∈ {−3,−1,

1, 3} do not have a unique modulus, a situation referred to as multi-modulus (MM). For

higher-order constellations, such as 64QAM, the number of permissible values for am,n is

even larger and there will be more variations in the modulus of am,n. As will be demon-

strated in Chapter 4, the adaptive CMA proposed in Section 3.2 work well for the 4QAM

constellation, since the recovered symbols satisfy the CM condition. However, when the

transmitted symbols have MM, the estimation error obtained by applying these algorithms,

which are based on the CM criterion (3.9), does not reach zero even if the channel is per-

fectly equalized in a noise free environment. In fact, for MM constellations, use of the

CM criterion leads to an increased misadjustment and unsatisfactory performance in the

corresponding adaptive CMA. This situation has been known for many years in the blind

equalization literature, where the use of CMA for MM signals can only achieve a moder-
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ate level of steady-state error, leading to large bit error rate (BER) [38]. Moreover, the

convergence speed is another drawback of CMA for this kind of signals.

A common solution to improve the equalization performance in this case is to switch

to a decision directed (DD) mode of operation [38, 39], but experiments show that this

technique may not lead to a satisfactory performance in our applications. Alternatively,

in [40], a simple CMA which makes full use of the property of 16QAM symbol constellation

is studied where a simple transformation is applied to the demodulated signal to limit the

possible values of the modulus. Here, we focus on the application of this concept for the

16QAM constellation, as it is often used in modern communication systems. Specifically,

based on the theory in [40], we extend the three CMA developed in Section 3.2 into a new

series, referred to as multi-modulus algorithms (MMA).

3.3.1 MMA-LMS-Grad

In [40], the authors simply adjust the coordinates of the 16QAM symbols by applying to

them a surjective transformation, that elegantly transforms the corresponding MM problem

with modulus values in {1, 3} into a CM problem with unit modulus. Specifically, the

following transformation is applied

am,n → ām,n = am,n − 2 sign(am,n) (3.34)

where the function sign(x) = 1 for x ≥ 0 and -1 otherwise. This transformation maps the

values −3,−1,+1,+3 onto −1,+1,−1,+1, respectively, thereby turning the MM problem

into a CM one with |ām,n| = 1.

In (3.9), we attempts to minimize the dispersion of the modulus of the equalizer output

wTym,n away from |am,n|. Here, since ām,n satisfies the CM criterion, we can minimize the

dispersion of the modulus of transformed equalizer output, i.e., wTym,n − 2 sign(wTym,n)

away from |ām,n| (|ām,n| = 1 in this case). The resulting new cost function is given by

min
w

E[(wTym,n − 2 sign(wTym,n))2 − 1]2 (3.35)

In Section 3.2.1, the gradient of the instantaneous error function enclosed in (3.9) was used

as the search direction in a SGD scheme. Here, we can proceed in the same way, but since a

different error function is employed, the corresponding gradient formula has to be modified
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as well. In this regard, we note that the sign function sign(x) is not differentiable at x = 0

which might pose a difficulty. However, the probability that wTym,n = 0 will be zero in

practice when the optimal solution wm,n 6= 0 due to the fact that |wT
m,nym,n| has to be very

close to 1 or 3 to minimize the cost function. Hence, in computing the gradient, we ignore

the discontinuity of sign(x) and sets its derivative to 0. The resulting algorithm, referred

to as MMA-LMS-Grad, is summarized in 3.3.1 for the m-th subband, where µ > 0 is the

adaptation step-size.

Algorithm 3.3.1 MMA-LMS-Grad

Initialization: wm,0 = [1, 0]T

1: for n = 1, 2, . . .

2: zm,n = wT
m,n−1ym,n

3: z̄m,n = zm,n − 2 sign(zm,n)

4: wm,n = wm,n−1 − µym,nz̄m,n(z̄2
m,n − 1)

5:
[
H<m,n, H

=
m,n

]T
= εm

wm,n

‖wm,n‖2

6: end

3.3.2 MMA-LMS-GN

We now consider the derivation of a Gauss-Newton type LMS algorithm for the MM sit-

uation. The procedure is essentially identical to that presented in Section 3.2.2, except

for some required modifications in the computation of the Jacobian matrix (i.e. gradient

vector). Specifically, based on the new cost function (3.35), the non-linear term enclosed

in (3.23) changes to a relatively complex one, thus the corresponding Jacobian matrix

J(wm,n−1) at a local point wm,n−1 should be different from that in (3.24). Algorithm

3.3.2 given below specifies the overall update procedure, referred to as the MMA-LMS-GN

algorithm.
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Algorithm 3.3.2 MMA-LMS-GN

Initialization: wm,0 = [1, 0]T

1: for n = 1, 2, . . .

