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Abstract

Spectrum sensing is an important functionality of cognitive radio as a means to detect

the presence or absence of the primary user (PU) in a certain spectrum band. Energy

detection is a widely used spectrum sensing technique based on the assumption that the

PU is either present or absent during the whole sensing period. However, this assumption

is not realistic in a dynamic environment where the PU could appear or disappear at any

time. The performance of the conventional energy detector (ED) actually deteriorates in

the scenario where the PU activity status changes during the sensing period. Therefore, it

is crucial to design a detector which can adapt to such an environment and reliably detect

a change in the PU activity. Several sequential change detection techniques already exist

in the literature; however, change detection in a fixed sensing duration has not been given

enough attention.

In this dissertation, three adaptive EDs are proposed to improve the detection perfor-

mance in dynamic environments, where there is a single change in the PU activity during

a fixed sensing period. In particular, we address the change detection problem using an

exponential weighting approach and two theoretical approaches based on the composite hy-

pothesis testing. In the first case, an intuitive idea of exponential weighting of the received

energies is applied to design an adaptive ED that aims to satisfy the Neyman-Pearson

(NP) criterion. The performance analysis and simulation results prove that the proposed

adaptive ED outperforms the conventional ED and also the only existing adaptive ED in

the literature that deals with the aforementioned issue. In the second case, two theoretical

approaches based on the composite hypothesis testing are used to design two additional

adaptive EDs that improve the change detection during the sensing period. The first

approach, known as the generalized likelihood ratio test (GLRT), uses the maximum like-

lihood estimation (MLE) of the unknown change location in a likelihood ratio test. In

this case, an iterative method is proposed to reduce the computational complexity of the

MLE process. The second approach, referred to as composite-Bayesian, assumes that the

unknown change location is a discrete random variable whose probability mass function

(PMF) is available. The PU channel access pattern is modelled as a two-state Markov

chain to obtain the PMF of the change location and the probability of occurrence of the

two hypotheses. The resultant adaptive ED based on the GLRT approach aims to satisfy

the NP criterion while the adaptive ED based on the composite-Bayesian approach aims to
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minimize the probability of error. It is demonstrated through simulations that these two

proposed adaptive EDs have superior performance over the conventional ED. Furthermore,

the GLRT-based adaptive ED outperforms the first proposed adaptive ED based on the

exponential weighting approach.
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Sommaire

La détection de spectre est une fonctionnalité importante de la radio cognitive car elle

permet de vérifier la présence ou l’absence d’un utilisateur principal (PU) sur une bande

de spectre donnée. La détection de l’énergie est une méthode fréquemment utilisée pour

y parvenir. Cette dernière s’appuie sur l’hypothèse que le PU est présent ou absent pour

la totalité de la période de mesure. Cependant, cette hypothèse n’est pas réaliste pour un

environnement dynamique dans lequel le PU peut apparâıtre ou disparâıtre à n’importe

quel instant. En effet, les performances d’un détecteur d’énergie conventionnel (ED) se

détériorent lorsque l’état du PU varie au cours de la période durant laquelle les mesures

sont effectuées. C’est donc pour cette raison qu’il est nécessaire de concevoir un détecteur

qui s’adapte bien à ce genre d’environnement et qui permet de détecter de manière fiable

tout changement dans l’activité du PU. Plusieurs techniques de détection de changements

séquentiels existent dans la littérature mais la détection de changement pour une durée fixe

n’a pas été explorée suffisamment en détails.

Dans le cadre de ce mémoire, trois EDs adaptatifs sont proposés dans le but d’améliorer

les performances dans un environnement dynamique au sein duquel il y a un seul change-

ment au niveau de l’activité du PU et ce durant une période de mesure de durée fixe.

Pour tenter de résoudre cette problématique, une approche à pondération exponentielle

et deux approches théoriques en lien avec le test d’hypothèse composée sont proposées.

Dans le premier cas, une approche intuitive exploitant la pondération exponentielle de

l’énergie mesurée est utilisée afin de concevoir un ED adaptatif qui satisfait le critère de

Neyman-Pearson (NP). L’analyse des performances et des résultats de simulation prouvent

que cette stratégie offre de meilleures performances par rapport aux ED conventionnels. Il

s’agit également du seul ED adaptatif présent dans la littérature qui tente de résoudre la

problématique précédemment mentionnée. Dans le second cas, deux approches théoriques

fondées sur le test d’hypothèse composée sont utilisées afin de concevoir deux nouveaux

EDs adaptatifs qui améliorent la détection de changements durant la période de mesure.

La première approche s’appuie sur le test généralisé de vraisemblance (GLRT) et utilise

une estimation de la vraisemblance maximale (MLE) de la position inconnue du change-

ment. Dans ce cas, une méthode itérative est proposée pour réduire la complexité de calcul

du processus de MLE. La deuxième approche, dite composée bayésienne, prend pour ac-

quis que la position inconnue du changement est une variable aléatoire discrète dont la loi
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de probabilité (PMF) est connue. Pour cette dernière approche, les accès au canal sont

modélisés par un modèle de Markov à deux états afin d’obtenir la PMF de la position du

changement et la probabilité d’occurrence des deux hypothèses. Le ED adaptatif utilisant

le GLRT tente de satisfaire le critère de NP tandis que le ED adaptatif utilisant l’approche

de la composée bayésienne tente de minimiser la probabilité d’une erreur. Il est démontré

à l’aide de simulations que ces deux EDs adaptatifs offrent des performances supérieures à

celles du ED conventionnel. En outre, le ED adaptatif utilisant le GLRT surpasse le ED

adaptive utilisant l’approche pondération exponentielle.
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Chapter 1

Introduction

The radio spectrum, which expands from 3 KHz to 300 GHz, is typically regulated by

governmental agencies in most countries, such as the Federal Communication Commission

(FCC) and the National Telecommunications and Information Administration in United

States or the Industry Canada in this country. Based on the static spectrum allocation

policy, regulatory bodies divide the radio spectrum into licensed and unlicensed bands.

An exclusively assigned frequency band to a licensee for a particular use in a geographical

region, is referred to as the licensed band. The licensed bands are generally reserved, sold,

or leased to a specific user. Conversely, the unlicensed bands are available to all users free

of charges as long as they adhere to the published requirements by the regulatory body.

In the past two decades, there has been a vast development in personal wireless de-

vices. Some of these devices such as mobile phones, television (TV) receivers, and global

positioning systems use the licensed frequency bands, while others such as wireless local

area network (WLAN) devices and cordless phones use the unlicensed bands, most notably

the industrial science and medical (ISM) bands. Up to now, most of the radio spectrum

has already been licensed and the unlicensed ISM bands have been filling up very rapidly

due to the popular Wi-Fi devices. Therefore, the wireless spectrum resources have become

scarce in recent years as more wireless devices/applications have emerged in the market.

Nonetheless, measurement campaigns have shown that significant portion of the allo-

cated spectrum are not often being used efficiently [1–4]. Such a recent spectrum measure-

ment in United States was done by Shared Spectrum Company (SSC) in the prime radio

frequency band of 30 MHz to 3 GHz over a three-and-half day period in Vienna, VA, in the
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PLM, Amateur, others: 30–54 MHz

0.0 % 20.0 % 40.0 % 80.0 %

Air Traffic Control, Aero Nav: 108–138 MHz

TV 2-6, RC: 54–88 MHz

100.0 %60.0 %

Fixed Mobile, Amateur, others: 138–174 MHz
TV 7-13: 174–216 MHz

Maritime Mobile, Amateur, others: 216–225 MHz
Fixed Mobile, Aero, others: 225–406 MHz

Amateur, Fixed, Mobile, Radiolocation: 406–470 MHz
TV 14-20: 470–512 MHz
TV 21-36: 512–608 MHz
TV 37-51: 608–698 MHz
TV 52-69: 698–806 MHz

Cell Phone and SMR: 806–902 MHz
Unlicensed: 902–928 MHz

Paging, SMS, Fixed, BX Aux, and FMS: 928–906 MHz
IFF, TACAN, GPS, others: 960–1240 MHz

Amateur: 1240–1300 MHz
Aero Radar, Military: 1300–1400 MHz

Space/Satelite, Fixed Mobile, Telemetry: 1400–1525 MHz
Mobile Satellite, GPS, Meteorological: 1525–1710 MHz

Fixed, Fixed Mobile: 1710–1850 MHz
PCS, Asyn, Iso: 1850–1990 MHz

TV Aux: 1990–2110 MHz
Common Carriers, Private, MDS: 2110–2200 MHz

Space Operation, Fixed: 2200–2300 MHz
Amateur, WCS, DARS: 2300–2360 MHz

Telemetry: 2360–2390 MHz
U-PCS, ISM (unlicensed): 2390–2500 MHz

ITFS, MMDS: 2500–2686 MHz
Surveillance Radar: 2686–2900 MHz

Weather Radar: 2900–3000 MHz

FM: 88–108 MHz

Fig. 1.1 Summary of spectrum occupancy measurements by SSC in 2009 [3].
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fall of 2009 [3]. The result of this measurement, summarized as the percentage of the time

that the measured power in a given frequency band exceeds a specified threshold, is shown

in Fig. 1.1, where it is observed that all the prime radio spectrum is underutilized. Even

though, the degree of underutilization in general varies greatly depending on the location,

frequency band, and time; this and similar result tend to prove that the static spectrum

allocation policy is highly inefficient.

The opportunistic use of the vacant frequency bands has been proposed as a promising

solution to the spectrum underutilization and scarcity [5–9]. In the past few years, sev-

eral important developments have been made in the spectrum policy and regulations to

accelerate opportunistic spectrum usage. The most recent ones are the publication of the

National Broadband Plan in March 2010 [10], the final report of FCC for unlicensed use

of TV white spaces in September 2010 [11], and the ongoing proceeding on secondary use

of the 2360− 2400 MHz bands for medical body area networks [12]. Cognitive radio is the

key technology behind opportunistic spectrum usage which supports a variety of emerging

wireless applications, ranging from public safety, smart grid, and broadband cellular, to

medical applications. Several standardization efforts based on cognitive radio technology

are under progress, including IEEE 802.22 [13], IEEE 802.11af, ECMA 392 [14], IEEE

SCC41, and ETSI RRS [15].

1.1 The Cognitive Radio Paradigm

Over the years, the notion of radio has evolved from a pure hardware based design to a com-

bination of hardware and software. Mitola coined the term “software radio”, now commonly

known as “software-defined radio” (SDR), to indicate the transition from a predominately

analog radio to a multi-band, multi-mode, and multi-carrier radio whose functionalities are

mostly realized in software [16]. SDR basically consists of a reconfigurable device such as

field-programmable gate array or digital signal processor, an analog-to-digital converter,

and a radio frequency front-end with software-controlled tuner. In 2000, Mitola introduced

cognitive radio (CR) as an integrated agent architecture for SDR when addressing the

broad issue of wireless personal digital assistants in his Ph.D dissertation [17], where he

defined CR as:

“The point in which wireless personal digital assistants (PDAs) and the related

networks are sufficiently computationally intelligent about radio resources and
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related computer-to-computer communications to detect user communications

needs as a function of use context, and to provide radio resources and wireless

services most appropriate to those needs”.

Ever since, CR has gained considerable attention as the enabling technology to solve the

spectrum scarcity and underutilization problems by providing the capabilities to use or

share the spectrum in an opportunistic manner. However, a clear description of the CR

network architecture is essential to understand its concept.

PU

PU

SUSU
SU

SUSU

SU

SU

Primary 
Network 
Access

CR ad hoc 
Access

CR 
Network 
Access

SU

Spectrum Broker

Other CR networks

Primary Networks
Ad hoc 

CR Network
Infrastructure-based

CR Network

Licensed Band II

Licensed Band I

Unlicensed Band I

Spectrum Band

Primary
Base-station

Primary 
Base-station

CR
Base-station

Fig. 1.2 CR network architecture [18].

CR network architecture can be classified into primary network and CR network (or

secondary network) as shown in Fig. 1.2 [18]. The primary network is composed of several

primary users (PUs) who have the exclusive right to operate in a certain spectrum band

under coordination of the primary base-station and whose transmissions should not be

interfered by any other unlicensed users. The primary base-station is a fixed infrastructure
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network component which does not have the capability to share the licensed spectrum;

however, it can be configured to have additional protocol for the primary network access of

CR users. The CR network is only allowed to access the licensed or unlicensed spectrum

bands in an opportunistic manner and its components are CR users, CR base-station, and

spectrum broker. CR users, also referred to as secondary users (SUs), have additional

functionalities to use or share the spectrum opportunistically. The CR base-station is a

fixed infrastructure network component which has the same functionalities as CR users.

The spectrum broker is the central entity responsible for sharing a common spectrum band

among several CR networks.

In a CR network, the spectrum can be accessed in three different ways. In the first

approach referred to as CR network access, a SU can access the licensed and unlicensed

bands through a single hop connection to the CR base-station. The second approach, known

as CR ad hoc access, allows several SUs to communicate with each other on both licensed

and unlicensed bands in a multi-hop manner. Finally, in a primary network access, a SU

can access a licensed band through a primary base-station that is configured for secondary

usage. Based on the aforementioned access protocols, CR networks can be further classified

into infrastructure-based and ad hoc networks. In an infrastructure-based network, the CR

base-station is responsible to manage the operation of the SUs and provide access to other

networks. More precisely, the CR base-station receives observations of the individual SUs

in the network and makes the final decision on how to avoid interference to the PU in

the licensed band or the other SUs in the unlicensed band. The SUs in turn configure

their communication parameters according to this decision. In an ad hoc CR network,

several CR users can communicate with each other in a multi-hop manner or can access

the primary base-station through the primary network access point. The ad hoc network

does not have any infrastructure component; therefore, each SU is responsible to determine

its action based on its own observation. However, cooperative scheme could be deployed

in this case, where the SUs exchange their local observations among each other to increase

the reliability of their decisions [19–21].

CR networks can be designed to operate in the unlicensed bands in order to improve

the efficiency in this portion of the spectrum; however, the most important challenge is

to design a CR network to share the licensed spectrum with the PU. In this thesis, we

consider CR network designs that exploit the temporarily-unused licensed spectrum (see

Fig. 1.3), which is also referred to as spectrum hole or white space [23], without causing
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Fig. 1.3 Spectrum hole concept [22].

harmful interference to the PU. The main functions of the CR network to fulfil this task

are described as follows:

1. Spectrum Sensing is the fundamental task of monitoring the licensed spectrum to

reliably detect the spectrum holes and the PU emergence for the purpose of opportunistic

transmission and interference avoidance, respectively.

2. Spectrum Management is the process of selecting the best spectrum band among all

the vacant bands, which meets the CR user communication requirements and quality of

service requirements, and maximizes the spectrum efficiency.

3. Spectrum Mobility allows CR nodes to vacate the channel when the PU emerges and

continue transmission on another vacant channel. It also provides the opportunity for CR

to switch to a better channel when the current one does not meet the user’s requirements,

and maintains a seamless communication requirement during the transition.

4. Spectrum Sharing aims to fairly distribute the vacant spectrum among a large num-

ber of CR nodes within the network.
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1.2 Spectrum Sensing

Spectrum sensing is the essential function of CR network as a means to detect the presence

or absence of the PUs in a certain spectrum band at a given time. Although FCC has elim-

inated spectrum sensing for TV band devices (TVBDs) that use geo-location and database

access, this technology still offers a significant promise for spectrum efficiency and access

both in TV broadcast bands and other spectrum bands. Indeed, FCC still retains the

provision in their rules that permits the authorization and operation of personal/portable

TVBDs that rely only on spectrum sensing to determine a list of available channels [11].

On the same note, the other regulatory bodies around the world, such as the Office of

Communications in the United Kingdom and the Electronic Communications Committee

of the European Conference of Postal and Telecommunications Administrations in Europe,

also suggested sensing as the possible solution for incumbent protection in TV broadcast

bands [24, 25]. Hence, spectrum sensing remains an important task for the establishment

of opportunistic spectrum usage.

Spectrum sensing techniques are typically based on two approaches, namely block-

based detection and sequential detection. In the block-based detection, the CR takes a

block of samples, computes a statistic and compares it with a threshold to decide on the

occupancy state of the spectrum. The ultimate goal in the non-Bayesian formulation is to

maximize the probability of PU signal detection subject to a constraint on the probability

of false alarm, that is the probability of falsely declaring the presence of the PU; whereas

the Bayesian formulation considers the ensemble minimization of miss detection and false

alarm probabilities. Various block-based detection schemes have been proposed in the

literature, according to the SU’s knowledge on the transmitted signal and the required

receiver complexity. Matched filter detection [26, 27], cyclostationary feature detection

[28–30] and energy detection [31–33] are the representative ones.

