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Abstract 
Voice Activity Detection (VAD) is often treated as a classification problem where the goal is to 

discriminate, at a given time, between desired speech and background noise. Although many state-

of-the-art approaches for increasing the performance of VAD have been proposed, they are still 

not robust enough to be applied under adverse noise conditions with low signal-to-noise ratio 

(SNR). In this work, we first introduce a novel attention model-based phase-aware deep neural 

network architecture for VAD which takes advantage of complex Ideal Ratio Mask (cIRM). The 

proposed method, named AM-cIRM, includes a cIRM extractor and a VAD module. The cIRM 

extractor learns auxiliary features by estimating the magnitude and phase of clean speech, 

providing information that is complementary to commonly used acoustic features. Combining and 

exploiting that information from cIRM and other acoustic features, the VAD module determines 

which frequency and temporal components are more important for detection by applying attention 

mechanisms. We subsequently present an efficient transformer-based network, which includes a 

feature embedding module for effective feature extraction, several depth-wise transformer blocks, 

and a classifier. In contrast to the former method, the transformer-based method, which we called 

Tr-VAD, implements efficient operations on feature patches with the smallest possible number of 

parameters. Experimental results show that both proposed methods achieve improved VAD 

performance compared to baseline methods from the literature in low to moderate SNR 

environments. However, Tr-VAD is more efficient than AM-cIRM as it requires fewer network 

parameters to achieve a similar performance. The results also indicate that the use of additional 

audio fingerprinting features with Tr-VAD can guarantee better performance. 
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Sommaire 
La détection d'activité vocale (VAD) est souvent traitée comme un problème de classification où 

le but est de discriminer, à un moment donné, entre la parole souhaitée et le bruit de fond. Bien 

que de nombreuses approches de pointe pour augmenter les performances de la VAD aient été 

proposées, elles ne sont toujours pas assez robustes pour être appliquées dans des conditions de 

bruit défavorables avec un faible rapport signal sur bruit (SNR). Dans ce travail, nous introduisons 

d'abord une nouvelle architecture de réseau de neurones profond à détection de phase basée sur un 

modèle d'attention pour VAD qui tire parti du masque de rapport idéal (cIRM) complexe. La 

méthode proposée, nommée AM-cIRM, comprend un extracteur cIRM et un module VAD. 

L'extracteur cIRM apprend les caractéristiques auxiliaires en estimant l'amplitude et la phase de la 

parole non-bruitée, fournissant des informations complémentaires aux caractéristiques acoustiques 

couramment utilisées. En combinant et en exploitant ces informations du cIRM et d'autres 

caractéristiques acoustiques, le module VAD détermine quelles fréquences et quelles composantes 

temporelles sont les plus importantes pour la détection en appliquant des mécanismes d'attention. 

Nous présentons ensuite un réseau efficace basé sur des transformateurs, qui comprend un module 

d'intégration de caractéristiques pour une extraction efficace des caractéristiques, plusieurs blocs 

de transformateurs en profondeur et un classificateur. Contrairement à la première méthode, la 

méthode basée sur le transformateur, que nous avons appelée Tr-VAD, implémente des opérations 

efficaces sur des portions de descripteurs avec le plus petit nombre possible de paramètres. Les 

résultats expérimentaux montrent que les deux méthodes proposées permettent d'obtenir des 

performances VAD améliorées par rapport aux méthodes de base de la littérature dans des 

environnements à faible SNR. Cependant, Tr-VAD est plus efficace que AM-cIRM car il nécessite 

moins de paramètres réseau pour obtenir des performances similaires. Les résultats indiquent 
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également que l'utilisation d'empreintes audio comme descripteurs additionnels avec Tr-VAD peut 

garantir de meilleures performances.  



iv 
 

Acknowledgements 
First and foremost, I would like to express my deep and sincere gratitude to my research supervisor 

Prof. Benoit Champagne for giving me the opportunity to do research and providing invaluable 

guidance through this research. He has taught me the methodology to carry out the research and to 

present the research works as clearly as possible. I also appreciate the patient guidance and 

suggestions from Dr. Yazid Attabi (post-doctoral fellow), who provided constructive and useful 

comments throughout my research work. 

I am extremely grateful to my beloved parents for their love, prayers, caring and sacrifices for 

educating and preparing me for my future.  

This journey in Montreal would not have been the same without the encouragement from my friend 

Yuntian Zhang who always cheers me up when I am down. Last but not least, I also appreciate the 

support from other friends, you make my journey colorful. 

  



v 
 
 

 

Contents 

 

Abstract ........................................................................................................................................... i 

Sommaire ....................................................................................................................................... ii 

Acknowledgements ...................................................................................................................... iv 

List of Figures ............................................................................................................................. viii 

List of Tables ................................................................................................................................ ix 

List of Acronyms ........................................................................................................................... x 

1  Introduction ............................................................................................................................... 1 

1.1 Overview of Voice Activity Detection ................................................................................. 1 

1.2 Literature Review.................................................................................................................. 2 

1.3 Thesis Contributions ............................................................................................................. 4 

1.4 Organization .......................................................................................................................... 5 

2  Background Theory .................................................................................................................. 6 

2.1 Acoustic Features .................................................................................................................. 6 

2.2 Classical Method: Robust VAD............................................................................................ 9 

2.3 Spectro-Temporal Attention Model .................................................................................... 14 



vi 
 

2.3.1 Feature Expansion ........................................................................................................ 14 

2.3.2 Model architecture of STAM ....................................................................................... 15 

2.4 Summary ............................................................................................................................. 18 

3  Complex IRM-Aware Training for VAD using Attention Model ...................................... 19 

3.1 Overview of the Proposed System ...................................................................................... 19 

3.2 cIRM Feature Extractor ...................................................................................................... 20 

3.3 Feature Transformation ....................................................................................................... 23 

3.4 Voice Activity Detector ...................................................................................................... 25 

3.5 Loss Functions .................................................................................................................... 25 

3.6 Summary ............................................................................................................................. 27 

4  Efficient Transformer with Feature Patches for VAD ........................................................ 28 

4.1 Feature Embedding ............................................................................................................. 29 

4.2 Depth-Wise Transformer Block with Feature Patches ....................................................... 29 

4.2.1 Multi-Head Self Attention with Feature Patches ......................................................... 30 

4.2.2 Feed-Forward Network with Feature Patches .............................................................. 34 

4.3 Classifier ............................................................................................................................. 35 

4.4 Summary ............................................................................................................................. 36 

5  Experiments and Results ........................................................................................................ 38 

5.1 Methodology ....................................................................................................................... 38 

5.1.1 Dataset.......................................................................................................................... 38 



vii 
 

5.1.2 Parameter Setting ......................................................................................................... 40 

5.1.3 Baseline Methods ......................................................................................................... 42 

5.1.4 Evaluation Metrics ....................................................................................................... 44 

5.2 Results and Discussion ....................................................................................................... 44 

5.2.1 Experimental Results for AM-cIRM ........................................................................... 45 

5.2.2 Further Comparison of AM-cIRM and Tr-VAD ......................................................... 47 

5.3 Summary ............................................................................................................................. 51 

6  Conclusion and Future Work ................................................................................................ 53 

6.1 Thesis Overview and Contributions.................................................................................... 53 

6.2 Future Work ........................................................................................................................ 55 

References .................................................................................................................................... 56 

 

  



viii 
 
 

 

List of Figures 
 

Fig. 2.1 Processing flow of rVAD method. ............................................................................. 12 

Fig. 2.2 Model architecture of STAM. ..................................................................................... 14 

Fig. 2.3 Spectral attention block. ............................................................................................. 15 

Fig. 2.4 Single-headed attention function in STAM. ............................................................... 17 

 

Fig. 3.1 Model architecture of the AM-cIRM. ......................................................................... 20 

Fig. 3.2 Illustration of the DCUnet-based cIRM extractor. ..................................................... 22 

Fig. 3.3 Block diagram of the feature transformation module. ................................................ 24 

 

Fig. 4.1 Architecture of Tr-VAD. ............................................................................................ 28 

Fig. 4.2 Block diagram of the 𝑖𝑖𝑖𝑖ℎ Depth-Wise Transformer Block ........................................ 30 

Fig. 4.3 Illustration of the MHSA module with feature patches. ............................................. 31 

Fig. 4.4 Illustration of the attention function in Tr-VAD. ....................................................... 33 

Fig. 4.5 Architecture of the Feed-Forward Network with patches. ......................................... 35 

Fig. 4.6 Architecture of the Classifier. ..................................................................................... 37 

 

Fig. 5.1 Comparison of the hard VAD decisions produced by different methods. .................. 49 

  



ix 
 
 

 

List of Tables 
 

Table 5.1 Parameter Setting for cIRM Extractor ..................................................................... 40 

Table 5.2 Parameter Setting for Tr-VAD ................................................................................. 42 

Table 5.3 Comparison of F1 (in precent) Score for AM-cIRM and Baseline Methods .......... 45 

Table 5.4 Comparison of DCF (in precent) for AM-cIRM and Baseline Methods ................. 46 

Table 5.5 Comparison of F1 Score (in precent) for Different SNRs on TIMIT-1 for AM-cIRM

 .................................................................................................................................................. 46 

Table 5.6 Comparison of DCF (in precent) for Different SNRs on TIMIT-1 for AM-cIRM.. 47 

Table 5.7 The Influence of Neighboring Frames on the performance of AM-cIRM for the 

TIMIT-1 case (in percent) ........................................................................................................ 47 

Table 5.8 Averaged F1 Score and DCF (in percent) for the Proposed Methods on TIMIT Dataset

 .................................................................................................................................................. 48 

Table 5.9 Comparison of F1 Score and DCF (in precent) for Different SNRs on the TIMIT-1 

for AM-cIRM and Tr-VAD ..................................................................................................... 48 

Table 5. 10 Running time required for inference ..................................................................... 50 

Table 5.11 Ablation Study on Tr-VAD on TIMIT-1 (in percent)............................................ 51 

Table 5.12 The Influence of Neighboring Frames on Tr-VAD on TIMIT-1 (in percent) ....... 51 

  



x 
 
 

 

List of Acronyms 
 

AFPC   Audio Fingerprinting Combination  

ASR   Automatic Speech Recognition  

bDNN  boosted Deep Neural Network 

CE   Cross Entropy  

cIRM  complex Ideal Ratio Mask 

DBNs   Deep Belief Networks  

DCF   Detection Cost Function 

DCT   Discrete Cosine Transform  

DNNs   Deep Neural Networks  

DW  Depth-Wise Convolution 

FCN  Fully Connected Network 

FFN  Feedforward Network 

GMM   Gaussian Mixture Model  

HMM   Hidden Markov Model  



xi 
 

IBM   Ideal Binary Mask  

IRM   Ideal Ratio Mask  

ISTFT  Inverse Short-Time-Fourier-Transform 

LRT   Likelihood Ratio Test  

MFCC  Mel-Frequency Cepstral Coefficients  

MHSA  Multi-Headed Self Attention  

MLP  Multilayer Perceptron 

MSNE  Minimum Statistics Noise Estimation 

NSSC  Normalized Spectral Subband Centroids 

SE   Speech Enhancement  

SNR   Signal to Noise Ratio  

SSC  Spectral Subband Centroids 

SVM   Support Vector Machines  

VAD   Voice activity detection  

VoIP   Voice over Internet Protocol  

wSDR   weighted-Source-to-Distortion Ratio loss  

ZCR   Zero Crossing Rate  

  



1 
 

 

 

Chapter 1  

Introduction  
 

This chapter provides a general overview of the thesis. We first introduce the problem of Voice 

Activity Detection (VAD) and present a literature survey on representative methods aiming at 

solving the problem. Then the research objectives and main contributions of the thesis are 

summarized. Finally, the organization of the upcoming chapters is outlined. 