2: zm,n = wT
m,n−1ym,n

3: z̄m,n = zm,n − 2sign(zm,n)

4: Jm,n = 2z̄m,ny
T
m,n

5: pm,n =
1−z̄2m,n

Jm,nJ
T
m,n

JTm,n

6: wm,n = wm,n−1 + βpm,n

7:
[
H<m,n, H

=
m,n

]T
= εm

wm,n

‖wm,n‖2

8: end

3.3.3 MMA-RLS

To derive an RLS-based algorithm for the MM case, we first rewrite the new cost function

(3.35) as an exponentially weighted time average cost function,

Cm(w) =
n∑
i=1

λn−i[(wTym,i − 2 sign(wTym,i))
2 − 1]2 (3.36)

Notwithstanding the presence of the sign(), the above cost function is non-quadratic in the

weight vector. To overcome this first difficulty, we can adopt a similar approximation as in

(3.31) and use the modified cost function

C ′m(w) =
n∑
i=1

λn−i[(wTym,i − 2 sign(wTym,i))z̄m,i − 1]2 (3.37)

where we define

zm,i = wT
m,i−1ym,i (3.38)

z̄m,i = zm,i − 2 sign(zm,i) (3.39)
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which are available from previous iterations. By expanding the square term in (3.37), we

obtain

C ′m(w) =
n∑
i=1

λn−i(wTym,i z̄m,i − 1)2

− 4
n∑
i=1

λn−i(wTym,iz̄m,i − 1) z̄m,i sign(wTym,i)

+ 4
n∑
i=1

λn−iz̄2
m,i

(3.40)

Upon examination of this expression, we note that the last term does not depend on

the unknown weight vector w, while the second term averages to zero in practice due

to the random nature of the product z̄m,i sign(wTym,i). For instance, near convergence,

this product takes values near ±1 with equal probability. Hence, we are left with the

optimization of the first term, which corresponds exactly to the modified problem in (3.31)

for which the RLS algorithm can be applied directly. The resulting algorithm, referred

to as the MMA-RLS, is summarized in 3.3.3. It is for the most part identical to the

CMA-RLS in 3.2.3, except that the product zm,n = wT
m,n−1ym,n is now modified as z̄m,n =

zm,n − 2sign(zm,n) to meet the CM criterion as per (3.34).

Algorithm 3.3.3 MMA-RLS

Initialization: wm,0 = [1, 0]T ,Pm,0 = δ−1I, δ = small positive constant

1: for n = 1, 2, . . .

2: zm,n = wT
m,n−1ym,n

3: z̄m,n = zm,n − 2 sign(zm,n)

4: zm,n = ym,nz̄m,n

5: qm,n = Pm,n−1zm,n

6: gm,n = qm,n/(λ+ zTm,nqm,n)

7: Pm,n = (Pm,n−1 − gm,nz
T
m,nPm,n−1)/λ

8: em,n = 1− z̄2
m,n

9: wm,n = wm,n−1 + gm,nem,n

10:
[
H<m,n, H

=
m,n

]T
= εm

wm,n

‖wm,n‖2

11: end
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3.4 Combination with Frequency Averaging Technique

In this section, we introduce a simple frequency averaging technique which takes advantage

of the coherence bandwidth to improve the channel estimation accuracy. We then explain

how to combine this technique with the block based SCM and Adaptive SCM algorithms

presented in the previous sections.

3.4.1 Block based SCM with Frequency Averaging

In Section 2.3, under the assumption that the channel remains nearly constant over a data

block, the quantities Pm,n and Cm,n were estimated by time averaging in (2.24) and (2.25),

to approximate the expectation operator in (2.17) and (2.22), respectively. Statistically, by

using a larger value of N (i.e., additional realizations), the quality of the above estimates

is improved, which in turn reduces the estimation errors in the CFR. In practice, however,

N cannot be increased indefinitely since this will eventually violate the assumption of a

constant channel over a block with size limitation. In this section, to overcome this limi-

tation, we introduce a frequency averaging technique that makes full use of the coherence

bandwidth to improve the channel estimation accuracy.

In (2.10), we assumed that the channel coefficients Hp,q were nearly constants within the

neighbourhood Ωm,n. If we restrict the definition of Ωm,n as an immediate neighbourhood,

i.e. Ωm,n = {(m− 1, n), (m+ 1, n)}, then condition (2.10) becomes

Hm±1,n ≈ Hm,n (3.41)

This suggests that we can make use of the received signals in adjacent subbands, i.e. m−1

and m+1, to provide additional realizations for the purpose of averaging, without increasing

N . Specifically, under (3.41), the received signals in the (m−1)-th and (m+1)-th subbands

can also contribute to the estimates of Pm,n and Cm,n since in theory, they will result in

almost the same channel estimate as defined in (3.41). Accordingly, (2.24) and (2.25) can

be replaced by:

P̂m =
1

3N

N∑
n=1

(|Ym,n|2 + |Ym−1,n|2 + |Ym+1,n|2) (3.42)
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and

Ĉm =
1

3N

N∑
n=1

(ỹm,nỹ
T
m,n + ỹm−1,nỹ

T
m−1,n + ỹm+1,nỹ

T
m+1,n) (3.43)

More generally, let us assume that the coherence bandwidth is approximately equal to

2kf0, where f0 is the subcarrier spacing (see equation (2.2)) and k is an integer. Since Hm,n

is nearly constant within a coherence bandwidth, the neighbourhood Ωm,n can be extended

to cover a corresponding range, which is represented as

Hm±k,n ≈ Hm,n for small positive integer k (3.44)

where k is the ”distance” to the center of subband m. Furthermore, while in (3.42) and