The matched filter is the optimal detector in stationary Gaussian noise when the trans-

mitted signal is known to the SU [34]. However, its implementation complexity and power

consumption is extremely high, because matched filter requires separate receivers for all

types of signals and their corresponding receiver algorithms have to be executed [35, pp. 17-

18]. The cyclostationary feature detector exploits the inherent periodicity of the trans-

mitted signal to distinguish the PU signal with a particular modulation type from the

stationary noise [36]. It requires a longer processing time and a more complex receiver al-
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gorithm as compared to the other block-based techniques. Energy detection is widely used

in practice because it requires no a priori knowledge about the transmitted signal and it

is simple to implement. A novel wideband spectrum sensing technique based on energy

detection is introduced in [37], which jointly detects the PU signal over multiple frequency

bands rather than one band at a time. This technique is further improved in [38] where the

correlation between the sub-band occupancies is taken into account. Energy detection is

also used in [39] for wideband spectrum sensing where the size of the observation interval is

dynamically adjusted to maximize the overall throughput of the system. All the aforemen-

tioned block-based detectors assume that the PU activity status remains constant during

the whole observation block; therefore, the detection accuracy is improved by increasing

the number of observations. However, these detectors can fail in the low signal-to-noise

ratio (SNR) region when there is modeling uncertainties, such as noise variance uncertainty,

no matter how long the observation interval is. This phenomenon is referred to as SNR

wall [40].

Sequential detectors take an alternative view to the problem, in which the number of

observations is not determined in advance. The observations are made sequentially and the

decision on the occupancy state of the channel is based on the current and all the previously

made observations. In this case, the detector stops taking new observations as soon as it

can declare the presence or absence of the PU signal with reasonable certainty. A merit of

the sequential detection approach is that it requires, on the average, a smaller number of

observations than equally reliable block-based detectors. Sequential detectors are generally

realized either based on the classical sequential testing method developed by Walds [41],

or the sequential change-point detection method [42, 43]. The objective in the classical

sequential testing method is to distinguish between two hypotheses from a sequence of sta-

tistically homogeneous observations; that is, the observations only belong to one of the two

hypotheses during the entire period of observation. Several detectors based on this method

are proposed in the literature [44–48]. In [44], the classical sequential testing method is

applied to cyclostationary feature detection to reduce the detection time. [47] studies the

performance of a sequential energy detection technique and shows its efficiency gain over

the fixed sample size energy detector. In [46], a joint PHY-MAC layer spectrum sensing

technique exploiting the classical sequential testing method is proposed for fast detection of

the PU emergence in cognitive radio networks. Contrarily to the classical sequential testing

method, the change-point detection method assumes that the observations are not homo-
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geneous and raises an alarm when an inhomogeneity occurs. This method is well suited

in the context of CR networks, because the change in the PU signal activity status results

into a change of the received signal distribution. The quickest detection technique, based

on change-point detection method, minimizes the detection delay for a given probability of

false alarm [49–52]. In [49,50] , the quickest detection technique is applied in a CR network

to detect the appearance of the PU signal in a single spectrum band. [51] presents a fresh

variation to the change-point detection method by considering the quickest detection of an

idle period in multiple spectrum bands.

1.3 Thesis Objective and Contributions

The conventional blocked-base energy detector (ED) is widely used for spectrum sensing

in CR applications since it only requires the energy of the received signal and it is easy to

implement. This detector is based on the assumption that the PU activity status remains

constant during the entire sensing period. This assumption could be valid for analog

television broadcasting where a PU occupies and leaves the spectrum for a long time.

However, it may not be realistic in digital television broadcasting or other practical cases

where a burst mode transmission is used. It has been shown in [53] that the performance

of the conventional ED deteriorates in a dynamic environment where the status of the

PU changes during the observation interval. This limitation of the conventional ED has

brought its credibility under question. The popularity of the ED in CR applications and

its shortcoming in dynamic environments have urged the need for adaptive EDs that could

reliably detect a change within the observation interval.

The authors in [53] have proposed an adaptive ED to improve the detection performance

in the scenario where the PU appears during the sensing time. In their approach, a side

detector is deployed to estimate the PU appearance time in order to discard the accumulated

noise energy when the PU is absent and to calculate the test threshold that maintains a

desired probability of false alarm. However, there is still room to improve this adaptive

ED since the estimation error associated with the side detector is not taken into account.

Furthermore, the equally important situation where the PU disappears within the sensing

period is not considered.

The goal of this dissertation is to incorporate adaptive mechanisms into the existing

ED in order to improve its change detection performance in the following scenarios:
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• Scenario 1: PU appears during the sensing period

• Scenario 2: PU disappears during the sensing period.

In particular, we aim to achieve this goal by dynamically adjusting the test statistic and/or

test threshold and avoiding expensive computations as much as possible.

Note that the quickest change detection techniques, which are based on the sequential

detection method, deal with the change detection problem from a different perspective,

where the number of observations are not fixed in advanced and the goal is to minimize

the detection delay (the required number of observations to declare a change) subject to a

certain probability of false alarm [49,51,54]. However, in this work, we are more concerned

about reliable detection of a single change within a fixed observation interval.

The main contributions of this dissertation are listed below:

1. In Chapter 3, the performance deterioration of the conventional ED, under the con-

dition that the PU activity status changes during the sensing period, is first proven

through theoretical analysis in the two scenarios of interest.

2. In Chapter 4, the problem of a single change detection (i.e., PU appearance or dis-

appearance) within a fixed observation interval is first handled by incorporating the

exponential weighting approach into the energy detection technique. More specially,

the received signal energies are weighted by an exponential window whose coefficients

are dynamically adapted based on the estimated change location. The test threshold

of the system is accordingly adjusted, based on the Neyman-Pearson (NP) criterion,

to either maximize the probability of the PU detection subject to a constraint on the

probability of false alarm in the appearing scenario or to maximize the probability of

the spectrum hole detection subject to a constraint on probability of miss detection

in the disappearing scenario. The analytical evaluation and simulation results prove

the superiority of the proposed adaptive ED over the conventional ED and the only

available adaptive ED in the literature [53] that addresses the problem of the PU

appearance within the sensing period.

3. In Chapter 5, the problem of change detection in a fixed observation interval is for-

mulated as a composite hypothesis testing problem. Two common approaches to the

composite hypothesis testing problem are used to design two additional adaptive EDs.
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The first approach is known as the generalized likelihood ratio test in the literature,

which uses the maximum likelihood estimation (MLE) of the unknown change loca-

tion in the likelihood ratio test. In addition, an iterative method is proposed to reduce

the computational complexity of the MLE process. The second approach, referred

to as composite-Bayesian approach in this dissertation, considers the change location

as a discrete random variable with a known probability mass function (PMF). In the

latter approach, the PU channel access pattern is modelled as a two-state Markov

chain to obtain the PMF of the change location. The use of these two approaches

results into two adaptive EDs, where the first one aims to satisfy the NP criterion

while the second one aims to minimize the probability of error. The simulation results

prove that the two proposed adaptive EDs outperform the conventional ED in both

appearing and disappearing scenario.

The first two contributions have resulted into the following publication [55].

1.4 Thesis Outline

This thesis is organized as follows. Chapter 2 covers the background on block-based signal

detection theory and reviews the most common blocked-based spectrum sensing techniques

used in CR applications. The system model and the practical limitations of the conven-

tional ED in dynamic environments are discussed in Chapter 3. The first adaptive ED

based on an intuitive approach is proposed in Chapter 4. Chapter 5 covers the other two

proposed adaptive EDs based on the composite hypothesis testing and finally, Chapter 6

concludes this thesis with some discussion and potential future research directions. Related

derivations are provided in the Appendices. In this thesis, we use CN (μ, σ2) to denote the

distribution of a circularly symmetric complex Gaussian random variable with mean μ and

variance σ2, and χ2(v) to denote a central chi-square random variable with v degrees of

freedom.
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Chapter 2

Background

As discussed in the previous chapter, spectrum sensing techniques are based on two frame-

works, namely block-based detection and sequential detection. This chapter covers the

basic background on blocked-based signal detection theory and reviews the most common

blocked-based spectrum sensing techniques used in CR applications. Furthermore, the

optimality of the ED under certain conditions is proven.

2.1 Signal Detection in Noise

The detection of a signal in noise follows directly from the theory of binary hypothesis

testing in which one needs to distinguish between the signal corrupted by noise and the

noise signal alone, based on a vector of observations. The mathematical representations of

the two hypotheses for N statistically homogeneous observations, r = [r(1), ..., r(N)] ∈ Z,

are given as follows:

H0 : r(n) = w(n), n = 1, ..., N

H1 : r(n) = x(n) + w(n), n = 1, ..., N
(2.1)

where hypotheses H0 and H1 denote the absence and presence of the signal, respectively. In

(2.1), n represents the observation index, x(n) is either a deterministic or a random signal

to be detected, w(n) is the additive noise which is often modelled as a white Gaussian

random variable, and the domain Z of vector r is called the observation space. In this

section, we assume Z ⊆ R
N , although it is also possible to have Z ⊆ C

N . Thus, the
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vector r is a collection of random variables with a certain probability density function

(PDF) under each hypothesis. A given observation vector can be thought of as a point in

an N -dimensional space which is generated in accord with one of two possible conditional

PDF f(r|H0) and f(r|H1)
1 . The detection problem can be categorized into two groups,

namely simple and composite hypothesis testing problems. In the simple hypothesis testing

problem, f(r|H0) and f(r|H1) are completely known. However, a more general problem

arises when these conditional PDFs have some unknown parameters, which is referred to

as the composite hypothesis testing problem.

In general, the objective is to use the conditional PDFs to develop a suitable decision

rule, that is: to partition the total observation space Z into sets Z0 and Z1 (see Fig. 2.1),

such that Hi is selected when r ∈ Zi for i = 0, 1. There are several decision rules for any

detection problem; however, we would like to employ decision rules that are optimal in

some sense. The optimality definition varies from one approach to the other; hence the

details of the most common approaches for the binary hypotheses testing are given in the

subsequent parts of this section.

Z0

Z0

Z1

Decide H0

Decide H1

Z: observation space

Fig. 2.1 Decision regions.

2.1.1 Simple Hypothesis Testing

The primary approaches to the simple hypothesis testing problem are the Bayesian ap-

proach, based on minimization of the Bayes risk, and the Neyman-Pearson (NP) approach,

1We have adopted the notations used in [56], where no explicit distinction is made between the random
variables and their realizations. However, the readers should note the difference between the two from the
context.
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based on the NP criterion [56, Ch. 3]. The choice of an appropriate approach is dictated

by the amount of information available to the detector.

Bayesian Approach

This approach is based on two assumptions. The first is that the occurrence of the two

hypotheses is governed by a priori probabilities, which are denoted by π0 = Pr(H0) and

π1 = Pr(H1), respectively. The second assumption is that there is a cost associated with

our decisions. In particular, we use positive number Cij for i, j ∈ {0, 1}, where Cij denotes

the cost incurred by deciding Hi when Hj is true; it is generally assumed that C10 > C00

and C01 > C11. The decision rule in this case aims to minimize the overall average cost or

the Bayes risk, which is given as

R = C00π0Pr(H0|H0) + C10π0Pr(H1|H0) + C01π1Pr(H0|H1) + C11π1Pr(H1|H1), (2.2)

where Pr(Hi|Hj) is the probability of deciding Hi given that Hj is true. As shown in

Fig. 2.1, the observation space needs to be partitioned into two complementary sets, Z0

and Z1; therefore, we can rewrite the expression for the Bayes risk in terms of the unknown

decision regions and the conditional probabilities of the observations as follows:

R = C00π0

∫
Z0

f(r|H0)dr+ C10π0

∫
Z1

f(r|H0)dr

+C01π1

∫
Z0

f(r|H1)dr+ C11π1

∫
Z1

f(r|H1)dr. (2.3)

The integrals in (2.3) are N -dimensional integrals since the observation vector r ∈ Z ⊆ R
N .

Using the fact that Z = Z0 ∪ Z1 and Z0 ∩ Z1 = ∅ , (2.3) is rewritten as follows:

R = C00π0

∫
Z−Z1

f(r|H0)dr+ C10π0

∫
Z1

f(r|H0)dr

+C01π1

∫
Z−Z1

f(r|H1)dr+ C11π1

∫
Z1

f(r|H1)dr. (2.4)

Observing that ∫
Z

f(r|H0)dr =

∫
Z

f(r|H1)dr = 1, (2.5)
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(2.4) reduces to

R = C00π0 + C01π1 +

∫
Z1

[(C10 − C00)π0f(r|H0) + (C11 − C01)π1f(r|H1)]dr. (2.6)

It is clear that the Bayes risk consists of a fixed cost and a cost that depends on the choice

of the set Z1. Therefore, to minimize the Bayes risk, all values of r which contribute a

negative amount to the integral should be included in Z1. In other words, H1 is selected if

(C10 − C00)π0f(r|H0) < (C01 − C11)π1f(r|H1). (2.7)

Finally, the decision rule is given by

L(r) =
f(r|H1)

f(r|H0)

H1

�
H0

(C10 − C00)π0
(C01 − C11)π1

= η, (2.8)

where L(r) is the likelihood ratio (LR) and η is the LR test threshold. Note that if C00 =

C11 = 0 and C01 = C10 = 1, the Bayes risk in (2.2) corresponds to the average probability

of error; in this case, (2.8) is the minimum-probability-of-error decision scheme.

Neyman-Pearson Approach

In the Bayesian approach, the optimality of the decision rule was defined in terms of

minimization of the overall expected cost or the Bayes risk. However, in many practical

situations, it is difficult to define a realistic cost structure for decisions or a priori probabil-

ities for the hypotheses. In such cases, an alternative approach based on the NP criterion

can be used, as explained below.

In a binary hypothesis testing, an error occurs if either H1 or H0 is rejected falsely. The

probability of occurrence of these two errors can be written in terms of the two comple-

mentary sets of the observation space, Z0 and Z1, as

Pf =

∫
Z1

f(r|H0)dr, (2.9)

Pm =

∫
Z0

f(r|H1)dr, (2.10)

where Pf is the probability of false alarm (i.e., the probability of deciding on H1 given that
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H0 is true) and Pm is the probability of miss detection (i.e., the probability of accepting

H0 while H1 is true). There is an inherent trade-off between the two probabilities of error,

because one can always be made arbitrary small at expense of the other. Hence, the NP

criterion places a constraint on the probability of false alarm, Pf = α, and minimizes Pm

(or maximizes the probability of signal detection, Pd = 1− Pm). The method of Lagrange

multiplier [57, pp. 745-746] can be used to solve this constrained optimization problem as

follows:

F = Pd + λ(Pf − α) =

∫
Z1

f(r|H1)dr+ λ

(∫
Z1

f(r|H0)dr− α

)
=

∫
Z1

(f(r|H1) + λf(r|H0))dr− λα. (2.11)

In order to maximize F , the values of r that contribute a positive amount to the above

integral should be included in Z1, which is given mathematically by

Z1 = {r ∈ Z|f(r|H1) + λf(r|H0) > 0}. (2.12)

Note that the > sign can be replaced with ≥, because the probability of occurrence of the

event f(r|H1) + λf(r|H0) = 0 is zero if we assume the PDFs are continuous. Thus, H1 is

selected if

L(r) =
f(r|H1)

f(r|H0)
≥ −λ, (2.13)

where the Lagrangian multiplier satisfies λ ≤ 0, since L(r) is always non-negative. Finally,

the decision rule based on the NP criterion is given for η = −λ as

L(r) =
f(r|H1)

f(r|H0)

H1

�
H0

η, (2.14)

where η > 0 is the LR test threshold that is obtained from the constraint Pf = α as follows.

Let f(L|H0) denote the PDF of L(r) under H0, then η is found by solving the following

equation

Pf =

∫ ∞

η

f(L|H0)dL = α. (2.15)

It is apparent from (2.14) that decreasing η results into an increase in the region Z1 where

H1 is selected. This is equivalent to an increase in Pd. Thus, η in (2.15) is decreased in
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order to maximize Pd until the constraint Pf = α is reached. The value of η given by (2.15)

will be non-negative because f(L|H0) will be zero for negative value of η.

Two approaches to the binary hypothesis testing problem were introduced in this sub-

section. The optimum decision rule in both approaches consist of processing the received

observation vector r to obtain the LR L(r) and then comparing it to a specific threshold

to make the final decision. The choice of the appropriate threshold ultimately defines the

difference between the two approaches. In the Bayesian approach, the threshold is depen-

dent on a priori information regarding the decision cost and the probabilities of occurrence

of the two hypotheses; while, the threshold in the NP approach is selected considering

a constraint on Pf . Here, the conditional PDFs of the observation vector, f(r|H0) and

f(r|H1), are assumed to be completely known; however, a more general problem in which

these PDFs have some unknown parameters is considered in the following subsection.

2.1.2 Composite Hypothesis Testing

In the simple hypothesis testing problems, it is assumed that a complete description of

the PDF of the observations is available under the two hypotheses. However, this is not a

realistic assumption in practical signal detection problems, because the statistical model of

the received signal often includes some unknown parameters such as the signal amplitude,

phase, frequency, or the additive noise variance. The problems of this type are referred to

as composite hypothesis testing problems.