1.1 Overview of Voice Activity Detection 

Voice activity detection, also known as speech endpoint detection, refers to a family of methods 

that classify frames of audio signals into speech and non-speech. Given the recent growth of Voice 

over Internet Protocol (VoIP) applications and the burst of connected devices that are increasingly 

getting voice calling functionality, saving on computation and on network bandwidth are becoming 

more and more important. As VAD determines the presence or absence of human voice, it can 

facilitate speech processing and avoid unnecessary coding/transmission of non-speech segments, 

such as silence and background noises. Thus, VAD often serves as an important preprocessor for 

many speech-related applications including speaker recognition, automatic speech recognition, 

keyword spotting, and hearing aids [1], [2].  
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The primary difficulty in developing VAD systems lies in distinguishing between the desired 

speech signal from a wide variety of stationary and non-stationary noise backgrounds. Ideally, a 

robust VAD system should be independent of language and should still provide good performance 

in low SNR environments. In practice, speech signals often contaminated by high level of noise 

(i.e. low SNR) which brings great challenges for the accurate operation of a VAD system. 

1.2 Literature Review 

With the continuous development of speech technologies, the research on VAD has become a topic 

of continuing interest. Conventional VAD methods were based on power calculations in the time 

domain [1], [3] under the assumption that the speech power is greater than the noise power. Other 

methods were subsequently developed that rely on the use of classical or handcrafted features of 

speech signals, such as zero crossing rate (ZCR) [4], spectral or cepstral features [4], [5], pitch 

detection [3], [6], and higher order statistics [7]. For example, pitch information plays an important 

role in rVAD [3] which uses pitch as an anchor to locate potential speech regions. However, these 

methods only reflect partial characteristics of human voice, and may be ineffective in some 

complex scenarios when used alone. In the past, several VAD methods have also been developed 

based on the likelihood ratio test (LRT) [8], assuming a prior knowledge of the speech signal and 

noise distributions. Typical model distributions used in this context include Gaussian [9], [10], 

Laplacian [11], Gamma distributions [12] and so.  

However, these methods use limited and temporally localized data sets to estimate model 

parameters, and require considerable understanding of the audio environment for proper choice of 

models and estimation of associated parameters. Although these conventional methods perform 

reasonably well in some scenarios, they have difficulty handling a wide variety of speech signals 

from different speakers and under diverse range of real-world noise environments. Especially, real-
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world data distributions may be too complicated to be modeled accurately by a predefined 

mathematical model. 

Recently, machine learning methods have demonstrated good classification results for the 

purpose of VAD. They are flexible in incorporating prior knowledge, such as manually labeled 

data, and also good at extracting multiple acoustic features. Existing supervised models for 

classification include linear discriminant analysis [13], support vector machines (SVM) [14], 

sparse coding [15], Gaussian Mixture Model (GMM) [16], Hidden Markov Model (HMM) [17], 

and especially deep neural networks (DNNs). Recognizing DNNs’ unprecedented effectiveness, 

many researchers have proposed DNN-based methods and have shown superior performance over 

conventional ones. In contrast to classic methods, these approaches learn to implicitly model data 

without assuming an explicit model of noisy speech signals. One strength of DNN methods is their 

flexible capture of speech variability by using non-linear transformation functions. 

To detect voice activity, Deep Belief Networks (DBNs) [18] were applied and outperformed 

the conventional SVM-based VAD. Recurrent Neural Networks (RNNs) [19] were also 

successfully applied to VAD. However, RNNs suffer from state saturation problems when the 

utterance is long [20]. A combined end-to-end VAD system is introduced by [21] which utilizes 

WaveNet-based network [22] for acoustic feature extraction and a deep residual network for video 

feature extraction. Reference [23] proposes a three-tiered model for boosting contextual 

information by incorporating boosted Deep Neural Networks (bDNN) with Multi-Resolution 

Stacking (MRS) and MultiResolution CochleaGram (MRCG) features. Inspired by the results of 

[24], [25] showing that auxiliary features, such as phoneme information, can improve speech 

enhancement performance, reference [26] shows the improvement in the performance of DNN-

based VAD by using auxiliary features output from two types of auxiliary speech models.  
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More recently, there has been a growing interest in the use of attention mechanism for ASR 

applications [27], [28]. Inspired by their effectiveness, the attention models have also been applied 

to the VAD task. The Adaptive Context Attention Model (ACAM), proposed by [29], adopts an 

attention mechanism to exploit temporal information. However, ACAM’s reinforcement loss 

function often tends to make the model training unstable and sensitive to hyperparameters. 

Reference [30] further improves the VAD performance by applying attention mechanisms to both 

contextual and spectral information. 

1.3 Thesis Contributions 

To further improve the robustness in noisy environments, we firstly propose a novel attention 

model-based phase-aware deep neural network architecture for VAD, called AM-cIRM, which 

takes advantages of complex Ideal Ratio Masks (cIRM). consists of three modules: a cIRM 

extractor, a feature transformation module, and an attention model-based VAD module. 

Combining phase and magnitude information from the cIRM and noisy spectrogram as input, the 

detector exploits useful information and makes decisions by considering which part of the features 

is more important using attention modules. Secondly, we further proposed a transformer-based 

DNN architecture for VAD, refer to as Tr-VAD. This second method implements efficient 

convolution operations on split patches of input features. It contains an embedding layer for feature 

extraction, several depth-wise transformer blocks, and a classifier. To the best of our knowledge, 

this is the first attempt to adopt transformer-based architecture for the VAD task. The performance 

of the two proposed methods is evaluated by means of the standard F1 score and Detection Cost 

Function (DCF), using a data set comprised of a wide variety of speech signals contaminated by 

different types and levels of noise. The experimental results confirm that the proposed methods 

can achieve notable performance improvements over state-of-the-art VAD approaches. 
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1.4 Organization 

The remaining part of the thesis is organized as follows. Chapter 2 describes background theory 

including: the acoustic features used in our work, a recent but non-DNN-based VAD method, and 

a state-of-the-art DNN-based VAD method. Chapter 3 presents the architecture and components 

of the proposed AM-cIRM while Chapter 4 discusses the architecture of the Tr-VAD model. 

Chapter 5 describes the experimental setup and compares the performance of different models. 

Finally, a summary of our work along with concluding remarks are presented in Chapter 6.  
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Chapter 2  

Background Theory 
 

In this chapter, we present the definitions of the acoustic feature vectors used in our work as well 

as a brief overview of two VAD methods, i.e., the unsupervised segment-based method for robust 

Voice Activity Detection (rVAD) [3] and the Spectro-Temporal Attention-based VAD model 

(STAM) [30]. Both rVAD and STAM will later serve as benchmarks. 

2.1 Acoustic Features for VAD 

The input noisy speech signal 𝑥𝑥[𝑛𝑛] is modeled as: 

𝑥𝑥[𝑛𝑛] = 𝑠𝑠[𝑛𝑛] + 𝑤𝑤[𝑛𝑛] (2.1) 

where 𝑠𝑠[𝑛𝑛]  denotes the clean speech signal, 𝑤𝑤[𝑛𝑛]  denotes the noise signal, and 𝑛𝑛 ∈ ℤ  is the 

discrete-time index. 

To extract acoustic features, the entire audio samples are first pre-emphasized via linear filtering 

to boost the highband formants: 

�̅�𝑥[𝑛𝑛] = 𝑥𝑥[𝑛𝑛] − 𝛼𝛼𝑥𝑥[𝑛𝑛 − 1] (2.2) 

where 𝛼𝛼 is the pre-emphasis coefficient, with 0.95 ≤ 𝛼𝛼 ≤ 1. 
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Then Short-Time-Fourier-Transform (STFT) is applied to the pre-emphasized signal �̅�𝑥[𝑛𝑛]  as 

follows: 

𝑋𝑋(𝑖𝑖, 𝑓𝑓) = � �̅�𝑥�𝑛𝑛 + 𝑖𝑖𝐿𝐿hop�ℎ[𝑛𝑛]𝑒𝑒−𝑗𝑗2π𝑓𝑓𝑓𝑓/𝑁𝑁
𝑁𝑁−1

𝑓𝑓=0

(2.3) 

where 𝑖𝑖 is the frame index, 𝐿𝐿hop is the frame advance, 𝑓𝑓 ∈ {0, 1, 2, … ,𝑁𝑁/2} is the frequency bin 

index, 𝑁𝑁 is the window size and ℎ[𝑛𝑛] is a window function. 