(3.43), we assign equal weights to the different subbands, this needs not be the case in

general. In practice, for a specific m, the central subband m might account for the largest

weight while neighbouring subbands contribute less and less as we move away from this

central point. On this basis, we propose following time-frequency averaging:

P̂m =
1

N

k∑
l=−k

N∑
n=1

wl |Ym−l,n|2

Ĉm =
1

N

k∑
l=−k

N∑
n=1

wl ỹm−l,nỹ
T
m−l,n

(3.45)

where wl is a positive weight factor used for subband m− l, and required to satisfy

k∑
l=−k

wl = 1. (3.46)

Note that (3.42) and (3.43) correspond to a special case of this scheme with k = 1 and

wl = 1
3

for all possible value of l ∈ {0,±1}, so that in effect the weight factor wl performs

as a rectangular window. However, in practice, we can use instead any of the symmetric

windows available from the signal processing literature [22], such as the triangular window,

Hamming windows, etc.
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3.4.2 Adaptive SCM with Frequency Averaging

The discussions above emphasize the use of time-frequency averaging by applying the weight

factor wl to the neighbouring subbands. For adaptive algorithms, time-averaging is not

suitable because we seek for an instantaneous estimate at each time n; however, frequency

averaging can still be useful to improve the estimation accuracy. Specifically, at each

time instance n, the new sample to be processed by the adaptive algorithm, i.e., ym,n,

is replaced by a weighted combination of all the samples in neighbouring subbands, i.e.,

{ym−k,n, . . . ,ym+k,n}.
In this case, we can easily combine frequency averaging with the Adaptive SCM pro-

posed in Section 3.1. The resulting procedure is in essence identical to that presented in

3.1.1, except for certain required modifications in the update of quantities Pm,n and Cm,n,

which are now implemented as follows:

Pm,n = αPm,n−1 + (1− α)
k∑

l=−k
wl|Ym−l,n|2

Cm,n = αCm,n−1 + (1− α)
k∑

l=−k
wlỹm−l,nỹ

T
m−l,n

(3.47)

where wl is a positive weight factor used for subband m− l.
In Chapter 4, we will show that the Adaptive SCM developed earlier can lead to per-

formance improvement when combined with the proposed frequency averaging technique.

3.5 Chapter Summary

In this chapter, we proposed four adaptive algorithms for application to semi-blind chan-

nel estimation in OFDM/OQAM systems. The Adaptive SCM algorithm uses exponential

smoothing in the estimation of certain required quantities. Based on the CM cost function,

three CMA were also proposed to search for the optimal solution, thereby leading to the

desired channel estimation. These three CMA were then extended to MMA to accom-

modate higher order symbol constellations. Finally, we combined the block based SCM

and Adaptive SCM with a frequency averaging technique which can take advantage of the

coherence bandwidth.
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Chapter 4

Simulation Results and Discussion

In this chapter, we first introduce the configuration of the OFDM/OQAM system under

evaluation along with the methodology to be used in the simulations. Next, we present the

simulation results for the block based SCM estimator and the various adaptive algorithms

developed in Chapter 3. On the basis of the results so obtained, we can characterize the

performance of these newly developed algorithms.

4.1 System Configurations and Methodology

In the simulated OFDM/OQAM system, the bandwidth is set to B = 10MHz, which leads

to a sampling rate of Ts=100ns. The total number of subcarriers for data transmission is

set to M = 128; accordingly, the subcarrier spacing is f0 = 78.125kHz and the (vector)

symbol duration is T0 = 1/f0 = 12.8µs. Referring to (2.2), a root raised cosine (RRC)

filter with a roll-off factor of 1 is chosen as the prototype filter g(t) to implement both the

SFB and the AFB filter banks. Indeed, it is shown in [41] that this type of filters is well

localized in the time-frequency domain. The filter support length is Tp = KT0, where here,

K = 4 is the overlapping factor. The latter represents the number of symbol durations

in the prototype filter length. Figure 4.1 displays the shape of the prototype filter used

in the simulations. Unless otherwise indicated, we assume that offset-4QAM symbols are

transmitted using the above OFDM/OQAM system.

In the simulations, the underlying multipath channel is assumed to follow the Extended

Pedestrian A (EPA) channel model [42]. The EPA model characterizes the radio channel

as a 7-tap finite impulse response (FIR) filter to which is assigned a corresponding profile,

2015/09/16



4 Simulation Results and Discussion 42

Fig. 4.1 Root raised cosine prototype filter impulse response g(nTs) versus
sampling index n (here, Ts = 100ns)

e.g. excess tap delay and relative power. The complex gain associated with each tap is

randomly generated according to a complex circular Gaussian distribution, so that the

channel magnitude follows the Rayleigh distribution with uniformly distributed phase. For

the simulations with time-invariant channels, the tap values generated in this way remain

constant during the operation. For the simulations with time-varying channels, the tap

delays remain fixed as above but the amplitude changes using a given model, as will be

further explained in Section 4.3.3. As per (2.3), the transmitted signal x(t) at the output

of the OFDM/OQAM modulator is convolved with the channel impulse response, h(τ, t),

to which white Gaussian noise w(t) with power level σ2
w is added. In the simulations, this

continuous-time model is implemented in the discrete-time domain with uniform sampling

at the rate Ts.