The first step to solve a composite hypothesis testing problem is to express the con-

ditional PDFs in terms of the unknown parameters and construct the LR test. In some

rare cases, the LR test can be manipulated such that the resulting test is independent of

the unknown parameters. This type of test is called a uniformly most powerful (UMP)

test and it achieves the best performance over any other tests. However, in many practical

problems, a UMP test does not exist and one must resort to suboptimal tests. In such

cases, there are two common approaches that are based on joint estimation and detection

techniques. The first approach employs the Bayesian parameter estimation philosophy de-

scribed in [58, Ch. 10], where the unknown parameter is considered as a random variable

with a known a priori PDF. This is referred to as the composite-Bayesian approach in this

dissertation to distinguish it from the Bayesian approach used in the simple hypothesis

testing problem. The second approach employs the well-known joint estimation and detec-
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tion method called generalized likelihood ratio test (GLRT). In this approach, the MLE of

the unknown parameters is used to construct the LR test. GLRT is widely used in practice

due to its ease of implementation and less restrictive assumptions [59–61].

To explain the details of these two approaches, we consider a binary hypothesis test-

ing problem in which the PDF of the observation vector r depends on a set of unknown

parameters U0 and U1 under each hypothesis as follows:

H0 : r ∼ f(r|u0,H0), u0 ∈ U0,

H1 : r ∼ f(r|u1,H1), u1 ∈ U1. (2.16)

Composite-Bayesian Approach

In this approach, a priori PDFs, f0(u0) and f1(u1), are assigned to the unknown parameters

u0 and u1, respectively. Therefore, the dependency of the PDF of the observation vector

on the unknown parameters can be removed by obtaining the marginal PDF as follows:

f(r|H0) =

∫
f(r|u0,H0)f0(u0)du0,

f(r|H1) =

∫
f(r|u1,H1)f1(u1)du1, (2.17)

where the dimension of each integral is equal to the dimension of the unknown parameter

vector under each hypothesis. So far, we have assumed that the unknown parameters are

continuous random variables; however, they can also be discrete. In such cases, the joint

PMFs, p0(u0) and p1(u1), are used to obtain the marginal PDF of the observation vector:

f(r|H0) =
∑

f(r|u0,H0)p0(u0),

f(r|H1) =
∑

f(r|u1,H1)p1(u1). (2.18)

Finally, the LR test is constructed to choose between the two hypotheses:

L(r) =
f(r|H1)

f(r|H0)

H1

�
H0

η. (2.19)

At this point, f(r|H1) and f(r|H0) are completely defined; therefore, the approaches intro-

duced in Section 2.1.1 are applicable. The composite-Bayesian approach requires multidi-
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mensional integration or summation which is not usually possible in closed form. Further-

more, assigning appropriate a priori probabilities to the unknown parameters is difficult in

practical situations. Hence, it is usually a less attractive approach for composite hypothesis

testing problems.

Generalized Likelihood Ratio Test

The GLRT replaces the unknown parameters in (2.16) with their MLEs and decides between

the two hypotheses as follows:.

LG(r) =
f(r|û1,H1)

f(r|û0,H0)

H1

�
H0

η, (2.20)

where

ûj = argmax
uj∈Uj

f(r|uj,Hj), j = 0, 1. (2.21)

The simple hypothesis testing approaches introduced in Section 2.1.1 can now be used

to select the appropriate threshold. The GLRT appears to perform well in general, even

though there is no optimality associated with it. The GLRT is shown to be invariant

under any transformation which leaves the detection problem invariant [62]. Furthermore,

it is asymptotically (as N → ∞) optimal in the sense that it outperforms all the other

tests that are invariant [63]. This is due to the fact that under mild conditions, the MLE

converges almost surely to the true parameter value as the number of observations N

becomes large [64, p. 113].

Two approaches to composite hypothesis testing problems were introduced in this sec-

tion. The composite-Bayesian approach requires the statistical knowledge of the unknown

parameters to construct the LR test, while the GLRT uses the MLE of the unknown pa-

rameters in the LR test. Although the GLRT is more attractive due to its less restrictive

requirements, the MLE of the unknown parameters might not always be easy to evaluate.

Therefore, the selection of the appropriate approach is problem oriented.

2.2 PU Signal Detection in CR Applications

In the previous section, detection of a signal in additive white Gaussian noise (AWGN) was

discussed from a theoretical point of view, which is essential to understand the subsequent
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parts of this dissertation. However, in this section, we focus more on the PU signal detection

techniques used in CR applications. First, we start by discussing the CR structure and

its signal reception and transmission process. Then, we review the most common blocked-

based spectrum sensing techniques.

2.2.1 CR Structure

As mention in Section 1.1, CR is a SDR with additional functionalities to sense and share

the spectrum. The basic components of the CR, based on the direct conversion SDR [65, p.

137], are shown in Fig. 2.2. In this structure, the received RF signals are first passed

through a low-noise amplifier (LNA) and directly down converted to baseband by a mixer.

The baseband signals are then low-pass filtered, and gain controlled before they are digitally

sampled by an analog-to-digital converter (ADC). The automatic gain controller (AGC)

is an adaptive device responsible for keeping the signals level in the dynamic range of

the ADC. The analog low-pass filter (LPF) is an anti-aliasing filter which passes a broad

frequency range and the desired band within that range is selected by a narrow-band

digital filter, as shown conceptually in Fig. 2.3. This is advantageous for CRs operating in

multiple frequency bands since they can tune the digital filter in software to cover several

bands instead of using a set of dedicated narrow-band analog filters. The digital signal

processor (DSP) runs spectrum sensing algorithms on the digital filter’s output to decide

on the occupancy state of the spectrum. The higher layer functions such as spectrum

management and mobility are usually realized by embedded processor programs; whereas,

the micro controllers handles multi-media and user interface applications [66, p. 43]. Once a

spectrum hole is detected, the CR switches into the transmission mode to opportunistically

use the available spectrum band as follows. The digital signals are filtered, passed through a

digital-to-analog converter (DAC) which is followed by a reconstructive low-pass filter (anti-

imaging filter), up-converted into RF band, amplified by a high power amplifier (HPA),

and transmitted through the antenna. Note that simultaneous transmission and reception

is only possible if the CR is equipped with more than one antenna.

2.2.2 Block-Based Spectrum Sensing Techniques

Spectrum sensing has a critical role in operation of the CR since it is responsible for

reliable detection of the spectrum hole and the PU emergence. A wealth of the literature on
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Fig. 2.2 CR transceiver based on the direct conversion SDR.
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Fig. 2.3 Selection of the desired frequency band by a narrow-band digital
filter within a broadband analog filter [65, Fig. 6.5].

spectrum sensing focuses on primary transmitter detection based on a fixed number of local

measurements of the SU [27–33,36–39], which is referred to as block-based spectrum sensing

in this dissertation to distinguish it from the sequential approach. The three common block-

based spectrum sensing techniques are: matched filter detection, cyclostationary feature

detection, and energy detection. The selection of the appropriate technique is dictated by

a priori knowledge available to the SU and the resulting receiver complexity and accuracy.

Here, we provide an overview on these techniques and prove the optimality of the ED

under certain conditions based on the detection theory introduced in Section 2.1.1. We

base our discussion on the simplest CR network, where a single CR is trying to share the

licensed spectrum with a single PU. The CR uses a block-based spectrum sensing technique

to decide between the two hypotheses given in (2.1), where r(n) represents the complex

baseband received sample at the output of the digital filter in Fig. 2.2. We consider the

case of an ideal flat fading channel; accordingly, in (2.1), x(n) is equal to hs(n), where

s(n) is the PU signal transmitted through an ideal channel between the PU and the SU

with a complex gain of h. For simplicity, we assume that h is completely known to the SU.
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If the channel is not ideal (i.e., frequency selective), h and s(n) are convolved instead of

multiplied [66, p. 184].

Matched Filtering based sensing

If the CR has a priori knowledge of the PU signal s(n), then the optimal detector is

the well-known matched filter [67, 68]. A matched filter is defined by the convolution of

the received signal r(n) with the time-reversed version of the known signal x(n), which is

equivalent to correlation of x(n) and r(n). Therefore, the binary decision is given by:

N∑
n=1

r(n)x∗(n)
H1

�
H0

γ, (2.22)

where γ is the user defined threshold and ∗ denotes the complex conjugate. In wireless

communication theory, the matched filter is well understood to be the optimal linear filter

to maximize the SNR in the presence of AWGN [69, pp. 238-243]. However, the theory in-

troduced in Section 2.1.1 could also be applied on the received observation vector r to prove

that the binary test in (2.22) is optimal in the NP or the Bayesian sense. The matched filter

requires a fewer number of observations, in comparison with other block-based techniques,

to achieve a certain performance criterion that could be defined in terms of the probabilities

of false alarm and miss detection [70]. However, the required number of observations grow

as the received SNR decreases [40]. Furthermore, the computational complexity can be-

come very large if different PU signals are to be detected because dedicated matched-filters

are required for all possible types of the PU signals. In addition, the matched filter requires

the perfect knowledge of the PU signal, and any inaccuracies in this knowledge could result

into performance deterioration. Therefore, the use of this technique is severely limited in

CR applications since the complete knowledge of the PU signals is rarely available to the

CR [71, p. 119].

Cyclostationarity-based sensing

The cyclostationary feature detector exploits the inherent periodicity of the modulated

PU signal such as sine wave carriers, pulse trains, hoping sequences, or cyclic prefixes to

differentiate the PU signal from the wide-sense stationary (WSS) noise [28–30]. There

are also some cases, where periodicity are intentionally induced on the PU signal to assist
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the spectrum sensing [72]. If the PU signal is present, the received signal samples exhibit

correlation between wide spread spectral components due to spectral redundancy caused by

the PU signal periodicity [73, p. 362]; whereas, such a cyclostationary feature is missing in

the noise only signal. Thus, the cyclostationary feature detector aims to detect the spectral

correlation in the received signal to decide on the presence or absence of the PU signal.

The details of this procedure is summarized as follows. First, the cyclic autocorrelation

function (CAF) of the received signal r(n), denoted by Rα
r (τ), is obtained as

Rα
r (τ) = E[r(n+ τ)r∗(n− τ)ej2παn], τ ∈ Z (2.23)

where E[.] is the expectation operation and α is called the cyclic frequency. In the next

step, the discrete Fourier transform (DFT) of the CAF is computed to obtain the spectral

correlation function (SCF), S(α, f), as

S(α, f) =
∞∑

τ=−∞
Rα

r (τ)e
−j2πfτ , (2.24)

which is a two-dimensional function in terms of frequency f and cyclic frequency α. Under

H1, the SCF, also known as cyclic spectral density, has peaks when α equals a multiple of

the fundamental frequency of the transmitted signal s(n), i.e., α = i/T0 where T0 is the

fundamental period of s(n) and i ∈ Z
+. Note that the fundamental frequency is either

assumed to be known [74] or additional strategies are required to extract this information

[75]. Under H0, the SCF has no peak since the WSS noise is not a cyclostationary signal.

Finally, the GLRT [76], or a peak detector [77] can be used to choose between the two

hypotheses. This technique can robustly detect a PU signal in low SNR regions as opposed

to the other blocked-based detectors. Furthermore, it can distinguish among different types

of the PU signals. However, its high computational complexity limits its widespread usage.

Energy Detector based sensing

Energy detection is the most commonly used blocked-based spectrum sensing technique

because it is easy to implement and requires no a priori knowledge about the PU signal

[37, 38, 55]. It can be implemented both in time domain or frequency domain. In this

section, we cover the time domain formulation and we defer the alternative formulation
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until the next chapter. The binary test in this case is given by summing the energy of N

received samples:
N∑

n=1

|r(n)|2
H1

�
H0

γ, (2.25)

where γ is the pre-determined threshold parameter. The drawback associated with the ED

is that it can only detect the PU signal if the energy of the received signal is over a threshold.

Therefore, the selection of the appropriate test threshold is problematic as it is susceptible

to the received SNR. Furthermore, the ED cannot distinguish the PU signal from the other

signal sources in the network, which can result into false alarms and missing potential

transmission opportunities. However, due to its low implementation cost, simplicity, and

less restrictive requirements (no a priori knowledge is required about the PU signal), the

ED is most commonly used in practice. In addition, as proven in the following section, the

ED is the optimal decision rule under certain conditions.

2.3 Optimality of the ED

In the previous section, we discussed three common block-based spectrum sensing tech-

niques. If the PU signal is completely known to the CR, the matched filter is the optimal

sensing technique. However, if the PU signal is unknown, the ED is mostly preferred.

The unknown PU signal could be either deterministic or modelled as a random process

depending on the application. Here, we will prove that the ED is optimal if the unknown

PU signal s(n) (or equivalently x(n), since the channel gain h is assumed to be known) is

modelled as zero-mean, white Gaussian process.

Let x(n) and w(n) be two independent, zero mean, white circularly symmetric complex

Gaussian (CSCG) random processes with variances σ2
x and σ2

w, respectively. Based on this

model, the statistically homogeneous received signal samples r(n) in (2.1) are considered to

be independent and identically distributed (i.i.d) as CN (0, σ2
w) underH0 and CN (0, σ2

x+σ
2
w)

under H1. In a simple hypothesis testing problem, the optimal decision rules by the NP or

the Bayesian approach consist of constructing the LR and comparing it against a threshold

as follows:

L(r) =
f(r|H1)

f(r|H0)

H1

�
H0

η. (2.26)

Since the received signal samples are i.i.d, the conditional probabilities of the observation
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vector can be obtained as the product of the marginal density function of the individual

samples. As the result, we have

L(r) =

1

[π(σ2
x + σ2

w)]
N
exp

[
− 1

(σ2
x + σ2

w)

N∑
n=1

|r(n)|2
]

1

(πσ2
w)

N
exp

[
− 1

(σ2
w)

N∑
n=1

|r(n)|2
] . (2.27)

The log-likelihood ratio test becomes

l(r) = N ln(
σ2
w

σ2
x + σ2

w

) +
σ2
x

σ2
w(σ

2
x + σ2

w)

N∑
n=1

|r(n)|2. (2.28)

Finally, the optimal decision rule can be manipulated into the form of energy detection as

follows:

T (r) =
N∑

n=1

|r(n)|2
H1

�
H0

σ2
w(σ

2
x + σ2

w)

σ2
x

[
ln(η)−N ln(

σ2
w

σ2
x + σ2

w

)

]
= γ, (2.29)

where γ is the ED’s test threshold, selected to minimize the probability of error (i.e.,

Pm+Pf ) or to maximize Pd for a given Pf . Hence, energy detection is the optimal detection

technique in the simple hypothesis testing problem where the signal x(n) is modelled as a

zero mean Gaussian process. This justifies the use of ED in practical applications where

such signal model is appropriate.

The performance of the ED can be analyzed in terms of the probabilities of false alarm

and miss detection as defined in (2.9) and (2.10), once the distribution the test statistic

T (r) is known. It is observed in (2.29) that T (r) is the summation of squared magnitude of

i.i.d CSCG random variables; therefore, it has a generalized chi-squared distribution under

the two hypothesis:

T (r) ∼

⎧⎪⎨
⎪⎩

σ2
w

2
χ2(2N), H0

(σ2
w + σ2

x)

2
χ2(2N), H1.

(2.30)

According to central limit theorem [78, p. 30], for a large N , T (r) is approximately normally

distributed with mean

E[T (r)] =

{
Nσ2

w, H0

N(σ2
w + σ2

x), H1,
(2.31)
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and variance

V ar[T (r)] =

{
Nσ4

w, H0

N(σ2
w + σ2

x)
2, H1.

(2.32)

Using the decision rule in (2.29) and the definition of Pf and Pd, the latter can be approx-

imately expressed as

Pf = Pr(T (r) > γ|H0) = Q(
γ −Nσ2

w

σ2
w

√
N

), (2.33)

and

Pd = Pr(T (r) > γ|H1) = Q(
γ −N(σ2

x + σ2
w)

(σ2
x + σ2

w)
√
N

), (2.34)

where Q(.) denotes the complementary cumulative distribution function of a standard nor-

mal distribution, defined in [79, p. 219] as

Q(x) =
1√
2π

∞∫
x

e−y2/2dy. (2.35)

In the context of CR networks, it is desirable to have Pf as low as possible to maximize

the spectral efficiency, since Pf measures the percentage of the vacant spectrum that is

declared busy by the detector. On the other hand, Pm = 1−Pd should be maintained at a

very low level in order to avoid interference to the PU. The choice of γ is critical as it leads

to a tradeoff between Pm and Pf . In particular, a smaller γ results into a smaller Pm, but

a larger Pf . The test threshold that minimizes the probability of error (i.e., Pe = Pm+Pf )

is obtained by the Bayesian approach as

γ =
σ2
w(σ

2
x + σ2

w)

σ2
x

[
ln(

π0
π1

)−N ln(
σ2
w

σ2
x + σ2

w

)

]
. (2.36)

In the case that the a priori probabilities π0 and π1 are not known, the NP criterion is

used to find a test threshold that maximizes Pd for a fixed Pf as follows:

γ = Q−1(Pf )σ
2
w

√
N +Nσ2

w. (2.37)



2 Background 27

2.4 Summary

In this chapter, we first covered the basic background for signal detection in AWGN for

simple and composite hypothesis testing problems and we reviewed the most common

blocked-based spectrum sensing techniques used in CR applications. Furthermore, we

proved that the ED is the optimal decision rule for a zero-mean Gaussian signal in AWGN.