The power of the transformed output |𝑋𝑋(𝑖𝑖,𝑓𝑓)|2 is then warped according to the Mel scale in 

order to adapt the frequency resolution to the properties of the human ear. The corresponding 

frequency transformation can be expressed as: 𝜙𝜙𝑓𝑓 = 2595 log10 �1 + 𝑙𝑙𝑓𝑓
700
�, where 𝜙𝜙𝑓𝑓 is the Mel 

frequency and 𝑙𝑙𝑓𝑓 is the linear frequency in Hz. Warping of the power spectrum can be realized by 

applying a series of overlapping triangular spectral shaping filters to the power spectrum. These 

filters are defined by their center frequencies and width, the former being obtained by applying the 

transformation ϕ𝑓𝑓  to a set of uniformly spaced frequencies. Finally, the logarithm function is 

applied to the output of each filter: 

FBank(𝑖𝑖, 𝑏𝑏) = 20log10 �� 𝑢𝑢𝑏𝑏(𝑓𝑓)|𝑋𝑋(𝑖𝑖,𝑓𝑓)|2
ℎ𝑏𝑏

𝑓𝑓=𝑙𝑙𝑏𝑏

� (2.4) 

where 𝑏𝑏 ∈ {0,1, … ,𝐵𝐵 − 1} is the filter index, 𝐵𝐵 is the number of triangular filters in the Mel filter 

bank, 𝑢𝑢𝑏𝑏(𝑓𝑓) is the spectral shaping filter of the 𝑏𝑏𝑡𝑡ℎ subband, 𝑙𝑙𝑏𝑏 and ℎ𝑏𝑏 are the lower and upper 

Mel frequency limits of 𝑢𝑢𝑏𝑏(𝑓𝑓) respectively. The vector of log-Mel filter bank features computed 

at the 𝑖𝑖𝑡𝑡ℎ frame is denoted as: 

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐤𝐤t = [FBank(𝑖𝑖, 0), … , FBank(𝑖𝑖, 𝑏𝑏), … , FBank(𝑖𝑖,𝐵𝐵 − 1)] (2.5) 



8 
 

The Discrete Cosine Transform (DCT) - Type Ⅲ [31] is applied to the log-Mel filter bank 

features to obtain Mel-Frequency Cepstral Coefficients (MFCC): 

MFCC(𝑖𝑖, 𝑏𝑏′) = � 2 
 𝐵𝐵 

 � FBank(𝑖𝑖, 𝑏𝑏) cos�
𝑝𝑝𝑝𝑝
𝐵𝐵

(𝑏𝑏 − 0.5)�
𝐵𝐵−1

𝑏𝑏=0

(2.6) 

where 𝑏𝑏′  ∈ {0,1, … ,𝐵𝐵′ − 1} and 𝐵𝐵′ is the number of coefficients. We define the MFCC feature 

vector of the current data frame as:  

𝐌𝐌𝐅𝐅𝐌𝐌𝐌𝐌t = [MFCC(𝑖𝑖, 0), … , MFCC(𝑖𝑖,𝐵𝐵′ − 1)] (2.7) 

The Spectral Subband Centroids (SSC), introduced in [32], are often used to measure the center 

of mass of a subband spectrum in terms of frequency. The SSC have demonstrated robustness 

against the equalization, data compression and additive noise, as these modifications do not 

significantly alter the peak frequencies at moderate to high SNR [33]. It was also reported that the 

SSC-based features resulted in higher audio recognition accuracy than MFCC-based ones. To 

calculate SSC, a weighted average technique using a bank of spectral weighting filters is applied 

as follows: 

SSC(𝑖𝑖, 𝑏𝑏) =
∑ 𝑓𝑓𝑢𝑢𝑏𝑏′ (𝑓𝑓)|𝑋𝑋(𝑖𝑖,𝑓𝑓)|2ℎ𝑏𝑏
𝑓𝑓=𝑙𝑙𝑏𝑏

∑ 𝑢𝑢𝑏𝑏′ (𝑓𝑓)|𝑋𝑋(𝑖𝑖,𝑓𝑓)|2ℎ𝑏𝑏
𝑓𝑓=𝑙𝑙𝑏𝑏

(2.8) 

where 𝑢𝑢𝑏𝑏′ (𝑓𝑓) is the corresponding subband filter. For simplicity, in this thesis, we use the same set 

of filters 𝑢𝑢𝑏𝑏(𝑓𝑓) for the calculation of the MFCC and SCC features. 

The SSC are usually normalized to the range [−1,1] for efficient training. Especially, the 

Normalized SSC (NSSC) features are obtained as: 
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NSSC(𝑖𝑖, 𝑏𝑏) =
SSC(𝑖𝑖, 𝑏𝑏) − (ℎ𝑏𝑏 − 𝑙𝑙𝑏𝑏)

ℎ𝑏𝑏 − 𝑙𝑙𝑏𝑏
(2.9) 

Similarly, we define the NSSC feature vector of signal 𝑥𝑥[𝑛𝑛] at the 𝑖𝑖𝑡𝑡ℎ frame as:  

𝐍𝐍𝐍𝐍𝐍𝐍𝐌𝐌t = [NSSC(𝑖𝑖, 0), … , NSSC(𝑖𝑖,𝐵𝐵 − 1)] (2.10) 

In [34], a combination of MFCC and NSCC used as inputs to a generative adversarial network 

has demonstrated superior performance for speech enhancement; in out work, we shall make use 

of a similar concatenation of features. The resulting Audio Fingerprinting Combination (AFPC) at 

the 𝑖𝑖𝑡𝑡ℎ frame is defined as: 

AFPCt = [MFCCt,ΔMFCC𝑡𝑡,Δ2MFCCt, NSSCt,ΔNSSCt,Δ2NSSCt] (2.11) 

where Δ and Δ2 are the delta and double-delta operations, respectively. 

Conventional VAD systems usually consist of feature extraction module, decision making 

module and decision smoothing (or hangover scheme). These algorithms use hangover scheme as 

a post processing step to refine the decision boundaries. J. Sohn et al. [9] applied a hangover 

scheme to prevent the clipping of weak speech tails, this scheme is based on a HMM whereby the 

speech decision of a current frame only depends on the current frame and the previous frame. A 

hangover scheme which simply delayed the transition from a speech declaration to a non-speech 

declaration was also implemented by D. Ying et al. [10] to account for the low energy regions of 

the tail end of utterances. 

2.2 Classical Method: Robust VAD 

The main steps of the rVAD method [3] are summarized in Fig. 2.1. The method includes two 

passes of denoising followed by a VAD stage. In the first pass, the smoothed 𝑎𝑎 𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖 SNR 
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weighted energy difference of two consecutive frames is calculated. This is done through the 

following steps: 

1) Calculate the a posteriori SNR weighted energy difference of two consecutive frames as: 

𝑑𝑑(𝑖𝑖) = �|𝐸𝐸𝑥𝑥(𝑖𝑖) − 𝐸𝐸𝑥𝑥(𝑖𝑖 − 1)| max�SNRpost (𝑖𝑖), 0� (2.12) 

where 𝐸𝐸𝑥𝑥(𝑖𝑖)  is the energy of the 𝑖𝑖𝑡𝑡ℎ  frame of noisy speech 𝑥𝑥[𝑛𝑛],  and SNRpost (𝑖𝑖)  is a 

posteriori SNR that is calculated as the logarithmic ratio of 𝐸𝐸𝑥𝑥(𝑖𝑖) to the estimated energy 

of the 𝑖𝑖𝑡𝑡ℎ frame of noisy speech 𝑤𝑤[𝑛𝑛]: 

SNRpost(𝑖𝑖) = 10 log10
𝐸𝐸𝑥𝑥(𝑖𝑖)
𝐸𝐸�𝑤𝑤(𝑖𝑖)

(2.13) 

In Eq. (2.13), the energy of the noisy signal is calculated as 𝐸𝐸𝑥𝑥(𝑖𝑖) = ∑ 𝑥𝑥[𝑛𝑛]2𝑓𝑓 , where the 

sum extends over all samples in the 𝑖𝑖𝑡𝑡ℎ  frame. The noise energy 𝐸𝐸�𝑤𝑤(𝑖𝑖) is estimated as 

follows. First, the speech signal 𝑥𝑥[𝑛𝑛] is split into non-overlapping super segments of 𝑀𝑀𝑠𝑠 =

200 frames: 𝒙𝒙(𝑝𝑝) = 𝒔𝒔(𝑝𝑝) + 𝒘𝒘(𝑝𝑝),𝑝𝑝 = 1, … ,𝑃𝑃, where 𝑃𝑃 is the number of super-segments 

in an utterance. For each super-segment 𝒙𝒙(𝑝𝑝), the noise energy 𝐸𝐸𝑤𝑤𝑠𝑠 (𝑝𝑝) is calculated as the 

energy of the frame ranked at 10% of lowest energy within the super-segment. The noise 

energy is then smoothed as follows: 

𝐸𝐸�𝑤𝑤𝑠𝑠 = 0.9𝐸𝐸�𝑤𝑤𝑠𝑠 (𝑝𝑝 − 1) + 0.1𝐸𝐸𝑤𝑤𝑠𝑠 (𝑝𝑝) (2.14) 

Smoothed noise energy at the 𝑖𝑖𝑡𝑡ℎ frame, 𝐸𝐸�𝑤𝑤(𝑖𝑖), is taken as the energy value 𝐸𝐸�𝑤𝑤𝑠𝑠 (𝑝𝑝) of the 

𝑝𝑝𝑡𝑡ℎ super segment to which the 𝑖𝑖𝑡𝑡ℎ frame belongs to. 

2) Calculate the central-smoothed a posteriori SNR weighted energy difference: 
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�̅�𝑑(𝑖𝑖) =
1

2𝐾𝐾 + 1
� 𝑑𝑑(𝑖𝑖 + 𝑖𝑖)
𝐾𝐾

𝑖𝑖=−𝐾𝐾

(2.15) 

where 𝐾𝐾 is the smoothing parameter, i.e., number of frames considered on each side of the 

current frame 𝑖𝑖, and 𝑖𝑖 is the frame index relative to the 𝑖𝑖. 

3) Classify a frame as a high-energy frame if �̅�𝑑(𝑖𝑖) is greater than a threshold 𝜃𝜃𝑟𝑟(𝑖𝑖). For each 

super segment 𝑝𝑝, 𝜃𝜃𝑟𝑟𝑠𝑠(𝑝𝑝) is computed as follows: 

𝜃𝜃𝑟𝑟𝑠𝑠(𝑝𝑝) = α𝑠𝑠 max{𝐸𝐸𝑥𝑥(𝑀𝑀𝑠𝑠(𝑝𝑝 − 1) + 1), … ,𝐸𝐸𝑥𝑥(𝑖𝑖) … ,𝐸𝐸𝑥𝑥(𝑀𝑀𝑠𝑠𝑝𝑝)} (2.16) 

where α𝑠𝑠 is the scale factor set to 0.25. 𝜃𝜃𝑟𝑟(𝑖𝑖) is taken as the threshold value 𝜃𝜃𝑟𝑟𝑠𝑠(𝑝𝑝) of the 

𝑝𝑝𝑡𝑡ℎ super segment to which the 𝑖𝑖𝑡𝑡ℎ frame belongs. 
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Fig. 2.1 Processing flow of rVAD method. 
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4) Consecutive high-energy frames are grouped together to form high-energy segments.  

5) Within a high-energy segment, if no more than two pitch frames are found, the segment is 

considered as noise segment and frames in the segment are set to zero.  

In the second pass, the speech signal is denoised by applying a modified version of the 

Minimum Statistics Noise Estimation (MSNE) method, which is a type of spectral subtraction [35]. 