In the simulations, the received data y(nTs) is processed by the different channel esti-

mation algorithms for the purpose of evaluation and comparison. When applying the block

based SCM algorithm from Chapter 2, the block size is chosen as N = 80 unless otherwise

indicated. For the adaptive algorithms, i.e. the Adaptive SCM, the three adaptive CMA

algorithms, and their MM extensions, different choices of parameters (i.e. α, µ, β and λ)

are considered as indicated later. A selection of these algorithms is evaluated for each case
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of time-invariant and time-varying channels.

Different metrics are used to evaluate and compare the performance of the different

algorithms. In particular, to evaluate the accuracy of the channel estimation, we use the

normalized mean square error (NMSE) between the true and estimated channels,

NMSE = E
[‖ĥ− h‖2

‖h‖2

]
(4.1)

where ĥ is the estimated CFR vector and h is the true CFR vector. In the Monte Carlo

simulations, the expectation is evaluated as an average over multiple independent runs, on

the order of 500. We also study the impact of the channel estimation on the equalization

process. To this end, we evaluate the bit error rate (BER) between the transmitted and

decoded bit streams after equalization, i.e., between the binary sequences s(t) and ŝ(t) in

Fig. 2.2. The corresponding formula is given below:

BER =
number of bit errors

total number of transmitted bits
(4.2)

where a large number of transmitted bits is considered, on the order of 104 or more.

Finally, the computational costs of the proposed adaptive algorithms, in terms of the

required number of floating point operations (flops) per iteration per tone, will also be

briefly examined.

4.2 Block based SCM

The purpose of this short section is to demonstrate the efficacy and limitations of the block

based SCM [20] algorithm, which was presented in Chapter 2.

Here, we consider the time-invariant channel model, where the underlying wireless chan-

nel remains constant during a block of N consecutive symbols. We first present results for

the case of N = 80 symbols, with the number of subcarriers set to M = 128 in the

OFDM/OQAM system. Fig. 4.2 illustrates the NMSE of the channel estimator versus

SNR 1, where the two curves represent the performance of the initial estimate ȟblock and

the enhanced estimate ĥblock respectively, as defined in (2.26). It can be seen that the

1In the simulations, SNR=E|x(t)|2
σ2
w

, as per (2.1) and (2.3)
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enhanced estimate can achieve a much lower value of the NMSE by exploiting a priori

knowledge about the channel length. The error floor for both cases at high SNR is due

to various deviations from the modelling assumptions, as discussed in Chapter 2. These

results are consistent with those presented in the original paper [20].

Fig. 4.2 NMSE versus SNR for block based SCM estimator with and without
enhancement (M = 128, N = 80)

Fig. 4.3 shows the BER performance for equalized offset-4QAM modulation as a func-

tion of SNR, where the equalizer is obtained from the estimated channel coefficients. The

results, also consistent with those in [20], show that the enhanced channel estimate outper-

forms the initial one by nearly 2dB. That is, it makes it possible to obtain the same BER

while reducing the transmit power by 2dB.

To illustrate the limitations of the block based SCM algorithm, i.e., degradation of the

estimation performance when M or N is too small, we tested two alternative configurations

of the system model, with parameters as given in Table 4.1. The block based SCM algorithm

was then applied again for these two additional configurations. Since the enhanced channel

estimate ĥblock in (2.26) always outperforms the initial estimate ȟblock, we only show the

result for ĥblock in Fig. 4.4. It is observed from this figure that when M or N is reduced

to a small value, i.e., Configurations 2 or 3, respectively, the accuracy of the SCM channel

estimate deteriorates significantly.
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Fig. 4.3 BER versus SNR for SCM-equalized OFDM/OQAM systems (M =
128, N = 80)

Configuration Parameters
1 M = 128, N = 80
2 M = 32, N = 80
3 M = 128, N = 40

Table 4.1 Different system configurations for evaluation of SCM estimator

In the sequel, unless otherwise indicated, all the simulation experiments are based on

an OFDM/OQAM system configuration with M = 128 subcarriers. Also, when comparing

the performance of different adaptive estimation algorithms, we only show results for the

enhanced estimate ĥblock in the block based SCM algorithm or the instantaneous estimate

ĥn in the adaptive algorithms, as was defined in (3.4).

4.3 Adaptive Algorithms for Semi-Blind Channel Estimation

In this section, we investigate the performance of the four adaptive algorithms proposed

in Chapter 3 for channel estimation in OFDM/OQAM systems, namely: Adaptive SCM,

CMA-LMS-Grad, CMA-LMS-GN and CMA-RLS. We first discuss the resolution of the

ambiguity parameter εm in these algorithms. Then we present simulation results for both
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Fig. 4.4 NMSE versus SNR for block based SCM estimator in the case of
Configurations 1,2 and 3

cases of time-invariant and time-varying channels. Finally, we briefly discuss the compu-

tational cost of implementation of these algorithms. In this section, due to the use of the

4QAM constellation, the parameter γ in (3.9) is set to 1.