This proof was based on the assumption that the received signal samples are statistically

homogeneous, that is they belong to one of the two hypotheses during the entire period

of observations. However, the optimality of the ED does not hold if the observations are

non-homogeneous (heterogeneous). This issue is further investigated in the subsequent

chapter.
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Chapter 3

System Model and Problem

Formulation

In this chapter, we first present the system model which incorporates energy detection

as the core of its detection technique and then describe the practical limitations of the

conventional ED in dynamic environments.

3.1 System Model

We consider an ad hoc CR network where the SUs can communicate with each other over a

licensed spectrum band as shown in Fig. 3.1. The decentralized ad hoc CR network does not

have an infrastructure component to control its operation; therefore, each SU is responsible

to determine its action solely based on its own observations. The SUs are equipped with

a single antenna transceiver which is used for both purpose of transmission and sensing.

It is assumed that the SUs are aware of the bandwidth and the operating frequency range

of the PU. A block-based detection scheme is considered where each SU tunes its digital

filter into the operating frequency band of the PU and collects a fixed number of samples

to decide on the occupancy state of the spectrum. Ideally, a SU should continue sensing

the spectrum during its transmission in order to detect the PU emergence. However, the

SUs are not able to perform the transmission and sensing operations simultaneously with

their single antenna transceivers. Therefore, the SUs operate in a periodic fashion with a

period of T as shown in Fig. 3.2. In this structure, each SU senses the spectrum for a

fixed duration D and decides to either transmit or wait for the remaining duration T −D
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until the next sensing cycle. T − D defines the maximum time that a SU disregards the

PU activity in the network and could potentially cause harmful interference to the PU

transmission. It is further assumed that the transmission and sensing schedules of all SUs

are synchronized and exits a medium access control protocol to share the spectrum holes

among the SUs.

PU

SU

SU
SU

Primary
Base-station

Fig. 3.1 Ad hoc CR network over the licensed band.

0 D T T+D 3T2T+D 3T+D2T
t (seconds)

Transmission Slots

Sensing Periods

Fig. 3.2 Periodic sensing scheme [80].

Once the overall system model is known, the next step is to model the received signal by

individual SUs and present the details of the appropriate block-based detection technique.

3.1.1 Received Signal

We let r(n) denote the complex baseband received signal after down-conversion and sam-

pling at the rate Fs. In the presence of the PU, this signal is represented as

r(n) = x(n) + w(n), x(n) =
L−1∑
l=0

h(l)s(n− l), (3.1)
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where n denotes the sampling time index, s(n) is the PU signal, w(n) is the additive

receiver noise, and x(n) is the received PU signal at the output of the multipath fading

channel between the PU and the SU as shown in Fig. 3.3. This wireless channel is modelled

as a linear time-invariant system with finite impulse response h(n) of length L, where L

represents the number of resolvable paths. It is further assumed that x(n) and w(n) are

two independent white CSCG random processes with zero means and variances σ2
x and σ2

w,

respectively. It is assumed here that these variances are known from a priori estimation.

Multipath Channel
h(n)s(n)

x(n)

n(n)

r(n)

Fig. 3.3 The received PU signal at the output of the multipath channel and
corrupted with noise.

3.1.2 PU Signal Detection

The received PU signal is unknown to the SU; therefore, according to the discussion in

Section 2.2.2, the ED is the appropriate block-based detection technique. Furthermore,

since we are considering the detection of zero mean white Gaussian signal in AWGN, the

ED is optimum if the received signal samples are homogeneous. In this work, a frequency

domain energy detection structure is considered as illustrated in Fig. 3.4. The received

signal samples are divided into consecutive frames of K samples, and inputted to a K-

point DFT to obtain the narrow-band frequency components. The latter are represented

analytically by:

Rm(k) =
1√
K

K−1∑
n=0

r(mK + n)e−j2πnk/K , (3.2)

where k = 0, ..., K − 1 is the frequency index (or frequency bin), m = 1, ...,M is the frame

index, and M is the total number of frames being processed by the SU. Here, M = �DFs

K
�,

where �.� is the floor operator. Similarly, let Xm(k) and Wm(k) denote the kth DFT

coefficient of the mth frame of the channel output and the additive noise, i.e. x(n) and
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w(n) respectively. Then, it follows from (3.1) that

Rm(k) = Xm(k) +Wm(k). (3.3)

Since x(n) and w(n) are assumed to be independent processes, the DFT coefficients {Xm(k)}
and {Wm(k)} can be modelled as two independent random processes. The samples of the

individual process are also independent across frequency and frame indices and follow a

zero-mean CSCG distribution with variances σ2
x and σ2

w, respectively. Note that the nor-

malization factor in (3.2) is necessary to preserve the variances of x(n) and w(n) after

discrete Fourier transformation.

DFT
B-bins

Integrator
& 

detector

Ym H0

H1

2.R (k)mr(mK+n) 

Fig. 3.4 Energy detection procedure (in practice, the DFT block is imple-
mented by means of a fast Fourier transform (FFT)).

The energy of each frame is obtained by summing the squared magnitude of B frequency

coefficients based on Parseval’s theorem [81, p. 114], which for the mth frame takes the

form

Ym =
∑
k∈B

|Rm(k)|2, (3.4)

where B is a set of B frequency bins corresponding to the bandwidth of the PU. Finally,

the frame energies Ym, for m = 1, ...,M , are passed to a detection module where they are

integrated and used to make a decision about the presence of the PU signal.

3.2 Problem Formulation

Conventional ED assumes that the PU activity status is constant during the entire sensing

period of M frames, and a choice is made between two hypotheses H0 and H1, which

represent the absence and presence of the PU signal, respectively:

H0 : Rm(k) = Wm(k),

H1 : Rm(k) = Xm(k) +Wm(k), (3.5)
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where the given condition holds for all m = 1, ...,M and k ∈ B. Thus, under each hy-

pothesis, the observed frequency samples Rm(k) are i.i.d CSCG random variables, with

Rm(k) ∼ CN (0, σ2
w) under H0 and Rm(k) ∼ CN (0, σ2

x + σ2
w) under H1.

For the above homogeneous observations, the optimal binary detector computes a test

statistic, TM , by summing the measured energies of M frames, and comparing it against a

threshold γ to choose between H0 and H1:

TM =
M∑

m=1

Ym
H1

�
H0

γ. (3.6)

Based on the received signal model, Ym in (3.4) is the summation of squared magnitudes

of i.i.d CSCG random variables and therefore, has a chi-square distribution under each

hypothesis, with mean and variance given as follows 1:

μY |0 = Bσ2
w, μY |1 = B(σ2

w + σ2
x), (3.7a)

σ2
Y |0 = Bσ4

w, σ2
Y |1 = B(σ2

w + σ2
x)

2, (3.7b)

where |0 and |1 denote conditioning on the hypothesis where the PU signal is absent and

present during a single frame, respectively. From there, the distribution of TM and the

performance of the detector in (3.6) can be obtained.

Unfortunately, the above assumption that the PU activity status remains unchanged

during the sensing period is not realistic in a dynamic environment where the PU could

appear or disappear at any time. Two scenarios of particular interest in this work are

illustrated in Fig. 3.5 for the case that the SU allocates M frames for sensing. In both

scenarios, the PU activity status is constant until it is changed on the Jth frame and it

is assumed that the PU keeps that status for a period longer than sensing time. Part a)

corresponds to the appearance of the PU, while part b) corresponds to its disappearance.

The performance of the classical ED in (3.6) is now examined under the two afore-

mentioned scenarios. The distribution of TM should first be obtained for this purpose.

Assuming that M or B are relatively large, the distribution of TM can be approximated

by the central limit theorem as Gaussian under both scenarios, but with different first

and second moments. The details of the analysis are provided below for each scenario

1The distribution of Ym and its mean and variance under each frame-hypothesis are provided in Ap-
pendix A
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1 2 3 ... J M... ...

PU present PU absent

1 2 3 ... J M... ...

PU absent PU present

a) b)

Fig. 3.5 Change of the PU activity status during the sensing period: a) PU
appearance b) PU disappearance.

separately.

3.2.1 Appearing Scenario

Let H0 and H1 ≡ H1(J) represent the absence of the PU signal (during the entire sensing

period) and its appearance at the Jth frame, respectively. The mean and variance of TM

under these two hypotheses are obtained as follows 1:

μT |H0 =MμY |0,

μT |H1 = (J − 1)μY |0 + (M − J + 1)μY |1, (3.8a)

σ2
T |H0

=Mσ2
Y |0,

σ2
T |H1

= (J − 1)σ2
Y |0 + (M − J + 1)σ2

Y |1. (3.8b)

The probability of PU signal detection Pd, the probability of false alarm Pf , and the

probability of the PU signal miss detection Pm are then obtained as

Pd = P (TM > γ|H1) = Q(
γ − μT |H1

σT |H1

), (3.9)

Pf = P (TM > γ|H0) = Q(
γ − μT |H0

σT |H0

), (3.10)

Pm = 1− Pd, (3.11)

where the test threshold γ can be selected either based on the NP approach to maximize

Pd for a given Pf , or based on the Bayesian approach to minimize the probability of error

1Derivation of the mean and the variance of TM in the appearing scenario is provided in Appendix B.1



3 System Model and Problem Formulation 34

Pe = Pf + Pm. In the former approach, γ is given by

γ = Q−1(Pf )σT |H0 + μT |H0 , (3.12)

while the latter approach requires a priori probabilities of occurrence of the two hypotheses

(i.e., π0 and π1) to construct γ as

γ =
σ2
w(σ

2
x + σ2

w)

σ2
x

[
ln(

π0
π1

)−MB ln(
σ2
w

σ2
x + σ2

w

)

]
. (3.13)
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Fig. 3.6 Performance degradation of the conventional ED under the appear-
ing scenario for both NP and Bayesian approach.

As explained in Section 2.3, the energy detection techniques with the above test thresh-

olds are the optimal decision rules for homogeneous observations. However, the optimality

does not hold for heterogeneous observations, which is the case in this scenario. More

specially, the test statistic TM under H1 is corrupted by the accumulation of noise power
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in the first J − 1 frames, which causes the deterioration of Pd (or an increase in Pm). This

fact has been confirmed in a specific environment where M = 14, B = 128, SNR = −8dB,

σ2
w = 1, and J is varied from 1 to 14. In the NP approach, Pd in (3.9) is evaluated for a

fixed Pf = 0.1. For the Bayesian approach, π0 = 0.6 and π1 = 0.4, and the probability

of error Pe is computed based on Pf and Pm given in (3.10) and (3.11), respectively. The

results of these analyses are shown in Fig. 3.6, where it is observed that Pd and Pe are

degraded significantly as J increases, specially for J > M/2. It should be noted that the

deterioration of Pe is caused mainly by the increase in Pm as J increases.

3.2.2 Disappearing Scenario

In the disappearing scenario, letH1 andH0 ≡ H0(J) represent the presence of the PU signal

(during the entire sensing period) and its disappearance at the Jth frame, respectively. The

mean and variance of TM under these two hypotheses are given as 2

μT |H0 = (J − 1)μY |1 + (M − J + 1)μY |0,

μT |H1 =MμY |1, (3.14a)

σ2
T |H0

= (J − 1)σ2
Y |1 + (M − J + 1)σ2

Y |0,

σ2
T |H1

=Mσ2
Y |1. (3.14b)

In this case, the probability of spectrum hole detection Ph is of particular interest as opposed

to Pd in the appearing scenario. Therefore, the NP criterion introduced in Section 2.1.1, is

now modified to maximize Ph for a fixed Pd. For this approach, Ph can be obtained as

Ph = P (TM < γ|H0) = 1−Q(
γ − μT |H0

σT |H0

), (3.15)

where the test threshold γ corresponds to a desired Pd as follows:

γ = Q−1(Pd)σT |H1 + μT |H1 . (3.16)

By contrast, the formulation of the Bayesian approach is not affected in this scenario, as

it aims to minimize Pe = Pf + Pm, which is equivalent to maximization of Ph + Pd. Thus,

2Derivation of the mean and the variance of TM in the disappearing scenario is provided in Appendix
B.2
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its test threshold is still equal to (3.13); moreover, Pf and Pm are obtained by replacing

(3.14a)-(3.14b) into (3.10)-(3.11). However, the optimality of these two approaches do not

hold in this scenario either, due to the heterogeneity of the observations. Particularly, the

test statistic under H0 is corrupted by the accumulation of the PU signal energies in the

first J − 1 frames. Therefore, Ph is degraded (or Pf is increased), if J > 1. To verify this

fact, the same conditions as in the appearing scenario are used, in whichM = 14, B = 128,

SNR = −8 dB, σ2
w = 1, and J is varied from 1 to 14. In the NP approach, Ph in (3.15) is

evaluated for Pd = 0.98. In the Bayesian approach, Pe is evaluated for π0 and π1 set to 0.4

and 0.6, respectively. The results are illustrated in Fig. 3.7, where it is observed that Ph

and Pe are both degraded as J increases. Note that, the deterioration of Pe is due to the

increase in Pf as J increases.
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Fig. 3.7 Performance degradation of the conventional ED under the disap-
pearing scenario for both NP and Bayesian approach.
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3.2.3 Existing Solution in the Literature

The authors in [53] have proposed an adaptive ED to improve the detection performance

in the appearing scenario. The adaptive ED uses a side detector to continuously monitor

the spectrum and detect the PU emergence on a frame-by-frame basis. The side detector

is also an ED which uses the measured energy of each frame, Ym, in a binary hypothesis

testing as follows:

Ym
1

�
0

γs, (3.17)

where the frame-hypothesis 0 and 1 denote the absence and presence of the PU during a

single frame, respectively. In (3.17), γs is the side detector’s test threshold which is given

for a desired probability of false alarm within a single frame, Pfs, as

γs = Q−1(Pfs)σY |0 + μY |0, (3.18)

where μY |0 and σ2
Y |0 are the mean and variance of Ym under the frame-hypothesis 0 that

are provided in (3.7a)-(3.7b). In particular, the side detector outputs Ĵ as the index of the

first frame whose energy is over the test threshold γs; otherwise, Ĵ is set to 1. The side

detector’s output, Ĵ , is used to construct a binary test to decide on the occupancy state of

the spectrum during M sensing frames as follows:

TM |Ĵ =
M∑

m=Ĵ

Ym
H1

�
H0

γ, (3.19)

where γ is the test threshold given for a fixed Pf as

γ = Q−1(Pf )σT |H0 + μT |H0 . (3.20)

Here, μT |H0 and σ2
T |H0

are the mean and variance of the test statistic TM |Ĵ in (3.19) under

H0, which are given as

μT |H0 = (M − Ĵ + 1)μY |0, (3.21)

σ2
T |H0

= (M − Ĵ + 1)σ2
Y |0. (3.22)
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The simulations in [53] prove that this technique outperforms the conventional ED in the

appearing scenario.

The idea of this adaptive ED is to use the side detector to obtain a rough estimate of

the unknown change location J , and to update the test statistic and the test threshold

accordingly. However, this technique does not take into account the estimation error asso-

ciated with the side detector because it blindly discards all the measured energies before

Ĵ . In the next chapter, we propose an adaptive ED which makes a better use of all the

measured energies by weighting them exponentially.

3.3 Summary

In this chapter, we first introduced the system model where the energy detection technique

was used for the protection of the PU against interference and the search of spectrum

holes. Furthermore, we showed through theoretical analysis that the performance of the

conventional ED deteriorates in dynamic environments where there is a single change during

the sensing period. The subsequent chapters of this thesis cover the design of adaptive

energy detection techniques that can overcome this practical limitation of the conventional

ED.
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Chapter 4

Adaptive Energy Detector Based on

Exponential Weighting †

As discussed in the previous chapter, the performance of the conventional ED is degraded

when there is a change in the PU activity status during the observation interval. The

intuitive idea of exponential weighting of the observations has been previously used as

a possible solution to the change detection problem arising in digital signal processing

applications, which is commonly known as geometric moving average algorithm [82, 83].

Thus, in this chapter, this concept is incorporated into the conventional ED to improve

its change detection performance. Furthermore, two adaptive mechanisms are included to

make the design more compatible to the dynamic environments.

4.1 Proposed Adaptive ED

The structure of the proposed adaptive ED, based on exponential weighting, is shown in

block diagram form in Fig. 4.1. We assume that the occurrence probability of the two

hypotheses, i.e., π0 = Pr(H0) and π1 = Pr(H1), are not available; therefore, the NP

formulation of the problem is considered throughout this chapter.