The unbiased noise power estimation in the conventional MSNE can be expressed as: 

�̂�𝜆𝑤𝑤(𝑖𝑖,𝑓𝑓) = 𝐵𝐵𝑚𝑚𝑖𝑖𝑓𝑓(𝑖𝑖, 𝑓𝑓) min{𝑃𝑃(𝑖𝑖, 𝑓𝑓),𝑃𝑃(𝑖𝑖 − 1,𝑓𝑓), … ,𝑃𝑃(𝑖𝑖 − 𝑙𝑙,𝑓𝑓)} (2.17) 

where 𝑓𝑓  is the frequency bin index, 𝐵𝐵𝑚𝑚𝑖𝑖𝑓𝑓(𝑖𝑖,𝑓𝑓)  is the bias compensation factor, 𝑃𝑃(𝑖𝑖,𝑓𝑓) =

|𝑋𝑋(𝑖𝑖,𝑓𝑓)|2 is the periodogram of input signal 𝑥𝑥[𝑛𝑛], and 𝑙𝑙 is the number of previous frames used in 

the search of a minimum. In the modified MSNE, the noise power estimation �̂�𝜆𝑤𝑤(𝑖𝑖,𝑓𝑓) is not 

updated during the detected high-energy noise segments (which are set to zero). Besides, if more 

than half of the energy is located within the first few frequency bins, the values of these frequency 

bins are set to zero to remove low-frequency noise. 

In the VAD stage, the rVAD method assumes that all speech segments should contain certain 

number of speech frames with pitch. Therefore, pitch frames are grouped together to form pitch 

segments, which are then further extended from both ends by 60 segments to include voiced, 

unvoiced sounds and likely non-speech parts, for reasons explained in [3]. Then the smoothed a 

posteriori SNR weighted energy difference �̅�𝑑′(𝑖𝑖)  is calculated as in Eq. (2.12)-(2.15). The 

presence or absence of speech is decided by comparing the value of �̅�𝑑′(𝑖𝑖) with a threshold 𝜃𝜃𝑟𝑟′  

which is calculated as follows: 

𝜃𝜃𝑟𝑟′ = 𝛽𝛽𝑟𝑟
1
𝐿𝐿𝑟𝑟
�  
𝐿𝐿𝑟𝑟

𝑗𝑗=1

�̅�𝑑′(𝑗𝑗) (2.18) 
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where 𝐿𝐿𝑟𝑟 is the total number of pitch frames in the extended pitch segment and 𝛽𝛽𝑟𝑟 is a scale factor 

set to 0.4. Finally, post-processing is applied to further refine the frame classification under the 

assumptions that speech frames should not be too far away from their closest pitch frame, and that 

within a speech segment, there should be a certain number of speech frames without pitch. 

2.3 Spectro-Temporal Attention Model 

In this section, the feature expansion strategy and the model architecture of the Spectro-Temporal 

Attention Model (STAM) [30] are presented. 

2.3.1 Feature Expansion 

Suppose we are given 𝑇𝑇  pairs of acoustic feature vectors and classification labels, 

i.e., �𝑿𝑿𝑡𝑡, 𝑦𝑦𝑡𝑡truth�𝑡𝑡=0
𝑇𝑇−1

, where 𝑿𝑿𝑡𝑡 ∈ ℝ𝐷𝐷  and 𝑦𝑦𝑡𝑡truth ∈ {0,1}  are the acoustic feature vector with 

dimension 𝐷𝐷 and VAD label for frame 𝑖𝑖 respectively. The STAM exploits contextual information 

by using 𝐿𝐿 = �2�(𝑅𝑅 − 1)/𝑢𝑢� + 3�  neighboring frames indexed by 𝒯𝒯 = {−𝑅𝑅,−𝑅𝑅 + 𝜇𝜇,−𝑅𝑅 +

2𝜇𝜇, … ,−1,0,1, … ,𝑅𝑅 − 2𝜇𝜇,𝑅𝑅 − 𝜇𝜇,𝑅𝑅} , where integer 𝑅𝑅 defines the radius of the context and integer 

𝜇𝜇, with 1 ≤ 𝑢𝑢 ≤ 𝑅𝑅, is a skip parameter. These frames are used to form the expanded data set 

�𝑽𝑽𝑡𝑡,𝒚𝒚𝑡𝑡truth�𝑡𝑡=0
𝑇𝑇−1

: 

𝑽𝑽𝑡𝑡 = {𝑿𝑿𝑡𝑡+𝑙𝑙: 𝑙𝑙 ∈ 𝒯𝒯} ∈ ℝ𝐿𝐿×𝐷𝐷 ,     𝒚𝒚𝑡𝑡truth = �𝑦𝑦𝑡𝑡+𝑙𝑙truth : 𝑙𝑙 ∈ 𝒯𝒯� ∈ ℝ𝐿𝐿 (2.19) 

 

 

Fig. 2.2 Model architecture of STAM. 
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2.3.2 Model architecture of STAM 

The STAM includes a spectral attention module, a pipe-net, a temporal attention module, and a 

post-net as shown in Fig. 2.2. The purposes of these modules are explained as follows: 

• Spectral Attention: As illustrated in Fig. 2.3, this module consists of a cascade of 𝑁𝑁spec 

blocks with each block composed of a pair of 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 convolutional filters and a 1-

D max pooling layer which is applied along the frequency axis. Each of the convolutional 

layers in the first block contains 𝑁𝑁c convolutional filters and the number of filters 𝑁𝑁c is 

doubled after each block, which is repeated 𝑁𝑁spec times. For example, the output sizes of 

the first two blocks are 𝐷𝐷
2

× 𝐿𝐿 × 𝑁𝑁c  and 𝐷𝐷
4

× 𝐿𝐿 × 2𝑁𝑁c  respectively. Each block produces 

several mask matrices with each element of which outputs a number between zero and one. 

These mask metrics are directly multiplied pointwise with another spectral feature map 

which indicates how much of each spectral component should be attended by VAD. 

 

 

Fig. 2.3 Spectral attention block. 
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• Pipe-Net: The pipe-net contains two Fully Connected Networks (FCN)s with each FCN 

consists of a linear layer followed by a dropout layer and an activation layer [30]. This 

module acts as an information bridge between the spectral attention module and the 

temporal attention module. The output of the pipe-net is represented by matrix 𝑮𝑮 ∈

ℝ𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝×𝐿𝐿 , where 𝑁𝑁𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠  is the hidden dimension. Another FCN with a single unit and 

sigmoid activation are applied to 𝑮𝑮 to calculate the loss of pipe net. Note that this loss is 

for training only. 

• Temporal Attention: The STAM adopts multi-headed self-attention allowing the model 

to simultaneously focus attention to information at different positions. The query 𝒒𝒒, key 𝑲𝑲 

and value 𝑽𝑽 are calculated using the pipe-net output 𝑮𝑮 as follows: 

𝒒𝒒 = σ�𝑾𝑾𝑞𝑞𝒈𝒈� ∈ ℝ𝑁𝑁𝑑𝑑 (2.20) 

𝑲𝑲 = σ(𝑾𝑾𝐾𝐾𝑮𝑮) ∈ ℝ𝑁𝑁𝑑𝑑×𝐿𝐿 (2.21) 

𝑽𝑽 = σ(𝑾𝑾𝑉𝑉𝑮𝑮) ∈ ℝ𝑁𝑁𝑑𝑑×𝐿𝐿 (2.22) 

where 𝑁𝑁𝑑𝑑 denotes the attention dimension, 𝜎𝜎 is an activation function, and 𝒈𝒈 ∈ ℝ𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is 

obtained by averaging 𝑮𝑮 along the frame dimension (i.e., over the column index 𝐿𝐿). 𝑾𝑾𝑞𝑞 ,

𝑾𝑾𝐾𝐾 ,𝑾𝑾𝑉𝑉 ∈ ℝ𝑁𝑁𝑑𝑑×𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 are the affine transformation matrices. 
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Fig. 2.4 Single-headed attention function in STAM. 

 

The attention function calculates the so-called attention vector for multiple frames by 

means of a softmax operation as follows: 

Attention(𝒒𝒒,𝑲𝑲,𝑽𝑽) = Softmax�
𝒒𝒒𝑇𝑇𝑲𝑲
�𝑁𝑁𝑑𝑑

� ∙ 𝑽𝑽 (2.23) 

where ∙ is the element-wise product. These operations are presented in block-diagram form 

in Fig. 2.4.  

    To allow the model to attend to multiple frames instead of a single frame, the multi-

headed attention operation is used: 

MultiHead(𝒒𝒒,𝑲𝑲,𝑽𝑽) = Concat(head1, … , head𝐻𝐻) (2.24) 

headℎ = Attention(qh, Kh, Vh) (2.25) 

where 𝐻𝐻 is the number of parallel attention layers, or heads, qh, Kh and Vh  are the ℎ𝑡𝑡ℎ 

components of 𝒒𝒒, 𝑲𝑲 and 𝑽𝑽, respectively, and ℎ ∈ {1, … ,𝐻𝐻} is the head index. 
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    Similar to the pipe net, another FCN with a single unit and sigmoid activation are applied 

to the output of the multi-head attention module to calculate the loss of pipe net. This loss 

is for training only too. 

 

• Post-Net: The post-net includes two FCNs followed by a sigmoid activation to predict the 

probability of the presence of speech. The predicted 𝑖𝑖𝑡𝑡ℎ frame label, 𝑦𝑦�𝑡𝑡, can be computed 

by aggregating all the soft predictions 𝒚𝒚𝑡𝑡 = {𝑦𝑦𝑡𝑡+𝑙𝑙: 𝑙𝑙 ∈ 𝒯𝒯} ∈ ℝ𝐿𝐿 , where 𝑦𝑦𝑡𝑡+𝑙𝑙  is the soft 

prediction for the (𝑖𝑖 + 𝑙𝑙)𝑡𝑡ℎ neighboring frame, relative to the current frame 𝑖𝑖 across 𝑙𝑙: 

𝑦𝑦�𝑡𝑡 =
1
𝐿𝐿
� 𝑦𝑦𝑡𝑡+𝑙𝑙

𝑙𝑙∈𝒯𝒯 
(2.26) 

The final decision label 𝑦𝑦�𝑡𝑡 is obtained by comparing the 𝑦𝑦�𝑡𝑡 with a threshold 𝜃𝜃VAD: 

𝑦𝑦�𝑡𝑡 = �1,      if 𝑦𝑦�𝑡𝑡 ≥ 𝜃𝜃VAD 
0,      otherwise (2.27) 

2.4 Summary 

In this Chapter, we have presented background material, including the definitions of acoustic 

feature vectors used in the work, as well as the underlying principles of the unsupervised rVAD 

method and the supervised attention-based STAM model for VAD. This material will be used in 

the following chapters to develop and evaluate the performance of the newly proposed VAD 

schemes, including the cIRM-based AM-cIRM and transformer-based Tr-VAD models. 
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Chapter 3 

Complex IRM-Aware Training for VAD using 

Attention Model 
 

In this chapter, we propose a novel attention model-based phase-aware VAD method, called AM-

cIRM, which takes advantages of complex-valued Ideal Ratio Masks (cIRM) and uses attention 

mechanisms to focus on more important information of acoustic features. 