4.3.1 Resolution of Sign Ambiguity εm

The main issue regarding the application of adaptive algorithms proposed in Chapter 3

relates to the determination of the ambiguity parameter εm ∈ {−1,+1} for the m-th

subband, which appears in (3.3) for the Adaptive SCM and (3.11) for the adaptive CMA-

based algorithms. In effect, this sign ambiguity could be time-dependent, as represented

by εm,n. If this was the case, then the resolution of the ambiguity would require the use of

one pilot per tone per time iteration, thereby rendering the algorithms ineffective.

The purpose of this section is to demonstrate through numerical experiments that for

slowly-varying channels, after a few iterations, the ambiguity parameter displays a constant

behaviour and hence can be considered time-independent for all practical purposes. To this

end, we ran a series of experiments and recorded the correct values of εm,n over time n, by

comparing the estimated channel coefficients obtained with the four adaptive algorithms

to the true ones. Illustrative results for a selected subband are shown in Fig. 4.5, but the
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results are similar for other subbands. These results were obtained for the case of a slowly

time-varying channel, which is generated by:

hn = 0.9995nh0 (4.3)

where h0 is an initial CFR vector obtained with the EPA model.

Fig. 4.5 Time evolution of sign ambiguity εm,n for the different adaptive
algorithms (results shown for subband m = 64)

From these and similar results, we find that after an initial transient period characterized

by oscillations between ±1 following the onset of adaptation at n = 0, the sign ambiguity

parameter εm,n becomes independent of the time n and settle to a constant value (+1 or

-1 in Fig. 4.5). Hence, only a few pilot symbols per tone are needed at an early stage of

the adaptation process to determine the value of εm,n, which then remains constant for a

long stretch of time. This provides the motivation to simplify εm,n as the time-independent

quantity εm in Chapter 3.
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4.3.2 Time-invariant Channel Estimation

When the data is transmitted over a time-invariant channel, the channel estimate obtained

with a properly working adaptive algorithm will gradually converge to a steady state value,

with the residual NMSE reaching a certain floor level. The convergence speed and steady-

state error are therefore two essential factors to consider in the evaluation of an adaptive

algorithm.

Each one of the adaptive channel estimation algorithms introduced in Chapter 3 contains

one parameter, that is: smoothing factor α for Adaptive SCM; step size µ for CMA-LMS-

Grad; step size β in CMA-LMS-GN method; and forgetting factor λ for CMA-RLS. It is

important to understand how the choice of these parameters will affect the trade-off between

convergence speed and steady-state error level in the operation of these algorithms. To this

end, we show in Fig. 4.6 the time evolution of the NMSE (4.1) obtained with the above

algorithms for different choices of their design parameters. The results are obtained for a

time-invariant channel, as explained in Section 4.1, while the SNR is set to 25dB.

Beginning with the Adaptive SCM in Fig. 4.6(a), we note that an increase in the

memory parameter α leads to a lower residual error level (i.e. error floor) in steady state

by sacrificing the convergence rate. In the case of the CMA-LMS-Grad algorithm in Fig

4.6(b), the step-size µ offers a similar trade-off, i.e., decreasing the step size leads to a

reduction of the residual NMSE but slows down the convergence. For the CMA-LMS-GN

in Fig. 4.6(c), it appears that a smaller value of β leads to a reduction in the residual

NMSE level, without significantly affecting the initial rate of convergence, at least for the

considered range of β values. For the CMA-RLS in Fig. 4.6(d), increasing λ, which amounts

to a longer exponential window memory, leads to a reduction of the residual NMSE but

with a slow down of the initial convergence. We note in passing that among these four

algorithms, the worst performance is obtained with the CMA-LMS-Grad, which cannot

reach an NMSE floor as low as with the other algorithms.

To further compare the convergence rate of the proposed adaptive algorithms, their

parameters have to be adjusted to ensure that they all converge to the same residual level.

For example, with an SNR=25dB, we find that the Adaptive SCM, CMA-LMS-GN and

CMA-RLS algorithms will converge to the same NMSE level, i.e. ∼ 2 × 10−4, if we make

the following choice of parameters: α = 0.98, λ = 0.6 and β = 0.8. The corresponding

learning curves of these algorithms are shown in Fig. 4.7. From this figure, we observe that



4 Simulation Results and Discussion 49

(a) Adaptive SCM (b) CMA-LMS-Grad

(c) CMA-LMS-GN (d) CMA-RLS

Fig. 4.6 Time evolution of NMSE for different adaptive algorithms (time-
invariant channel, SNR=25dB)
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the NMSE of the CMA-RLS and CMA-LMS-GN algorithms drops quickly over time to

the desired error floor, while that NMSE of the Adaptive SCM goes down more gradually.

Among these three algorithms, the CMA-RLS offers the best performance in convergence,

i.e. fastest convergence speed under a constraint of common residual NMSE level in steady

state. A representative learning curve for the CMA-LMS-Grad, obtained with µ = 0.05

is also included in this figure. Unfortunately, it is not possible to adjust the step size µ

of this algorithm to achieve the desired error floor of 2 × 10−4 within a reasonable time.