In this design, the side detector compares individual frame energies Ym, as defined in

(3.4), to a pre-set threshold γs, to obtain a rough estimate of the true (but unknown) frame

index J where the PU activity status changes. This estimate, Ĵ , is applied to the input of

†This chapter has been accepted for publication in part in the Proc. of the IEEE International Sympo-
sium on Personal, Indoor and Mobile Radio Communications (PIMRC’11) [55].
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Ĵ

Adaptive
Exponential
Coefficients

Ym

B-bins

2.r(mK+n) R (k)m
mmYc

cm

T
M|J

^

m=1

M

a

s

Fig. 4.1 Proposed adaptive ED procedure based on the exponential weight-
ing approach.

an adaptive control mechanism which adjusts a set of exponential weighting coefficients,

cm for m ∈ {1, . . . ,M}, as follows:

cm =

⎧⎨
⎩a

(M−m)/(M−Ĵ), Ĵ < M

bM−m, Ĵ =M,
(4.1)

where a and b are user-defined parameters limited to the range (0, 1). In the upper branch

of the diagram, the collected frame energies are weighted by the exponential coefficients,

and added together to obtain a conditional test statistic as follows:

TM |Ĵ =
M∑

m=1

cmYm. (4.2)

The weighting coefficients cm in (4.2) have the effect of reducing the accumulated energy

in the first J − 1 frames, which causes the deterioration of the detection probability in

dynamic environments. These coefficients are in turns used by the adaptive binary detector

mechanism to calculate the test threshold γa that maintains a desired performance, as given

by Pf in the appearing scenario and Pd in the disappearing scenario. The conditional test
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statistics is then used to make the final decision via a binary test:

TM |Ĵ
H1

�
H0

γa. (4.3)

The functionality of the proposed adaptive ED is further detailed below for the two

scenarios of interest.

4.1.1 Appearing Scenario

In the appearing scenario, the side detector attempts to estimate the frame index, J , where

the PU signal appears by applying ED on a frame-by-frame basis, using the threshold

γs = Q−1(Pfs)σY |0 + μY |0, (4.4)

where Pfs = P (Ym > γs|0) is the desired probability of false alarm (for single frame

processing) and μY |0 and σY |0 are defined in (3.7a)-(3.7b). The rough estimate Ĵ is obtained

as the first value ofm ∈ {1, ...,M}, starting withm = 1, such that Ym > γs; otherwise, if no

such m can be observed, we set Ĵ = 1. The estimate Ĵ is used to compute the exponential

weights cm as in (4.1).

The distribution of TM |Ĵ underH0 is required to obtain the test threshold of the adaptive

detector block. As explained in Section 3.2, Ym has a chi-square distribution under H0 and

H1 for 1 ≤ m ≤M ; however, upon conditioning on Ĵ , YĴ is no longer chi-square distributed

under H0. To comprehend this, recall that the side detector declares the PU appearance

at the Ĵth sensing frame, if YĴ > γs. Thus, under such knowledge, YĴ is a variate that

follows the portion of a centralized chi-square distribution that takes values only greater

than γs. Therefore, YĴ is considered as a bias term under H0 and results into an increase

in Pf of the overall system which is further investigated in Section 4.3. Nevertheless,

for simplicity, we assume that YĴ is also chi-square distributed under H0. Therefore, the

conditional test statistic in (4.2) is just a weighted sum of independent chi-squared random

variables under both hypotheses. Because the exact distribution of such a weighted sum

is difficult to obtain in general, various approximations have been proposed [84]. One

relatively simple and widely used approximation is to model this sum as a scaled chi-

square random variable [85]. Specifically, based on this approximation, the distribution of
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TM |Ĵ in (4.2) is given by ζM
σ2
R

2
χ2(2MB), where ζM = 1

M

∑M
m=1 cm, and σR is the variance

of Rm(k) under the given hypothesis. The conditional mean and variance of TM |Ĵ under

H0 are then given by 1

μT |H0 = ζMMμY |0, (4.5a)

σ2
T |H0

= ζ2MMσ2
Y |0. (4.5b)

The adaptive detector block is informed of the choice of {cm} and applies them into

the above equations to update the test threshold, γa, to make the final decision. Assuming

that M or B are relatively large, then TM |Ĵ can be approximated as a Gaussian random

variable [85]. Therefore, for a given Pf , the threshold γa is obtained as

γa = Q−1(Pf )σT |H0 + μT |H0 . (4.6)

If TM |Ĵ exceeds γa, then hypotheses H1 is selected; otherwise, H0 is declared as the current

state of the channel.

The idea of deploying the side detector to estimate J for the appearing scenario, has

already been used in [53]. However, in that work, the output of the side detector, Ĵ , is used

to eliminate the first Ĵ−1 frames in order to improve the PU signal detection performance.

In the proposed model, the side detector output, Ĵ , is used instead to adjust the exponential

weighting coefficients, cm, in such a way that the accumulated energy in the first Ĵ − 1

frames are weighted less in comparison with the energy of the frames in the rest of the

sensing period. This makes our proposed technique more robust to the estimation errors

of the side detector, as it will be shown in section 4.3.

4.1.2 Disappearing Scenario

In the disappearing scenario, the threshold used by the side detector is

γs = Q−1(Pds)σY |1 + μY |1, (4.7)

1The variance of TM |Ĵ can be directly obtained from (4.2) using the fact that the random variables

Ym,m = 1, ...,M are independent. The resulting variance
∑M

m=1 c
2
mσ2

Y |0 differs from the variance obtained

by the approximation given in [85]. However, we have observed through simulations that the variance in
(4.5b) results into better performance.
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where Pds = Pr(Ym > γs|1) is the desired probability of PU signal detection for a single

frame. The rough estimate Ĵ is obtained as the first value of m such that Ym < γs;

otherwise, we set Ĵ = 1.

In this scenario, YĴ under H1 is no longer chi-square distributed due to similar reasons

as explained in Section 4.1.1. Here, YĴ is the portion of a centralized chi-square variate

that takes values only less than γs; thus, it represents bias term under H1 and causes a

decrease in Pd. For simplicity, we assume that YĴ is a chi-square variate and approximate

the distribution of TM |Ĵ as a Gaussian using the approximation given in [85]. Thus, the

mean and variance of TM |Ĵ under H1 are given by

μT |H1 = ζMMμY |1, (4.8a)

σ2
T |H1

= ζ2MMσ2
Y |1. (4.8b)

Using the above results, the adaptive binary detector adjusts the test threshold, γa, for a

desired Pd as follows:

γa = Q−1(Pd)σT |H1 + μT |H1 , (4.9)

and chooses between the two hypothesis using (4.3).

We finally note that the thresholds of the two adaptive mechanisms are different depend-

ing on the scenario of interest. A SU should employ the appearing scenario’s thresholds

for the case that it is already transmitting data and it is sensing the spectrum for the PU

appearance. On the other hand, a SU should use the disappearing scenario’s thresholds for

the case that it is sensing for an unoccupied spectrum band.

4.2 Performance Analysis

The analytical performance of the proposed adaptive ED is investigated under the two

scenarios of interest. This means that the parameter J is considered to be known and the

probability of detection is calculated analytically for each scenario.

4.2.1 Appearing Scenario

As it was explained in Section 4.1.1, the operation of the adaptive binary detector is based

on the calculated weighting coefficients cm. These coefficients are dependent on Ĵ ; therefore,
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using the statistics of TM |Ĵ , the probability of the PU signal detection conditioned on Ĵ is

obtained as follows:

Pd|Ĵ = Pr(TM |Ĵ > γa|H1) = Q(
γa − μT |H1

σT |H1

), (4.10)

where γa is the threshold of the adaptive binary detector block in (4.6). Here, μT |H1 and

σ2
T |H1

represent the mean and the variance of TM |Ĵ under H1 and are given by

μT |H1 = ζ0A0μY |0 + ζ1A1μY |1, (4.11a)

σ2
T |H1

= ζ20A0σ
2
Y |0 + ζ21A1σ

2
Y |1, (4.11b)

where A0 = J − 1, A1 = M − J + 1, ζ0 = 1
A0

∑J−1
m=1 cm, and ζ1 = 1

A1

∑M
m=J cm. Note that

ζ0 and ζ1 implicitly depend on Ĵ through the choice of {cm}.
The probability of PU signal detection is obtained by averaging (4.10) as

Pd =
M∑
Ĵ=1

Pd|Ĵ p(Ĵ |H1), (4.12)

where p(Ĵ |H1) is the PMF of Ĵ under H1, obtained as follows. The side detector applies

energy detection on every frame until the first frame energy that exceeds γs; therefore, this

process is modelled as a Bernoulli distribution with probabilities of “success” (i.e., Ym > γs)

under the two frame-hypotheses as

p0 = Pr(Ym > γs|0) = Q(
γs − μY |0
σY |0

), (4.13)

p1 = Pr(Ym > γs|1) = Q(
γs − μY |1
σY |1

). (4.14)

Here, γs is the side detector’s threshold given in (4.4). Consequently, the probability of

a “failure” (Ym < γs) under frame-hypothesis 0 and 1 are defined as q0 = 1 − p0 and

q1 = 1 − p1, respectively. Therefore, Ĵ has a “generalized” geometric distribution with
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PMF under H1 given as

p(Ĵ |H1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
p0 + qJ−1

0 qM−J+1
1 , Ĵ = 1

qĴ−1
0 p0, 1 < Ĵ < J

qJ−1
0 qĴ−J

1 p1, J ≤ Ĵ ≤M.

(4.15)

Finally, the performance of the proposed adaptive ED under the appearing scenario

can be evaluated analytically based on (4.12). The evaluation results will be presented in

Section 4.3.

4.2.2 Disappearing Scenario

The same procedure as in Section 4.2.1 is followed here with the exception that now the

probability of hole detection, Ph, is under consideration, which is given by

Ph =
M∑
Ĵ=1

Ph|Ĵp(Ĵ |H0). (4.16)

The conditional probability of hole detection, Ph|Ĵ , is obtained as follows:

Ph|Ĵ = Pr(TM |Ĵ < γa|H0) = 1−Q(
γa − μT |H0

σT |H0

), (4.17)

where γa is given in (4.9). μT |H0 and σT |H0 are the mean and the variance of TM |Ĵ under

H0, which are given by

μT |H0 = ζ0A0μY |1 + ζ1A1μY |0, (4.18a)

σ2
T |H0

= ζ20A0σ
2
Y |1 + ζ21A1σ

2
Y |0, (4.18b)

where A0, A1, ζ0, and ζ1 are defined in Section 4.2.1. The PMF of Ĵ under H0, p(Ĵ |H0), is

obtained using a similar procedure as in the appearing scenario. The probability that the

side detector declares the PU signal disappearance is given under the two frame-hypotheses

as follows:
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p0 = Pr(Ym < γs|0) = 1−Q(
γs − μY |0
σY |0

), (4.19)

p1 = Pr(Ym < γs|1) = 1−Q(
γs − μY |1
σY |1

), (4.20)

where γs is the threshold of the side detector in (4.7). Therefore, the PMF of Ĵ under H0

is obtained as

p(Ĵ |H0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
p1 + qJ−1

1 qM−J+1
0 , Ĵ = 1

qĴ−1
1 p1, 1 < Ĵ < J

qJ−1
1 qĴ−J

0 p0, J ≤ Ĵ ≤M.

(4.21)

Finally, (4.16) is used to evaluate the performance of the proposed adaptive ED analytically

under the disappearing scenario.

4.3 Simulation Results

In this section, the performance of the proposed adaptive ED in the two scenarios of interest

is compared with that of the conventional ED whose test threshold is provided in (3.12)

and (3.16) for appearing and disappearing scenarios, respectively. A PU signal with a

bandwidth of 200 kHz is assumed to be sampled at a frequency of 1600 kHz, and a 1024-

point FFT is used to obtain the frequency representation of the signal. The number of

frequency bins corresponding to the PU bandwidth is 128, i.e., B = 128. The received

signal SNR is equal to −8dB, with desired Pf = Pfs = 0.1 and Pd = Pds = 0.98 in the

appearing and disappearing scenarios, respectively. The parameters in (4.1) are set to

a = 0.2 and b = 0.5, based on preliminary experiments. In all the simulations, J is set to

9 and M is varied from 9 to 14. The simulation parameters are summarized in Table 4.1,

where BWPU represents the bandwidth of the PU signal and SNR = 10 log(
σ2
x

σ2
w

).

For both the conventional ED and the proposed adaptive ED, random data are gener-

ated based on the model introduced in Section 3.1 and the simulations are run for 1000

independent trials to obtain an estimation of Pd and Ph for the appearing and disappearing

scenarios, respectively. The results of these experiments are illustrated with the solid lines

for the two scenarios in Fig. 4.2 and 4.3. These figures also include the theoretical results
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(dashed lines) which are based on the analytical formulae obtained in Sections 3.2 and 4.2.

It is observed that the proposed adaptive ED achieves a better performance compared to

the conventional ED in both scenarios. Furthermore, the experimental results closely follow

the analytical results; however, there are some discrepancies between the two results for the

proposed adaptive ED in the disappearing scenario, which is caused by the approximation

made regarding the distribution of TM |Ĵ . The proposed adaptive ED is able to reduce the

corrupting energies in the first J − 1 frames and dynamically adapt the test threshold to

improve its change detection capabilities. However, a trade-off is associated with the pro-

posed technique. As explained in Section 4.1.1 and Section 4.1.2, the test statistic contains

a bias term, which results into an increase in Pf and a decrease in Pd under the appearing

and disappearing scenarios, respectively.
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Fig. 4.2 Probability of PU signal detection for the proposed adaptive ED
and conventional ED in the appearing scenario.

Table 4.1 Simulation parameters for appearing and disappearing scenarios

Appearing & Disappearing Appearing Disappearing

Scenario Scenario Scenario

BWPU Fs K B SNR σ2
w J a b Pf ,Pfs Pd,Pds

200 KHz 1600 KHz 1024 128 -8 dB 1 9 0.2 0.5 0.1 0.98
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Fig. 4.3 Probability of spectrum hole detection for the proposed adaptive
ED and conventional ED in the disappearing scenario.
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As introduced in Section 3.2.3, the adaptive ED in [53] improves the detection prob-

ability in the appearing scenario; therefore, it is reasonable to compare its performance

to that of the adaptive ED proposed in this chapter. These two adaptive EDs achieve a

better performance, compared to the conventional ED, in exchange of an increase in Pf .

Hence, the test thresholds obtained by both adaptive detectors need to be adjusted through

simulations in order to maintain a desired Pf and thus a fair comparison. The result of

such comparison is shown in Fig. 4.4 and it is observed that the proposed adaptive ED

outperforms the alternative approach. This result was expected as the proposed adaptive

ED considers the uncertainty in the side detector estimation, Ĵ , and makes a better use of

the measured energies by exponentially weighting them as opposed to the other technique

which blindly disregards the frame energies before Ĵ .

4.4 Summary

The performance of the conventional ED is degraded in a dynamic environment where the

PU activity status changes during the sensing period. An adaptive ED was proposed to

improve the probability of detection in such environments. The proposed technique applies

an exponential weighting window over the measured energies of M frames and adjusts the

weighting coefficients based on the estimated location of the frame where the PU activity

status changes. Analytical performance evaluation and simulation results have proven the

superiority of this technique over the conventional ED and the adaptive ED in [53]. In the

next chapter, a more theoretical approach is employed to improve the detection performance

furthermore.
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Chapter 5

Adaptive Energy Detectors Based on

the Composite Hypothesis Testing

In the previous chapter, we have incorporated the exponential weighting approach into the

energy detection technique in order to improve its change detection performance. In this

chapter, we aim to achieve the same goal from a more theoretical point of view. In the two

dynamic environments of interest, the PU’s activity status changes suddenly at the Jth

frame during a fixed observation interval. Therefore, the PDF of the observation vector

depends on the unknown parameter J . According to the theory exposed in Section 2.1.2,

this type of problems can be formulated as a composite hypothesis testing. Hence, the

goal of this chapter is to design detectors, based on the composite hypothesis testing, to

overcome the practical limitations of the conventional ED in the two scenarios of interest.

Recall from Section 2.1.2 that the first step in the composite hypothesis testing problem

is to look for the UMP test, that is, to express the PDFs of the observations under each

hypothesis in terms of the unknown parameters, construct the LR test, and manipulate it

such that the resultant test is independent of the unknown parameters. Here, we first prove

that the UMP test does not exist for this particular composite hypothesis testing problem.

Then, we deploy the two alternative suboptimal approaches which were introduced in

Section 2.1.2, namely the GLRT and the composite-Bayesian approach. Both approaches

have already been used in the literature to overcome the uncertainty in noise power, PU

signal power, or/and channel gain [86–89]; however, to the best of the author’s knowledge,

they have never been considered in the change detection problems of interest. The use of
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these two approaches results into two adaptive EDs which are able to improve the detection

performance in the two dynamic environments introduced in Section 3.2.

5.1 UMP Test

In this section, we investigate the existence of the UMP test in both appearing and dis-

appearing scenarios. We continue working with the frequency representation of the obser-

vations; hence, we let the vector R represent the set of DFT coefficients of the M sensing

frames in the frequency range of interest (i.e., R = {Rm(k); 1 ≤ m ≤ M, k ∈ B}). Based

on the received signal model, the enteries of R are i.i.d CSCG variates with zero mean and

variances σ2
R|0 = σ2

w when the PU is absent and σ2
R|1 = σ2

x + σ2
w in its presence. Therefore,

the PDF of R can be obtained as the product of the marginal PDFs under the both hy-

potheses in the two scenarios of interest. Finally, the LR can be constructed to investigate

the existence of the UMP test as explained in the followings.