3.1 Overview of the Proposed System 

The proposed AM-cIRM model, whose block diagram is shown in Fig. 3.1, consists of three 

modules: a cIRM extractor, a feature transformation module, and an attention-based VAD module. 

The cIRM extractor processes input features obtained by applying STFT to the noisy input signal, 

and outputs the cIRM. The feature transformation module acts like a preprocessor for the VAD 

module, producing transformed features that can be better processed by the following VAD 

module. Specifically, the magnitude and phase information of the cIRM is aggregated1 by applying 

a linear transformation to them. The transformed cIRM are concatenated with noisy log-Mel 

spectrogram features and then expanded by incorporating contextual information in order to form 

 
1 Feature aggregation refers to a family of methods that combine features to form new ones, usually with reduced 
dimensionality. 
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final feature tensor. Taking the tensor as input, the VAD module outputs speech/non-speech 

predictions by applying attention mechanisms to the spectral and temporal information contained 

in the final feature tensor. These modules are explained in greater details below, along with a 

discussion of the loss function used for training the model. 

 

 

Fig. 3.1 Model architecture of the AM-cIRM. 

 

3.2 cIRM Feature Extractor 

Similar to VAD, Speech Enhancement (SE) has been widely used as a prepossessing step in speech 

applications where one of the goals is to remove background noise from a noisy speech signal. 

Besides the classical SE methods based on statistical modeling, e.g. [36], many recent studies have 

focused on DNN-based SE methods. Among the later, the Ideal Binary Mask (IBM) and Ideal 

Ratio Mask (IRM)-based [37] methods have shown excellent SE performance. However, such 

DNN methods overlook phase information as they reconstruct the estimated clean speech by 

employing the phase of the noisy input speech instead of estimating the magnitude and phase of 

the clean speech simultaneously. To alleviate this problem, the complex-valued Ideal Ratio Masks 

(cIRM), estimated by using the U-Net [38]-based complex-valued network DCUnet [39], has been 

proposed and shown better SE performance compared to the earlier IBM and IRM-based methods. 

Inspired by the effectiveness of the cIRM-based DNN methods in extracting important speech 
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information from noisy speech signals, the DCUnet is chosen as the cIRM extractor for the 

proposed AM-cIRM model in this thesis. 

Before getting into details of the cIRM extractor, we first introduce some notations used 

throughout the Chapter. We denote by 𝒙𝒙𝑡𝑡 = �𝑥𝑥�𝑖𝑖𝐿𝐿hop�, … , 𝑥𝑥�𝑖𝑖𝐿𝐿hop + 𝑁𝑁 − 1�� the vector of noisy 

speech samples corresponding to the 𝑖𝑖𝑡𝑡ℎ  frame, 𝑖𝑖 ∈ {0,1, … ,𝑇𝑇 − 1}, 𝐿𝐿hop is the frame advance 

and 𝑇𝑇 is the total number of frames. The input features of the cIRM extractor, represented by 

𝑿𝑿STFT ∈ ℂ𝐹𝐹×𝑇𝑇 , where superscript 𝐹𝐹  denotes the number of frequency bins, are obtained by 

applying the STFT mentioned in Section 2.1 to the noisy signal frames 𝒙𝒙𝑡𝑡. The ground truth cIRM, 

denoted as 𝑴𝑴STFT ∈ ℂ𝐹𝐹×𝑇𝑇, is obtained by element-wise division of the clean spectra by the noisy 

spectra, i.e., 𝑴𝑴STFT = 𝑺𝑺STFT/𝑿𝑿STFT , where 𝑺𝑺STFT ∈ ℂ𝐹𝐹×𝑇𝑇  are the STFT coefficients of clean 

speech frames 𝒔𝒔𝑡𝑡 = �𝑠𝑠�𝑖𝑖𝐿𝐿hop�, … , 𝑠𝑠�𝑖𝑖𝐿𝐿hop + 𝑁𝑁 − 1��, and / denotes the element-wise division. 

The estimated cIRM are represented as 𝑴𝑴� STFT ∈ ℂ𝐹𝐹×𝑇𝑇.  The enhanced speech frames, denoted as 

𝒔𝒔�𝑡𝑡 = ��̂�𝑠�𝑖𝑖𝐿𝐿hop�, … , �̂�𝑠�𝑖𝑖𝐿𝐿hop + 𝑁𝑁 − 1��, are estimated by applying the Inverse Short-Time-Fourier-

Transform (ISTFT) to the STFT coefficients of the enhanced speech 𝑺𝑺�STFT ∈ ℂ𝐹𝐹×𝑇𝑇  which are 

obtained by multiplying the estimated cIRM 𝑴𝑴�𝑆𝑆𝑇𝑇𝐹𝐹𝑇𝑇 with the noisy input 𝑿𝑿STFT: 

𝑺𝑺�𝑟𝑟,STFT = 𝑴𝑴� 𝑟𝑟,STFT ∙ 𝑿𝑿𝑟𝑟,STFT −𝑴𝑴� 𝑖𝑖,STFT ∙ 𝑿𝑿𝑖𝑖,STFT (3.1) 

𝑺𝑺�𝑖𝑖,STFT = 𝑴𝑴� 𝑟𝑟,STFT ∙ 𝑿𝑿𝑖𝑖,STFT + 𝑴𝑴� 𝑖𝑖,STFT ∙ 𝑿𝑿𝑟𝑟,STFT (3.2) 

where ∙ is the element-wise product, subscripts 𝑝𝑝 and 𝑖𝑖 denote real and imaginary components, e.g., 

𝑺𝑺�STFT = 𝑺𝑺�𝑟𝑟,STFT + 𝑗𝑗𝑺𝑺�𝑖𝑖,STFT. 

The block diagram of the DCUnet-based [39] cIRM feature extractor is shown in Fig. 3.2, where 

each encoder block of the complex-valued network consists of a complex convolutional layer, a 
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complex batch normalization layer, and a Leaky Rectified Linear Unit (Leaky ReLU). In the 

decoding phase, skip connections are implemented by concatenating the outputs from the last 

decoder and corresponding encoder. The decoder is similar to the encoder except that the complex 

convolutional layer is replaced by a complex transposed convolutional layer. 

 

Fig. 3.2 Illustration of the DCUnet-based cIRM extractor. 

 

Given a complex-valued convolutional filter 𝑾𝑾 = 𝑨𝑨 + 𝑗𝑗𝑩𝑩 with real-valued matrix components 

𝑨𝑨 and 𝑩𝑩, the 2-D complex convolution of a complex-valued input matrix 𝑯𝑯 = 𝑪𝑪 + 𝑗𝑗𝑫𝑫 with 𝑾𝑾 is 

realized as: 

𝑾𝑾∗𝑯𝑯 = (𝑨𝑨 ∗ 𝑪𝑪 − 𝑩𝑩 ∗ 𝑫𝑫) + 𝑗𝑗(𝑩𝑩 ∗ 𝑪𝑪 + 𝑨𝑨 ∗ 𝑫𝑫) (3.3) 

where ∗ denotes 2-D convolution for real-valued matrices. Hence, complex convolution can be 

implemented by means of 4 real-valued 2-D convolutions with shared real-value filters 𝑨𝑨 and 𝑩𝑩 

[39]. 

The magnitude and phase components of the estimated cIRM are finally obtained by processing 

the output 𝑶𝑶STFT = 𝑔𝑔(𝑿𝑿STFT)  ∈ ℂ𝐹𝐹×𝑇𝑇  of the complex-valued network 𝑔𝑔(⋅) . The cIRM 

magnitudes are first obtained by applying the element-wise hyperbolic tangent non-linearity 
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function to the magnitude of the entries of matrix 𝑶𝑶STFT in order to bound them to the interval 

[0, 1): 

𝐌𝐌�STFT
mag = tanh(|𝑶𝑶STFT|) (3.4) 

where |𝐎𝐎STFT| stands for the element-wise magnitude of 𝐎𝐎STFT. The cIRM phase are obtained 

from the phase of the corresponding entries in 𝑶𝑶STFT: 

𝐌𝐌�STFT
phase = 𝑶𝑶STFT/|𝑶𝑶STFT| (3.5) 

The estimated cIRM 𝑀𝑀�STFT are then obtained by applying element-wise product to the new 

magnitude component and the original phase component: 

𝑴𝑴� STFT = 𝐌𝐌�STFT
mag ∙ 𝐌𝐌� STFT

phase (3.6) 

3.3 Feature Transformation 

As shown in Fig. 3.3, the feature transformation module consists of four steps. Firstly, the 

estimated mask 𝑴𝑴� STFT  is transposed to 𝑴𝑴� STFT ∈ ℂ𝑇𝑇×𝐹𝐹  for convenience in subsequent 

developments. Secondly, the transposed matrix is then aggregated by applying a linear 

transformation. The linear transformation contains a 1-D convolutional layer aiming at 

compressing the magnitude and phase information of the cIRM. The output is the aggregated mask 

𝑴𝑴� ∈ ℝ𝑇𝑇×𝐷𝐷, where 𝐷𝐷 < 𝐹𝐹 is the resulting feature dimension for each frame.  
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Fig. 3.3 Block diagram of the feature transformation module. 

 

Thirdly, to provide auxiliary information that is complementary to the spectrogram, the mask 

𝑴𝑴�  is concatenated with log-Mel spectrogram matrix 𝑿𝑿mel ∈ ℝ𝑇𝑇×𝐷𝐷  to form a new matrix 𝛘𝛘′ ∈

ℝ𝑇𝑇×2𝐷𝐷. Each row of matrix 𝑿𝑿mel is obtained by computing the log-Mel coefficients of the noisy-

frame 𝒙𝒙𝒕𝒕 using Mel filterbank consisting of 𝐷𝐷 filters, as explained in Sections 2. 