Instead, its step size has been chosen such that it has the same initial convergence rate as

the Adaptive SCM algorithm. In this case, however, it can only reach an NMSE floor of

∼ 10−2.

Fig. 4.7 Time evolution of NMSE for four adaptive algorithms (time-
invariant channel, SNR=25dB, α = 0.98, µ = 0.05, β = 0.8 and λ = 0.6)

In Fig. 4.8, we show the learning curves of the Adaptive SCM, CMA-LMS-GN and

CMA-RLS algorithms, but this time by adjusting their parameters such that their initial

rate of convergence (slope of NMSE versus time n) is similar; the corresponding parameter

values are α = 0.96, β = 0.8 and λ = 0.75. Again, the CMA-RLS achieves the best

performance, i.e. the lowest residual NMSE level by a significant margin.

For the above choices of parameters, Fig. 4.9 shows the experimental BER in steady-

state (after time iteration n = 100) as a function of SNR. For each algorithm, the BER
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Fig. 4.8 Time evolution of NMSE for three adaptive algorithms (time-
invariant channel, SNR=25dB, α = 0.96, β = 0.8 and λ = 0.75)

was obtained after initial convergence by using the estimated CFR vector ĥn at each time

n to perform equalization and binary data detection in the OFDM/OQAM receiver. At an

SNR of 25dB, for which the above parameter values yield a similar initial convergence rate

(hence tracking ability), the CMA-RLS provides the best performance, allowing a 1.25dB

gain in this parameter. This shows that the more accurate channel estimation with the

CMA-RLS leads to better equalization performance and lower error rate. At lower values

of SNR, the Adaptive SCM seems to have a small edge, although in this case the chosen

parameter values do not provide identical convergence rate.

Since block based SCM was also applied to the time-invariant channel estimation in

Section 4.2, it is interesting to compare the performance of the CMA-RLS to the latter.

Specifically, when the SNR = 25dB and λ = 0.6, the CMA-RLS reaches its steady-state

within about 60 iterations. Accordingly, in Fig. 4.10, we show the learning curve of the

CMA-RLS (i.e., NMSE versus time n) as compared to the NMSE obtained with the block

based SCM when the block length is set to N = 60 in (2.24) and (2.25). Clearly, CMA-RLS

leads to a more accurate channel estimation in steady-state than the block based SCM in

this case.
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Fig. 4.9 BER versus SNR for three adaptive algorithms (time-invariant
channel, α = 0.96, β = 0.8 and λ = 0.75)

Fig. 4.10 Time evolution of NMSE for CMA-RLS and NMSE for block
based SCM estimator (block size N=60, time-invariant channel, SNR=25dB)

4.3.3 Time-varying Channel Tracking

Block based algorithms are mostly useful for the case of time-invariant channels, while they

are not well suited to the estimation and tracking of fast time-varying channels, as often
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encountered in wireless communications. On the contrary, adaptive algorithms are capable

of effective acquisition and tracking of time-varying (non-stationary) channels, as will be

demonstrated in this section. We note in passing that among the four adaptive algorithms

previously considered, the worst performance is obtained with the CMA-LMS-Grad. Hence,

in the subsequent simulations, we only consider Adaptive SCM, CMA-LMS-GN and CMA-

RLS for the purpose of performance evaluation.

In Fig. 4.11, we consider the extreme case of a single sudden change in the true channel

impulse response. That is, the channel remains constant until time n = 300, at which time

it undergoes a sudden random change (regeneration of channel coefficients with the EPA

model), and then remains constant again until the end of simulation. The figure shows

the time evolution of the NMSE obtained with the above three algorithms for the choices

of parameters α = 0.98, β = 0.8, λ = 0.6, with SNR=25dB. The results for the initial

convergence, i.e. first phase from time n = 0 to 300, are similar to those in Fig. 4.7 where

the CMA-RLS exhibits a much faster initial convergence rate than the other algorithms and

quickly approaches a common error level, i.e., ∼ 2× 10−4. After the sudden change in the

true channel, at time n = 300, the error level of all three algorithms increases dramatically,

which is then followed by a second phase of convergence. It can be seen from Fig. 4.11 that

after the sudden change, all three algorithms can track this change but CMA-RLS achieves

the best performance, i.e., the fastest acquisition and tracking of the channels. We note

that in this case, it takes a much longer time for Adaptive SCM to converge to the same

NMSE level.

To further explore the tracking capability of the proposed adaptive algorithms, we

carried out another set of experiments in which the underlying channel changes continuously

over time by using the following model:

hn = (1 + 0.25sin(0.25n))h0 (4.4)

where h0 is an initial CFR vector obtained with the EPA model. Fig. 4.12 shows the

imaginary part of the true and estimated channel coefficient for the first subband, i.e., H=1,n
and Ĥ=1,n, as a function of time n, but the results for other subbands and the real parts are

similar. In this case, the SNR is set to 25dB and the algorithm parameters are adjusted as in

Fig. 4.11 (which would yield an identical error floor under stationary conditions). Again the

best results are obtained with the CMA-RLS, followed by CMA-LMS-GN and Adaptive



4 Simulation Results and Discussion 54

Fig. 4.11 NMSE versus time n for Adaptive SCM, CMA-LMS-GN and
CMA-RLS (sudden channel change at n = 300, SNR=25dB)

SCM. These results are consistent with those in Fig. 4.11, since here, a slower initial

convergence translates into a larger estimation lag (i.e, time delay) [35]. In particular, the

CMA-RLS and CMA-LMS-GN can acquire and effectively track the channel with respect to

both amplitude and phase, albeit with a small lag; However, the Adaptive SCM is too slow

to properly track the true channel, which in addition to a large delay leads to significant

amplitude attenuation.