5.1.1 Appearing Scenario

In this scenario, the PU appears at the Jth sensing frame; therefore, it is convenient to

introduce the following hypotheses about the frequency representation of the observations,

Rm(k), for 1 ≤ m ≤M and k ∈ B as follows:

H0 : Rm(k) = Wm(k), (5.1)

H1 : Rm(k) = Xm(k)u(m− J) +Wm(k), (5.2)

where J is the unknown frame index in the range of [1,M ] and u(m) is the unit step

function defined as

u(m) =

⎧⎪⎨
⎪⎩
0, m < 0

1, m ≥ 0.
(5.3)
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The PDF of R under the two hypotheses are then given by 1

f(R|H0) = (
1

πσ2
R|0

)BM exp

[
−∑M

m=1 Ym
σ2
R|0

]
, (5.4)

f(R|J,H1) = (
σ2
R|1
σ2
R|0

)B(J−1) exp

[
−∑J−1

m=1 Ym
σ2
R|0

]
(

1

πσ2
R|1

)BM exp

[
−∑M

m=J Ym
σ2
R|1

]
, (5.5)

where we recall the definition of Ym, i.e. : Ym =
∑

k∈B |Rm(k)|2. Finally, the LR test is

constructed and simplified as

L(R) =
f(R|J,H1)

f(R|H0)
=

(
σ2
R|1
σ2
R|0

)B(J−1−M)

exp

[
σ2
R|1 − σ2

R|0
σ2
R|1σ

2
R|0

M∑
m=J

Ym

]
H1

�
H0

η, (5.6)

which can be further manipulated into an energy detector of the form:

M∑
m=J

Ym
H1

�
H0

σ2
R|1σ

2
R|0

σ2
R|1 − σ2

R|0

[
ln(η)− B(J − 1−M) ln(

σ2
R|1
σ2
R|0

)

]
. (5.7)

Clearly, both the test statistic and the test threshold are dependent on J ; hence, the UMP

test does not exist in this scenario.

5.1.2 Disappearing Scenario

The two hypotheses in this scenario are given for 1 ≤ m ≤M and k ∈ B by

H0 : Rm(k) = Xm(k)(1− u(m− J)) +Wm(k), (5.8)

H1 : Rm(k) = Xm(k) +Wm(k), (5.9)

1The Derivation of the PDFs of R under the two hypotheses in the appearing scenario are provided in
Appendix C.1
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where J is any integer in the range [1,M ]. The PDF of R under the above hypotheses are

given by 2

f(R|J,H0) = (
σ2
R|0
σ2
R|1

)B(J−1) exp

[
−∑J−1

m=1 Ym
σ2
R|1

]
(

1

πσ2
R|0

)BM exp

[
−∑M

m=J Ym
σ2
R|0

]
, (5.10)

f(R|H1) = (
1

πσ2
R|1

)BM exp

[
−∑M

m=1 Ym
σ2
R|1

]
. (5.11)

Once the PDFs are expressed as above, the LR test can be constructed and simplified into:

L(R) =
f(R|H1)

f(R|J,H0)
= (

σ2
R|1
σ2
R|0

)B(J−1−M) exp

[
σ2
R|1 − σ2

R|0
σ2
R|1σ

2
R|0

M∑
m=J

Ym

]
H1

�
H0

η, (5.12)

which is equivalent to (5.6). Similar to the appearing scenario, the LR can be further

manipulated into an ED that is dependent on J ; therefore, the UMP test does not exist in

this scenario either.

We have ensured that the UMP test does not exist in this particular problem; therefore,

we can continue solving the change detection problem using the suboptimal approaches.

More specially, the GLRT and the composite-Bayesian approaches are used to design two

adaptive EDs that can achieve a significant performance improvement in the two dynamic

environments in comparison with the conventional ED.

5.2 Generalized Likelihood Ratio Test Approach

In this approach, the unknown parameter J in (5.5) and (5.10) is replaced with its corre-

sponding MLE, which is denoted by Ĵ . Therefore, the LR in (5.6) and (5.12) can now be

constructed in terms of Ĵ instead of the unknown change location J . The use of the MLE

converts the composite hypothesis testing problem back into a simple binary hypothesis

testing problem, where the previously mentioned approaches in Section 2.1.1 can be de-

ployed. In this section, we assume that the detector has no a priori knowledge about the

probabilities of occurrence of the two hypotheses; thus, the NP formulation of the problem

is considered through out this section. The GLRT approach can be used to modify the

2The Derivation of the PDFs of R under the two hypotheses in the disappearing scenario are provided
in Appendix C.2
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previously proposed adaptive ED in order to further improve its performance in the two

dynamic environments. The procedure of modified adaptive ED is shown in Fig. 5.1, where

the side detector is now replaced by a MLE block. The output of the MLE block Ĵ is used

as side information to construct the conditional test statistic:

TM |Ĵ =
M∑

m=Ĵ

Ym, (5.13)

and it is also applied to the input of the adaptive binary detector block to calculate the

test threshold γa, which maintains a desired performance as given by Pf in the appearing

scenario and Pd in the disappearing scenario. Finally, a binary test is used to choose

between the two hypotheses:

TM |Ĵ
H1

�
H0

γa, (5.14)

where γa is the adaptive test threshold. Below, the functionality of the proposed adaptive

ED is further studied under the two scenarios of interest.

MLE

DFT
Adaptive
Binary
Detector

 
B-bins

2.
mY

r(mK+n) R (k)m Ym T
M|J

^

Ĵ

Ĵ

H0

H1

M

m=

Fig. 5.1 Proposed GLRT-based adaptive ED procedure.

5.2.1 Appearing Scenario

Based on the two hypotheses in (5.1) and (5.2), the GLRT of the vector R is given by

LG(R) =
f(R|Ĵ ,H1)

f(R|H0)
= (

σ2
R|1
σ2
R|0

)B(Ĵ−1−M) exp

⎡
⎣σ2

R|1 − σ2
R|0

σ2
R|1σ

2
R|0

M∑
m=Ĵ

Ym

⎤
⎦ H1

�
H0

η, (5.15)
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where Ĵ is the MLE of the unknown change location J under H1:

Ĵ = argmax
1≤J≤M

f(R|J,H1) ≡ argmax
1≤J≤M

ln(f(R|J,H1)). (5.16)

The objective function in the above optimization problem is either f(R|J,H1) which is

provided in (5.5), or equivalently, its logarithm

ln(f(R|J,H1)) = B(J − 1) ln(
σ2
R|1
σ2
R|0

)− 1

σ2
R|0

J−1∑
m=1

Ym +BM ln(
1

πσ2
R|1

)− 1

σ2
R|1

M∑
m=J

Ym, (5.17)

since the logarithm is a monotonic function. The terms −B ln(
σ2
R|1
σ2
R|0

) and BM ln(
1

πσ2
R|1

) in

(5.17) are independent of J ; thus, we can ignore them in the objective function and write

(5.16) as

Ĵ = argmax
1≤J≤M

{
BJ ln(

σ2
R|1
σ2
R|0

)− 1

σ2
R|0

J−1∑
m=1

Ym − 1

σ2
R|1

M∑
m=J

Ym

}
, (5.18)

which can be further simplified into

Ĵ = argmax
1≤J≤M

{
BJ ln(

σ2
R|1
σ2
R|0

) +
1

σ2
R|0

(−
M∑

m=1

Ym +
M∑

m=J

Ym)− 1

σ2
R|1

M∑
m=J

Ym

}

= argmax
1≤J≤M

{
BJ ln(

σ2
R|1
σ2
R|0

) +
σ2
R|1 − σ2

R|0
σ2
R|1σ

2
R|0

M∑
m=J

Ym

}
. (5.19)

The computational complexity 3 of MLE process in (5.19) is of order M2; therefore, an

iterative method is proposed to reduce it to the order of M as follows. We let CJ denote

the objective function in the above optimization problem:

CJ = BJ ln(
σ2
R|1
σ2
R|0

) +
σ2
R|1 − σ2

R|0
σ2
R|1σ

2
R|0

M∑
m=J

Ym. (5.20)

3A more detailed computational complexity analysis is provided in Appendix D.
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Then the values of CJ for J =M to J = 1 can be computed iteratively as follows:

CM = BM ln(
σ2
R|1
σ2
R|0

) +
σ2
R|1 − σ2

R|0
σ2
R|1σ

2
R|0

YM , J =M (5.21)

CJ = CJ+1 − B ln(
σ2
R|1
σ2
R|0

) +
σ2
R|1 − σ2

R|0
σ2
R|1σ

2
R|0

YJ , 1 ≤ J < M. (5.22)

Going back to the Fig. 5.1, the MLE block iteratively computes CJ for 1 ≤ J ≤ M and

declares Ĵ as the index corresponding to the maximum. Thus, the computation complexity

of this process is only of order M .

Taking the natural logarithm of the GLRT in (5.15), the latter can be manipulated

into an ED of the form given in (5.14). The distribution of the test statistic TM |Ĵ under

H0 is required to obtain the adaptive test threshold γa. As explained in Appendix A, the

frame energies, {Ym; 1 ≤ m ≤M}, are i.i.d chi-square random variables with 2B degrees of

freedom; therefore, TM |Ĵ in (5.13) is also chi-square distributed with 2B(M− Ĵ+1) degrees

of freedom with the following mean and variance under H0:

μT |H0 = (M − Ĵ + 1)μY |0, σ2
T |H0

= (M − Ĵ + 1)σ2
Y |0, (5.23)

where μY |0 and σ2
Y |0 are defined in (3.7a)-(3.7b). Based on the central limit theorem, TM |Ĵ

is approximately normally distributed for large values of B; therefore, γa is obtained for a

desired Pf as follows:

γa = Q−1(Pf )σT |H0 + μT |H0 . (5.24)

The MLE block uses the proposed iterative method to estimate the unknown change loca-

tion J and its output, Ĵ , is used to update the test statistic TM |Ĵ in (5.13) and the test

threshold γa in (5.24).

5.2.2 Disappearing scenario

The two hypotheses in this scenario are provided in (5.8) and (5.9). In contrast with the

appearing scenario, the PDF of R under H0 is dependent on the unknown change location
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J ; therefore, the GLRT is given by

LG(R) =
f(R|H1)

f(R|Ĵ ,H0)
= (

σ2
R|1
σ2
R|0

)B(Ĵ−1−M) exp

⎡
⎣σ2

R|1 − σ2
R|0

σ2
R|1σ

2
R|0

M∑
m=Ĵ

Ym

⎤
⎦ H1

�
H0

η, (5.25)

where Ĵ is obtained as

Ĵ = argmax
1≤J≤M

f(R|J,H0) ≡ argmax
1≤J≤M

ln(f(R|J,H0)). (5.26)

Here, the objective function f(R|J,H0) is given in (5.10), where its logarithm is

ln(f(R|J,H0)) = B(J − 1) ln(
σ2
R|0
σ2
R|1

)− 1

σ2
R|1

J−1∑
m=1

Ym +BM(
1

πσ2
R|0

)− 1

σ2
R|0

M∑
m=J

Ym. (5.27)

Similar to the appearing scenario, the terms in (5.27) that are independent of J are ignored;

thus (5.26) can be simplified to

Ĵ = argmax
1≤J≤M

BJ ln(
σ2
R|0
σ2
R|1

)− 1

σ2
R|1

J−1∑
m=1

Ym − 1

σ2
R|0

M∑
m=J

Ym, (5.28)

and rewritten as

Ĵ = argmax
1≤J≤M

BJ ln(
σ2
R|0
σ2
R|1

) +
1

σ2
R|1

(−
M∑

m=1

Ym +
M∑

m=J

Ym)− 1

σ2
R|0

M∑
m=J

Ym

= argmax
1≤J≤M

BJ ln(
σ2
R|0
σ2
R|1

) +
σ2
R|0 − σ2

R|1
σ2
R|1σ

2
R|0

M∑
m=J

Ym. (5.29)

Notice that the objective function in (5.29) is of the same magnitude but of different

sign than the objective function in (5.19); thus, the iterative method proposed for the

appearing scenario can be applied here by negating (5.21) and (5.22) in order to reduce

the computational complexity to the order of M . Similar to the appearing scenario, the

GLRT in (5.25) can be manipulated and transformed into an adaptive ED given in (5.14),

where the test statistic TM |Ĵ is approximately normally distributed for large values of B.
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Therefore, the mean and variance of TM |Ĵ under H1 are given by

μT |H1 = (M − Ĵ + 1)μY |1, σ2
T |H1

= (M − Ĵ + 1)σ2
Y |1, (5.30)

where μY |1 and σ2
Y |1 are defined in (3.7a)-(3.7b). Using the above results, the adaptive test

threshold γa in (5.14) is computed for a desired Pd as

γa = Q−1(Pd)σT |H1 + μT |H1 . (5.31)

The proposed adaptive ED solves the change detection problem using the GLRT ap-

proach and the simulation results in Section 5.4.1 prove its superiority over the conventional

ED and also the proposed adaptive ED in Chapter 4. In the next section, the composite-

Bayesian approach introduced in Section 2.1.2 is used to solve the change detection problem.

5.3 Composite-Bayesian Approach

In the previous section, the change location J was assumed to be an unknown parameter,

where its MLE is used to construct the LR test. In this section, the parameter J is modelled

as a discrete random variable with a known PMF; therefore, we can use the composite-

Bayesian approach to solve the composite hypothesis testing problem. In order to obtain

the PMF of J , the PU channel access pattern is modelled as a Markov chain.

The Markov chain has been widely used in the literature to model the PU’s activity

status at a given instant 4 [46, 51, 80, 90], and the authors in [91] have validated its use

based on real-time measurements. Therefore, in this section, a two-state Markov chain is

used to model the PU’s activity at a given sensing frame during the whole observation

interval. More specially, we let {Sm; 1 ≤ m ≤ M} be the discrete-time Markov process

with Sm ∈ {1, 0}, representing channel states during the sensing period ofM frames, where

Sm = 0 and Sm = 1 correspond to the idle state (PU inactive) and the busy state (PU

active) of the mth frame, respectively. Based on this model, the channel is at a certain

state at a given instant (i.e., sensing frame), with the state changing according to specific

transition probabilities between instants. As depicted in Fig. 5.2, the transition matrix for

4In the literature, the unit of instant can be a sampling point, a received symbol, a packet, or a sensing
frame. In this thesis, the time evolutions of the PU’s activity is described in the units of a sensing frame,
which corresponds to K consecutive signal samples.
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this model is given by

P =

(
p00 p01

p10 p11

)
, (5.32)

where pij is the homogeneous transition probability from state i to state j. The two

scenarios of interest are special cases of the above model where the probability that a PU

changes its activity status at a given sensing frame is geometrically distributed. In other

words, the random variable J is geometrically distributed with the probability of “success”

(probability that the PU changes its activity status) given by p01 and p10 in the appearing

and disappearing scenario, respectively. We assume that these transition probabilities are

known from a priori estimation of the PU’s activity under each scenario; therefore, the

PMF of J is completely known in both scenarios.

0 
(Idle)

1 
(Busy)00p 11p

10p

01p

Fig. 5.2 The Markov channel state model.

The composite-Bayesian approach uses the PMF of J to obtain the marginal PDF of

the vector R in (5.5) and (5.10), as explained in Section 2.1.2. Once the dependency on

the variable J is removed, the two resultant conditional PDFs of the vector R, f(R|H0)

and f(R|H1), under the two scenarios are completely known. Therefore, the composite

hypothesis testing problem is transformed into the simple hypothesis testing one, where

the approaches introduced in Section 2.1.1 are applicable. In this case, the probability of

occurrence of each hypothesis under the two scenarios can be obtained according to the

available knowledge about the channel occupancy model. Hence, the Bayesian formulation

of the problem is carried out throughout this section.

The use of this approach results into an adaptive ED as it is shown in Fig. 5.3. Here,
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the energies of all M sensing frames are used to construct the test statistic

Tm =
M∑

m=1

Ym. (5.33)

The adaptive binary detector also receives the frame energies Ym and dynamically adjusts

the test threshold γa to choose between the two hypotheses as follows:

TM
H1

�
H0

γa. (5.34)

DFT
Adaptive
Binary
Detector

H0

H1 

Ym

B-bins

2.r(mK+n) R (k)m
mY

TM

m=1

M

Fig. 5.3 Proposed adaptive ED procedure based on the composite-Bayesian
approach.

The detail functionality of the proposed adaptive ED is further studied under the ap-

pearing and disappearing scenarios.

5.3.1 Appearing Scenario

The two hypotheses are provided in (5.1) and (5.2), where it is assumed that the PU is

inactive before the sensing starts and suddenly becomes active at the beginning of the Jth

sensing frame. Furthermore, the PU is assumed to remain active for a period longer than

sensing time. Therefore, according to the channel occupancy model, the transition matrix

in this case becomes

P =

(
p00 p01

0 1

)
. (5.35)
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Based on the above model, the change location J is a random variable with geometric

distribution parametrized by p01. Therefore, the PMF of J is given by

p(J) = (1− p01)
J−1p01 = pJ−1

00 p01, (5.36)

which is used according to the composite-Bayesian approach to obtained the marginal PDF

of f(R|J,H1) as follows:

f(R|H1) =
M∑
J=1

f(R|J,H1)p(J). (5.37)

At this point, both f(R|H1) and f(R|H0) are completely known; therefore, the LR test

can then be obtained as

LB(R) =
f(R|H1)

f(R|H0)

H1

�
H0

η, (5.38)

where the test threshold η is selected based on the Bayesian approach (see Section 2.1.1)

to minimize the probability of error. In particular, the probabilities of occurrence of the

two hypotheses Pr(H0) = π0 and Pr(H1) = π1 are used to obtain η as
π0
π1

. Based on the

definition of the two hypotheses, it should be clear that H1 occurs if any of the following

mutually exclusive events takes place, where either J = 1, J = 2, ..., or J =M . Therefore,

π1 can be obtained as the summation of the probabilities of these M mutually exclusive

events:

π1 =
M∑
J=1

p(J), (5.39)

where p(J) is the PMF of J given in (5.36). Consequently, π0 is equal to 1− π1.