Finally, taking 𝐿𝐿 neighboring frames into account, the matrix 𝛘𝛘′ is expanded to form the final 

feature tensor 𝛘𝛘 ∈ ℝ(𝑇𝑇−2𝑅𝑅)×𝐿𝐿×2𝐷𝐷 of VAD module, by using 𝐿𝐿 neighboring frames indexed by 𝒯𝒯, 

where 𝑅𝑅, 𝐿𝐿, and 𝒯𝒯 are the same parameters as defined in the construction of neighboring frames 

discussed in Section 2.3.1. The expanded data set can also be represented as �𝛘𝛘𝑡𝑡,𝒚𝒚𝑡𝑡truth �𝑡𝑡=𝑅𝑅
𝑇𝑇−𝑅𝑅−1

, 

where we define: 

𝛘𝛘𝑡𝑡 = {𝛘𝛘𝑡𝑡+𝑙𝑙′ : 𝑙𝑙 ∈ 𝒯𝒯}  ∈ ℝ𝐿𝐿×2𝐷𝐷 , 𝒚𝒚𝑡𝑡truth = �𝑦𝑦𝑡𝑡+𝑙𝑙truth : 𝑙𝑙 ∈ 𝒯𝒯� ∈ ℝ𝐿𝐿 (3.7) 

where vector 𝛘𝛘𝑡𝑡+𝑙𝑙′  ∈ ℝ2𝐷𝐷 contains the (𝑖𝑖 + 𝑙𝑙)𝑡𝑡ℎ row of matrix  𝛘𝛘′, and scalar 𝑦𝑦𝑡𝑡+𝑙𝑙truth is the ground 

truth VAD label for the (𝑖𝑖 + 𝑙𝑙)𝑡𝑡ℎ frame. 
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3.4 Voice Activity Detector 

Considering the effectiveness of the STAM model [30], it is chosen here as the VAD module of 

the AM-cIRM. Referring to the STAM model architecture in Fig. 2.2, since, since the feature 

dimension of the acoustic feature matrix 𝛘𝛘𝑡𝑡 ∈ ℝ𝐿𝐿×2𝐷𝐷  is doubled in this work (due to the 

concatenation with the log-Mel spectrogram 𝑿𝑿mel and transformed mask 𝑴𝑴� ), the number of input 

channels of the first pair of convolution filters in the spectral attention module is also doubled, 

while the number of output channels 𝑁𝑁𝑠𝑠 remains the same. The remaining three processing blocks 

of the STAM-based VAD module, i.e., the pipe-net, the temporal attention module, and the post-

net, use the same parameter settings as the original STAM. 

The post-net output can be represented by vector 𝒚𝒚𝑡𝑡 = {𝑦𝑦𝑡𝑡+𝑙𝑙: 𝑙𝑙 ∈ 𝒯𝒯} ∈ ℝ𝐿𝐿, where 𝑦𝑦𝑡𝑡+𝑙𝑙 is the 

soft label prediction for the (𝑖𝑖 + 𝑙𝑙)𝑡𝑡ℎ  neighboring frame. These soft predictions are finally 

aggregated into a single number: 

𝑦𝑦�𝑡𝑡 =
1
𝐿𝐿
� 𝑦𝑦𝑡𝑡+𝑙𝑙

𝑙𝑙∈𝒯𝒯 
(3.8) 

The final VAD prediction for the 𝑖𝑖𝑡𝑡ℎ frame is obtained via the following test: 

𝑦𝑦�𝑡𝑡 = �1,      if 𝑦𝑦�𝑡𝑡 ≥ 𝜃𝜃cIRM
0,      otherwise (3.9) 

where θcIRM ∈ (0,1) is the detection threshold, and  𝑦𝑦�𝑡𝑡 denotes the hard prediction at the 𝑖𝑖𝑡𝑡ℎ frame. 

3.5 Loss Functions 

The complete temporal sequence of estimated speech samples, represented by vector 𝒔𝒔� =

��̂�𝑠[0], �̂�𝑠[1], … , �̂�𝑠[𝑁𝑁 − 1 + 𝐿𝐿hop(𝑇𝑇 − 1)]�  is obtained by applying a modified overlap-add 
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reconstruction equation from [40] to the estimated speech frames 𝒔𝒔�𝑡𝑡 obtained by application of the 

ISTFT to the corresponding column of 𝑺𝑺�STFT : 

�̂�𝑠[𝑛𝑛] =
∑  𝑡𝑡 𝒔𝒔�𝑡𝑡[𝑛𝑛]ℎ�𝑛𝑛 − 𝑖𝑖𝐿𝐿hop�
∑  𝑡𝑡 ℎ2�𝑛𝑛 − 𝑖𝑖𝐿𝐿hop�

(3.10) 

 where ℎ[𝑛𝑛]  is the window function with ∑  𝑡𝑡 ℎ2�𝑛𝑛 − 𝑖𝑖𝐿𝐿hop�  is constant for all 𝑛𝑛 . This 

reconstruction procedure needs not be applied to the noisy speech and clean speech since they are 

available as part of the training data. We let 𝒔𝒔 = �𝑠𝑠[0], 𝑠𝑠[1], … , 𝑠𝑠[𝑁𝑁 − 1 + 𝐿𝐿hop(𝑇𝑇 − 1)]� and 𝒙𝒙 =

�𝑥𝑥[0], 𝑥𝑥[1], … , 𝑥𝑥[𝑁𝑁 − 1 + 𝐿𝐿hop(𝑇𝑇 − 1)]� denote the corresponding vectors. Finally, we introduce 

the time domain vectors 𝒘𝒘 = 𝒙𝒙 − 𝒔𝒔  and 𝒘𝒘� = 𝒙𝒙 − 𝒔𝒔�  containing the corresponding noise and 

estimated noise samples.  

To prevent the vanishing gradients and accelerate convergence, we employ two different loss 

functions, one being calculated from the cIRM extractor and the other one from the VAD module. 

For the cIRM extractor, the weighted Source-to-Distortion Ratio loss (wSDR) proposed in [38] is 

calculated as follows: 

ℒ𝑤𝑤𝑆𝑆𝐷𝐷𝑅𝑅(𝒙𝒙, 𝒔𝒔, 𝒔𝒔�) = 𝛼𝛼 ℒ𝑆𝑆𝐷𝐷𝑅𝑅(𝒔𝒔, 𝒔𝒔�) + (1 − 𝛼𝛼)ℒ𝑆𝑆𝐷𝐷𝑅𝑅(𝐰𝐰,𝐰𝐰�) (3.11) 

ℒ𝑆𝑆𝐷𝐷𝑅𝑅(𝐬𝐬, 𝐬𝐬�) = −
⟨𝐬𝐬, 𝐬𝐬�⟩

∥ 𝐬𝐬 ∥∥ 𝐬𝐬� ∥
, ℒ𝑆𝑆𝐷𝐷𝑅𝑅(𝐰𝐰,𝐰𝐰�) = −

⟨𝐰𝐰,𝐰𝐰�⟩
∥ 𝐰𝐰 ∥∥ 𝐰𝐰� ∥

(3.12) 

where α = ‖𝒔𝒔‖2

‖𝒔𝒔‖2+‖𝒘𝒘‖2
 provides a measure of the energy ratio between clean speech 𝒔𝒔 and the noisy 

speech 𝒔𝒔 + 𝒘𝒘, while ‖ ‖ is the norm operator, and 〈  , 〉 is the inner product operator. The time-

domain signals are used for computing loss function and assisting in error back-propagation only. 

In spite of the fact that the wSDR loss function is based on time-domain calculations, it can be 
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back-propagated through the network. Specifically, the STFT and ISTFT operations can be 

implemented as consisting of fixed filters initialized with discrete Fourier transform matrix [39]. 

For the VAD module, the Cross Entropy (CE) loss is calculated after sequential processing by 

pipe-net, the attention module, and the post-net, as proposed in [30]: 

ℒ𝜓𝜓 = − �  
𝑇𝑇−𝑅𝑅−1

𝑡𝑡=𝑅𝑅

� �𝑦𝑦𝑡𝑡+𝑙𝑙truth log 𝑦𝑦𝑡𝑡+𝑙𝑙 + �1 − 𝑦𝑦𝑡𝑡+𝑙𝑙truth �log (1− 𝑦𝑦𝑡𝑡+𝑙𝑙)�
𝑙𝑙∈𝒯𝒯 

(3.13) 

where 𝑦𝑦𝑡𝑡+𝑙𝑙truth  and 𝑦𝑦𝑡𝑡+𝑙𝑙 are the (𝑖𝑖 + 𝑙𝑙)𝑡𝑡ℎ component of the ground true label vector 𝒚𝒚𝑡𝑡truth ∈ ℝ𝐿𝐿 and 

soft prediction vector 𝒚𝒚𝑡𝑡 ∈ ℝ𝐿𝐿, respectively. Then the total loss for the proposed model is defined 

as: 

ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 = 𝜆𝜆1 ℒ𝑤𝑤𝑆𝑆𝐷𝐷𝑅𝑅  + 𝜆𝜆2ℒ𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 + 𝜆𝜆3 ℒ𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜆𝜆4ℒ𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡 (3.14) 

where the subscripts 𝑝𝑝𝑖𝑖𝑝𝑝𝑒𝑒, 𝑎𝑎𝑖𝑖𝑖𝑖, and 𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖 respectively stand for the pipe-net, temporal attention 

module and post-net. The parameters λ1, λ2, 𝜆𝜆3 and 𝜆𝜆4 are the weights given to the loss functions 

of the different modules. These loss functions are used in such a combination to train the network, 

i.e., by adjusting the network parameters to minimize the total loss. Additional implementation 

details of the network training, including batch size, optimizer, etc., are provided in Section 5.1.2. 

3.6 Summary 

In this Chapter, we have presented a novel attention model-based VAD method, called AM-cIRM, 

which takes advantages of cIRM and uses attention mechanisms of STAM to focus on more 

important information within the acoustic feature set. The AM-cIRM will be evaluated and 

compared with other methods in Chapter 5.  
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Chapter 4 

Efficient Transformer with Feature Patches for 

VAD 
 

In this chapter, we propose a novel transformer-based [41] VAD method that splits the acoustic 

features into patches and applies depth-wise convolutions, thereby allowing the model to predict 

the presence or absence of speech more efficiently. The proposed transformer-based VAD method, 

called Tr-VAD, consists of a feature embedding2 layer, 𝑁𝑁𝑡𝑡𝑟𝑟𝑡𝑡𝑓𝑓𝑠𝑠 transformer encoder blocks, and a 

classifier as illustrated in Fig. 4.1. These components are described in more details in the following 

sections. 

 

Fig. 4.1 Architecture of Tr-VAD. 