For the above choices of parameters α, β and λ, Fig. 4.13 shows the experimental

BER in steady-state as a function of SNR, obtained in the same way as in Fig. 4.9.

At SNR=25dB, for which the algorithm parameters were adjusted, the best results are

obtained with the CMA-RLS, which provides around 1.25 dB of gain in SNR. This shows

that a more precise channel tracking with the CMA-RLS, as shown in Fig. 4.12, leads to

better equalization performance and lower error rate.

4.3.4 Computational Cost

The above simulation results show that CMA-RLS provides the best performance, i.e.,

better trade-off between the convergence speed and residual NMSE level, which in turn

leads to more effective tracking of time-varying channels. However, since the CMA-RLS
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Fig. 4.12 Time evolution of channel estimate H=1,n for different adaptive
algorithms (fast-varying channel, SNR=25dB)

Fig. 4.13 BER versus SNR for three adaptive algorithms (time-varying
channel, α = 0.98, β = 0.8 and λ = 0.6)
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is based on a matrix inversion operation [35], its computational complexity is higher than

other adaptive algorithms. Table 4.2 summarizes the computational cost, i.e., the required

number of floating point operations (flop) per iteration per tone of the four algorithms under

study. These figures are obtained by counting the number of flops2 inside the main loop of

the corresponding algorithms in Chapter 3. Indeed, as can be seen from Table 4.2, CMA-

RLS achieves those aforementioned advantages at the expense of higher computational cost.

Adaptive algorithm Number of operations
Adaptive SCM 40
CMA-LMS-Grad 16
CMA-LMS-GN 22
CMA-RLS 48

Table 4.2 Computational cost for four adaptive algorithms per iteration per
tone

4.4 MMA for Time-invariant Channel Estimation

In this section, we perform simulation experiments to demonstrate the efficacy of the adap-

tive MMA presented in Section 3.3. In these experiments, 16QAM symbols are transmitted

using an OFDM/OQAM system with the same parameter setting as described in Section

4.1. We also present results for the Adaptive SCM, which can be applied regardless of the

specific choice of discrete symbol constellation.

Fig. 4.14 illustrates the time evolution of the NMSE obtained with the Adaptive SCM

(Algorithm 3.1.1), the MMA-LMS-GN (Algorithm 3.3.2) and the MMA-RLS (Algorithm

3.3.3), with the following choice of parameters: α = 0.98, λ = 0.53, β = 0.7 and SNR=25dB.

From the figure, we note that these three algorithms suffer a degradation in the NMSE

performance after convergence, where the NMSE floor is increased from 2×10−4 to 3×10−3,

compared to 4QAM cases. Nevertheless, the MMA-RLS offers the fastest performance in

convergence under a constraint of common residual NMSE level in steady state.

21 flop = 1 elementary floating point operation: +,−,×,÷
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Fig. 4.14 Time evolution of NMSE for Adaptive SCM, MMA-LMS-GN and
MMA-RLS (16QAM constellation, time-invariant channel, SNR=25dB)

4.5 Use of Frequency Averaging Technique

In this section, we perform simulation experiments to show that the algorithms developed

earlier, including block based SCM and Adaptive SCM, can lead to performance improve-

ments when combined with the simple frequency averaging technique.

For these experiments, we consider time-invariant channels generated randomly accord-

ing to the EPA model as explained in Section 4.1, where the underlying channel remains

constant during each independent run. The magnitude response of a representative channel

realization is plotted in Fig. 4.15. From this figure, we can infer that a reasonable value

of k in (3.44), which in essence specifies the coherence bandwidth of the channel, is on the

order of 2 to 4.

We first present results for the block based SCM algorithm for two different choices

of window wl in the frequency averaging process (3.45), i.e. rectangular and triangular.

Fig. 4.16 (a) illustrates the NMSE of the channel estimator versus SNR for the rectan-

gular window, where the three curves represent the performance of ĥblock with k = 0, 4, 6

respectively; Fig. 4.16 (b) presents the corresponding results for the case of the symmetric

triangular windows.
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Fig. 4.15 Magnitude response of a representative EPA channel realization

Clearly, for the particular channel model under consideration, an increase in the value of

parameter k from 0 to 4 leads to a notable performance enhancement, i.e. optimal reduction

of about 2.2db in NMSE. However, increasing k beyond this optimal value does not provide

as much improvement. The use of a triangular window, compared to the rectangular one,

provides only a minor improvement in performance. In the sequel, we only consider the

case of a rectangular window with k = 4.