Finally, by taking the natural logarithm of the LR in (5.38) and further manipulation

we obtain the adaptive ED given in (5.34), where γa is 5

γa =
σ2
R|0σ

2
R|1

σ2
R|1 − σ2

R|0

[
ln(

π0
π1p01

) + BM ln(
σ2
R|1
σ2
R|0

)− ln

(
1 +

M∑
J=2

pJ−1
00 (

σ2
R|1
σ2
R|0

)B(J−1)ψ(J)

)]
,

(5.40)

for

ψ(J) = exp

[−σ2
R|1 + σ2

R|0
σ2
R|0σ

2
R|1

J−1∑
m=1

Ym

]
. (5.41)

5The Derivation of γa in the appearing scenario is provided in Appendix E.1
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The adaptive binary detector received the measured energies of M frames and adjust its

test threshold γa according to (5.40) in order to minimize the probability of error.

5.3.2 Disappearing Scenario

The two hypotheses are provided in (5.8) and (5.9). In contrast to the appearing scenario,

we assume that the PU is active before the sensing starts and a sudden change in the PU’s

activity occurs at the beginning of the Jth frame. The PU is further assumed to maintain

its inactive status for a time longer than the sensing period. Thus, the transition matrix

in this case is given by

P =

(
1 0

p10 p11

)
, (5.42)

where p10 denotes the probability of the event that the PU becomes inactive at the beginning

of the current sensing frame given that it was active in the previous one. Based on the

above model, the random variable J is geometrically distributed with the probability of

“success” (probability of the PU becoming inactive) given by p10. Thus, the PMF of J is

obtained for 1 ≤ J ≤M as

p(J) = (1− p10)
J−1p10 = pJ−1

11 p10. (5.43)

In this scenario, the PDF of R under H0 is dependent on the unknown parameter J . There-

fore, the composite-Bayesian approach is used to remove the dependency of f(R|J,H0) on

J , and construct the LR test as follows:

LB(R) =
f(R|H1)

M∑
J=1

f(R|J,H0)p(J)

H1

�
H0

η, (5.44)

where the test threshold η is equal to
π0
π1

in order to minimize the probability of error.

Similar to the appearing scenario, the probability of occurrence of H0, π0, is calculated

using p(J) as follows:

π0 =
M∑
J=1

p(J), (5.45)
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while, the probability of occurrence of H1 is equal to π1 = 1 − π0. Finally, applying the

logarithm function on both sides of the LR test in (5.44) along with further manipulations

result into the adaptive ED given in (5.34), where γa is given by 6

γa =
σ2
R|0σ

2
R|1

σ2
R|1 − σ2

R|0

[
ln(

π0p10
π1

) + BM ln(
σ2
R|1
σ2
R|0

) + ln

(
1 +

M∑
J=2

pJ−1
11 (

σ2
R|0
σ2
R|1

)B(J−1)ψ(J)

)]
,

(5.46)

where

ψ(J) = exp

[−σ2
R|0 + σ2

R|1
σ2
R|0σ

2
R|1

J−1∑
m=1

Ym

]
. (5.47)

The proposed adaptive ED solves the change detection problem using the composite-

Bayesian approach and it uses the a priori probabilities of occurrence of the two hypotheses

to minimize the probability of error. The performance of the proposed adaptive ED is

compared with that of the conventional ED whose test threshold is provided in (3.13) and

the result of this comparison is provided in the following section.

5.4 Simulation Results

In this section, the performance of the two adaptive EDs proposed in Section 5.2 and 5.3 are

evaluated through simulations and compared with the performance of the conventional ED

in the two scenarios of interest. The simulation details are provided for the two adaptive

EDs in the followings.

5.4.1 GLRT-Based Adaptive ED

The adaptive test threshold in this approach is selected based on the NP criterion in order

to either maximize Pd subject to a constraint on the Pf in the appearing scenario or to

maximize Ph subject to a constraint on Pd in the disappearing scenario. Therefore, its

performance should be compared with that of the conventional ED whose test threshold is

also selected based on the NP criterion as provided in (3.12) and (3.16) for appearing and

disappearing scenario, respectively. The simulation parameters are chosen to be identical

to the ones specified in Table 4.1, where Pf = 0.1 and Pd = 0.98 are the constraints used in

the NP criterion. However, the parameters a, b, Pfs, and Pds in Table 4.1 are only used for

6The derivation of γa in the disappearing is provided in Appendix E.2
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Fig. 5.4 Performance comparison of the GLRT-based adaptive ED and the
conventional ED in the appearing scenario.

the adaptive ED proposed in Chapter 4 and they are not required by the GLRT approach.

Similar to what has been done in Section 4.3, J is set to 9 and M is varied from 9 to

14 in all the simulations. For each value of M , random data are generated based on the

model introduced in Section 3.1 and the simulations are run for 1000 independent trials

to obtain an estimate of Pd and Ph for appearing and disappearing scenarios, respectively.

The results of these experiments are shown in Fig. 5.4 and Fig. 5.5 for the two scenarios of

interest and it is observed that the proposed adaptive ED outperforms the conventional ED

in both cases. As explained in Section 3.2, the corrupting energies in the first J − 1 frames

caused the performance deterioration of the conventional ED in the dynamic environments;

therefore, the proposed adaptive ED uses the MLE of the unknown change location J to

discard those energies and to adjust its test threshold, which is shown to improve the

detection performance significantly.

Note that the proposed adaptive ED in Chapter 4 is also formulated based on the NP

criterion; therefore, we can compare its performance with that of the proposed adaptive

ED based on the GLRT approach. However, as explained in Chapter 4, there is a trade-off

associated with the former adaptive ED, which causes an increase in Pf in the appearing
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Fig. 5.5 Performance comparison of the GLRT-based adaptive ED and the
conventional ED in the disappearing scenario.

scenario and a decrease in Pd in the disappearing scenario. Therefore, to have a fair

comparison, its test threshold γa is adjusted through an exhaustive search to maintain a

desired Pf and Pd in the appearing and disappearing scenario, respectively. The simulation

results are illustrated in Fig. 5.6 and Fig. 5.7 and they prove that the GLRT-based adaptive

ED has superior performance over the adaptive ED based on the exponential weighting

approach. The GLRT-based adaptive ED uses the MLE of the unknown change location

J to eliminate the corrupting energies in the first J − 1 frames and the simulation results

prove that this is a more effective approach than applying exponential weighting window

over the measured energies.

5.4.2 Composite-Bayesian-Based Adaptive ED

In this approach, the adaptive test thresholds is selected based on the Bayesian approach

to minimize the probability of error Pe; therefore, its performance is compared with that of

the conventional ED whose test threshold is also chosen based on the Bayesian approach

as provided in (3.13). Here, we also use the same simulation parameters as provided in

Table 4.1; however, parameters J , a, b, Pfs, Pf , Pds, and Pd are no longer required for
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Proposed GLRT-based adaptive ED
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Fig. 5.6 Performance comparison of the GLRT-based adaptive ED and the
adaptive ED based on the exponential weighting approach in the appearing
scenario after γa is adjusted to maintain Pf = 0.1.
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Fig. 5.7 Performance comparison of the GLRT-based adaptive ED and the
adaptive ED based on the exponential weighting approach in the disappearing
scenario after γa is adjusted to maintain Pd = 0.98.
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the composite-Bayesian approach. In addition, we let p01 = 0.125 and p10 = 0.125 define

the transition matrix P in (5.35) and (5.42); therefore, the parameter J is modelled as a

geometric random variable parametrized by p01 and p10 in the appearing and disappearing

scenario, respectively. In all simulations, M is varied from 9 to 16. For each value of

M , random data are generated according to the system model introduced in Section 3.1,

while the activity status of the PU is changed from one frame to another according to

the specified transition matrix P under each scenario. The simulations are run for 1000

independent trials under each value of M to obtain an estimate of Pm and Pf which are

finally added together to estimate Pe. The results are shown in Fig. 5.8 and Fig. 5.9

for appearing and disappearing scenarios respectively and it is observed that the proposed

adaptive ED outperforms the conventional ED. The performance improvement achieved

by the proposed adaptive ED was expected since the composite-Bayesian approach takes

advantage of the a priori knowledge about the PMF of the change location J to construct

the LR test.
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Fig. 5.8 Performance comparison of the composite-Bayesian-based adaptive
ED and the conventional ED in the appearing scenario.
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Fig. 5.9 Performance comparison of the composite-Bayesian-based adaptive
ED and the conventional ED in the disappearing scenario.

5.4.3 Performance Comparison of the Two Proposed Techniques

Finally, the performance of the two proposed adaptive EDs are compared in the envi-

ronment where the change location J is modelled as a geometric random variable. The

simulation parameters provided in Table 4.1 are used here; however, the parameters J , a,

b, Pfs, and Pds are no longer required. Note that Pf = 0.1 and Pd = 0.98 are the desired

probabilities of false alarm and signal detection respectively, which are used by the GLRT-

based adaptive ED. In addition, we let p01 = 0.125 and p10 = 0.125 define the transition

matrix P in (5.35) and (5.42). It is assumed that the composite-Bayesian-based adaptive

ED has a priori knowledge of the transition matrix P under each scenario. Similar to the

simulations in Section 5.4.2, random observation frames are generated for a given value

of M in the range [9, 16] such that the activity status of the PU changes from one frame

to another according to the specified transition matrix under each scenario. The simu-

lations are run for 1000 independent trials to obtain an estimate of Pm and Pf which are

finally added together to estimate Pe. The simulation results are illustrated in Fig. 5.10

and Fig. 5.11 for appearing and disappearing scenarios respectively and it is observed that

the composite-Bayesian-based adaptive ED outperforms the GLRT-based adaptive ED in
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Fig. 5.10 Performance comparison of the composite-Bayesian-based adap-
tive ED and the GLRT-based adaptive ED in the appearing scenario.
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Fig. 5.11 Performance comparison of the composite-Bayesian-based adap-
tive ED and the GLRT-based adaptive ED in the disappearing scenario.
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both scenarios. The superiority of the composite-Bayesian-based adaptive ED is expected

due to the fact that this technique makes use of a priori knowledge of the transition matrix

P to construct the test threshold γa as given in (5.40) and (5.46) for appearing and dis-

appearing scenarios, respectively. As observed in the simulation results, the performance

improvement may be significant depending on the application. However, the GLRT-based

adaptive ED can still be used as an alternative technique to the composite-Bayesian-based

adaptive ED if it is desired to save computations by avoiding a priori estimation of the

transition matrix components.

5.5 Summary

In this chapter, the change detection problem within a fixed observation interval was for-

mulated as the composite hypothesis testing and the two approaches introduced in Section

2.1.2 were employed to solve the given problem. The first approach, known as the GLRT,

uses the MLE of the unknown change location to construct the LR test. The use of this ap-

proach resulted into an adaptive ED of the form (5.14), where the test threshold is selected

to satisfy the NP criterion. The second approach, referred to as the composite-Bayesian,

considers the change location J as a discrete random variable with a known PMF to con-

struct the LR test. To obtain the PMF of J in the latter case, we modelled the PU channel

access pattern as a two-state Markov chain whose transition probabilities are assumed to

be known from a priori estimation. Applying the composite-Bayesian approach resulted

into an adaptive ED of the form (5.34), where the test threshold is computed based on the

Bayesian approach to minimize the probability of error. For both proposed adaptive EDs,

the derived thresholds are different in appearing and disappearing scenarios. Therefore, a

SU should employ the appearing scenario’s thresholds for the case that it is already trans-

mitting data and it is sensing the spectrum for the PU appearance. On the other hand,

a SU should use the disappearing scenario’s thresholds for the case that it is sensing for

an unoccupied spectrum band. The simulation results have proved that the two proposed

adaptive EDs outperform the conventional ED in both appearing and disappearing sce-

narios. Furthermore, the GLRT-based adaptive ED outperforms the previously proposed

adaptive ED in Chapter 4. As the final remark, the composite-Bayesian based adaptive ED

should be deployed to minimize the probability of error if the SU has a priori knowledge

of the PU’s activity within the sensing period. However, in the lack of such knowledge, the
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GLRT-based adaptive ED should be deployed to achieve a better detection performance in

comparison with the conventional ED.
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Chapter 6

Conclusion

This dissertation addressed the practical limitations of the conventional ED in dynamic

environments. In particular, we proved the performance deterioration of the conventional

ED in two specific scenarios, where there was a single change in the PU’s activity. The goal

was to design adaptive EDs to improve the detection performance in such environments.

In this chapter, we summarize the thesis, provide concluding points, and suggest some

research directions that may be considered for future work in this area.

6.1 Thesis Summary

This thesis began with a background on signal detection in AWGN, which was further ex-

tended to spectrum sensing techniques for CR applications. The most common block-based

spectrum sensing techniques were briefly covered, namely matched filter detection, cyclo-

stationary feature detection, and energy detection. We mentioned that the matched filter

technique requires a priori knowledge of the PU signal while the cyclostationary feature

detection exploits the inherent periodicity of the modulated PU signal with a high compu-

tational complexity. The aforementioned drawbacks limit the use of these two techniques

for CR applications. The energy detection is the most attractive spectrum sensing tech-

nique due to its ease of implementation, less restrictive assumptions (requires no a priori

knowledge of the PU signal), and low computational complexity. We proceeded to prove

the optimality of the conventional ED under the assumption that the PU received signals

are modelled as a white Gaussian process corrupted by AWGN. The proof was based on

the assumption that the received signal samples are homogeneous, that is, they belong to
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one of the two hypotheses through out the sensing period. This assumption is not realistic

in dynamic environments where the PU signal could appear and disappear at any time.

We proved that the performance of the conventional ED actually deteriorates in dynamic

environments where there is a single change in the PU’s activity during the sensing period

(i.e., the received samples are heterogeneous). More specially, we divided the analyses into

two separate scenarios: (1) The PU appearance scenario; and (2) The PU disappearance

scenario. The goal of the thesis was set to design adaptive EDs that could improve the

detection performance in both of the aforementioned scenarios.

The work in [53] was introduced as the only existing adaptive ED in the literature

that improves the detection performance in the appearing scenario. However, there was no

optimality associated with that work, which provided the possible opportunity for further

performance improvement. Furthermore, it did not considered the equally important sce-

nario where the PU disappears during the sensing period. Therefore, we proposed three

adaptive EDs to improve the detection performance in both appearing and disappearing

scenarios. The first adaptive ED was based on an intuitive approach, where the measured

energies of all sensing frames were exponentially weighted. In this case, the most recent

measured energies are emphasized more as compared to the past ones. The exponential

weighting approach has already been used to detect an abrupt change in digital signal

processing applications [82, 83]; hence, it was applied as the first approach to the change

detection problem in this thesis. In addition, the exponential weighting coefficients are

dynamically adjusted according to the estimated change location in order to make the de-

tector more compatible to the two dynamic scenarios of interest. Furthermore, the test

threshold of the proposed detector is selected to satisfy the NP criterion. The analytical

evaluation and simulation results proved the superiority of the proposed adaptive ED over

the conventional ED in both scenarios. In the appearing scenario, the proposed adaptive

ED also outperforms the work in [53].

In the next part of this study, the problem of change detection within the observation

interval was formulated as the composite hypothesis testing. It was proven that the UMP

test does not exist for this particular problem; therefore, two suboptimal approaches were

considered. The first approach, known as the GLRT, uses the MLE of the unknown change

location to construct the LR test. In this case, the test threshold is selected to satisfy

the NP criterion similar to what has been done in the first proposed adaptive ED. In

addition, an iterative method was proposed to reduce the computational complexity of the
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MLE process. The performance of the resultant adaptive ED was compared with that

of the conventional ED and also the first proposed adaptive ED. The simulation results

proved that the GLRT-based adaptive ED has superior performance over the two alternative

detectors in both scenarios. Therefore, we can conclude that the GLRT-based adaptive ED

is the most suitable detector for these types of problems as it attains the best performance

with a relatively low computational complexity. The second approach, referred to as the

composite-Bayesian, considers the change location as a discrete random variable with a

known PMF. In this case, the PU channel access pattern was modelled as a two-state

Markov chain in order to obtain the PMF of the change location in both scenarios. The

transition matrix of the Markov chain was assumed to be completely defined from a priori

estimation of the PU’s activity. The composite-Bayesian approach uses the PMF of the

change location to construct the LR test. In this case, the a priori information regarding

the PU channel access pattern was also used to obtain the probability of occurrence of the

two hypotheses; therefore, the test threshold is selected based on the Bayesian approach to

minimize the probability of error. The simulation results proved that the resultant adaptive

ED outperforms the conventional ED in both scenarios. Finally, we can conclude that the

composite-Bayesian-based adaptive ED should be deployed in the applications where the

SU has a priori knowledge about the PMF of the change location within the observation

interval.