 
2 In many speech-based applications (e.g., speaker/language/emotion recognition tasks) and in the context of machine 
learning, the term “embedding” refers to fixed dimensional vector representation of an utterance, and is also called 
utterance-level representation. In order to avoid confusion, “Local Embedding” is used to refer to the first module, 
here “local” means frame level. 
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4.1 Feature Embedding 

Similar to Section 2.3, the acoustic feature vectors and label pairs can be presented as 

��𝑿𝑿𝑡𝑡,𝑦𝑦𝑡𝑡truth ��
𝑡𝑡=0
𝑇𝑇−1

, where 𝑿𝑿𝑡𝑡 ∈ ℝ𝐷𝐷 𝑖𝑖𝑠𝑠  the acoustic feature vector with feature dimension 𝐷𝐷  and 

𝑦𝑦𝑡𝑡truth ∈ {0,1} is the VAD label for the 𝑖𝑖𝑡𝑡ℎ frame. To exploit contextual information, the feature 

vector is then expanded by using 𝐿𝐿′ = 2𝑘𝑘 + 1 neighboring frames indexed by 𝒯𝒯′ = {−𝑘𝑘𝜇𝜇′,−(𝑘𝑘 −

1)𝜇𝜇′, … ,−𝜇𝜇′, 0, 𝜇𝜇′, … , (𝑘𝑘 − 1)𝜇𝜇′,𝑘𝑘𝜇𝜇′} , where the positive integers 𝑘𝑘  and 𝜇𝜇′  control which 

neighboring frames will be used by the model. The extended data set is denoted as 

��𝑿𝑿𝑡𝑡′ , 𝐲𝐲𝑡𝑡truth ��
𝑡𝑡=𝑘𝑘𝜇𝜇′
𝑇𝑇−𝑘𝑘𝜇𝜇′−1

: 

𝑿𝑿𝑡𝑡′ = �𝑿𝑿𝑡𝑡+𝑙𝑙′
𝑇𝑇 : 𝑙𝑙′ ∈ 𝒯𝒯𝑡𝑡′� ∈ ℝ𝐿𝐿′×𝐷𝐷, 𝒚𝒚𝑡𝑡truth = �𝑦𝑦𝑡𝑡+𝑙𝑙′

truth : 𝑙𝑙′ ∈ 𝒯𝒯𝑡𝑡′� ∈ ℝ𝐿𝐿′ (4.1) 

The local embedding layer aims to project features from the original space into a new space 

which allows the model to extract more useful information and conduct effective learning. This 

layer consists of an FCN layer and a 1-D convolutional layer. Compared to the absolute positional 

embedding strategy (such as sinusoid positional embedding and learnable 1-D position 

embedding), the convolutional embedding is able to extract relative positional information and 

learns useful short-range spectral-temporal patterns [42]. 

4.2 Depth-Wise Transformer Block with Feature Patches 

Recently, the vision transformer [43] and its variations [44]-[46] have achieved state-of-the-art 

performance on image classification, object detection, semantic segmentation, etc. Inspired by 

their effectiveness, we propose to apply transformer encoder-based network to the VAD task. 

As illustrated in Fig. 4.1, the proposed Tr-VAD architecture includes a sequence of 𝑁𝑁𝑡𝑡𝑟𝑟𝑡𝑡𝑓𝑓𝑠𝑠 

depth-wise transformer encoder blocks, where the internal structure of a transformer block is given 
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in Fig. 4.2. The depth-wise transformer block includes two normalization layers, a Multi-Headed 

Self Attention (MHSA) module, and a Feed-Forward Network (FFN) configured as shown. 

 

Fig. 4.2 Block diagram of the 𝑖𝑖𝑡𝑡ℎ Depth-Wise Transformer Block 

 

4.2.1 Multi-Head Self Attention with Feature Patches 

Let the input features matrix of the 𝑖𝑖𝑡𝑡ℎ transformer block be denoted as 𝑿𝑿�𝑡𝑡i ∈ ℝ𝐿𝐿�×𝐷𝐷� , where 𝐿𝐿� and 

𝐷𝐷� denote the temporal and feature dimensions, respectively. The feature matrix 𝑿𝑿�𝑡𝑡i  is obtained 

from the previous module which is either the feature embedding module or the previous 

transformer block. As illustrated in Fig. 4.2, the layer normalization [47] is applied to the feature 

matrix 𝑿𝑿�𝑡𝑡. Then the normalized feature matrix 𝑿𝑿�𝑡𝑡i ∈ ℝ𝐿𝐿�×𝐷𝐷�  is passed to the MHSA module whose 

structure is described below. 

The internal structure of the MHSA module is illustrated in Fig. 4.3.  The input 𝑿𝑿�𝑡𝑡i  is first split 

into patches: the temporal dimension 𝐿𝐿�  and the feature dimension 𝐷𝐷� are split into 𝑃𝑃1 × 𝑃𝑃2 non-

overlapping pieces: 
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𝑿𝑿�𝑡𝑡,𝑆𝑆
i = Split�𝑿𝑿�𝑡𝑡i � ∈ ℝ𝐷𝐷split ×𝑃𝑃1×𝑃𝑃2 (4.2) 

where integer 𝑃𝑃1 and 𝑃𝑃2 specify the split factors, Split(⋅) stands for the split operation, and 𝐷𝐷split =

𝐿𝐿�

𝑃𝑃1
× 𝐷𝐷�

𝑃𝑃2
 is the total number of pieces.  

 

Fig. 4.3 Illustration of the MHSA module with feature patches. 

 

In contrast to the vanilla transformer [41] which employs the MHSA along the feature 

dimension only, we employ it along both temporal and feature dimensions simultaneously. The 

new MHSA scheme allows the model to attend to multiple frames and features at different 

positions. More importantly, it allows the model to reduce the computation cost in the calculation 

of the attention matrix. Indeed, the Swin Transformer [45] uses shifted windows to introduce 

communication among different patches and to increase the receptive field. But in our case, the 

input acoustic features already include information from neighboring frames which includes 

contextual redundancy. Therefore, shifted widows are not necessary for our work. 

Compared to the vanilla transformer architecture in [41] which uses FCN to map three feature 

matrices (or so called: query, key, and value) come from previous layers, depth-wise separable 

convolution blocks [48] are used in the proposed model instead. These blocks consist of a depth-
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wise convolutional layer, a batch normalization layer, and a scaling (or equivalently, a 1 × 1 point-

wise convolutional) layer. The point-wise convolution is performed over multiple input channels 

while the depth-wise convolution applies a single convolutional filter to each input channel. Such 

depth-wise convolution can provide a more precise mechanism for local information aggregation, 

which is missing in the FFN of the vanilla transformer [46].  

As illustrated in Fig. 4.4, we use a stride of 2 to map the feature matrix 𝑿𝑿�𝑡𝑡,𝑆𝑆
𝑖𝑖 . let DW(⋅) be the 

Depth-Wise convolutional mapping operation, the mapped feature matrix DW�𝑿𝑿�𝑡𝑡,𝑆𝑆
𝑖𝑖 � ∈

ℝ𝐷𝐷split×𝑃𝑃1
2 ×𝑃𝑃2

2  is reshaped to 𝑿𝑿�𝑡𝑡,𝐷𝐷𝐷𝐷
𝑖𝑖 ∈ ℝ

𝐿𝐿�
𝑃𝑃1

× 𝐷𝐷�
𝑃𝑃2

×𝑃𝑃1𝑃𝑃2
4  as follows: 

𝐐𝐐𝑠𝑠 = Reshape �DW�𝑿𝑿�𝑡𝑡,𝑆𝑆
𝑖𝑖 �� ∈ ℝ

𝐿𝐿�
𝑃𝑃1

×𝐷𝐷�
𝑃𝑃2

×𝑃𝑃1𝑃𝑃24 (4.3) 

𝐊𝐊𝑠𝑠 = Reshape �DW�𝑿𝑿�𝑡𝑡,𝑆𝑆
𝑖𝑖 �� ∈ ℝ

𝐿𝐿�
𝑃𝑃1

×𝐷𝐷�
𝑃𝑃2

×𝑃𝑃1𝑃𝑃24 (4.4) 

𝐕𝐕𝑠𝑠 = Reshape �DW�𝑿𝑿�𝑡𝑡,𝑆𝑆
𝑖𝑖 �� ∈ ℝ

𝐿𝐿�
𝑃𝑃1

×𝐷𝐷�
𝑃𝑃2

×𝑃𝑃1𝑃𝑃24 (4.5) 

where Reshape(⋅) is the reshape operation, the 𝐐𝐐𝑠𝑠, 𝐊𝐊𝑠𝑠, and 𝐕𝐕𝑠𝑠 are obtained by applying depth-

wise convolutions with different weights to the split feature matrix 𝑿𝑿�𝑡𝑡,𝐷𝐷𝐷𝐷
𝑖𝑖 . Then the scaled dot-

product attention operation is applied as follows: 

𝑿𝑿�𝑡𝑡,𝑡𝑡𝑡𝑡𝑡𝑡
𝑖𝑖 = Softmax�

𝐐𝐐𝑠𝑠
𝑇𝑇𝐊𝐊𝑠𝑠

�𝑁𝑁𝑠𝑠
+ 𝑩𝑩𝑠𝑠� ∙ 𝐕𝐕𝑠𝑠 (4.6) 

where ∙ is the element-wise product, 𝑩𝑩𝑠𝑠 ∈ ℝ
𝐿𝐿�
𝑃𝑃1

× 𝐷𝐷�
𝑃𝑃2

× 𝑃𝑃�
𝑃𝑃2 is a bias term that can be learned during the 

training, and 𝑁𝑁𝑠𝑠 = 𝑃𝑃1𝑃𝑃2
4

 is the scaling factor. 



33 
 

 

Fig. 4.4 Illustration of the attention function in Tr-VAD. 

 

Indeed, depth-wise convolution is efficient in terms of both the number of parameters and 

computational complexity. Since we use a stride of 2 to map the query, key, and value, the temporal 

and feature dimensions are both reduced by a factor of 2, and the computational cost for the scaled 

dot-product attention operation in Eq. (4.6) is thus reduced by 43 times. Such strategy comes with 

negligible performance degradation as the input features contain redundant information. 