In Section 3.4.2, we briefly explained how the frequency averaging technique could be

applied to the Adaptive SCM developed in the thesis. In Fig. 4.17, we show the learning

curves of the Adaptive SCM algorithm with and without the use of frequency averaging. In

this experiment, SNR=25dB, k = 4, α = 0.94 and wl = 1
9

for all l ∈ {0,±1 . . . ,±4}. It can

been seen from Fig. 4.17 that the frequency averaging technique can improve estimation

performance by increasing the convergence speed initially and lowering the residual NMSE

floor in steady state.

4.6 Chapter Summary

In this chapter, numerical simulation experiments have been carried out to evaluate the per-

formance of the proposed algorithms for time-invariant channel estimation and time-varying

channel tracking. CMA-RLS proves to have the best performance in terms of convergence
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(a) rectangular windows

(b) triangular windows

Fig. 4.16 NMSE versus SNR of block based SCM estimator with rectangular
or triangular windows (k = 0, 4, 6, N = 40, time-invariant channel)
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Fig. 4.17 Time evolution of NMSE for Adaptive SCM with and without
frequency averaging (α = 0.94, rectangular window with k = 4, time-invariant
channel, SNR=25dB)

speed, steady-state error and tracking capability. However, CMA-RLS sacrifices compu-

tational cost to achieve these advantages. Also, the proposed MMA were applied to the

case of a 16QAM constellation, where again the MMA-RLS showed the best performance.

Finally, simulation results confirm that both the block based SCM and Adaptive SCM

can lead to performance improvements under certain conditions when combined with the

proposed frequency averaging technique.
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Chapter 5

Conclusion and Future Work

This thesis proposed semi-blind adaptive algorithms for the estimation of both time-

invariant and time-varying channels in OFDM/OQAM systems.

In Chapter 2, we introduced the fundamentals of OFDM/OQAM systems, including

mathematical characterization of the transmitter and receiver sub-systems. Then the re-

cently proposed block based SCM algorithm [20] was reviewed for application to channel

estimation and its limitations were indicated.

In Chapter 3, we proposed four adaptive algorithms to overcome these limitations in

addressing the semi-blind channel estimation problem for OFDM/OQAM systems. In

particular, four novel adaptive algorithms were proposed, namely,

• Adaptive SCM,

• CMA-LMS-Grad,

• CMA-LMS-GN,

• CMA-RLS,

Also, we investigated the extension of these algorithms to the MM constellation as well as

the combination with a simple frequency averaging technique that exploits the coherence

bandwidth of the channel to improve estimation performance.

In Chapter 4, we presented the simulation results for the block based SCM estimator

as well as the new adaptive algorithms developed in Chapter 3. On the basis of the re-

sults so obtained, we compared the performance of these newly developed algorithms. The

2015/09/16
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adaptive algorithms prove to be useful in faster estimation of time-invariant channels and

in effective acquisition and tracking of time-varying channels. Among the newly proposed

algorithms, CMA-RLS proves to be the best algorithm for our application in the case of the

4QAM constellation. Indeed, CMA-RLS achieves the best trade-off between the conver-

gence speed and steady state error. Simulations with a higher order symbol constellation

showed that proposed MMA-RLS gives the best results in the case of a 16QAM constella-

tion. Finally, simulation results showed that the proposed frequency averaging technique

can boost the estimation performance to some extent when combined with block based

SCM or the Adaptive SCM algorithm.

Some methods discussed in this thesis have limitations and could be investigated further.

As mentioned in Section 2.4, the block based SCM is plagued by the limitation that for a

given (i.e. fixed) system bandwidth, if the number of subcarriers M is reduced, (2.10) is not

satisfied and (2.11) no longer holds. To overcome this issue, it is necessary to replace (2.11)

by a more accurate, coupled model in which received data on tone m depends, in addition

to Hm,n, on surrounding values of Hp,q in the neighbourhood of (m,n). In turn, the use

of a more compact system model for this case could possibly lead to the development of

improved estimation techniques that can better cope with such coupling of the subcarrier

data.

Application of adaptive channel estimation to systems with higher order symbol constel-

lations, i.e., 16QAM or 64QAM, calls for more effective extensions of existing CMA-based

algorithms, in addition to the simple MMA developed in Section 3.3.

While this thesis focused on channel estimation in OFDM/OQAM systems, where one

obvious purpose is that of equalization, the use of CMA based algorithms makes it pos-

sible to consider channel estimation and equalization jointly. Indeed, if we look at the

CMA-LMS-GN algorithm for instance, we note that the quantity zm,n actually provides a

non-quantized estimate of the transmitted data am,n. Within this context, it would be in-

teresting to study how the use of a decision-directed mode of operation can help resolve the

determination of the ambiguity parameter εm in the case of more rapidly varying channels.

In this thesis, the channel is estimated in the frequency domain. Each subband is

estimated independently because our system model and the corresponding algorithms are

single subcarrier based. Alternatively, it might be of interest to study new algorithms to

address the channel estimation in the time domain for OFDM/OQAM systems. There

currently exist a few approaches to do this, as in e.g. [12], but they tend to be complex and
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require the use of training sequences.
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