6.2 Future Research Directions

We have proposed three adaptive EDs to improve the detection performance of the energy

detection technique in dynamic environments; however, there is still opportunity to further

extend this work for future research, which are outlined as follows:

• In this thesis, we considered the problem of change detection within a fixed observa-

tion interval from the individual SU’s point of view. This idea can be incorporated

into cooperative spectrum sensing as well in order to overcome the hidden terminal

and channel fading problems.

• The reliable detection of a single change was considered in this thesis which leaves

the detection of a sequence of changes an open area of research.
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Appendix A

The Distribution of Ym, its Mean and

Variance

Here, we first prove that Ym has a generalized chi-square distribution, that is Ym ∼
σ2
R

2
χ2(2B), where σ2

R is the variance of Rm(k). Then, we derive its mean and variance

under each frame-hypothesis as provided in (3.7a)-(3.7b). The following theorems are used

for this purpose:

Theorem 1 (Chi-square distribution [92, p. 373]) Let U be a random variable defined by:

U =
k∑

i=1

(
Xi − μi

σi

)2

, (A.1)

where the Xi are real, normally and independently distributed with means μi and variances

σ2
i . Then U has a chi-square distribution with k degrees of freedom, that is U ∼ χ2(k).

Theorem 2 (Sum of chi-square variates [93, p. 293]) If U1, ..., Uk are independent and

chi-square distributed random variables, Ui ∼ χ2(vi), then Y = U1 + ...+Uk has chi-square

distribution with v degrees of freedom, where v = v1 + ...+ vk.

Theorem 3 (First and second moment of chi-square variate [94, p. 571]) The mean and

variance of a chi-square random variable with v degrees of freedom, χ2(v), are:

E[χ2(v)] = v, (A.2)
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and

V ar[χ2(v)] = 2v. (A.3)

Ym is the energy of the mth sensing frame which is given by

Ym =
∑
k∈B

|Rm(k)|2, (A.4)

where {Rm(k)} is a random process whose samples are independent across frequency and

frame indices and follow a zero mean CSCG distribution with variances σ2
R|1 = σ2

x+σ
2
w and

σ2
R|0 = σ2

w under the frame-hypothesis that the PU signal is present and absent, respectively.

In turn, the squared magnitude of Rm(k) is given by

|Rm(k)|2 = (Re[Rm(k)])
2 + (Im[Rm(k)])

2, (A.5)

where the real and imaginary part of Rm(k) are jointly Gaussian, uncorrelated (which also

implies independence in this case), and have the same variance equal to half of the variance

of Rm(k) (i.e., σ
2
R/2). Scaling Ym by

2

σ2
R

results into the following:

Y ′
m =

2

σ2
R

Ym =
2

σ2
R

∑
k∈B

(Re[Rm(k)])
2 +

2

σ2
R

∑
k∈B

(Im[Rm(k)])
2

=
∑
k∈B

Zm,r(k)
2 +

∑
k∈B

Zm,i(k)
2, (A.6)

where Zm,r(k) =
2(Re[Rm(k)])

2

σ2
R

and Zm,i(k) =
2(Im[Rm(k)])

2

σ2
R

are independent standard

normal random variables. Since the cardinality of the set B is B, it follows that Y ′
m consists

of two summations of B i.i.d standard normal random variables. Based on Theorem 1, each

of these summations is a chi-square random variable with B degrees of freedom. These two

random variables are independent of each other; therefore, it can be concluded based on

Theorem 2 that Y ′
m has a chi-square distribution with 2B degrees of freedom. According

to (A.6), Y ′
m is the scaled version of Ym; thus, Ym is also chi-square distributed as

Ym ∼ σ2
R

2
χ2(2B). (A.7)
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We can finally obtained the mean and variance of Ym under each frame-hypothesis using

Theorem 3 as follows:

E[Ym|0] = μY |0 =
σ2
R|0
2

2B = σ2
wB, (A.8)

V ar[Ym|0] = σ2
Y |0 = (

σ2
R|0
2

)24B = σ4
wB, (A.9)

E[Ym|1] = μY |1 =
σ2
R|1
2

2B = (σ2
x + σ2

w)B, (A.10)

V ar[Ym|1] = σ2
Y |1 = (

σ2
R|1
2

)24B = (σ2
x + σ2

w)
2B. (A.11)
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Appendix B

Derivation of the Mean and the

Variance of TM

In this appendix, the mean and the variance of the conventional ED’s test statistic, TM , is

derived under the appearing and the disappearing scenarios.

B.1 Appearing Scenario

In this scenario, the PU appears on the Jth frame during the sensing period. Thus, the

two hypotheses are represented graphically for M sensing frames as follows:

H0: 1 2 3 4 M... ... ...

PU absent

H1: 1 2 3 ... J M... ...

PU absent PU present

The conventional ED sums up the energy of M frames to construct the test statistic, i.e,

TM =
∑M

m=1 Ym in (3.6). The frame energies {Ym : 1 ≤ m ≤M} are i.i.d chi-square random
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variables. Therefore, the mean and variance of TM is calculated under each hypothesis as

μT |H0 = E[TM |H0] = E[
M∑

m=1

Ym|H0] =
M∑

m=1

E[Ym|0], (B.1)

σ2
T |H0

= V ar[TM |H0] = V ar[
M∑

m=1

Ym|H0] =
M∑

m=1

V ar[Ym|0], (B.2)

μT |H1 = E[TM |H1] = E[
M∑

m=1

Ym|H1] =
J−1∑
m=1

E[Ym|0] +
M∑

m=J

E[Ym|1], (B.3)

σ2
T |H1

= V ar[TM |H1] = V ar[
M∑

m=1

Ym|H1] =
J−1∑
m=1

V ar[Ym|0] +
M∑

m=J

V ar[Ym|1], (B.4)

where (B.2) and (B.4) follow from the independence of the random variables Ym. Finally,

defining μY |i = E[Ym|i] and σ2
Y |i = V ar[Ym|i] for i = 0, 1, the above equations result into

μT |H0 = MμY |0, (B.5)

σ2
T |H0

= Mσ2
Y |0, (B.6)

μT |H1 = (J − 1)μY |0 + (M − J + 1)μY |1, (B.7)

σ2
T |H1

= (J − 1)σ2
Y |0 + (M − J + 1)σ2

Y |1, (B.8)

where μY |0, σ2
Y |0, μY |1, and σ2

Y |1 are given in (A.8)-(A.11).

B.2 Disappearing Scenario

In this scenario, the two hypotheses are represented graphically as

H0: 1 2 3 J M... ......

PU present PU absent

H1: 1 2 3 4 M... ......

PU present
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Similar to the previous scenario, the mean and variance of TM is obtained as follows:

μT |H0 = E[TM |H0] = E[
M∑

m=1

Ym|H0] =
J−1∑
m=1

E[Ym|1] +
M∑

m=J

E[Ym|0], (B.9)

σ2
T |H0

= V ar[TM |H0] = V ar[
M∑

m=1

Ym|H0] =
J−1∑
m=1

V ar[Ym|1] +
M∑

m=J

V ar[Ym|0], (B.10)

μT |H1 = E[TM |H1] = E[
M∑

m=1

Ym|H1] =
M∑

m=1

E[Ym|1], (B.11)

σ2
T |H1

= V ar[TM |H1] = V ar[
M∑

m=1

Ym|H1] =
M∑

m=1

V ar[Ym|1], (B.12)

which result into

μT |H0 = (J − 1)μY |1 + (M − J + 1)μY |0, (B.13)

σ2
T |H0

= (J − 1)σ2
Y |1 + (M − J + 1)σ2

Y |0, (B.14)

μT |H1 = MμY |1, (B.15)

σ2
T |H1

= Mσ2
Y |1. (B.16)
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Appendix C

Derivation of the PDF of R

In this appendix, the PDF of R is derived under the two hypotheses in the two scenarios

of interest. Recall that R = {Rm(k); 1 ≤ m ≤ M, k ∈ B}, where the enteries are i.i.d

CSCG random variables with zero mean and variance σ2
R. More specially, σ2

R|1 = σ2
w + σ2

x

and σ2
R|1 = σ2

w are the variances of Rm(k) when the PU is present and absent, respectively.

Due to the independence of the variates, the PDF of R is obtained as the product of the

marginal PDFs of Rm(k). Since Rm(k) is CSCG distributed, its conditional PDF is given

in a generic form by

f(Rm(k)|i) = 1

πσ2
R|i

exp

[
−|Rm(k)|2

σ2
R|i

]
, i ∈ {0, 1} (C.1)

The next step is to use (C.1) to obtain PDF of R in both appearing and disappearing

scenarios in terms of Ym defined in (3.4).

C.1 Appearing Scenario

Based on (5.1)-(5.2), the PDFs of R under the two hypotheses are derived as follows:

f(R|H0) =
M∏

m=1

∏
k∈B

f(Rm(k)|0) =
M∏

m=1

∏
k∈B

1

πσ2
R|0

exp

[
−|Rm(k)|2

σ2
R|0

]

=
M∏

m=1

(
1

πσ2
R|0

)B exp

[
−Ym
σ2
R|0

]
= (

1

πσ2
R|0

)BM exp

[
−∑M

m=1 Ym
σ2
R|0

]
, (C.2)
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f(R|J,H1) =
J−1∏
m=1

∏
k∈B

f(Rm(k)|0)
M∏

m=J

∏
k∈B

f(Rm(k)|1)

=
J−1∏
m=1

∏
k∈B

1

πσ2
R|0

exp

[
−|Rm(k)|2

σ2
R|0

]
M∏

m=J

∏
k∈B

1

πσ2
R|1

exp

[
−|Rm(k)|2

σ2
R|1

]

=
J−1∏
m=1

(
1

πσ2
R|0

)B exp

[
−Ym
σ2
R|0

]
M∏

m=J

(
1

πσ2
R|1

)B exp

[
−Ym
σ2
R|1

]

= (
σ2
R|1
σ2
R|0

)B(J−1) exp

[
−∑J−1

m=1 Ym
σ2
R|0

]
(

1

πσ2
R|1

)BM exp

[
−∑M

m=J Ym
σ2
R|1

]
. (C.3)

C.2 Disappearing Scenario

In this scenario, the two hypotheses are given in (5.8)-(5.9), where H0 is now conditioned

on J . Similar to the appearing scenario, the PDF of R is derived as

f(R|J,H0) =
J−1∏
m=1

∏
k∈B

f(Rm(k)|1)
M∏

m=J

∏
k∈B

f(Rm(k)|0)

=
J−1∏
m=1

∏
k∈B

1

πσ2
R|1

exp

[
−|Rm(k)|2

σ2
R|1

]
M∏

m=J

∏
k∈B

1

πσ2
R|0

exp

[
−|Rm(k)|2

σ2
R|0

]

=
J−1∏
m=1

(
1

πσ2
R|1

)B exp

[
−Ym
σ2
R|1

]
M∏

m=J

(
1

πσ2
R|0

)B exp

[
−Ym
σ2
R|0

]

= (
σ2
R|0
σ2
R|1

)B(J−1) exp

[
−∑J−1

m=1 Ym
σ2
R|1

]
(

1

πσ2
R|0

)BM exp

[
−∑M

m=J Ym
σ2
R|0

]
, (C.4)

f(R|H1) =
M∏

m=1

∏
k∈B

f(Rm(k)|1)

=
M∏

m=1

∏
k∈B

1

πσ2
R|1

exp

[
−|Rm(k)|2

σ2
R|1

]

=
M∏

m=1

(
1

πσ2
R|1

)B exp

[
−Ym
σ2
R|1

]

= (
1

πσ2
R|1

)BM exp

[
−∑M

m=1 Ym
σ2
R|1

]
. (C.5)
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Appendix D

Computational Complexity Analysis

of the MLE Process

We analyse the computational complexity of the MLE process, which is represented with

the associated number of real arithmetic operations as

Ĵ = argmax
1≤J≤M

BJ ln(
σ2
R|1
σ2
R|0

)︸ ︷︷ ︸
1 mult.+1 log.

+
σ2
R|1 − σ2

R|0
σ2
R|1σ

2
R|0

M∑
m=J

Ym︸ ︷︷ ︸
1 mult.+(M−J+1) summ.︸ ︷︷ ︸

1 summ.

, (D.1)

where mult., summ., and log. stand for multiplication, summation, and logarithm oper-

ation, respectively. Thus, 5 + M − J arithmetic operations are required to obtain the

objective function for a given J . Finally, the total computational complexity of the MLE

process is obtained by summing the number of operations over 1 ≤ J ≤M as follows:

M∑
J=1

(4 +M − J) =M(4 +M)−
M∑
J=1

J = 4M +M2 − M2 +M

2
=

7M

2
+
M2

2
, (D.2)

using the fact that
n∑

i=1

i =
n2 + n

2
, (D.3)
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for all natural number n. Based on (D.2), the computational complexity of MLE process

is
7M

2
+
M2

2
, which is dominated by

M2

2
. Therefore, M2 represents the order of the

computation complexity.
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Appendix E

Derivation of the Adaptive Test

Threshold Based on the

Composite-Bayesian Approach

In this appendix, we prove that the use of the composite-Bayesian approach in the two

scenarios of interest results into an adaptive ED of the form (5.34), where the test threshold

is given by (5.40) and (5.46) for the appearing and disappearing scenario, respectively.

E.1 Appearing Scenario

We first start by taking the natural logarithm on both sides of (5.38):

ln(LB(R)) = ln

(
M∑
J=1

f(R|J,H1)p(J)

)
− ln(f(R|H0))

H1

�
H0

ln(η), (E.1)

where f(R|H0), f(R|J,H1), and p(J) are provided in (5.4), (5.5), and (5.36), respectively.

Thus, the first term on the left hand side of the inequality in (E.1) is computed as

ln

(
M∑
J=1

f(R|J,H1)p(J)

)
= −BM ln(πσ2

R|1)+

ln

(
M∑
J=1

[
(
σ2
R|1
σ2
R|0

)B(J−1) exp

[
−∑J−1

m=1 Ym
σ2
R|0

]
exp

[
−∑M

m=J Ym
σ2
R|1

]
p
(J−1)
00 p01

])
.

(E.2)
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We let aJ be equal to the expression inside the summation on the right hand side of the

equality in (E.2), and use the following logarithmic identity:

ln(
M∑
J=1

aJ) = ln(a1) + ln(1 +
M∑
J=2

aJ
a1

), (E.3)

to rewrite (E.2) as

ln

(
M∑
J=1

f(R|J,H1)p(J)

)
= −BM ln(πσ2

R|1)−
M∑

m=1

Ym
σ2
R|1

+ ln(p01)+

ln

(
1 +

M∑
J=2

[
(
σ2
R|1
σ2
R|0

)B(J−1) exp

[
σ2
R|0 − σ2

R|1
σ2
R|0σ

2
R|1

J−1∑
m=1

Ym

]
pJ−1
00

])
.

(E.4)

The second term on the left hand side of the inequality in (E.1) is given as

ln(f(R|H0)) = −MB ln(πσ2
R|0)−

M∑
m=1

Ym
σ2
R|0
. (E.5)

Finally, substituting (E.5) and (E.4) back into (E.1) and further manipulation result into

the adaptive ED of the form (5.34) where the test threshold is given by (5.40).

E.2 Disappearing Scenario

Similar to the appearing scenario, we start by taking the logarithm of both side in (5.44):

ln(LB(R)) = ln(f(R|H1))− ln

(
M∑
J=1

f(R|J,H0)p(J)

)
H1

�
H0

ln(η), (E.6)

where

ln(f(R|H1)) = −BM ln(πσ2
R|1)−

M∑
m=1

Ym
σ2
R|1
, (E.7)
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ln

(
M∑
J=1

f(R|J,H0)p(J)

)
= −BM ln(πσ2

R|0)+

ln

(
M∑
J=1

[
(
σ2
R|0
σ2
R|1

)B(J−1) exp

[
−∑J−1

m=1 Ym
σ2
R|1

]
exp

[
−∑M

m=J Ym
σ2
R|0

]
p
(J−1)
11 p10

])
.

(E.8)

We use the same logarithmic identity provided in (E.3), to rewrite (E.8) as

ln

(
M∑
J=1

f(R|J,H0)p(J)

)
= −BM ln(πσ2

R|0)−
M∑

m=1

Ym
σ2
R|0

+ ln(p10)+

ln

(
1 +

M∑
J=2

[
(
σ2
R|0
σ2
R|1

)B(J−1) exp

[−σ2
R|0 + σ2

R|1
σ2
R|0σ

2
R|1

J−1∑
m=1

Ym

]
pJ−1
11

])
.

(E.9)

Substituting (E.9) and (E.7) back into (E.6) plus further manipulation result into an adap-

tive ED of the form (5.34) where γa is given by (5.46).
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