Going back to Fig. 4.3, the attention output 𝑿𝑿�𝑡𝑡,𝑡𝑡𝑡𝑡𝑡𝑡
i ∈ ℝ

𝐿𝐿�
𝑃𝑃1

× 𝐷𝐷�
𝑃𝑃2

×𝑃𝑃1𝑃𝑃2
4  is then reshaped to 𝑿𝑿�𝑡𝑡,𝑡𝑡𝑡𝑡𝑡𝑡 ∈

ℝ
𝐿𝐿
2×𝐷𝐷

2 . Finally, linear transformations including a 1 × 1 1-D convolutional layer and an FCN are 

applied so that the output of the MHSA module shares the same shape as the input 𝑿𝑿�𝑡𝑡i ∈ ℝ𝐿𝐿�×𝐷𝐷� . 
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4.2.2 Feed-Forward Network with Feature Patches 

In this work, as illustrated in Fig. 4.5, we propose to use the convolution-based FFN [49] instead 

of the FCN-based counterparts. Similar to the MHSA module, the proposed FFN also splits the 

input features into 𝑃𝑃1 × 𝑃𝑃2 patches. The FFN includes two 1 × 1 point-wise convolutions which 

are applied to expand and squeeze the hidden dimension by γFFN times. One 3 × 3 depth-wise 

separable convolution block is used to introduce local dependencies. Feature patches are restored 

so that the output of FFN shares the same shape as the input of the 𝑖𝑖𝑡𝑡ℎ depth-wise transformer 

block 𝑿𝑿�𝑡𝑡i ∈ ℝ𝐿𝐿�×𝐷𝐷�. 
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Fig. 4.5 Architecture of the Feed-Forward Network with patches. 

 

4.3 Classifier 

Recall from Fig. 4.1 that the output of the transformer encoder blocks is finally fed to the classier. 

As illustrated in Fig. 4.6, the classifier splits the features into patches, then a 5 × 5 depth-wise 

convolution block with stride 2 is applied to the feature patches. Let the output feature matrix of 
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the convolution block be denoted as 𝑿𝑿𝑡𝑡,𝑠𝑠 ∈ ℝ
𝐷𝐷split ×

𝑃𝑃1
2 ×𝑃𝑃2

2  which is then reshaped into 𝑿𝑿�𝑡𝑡,𝑠𝑠 ∈

ℝ
𝑃𝑃1
2 ×

𝑃𝑃2𝐷𝐷split 
2 . The first FCN in the classifier expands the last dimension by 𝛾𝛾𝑠𝑠 times while the second 

one compresses this dimension to 1. The output of the second FCN passes through a sigmoid 

activation to predict the probability of the presence of speech 𝒚𝒚𝑡𝑡 ∈ ℝ
𝑃𝑃1
2 . In our work, 𝑃𝑃1 = 2𝐿𝐿′, 

thus the probability can also be denoted as 𝒚𝒚𝑡𝑡 = {𝑦𝑦𝑡𝑡+𝑙𝑙′: 𝑙𝑙′ ∈ 𝒯𝒯𝑡𝑡′} ∈ ℝ𝐿𝐿′ . The soft prediction 

corresponding to the 𝑖𝑖𝑡𝑡ℎ  frame 𝑦𝑦�𝑡𝑡  can be computed by aggregating all the soft predictions 𝒚𝒚𝑡𝑡 

relative to the current frame 𝑖𝑖 across 𝑙𝑙′, and the hard prediction can be obtained by thresholding 

the soft prediction with 𝜃𝜃T as discussed in Section 2.3 and Section 3.4. 

For training, the cross entropy loss is calculated after the classifier: 

ℒTr = − �  
𝑇𝑇−𝑘𝑘𝜇𝜇′−1

𝑡𝑡=𝑘𝑘𝜇𝜇′
� �𝑦𝑦𝑡𝑡+𝑙𝑙′

truth log𝑦𝑦𝑡𝑡+𝑙𝑙′ + �1 − 𝑦𝑦𝑡𝑡+𝑙𝑙′
truth � log(1 − 𝑦𝑦𝑡𝑡+𝑙𝑙′)�

𝑙𝑙′∈𝒯𝒯𝑡𝑡′ 
(4.7) 

where 𝑦𝑦𝑡𝑡+𝑙𝑙′
truth  and 𝑦𝑦𝑡𝑡+𝑙𝑙′ are the (𝑖𝑖 + 𝑙𝑙′)𝑡𝑡ℎ component of the ground true label vector 𝒚𝒚𝑡𝑡truth  and soft 

prediction vector 𝒚𝒚𝑡𝑡, respectively. More details about the training process, including batch size, 

optimizer, learning rate, etc., can be found in Section 5.1.2. 

4.4 Summary 

In this Chapter, we have presented a novel transformer-based VAD method, Tr-VAD, which 

applies depth-wise convolutions on feature patches, thereby allowing the model to predict the 

presence of speech/non-speech more efficiently. The Tr-VAD will be evaluated and compared 

with other methods in Chapter 5. 

 



37 
 

 

Fig. 4.6 Architecture of the Classifier. 

  



38 
 

 

 

Chapter 5 

Experiments and Results 
 

In this chapter, we firstly describe the methodology used to evaluate the performance of the 

proposed methods. This includes the discussion of the dataset, parameter setting, baseline methods 

used for comparison and evaluation metrics. We subsequently compare the performance of the 

proposed AM-cIRM and Tr-VAD and baseline methods by presenting the experimental results. 

5.1 Methodology 

In this section, we describe the dataset used to carry out our experiments, the parameter setting of 

the proposed methods, the baseline methods used for comparison, and evaluation metrics used for 

comparative evaluation. 

5.1.1 Dataset 

The clean utterances used to construct the training dataset were selected from the TIMIT corpus 

[50] which contains broadband recordings of 630 speakers of eight major dialects of American 

English, each reading ten phonetically rich sentences. The TIMIT corpus provides speech data for 

acoustic-phonetic studies and for the development and evaluation of automatic speech recognition 

systems. It also includes time-aligned orthographic, phonetic, and word transcriptions as well as a 

16-bit, 16 kHz speech waveform file for each utterance. 



39 
 

Since the TIMIT utterances have considerably shorter silences than speech, the speech/non-

speech class imbalance problem may occur. To mitigate the problem, we added 1-second-long 

silent segments before and after each utterance.  

NOISEX-92 dataset [51] which includes 13 different types of noises sampled at 16 kHz are 

used to corrupt the clean TIMIT training dataset. In our experiments only 8 of them are used: 

babble, F16, destroyer operation room, M109, Volvo, white, and two types of factory noises. SNR 

values are set at: -10, -5, 0, 5, 10 dB. This augmentation resulted in 189,420 training segments and 

added up about 267 hours of audio stream in total. The proposed models and baseline models were 

trained with 95% of the training data and the remaining 5% was left as the validation set.  

In the testing phase, the TIMIT test dataset and the subset ‘test_clean’ from LibriSpeech corpus 

[52] were used to evaluate the performance of different methods. The LibriSpeech dataset is 

derived from audiobooks and contains 1000 hours of speech sampled at 16 KHz. But unlike the 

TIMIT dataset which has ground truth labels for the VAD task, the LibriSpeech does not have 

ground truth labels, thus rVAD [3] was applied to generate pseudo ground truth labels. 

Similar to the training phase, all 8 types of unseen noises from the AURORA noise dataset [53] 

including babble, airport, car, exhibition, restaurant, street, subway and train noises, were used to 

augment and corrupt the clean testing utterances. The SNRs are set to -5, 0, 5, and 10 dB. For the 

TIMIT test dataset, each utterance in the dataset was padded with 0.5-second, 1-second, and 1.5-

second-long ‘silence’ (denoted as TIMIT-0.5, TIMIT-1, and TIMIT-1.5) before and after each 

utterance. 
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5.1.2 Parameter Setting 

For the two proposed methods, detailed parameter settings and training strategies are discussed as 

follows: 

A. Parameter Setting for AM-cIRM 

The input complex-valued spectrograms are obtained by applying STFT with 𝑁𝑁 = 1024. The 

cIRM Feature Extractor follows the same parameter setting as DCUnet-10 in [39] as indicated in 

the Table 5.1: 

Table 5.1 Parameter Setting for cIRM Extractor 

 E1(1) E2 E3 E4 E5 D1(2) D2 D3 D4 D5 
# 

Output 
Channel 

45 90 90 90 90 90 90 90 45 1 

Filter 
Size 

(7×5) (7×5) (5×3) (5×3) (5×3) (5×3) (5×3) (5×3) (7×5) (7×5) 

Stride 
Size 

(2,2) (2,) (2,2) (2,2) (2,1) (2,1) (2,2) (2,2) (2,2) (2,2) 

(1), (2): E and D stand for the encoder and decoder, respectively, E1 refers to the first encoder.  

The Linear Transformation uses a 1-D convolutional layer with kernel size 2, stride 1, and 

output channels 𝐷𝐷 = 80. When the network only uses the magnitude information instead of using 

both phase and magnitude information, the 1-D convolution is replaced with a fully connected 

layer with hidden units 80. Log-Mel filter banks with the same feature dimension 𝐷𝐷  is 

concatenated with the transformed cIRM. 𝑅𝑅, 𝜇𝜇, and 𝐿𝐿 are set to 19, 9 and 7 respectively to form 

the expanded feature vector. 

The voice activity detector uses a similar parameter setting as STAM in [30], except that the 

number of input channels of the first convolution pair in spectral attention is doubled, while the 
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number of output channels 𝑁𝑁c remains the same. In the spectral attention module, 𝑁𝑁spec, 𝑁𝑁c and 

𝑘𝑘spec are set to 4, 16 and 3 respectively. The output units of the two FCNs in the pipe net are set to 

𝑁𝑁pipe = 256. 𝑁𝑁d from the temporal attention module is set to 128 and the number of heads in the 

multi-headed attention operation is 8. The hidden units of first FCN in the post net are 256 while 

the unit for the second FCN is 1. 

During the training, the mini batch with batch size of 550 is applied, hence 𝑇𝑇 = 550. The model 

is optimized with Adam optimizer. The learning rate starts from 10−3 for the first 50,000 iterations, 

and exponentially decays every 25,000 iterations with decay rate 0.8. The final learning rate is 

10−5. Parameters λ1, 𝜆𝜆2, 𝜆𝜆3, 𝜆𝜆4 and 𝜃𝜃cIRM are set to 0.5, 1, 0.2, 1 and 0.5, respectively, these 

parameters are near optimal and were obtained by trial and error. The dropout rate is set to 0.5. 

B. Parameter Setting for Tr-VAD 

Each utterance from the training and test dataset is framed by applying a 32 ms Hann window with 

16 ms window shifts. For the feature construction, the complex-valued spectrograms are obtained 

by applying STFT with 𝑁𝑁 = 512, the Tr-VAD uses AFPC features discussed in Section 2.1. 

Specifically, they contain 16 coefficients from MFCC , ΔMFCC , Δ2MFCC , NSSC , and ΔNSSC , 

respectively, resulting in 80-D AFPC features. For training, mini batch with a batch size of 512 is 

applied. The Tr-VAD is optimized with AdamW optimizer [54] using a cosine decay learning rate 

scheduler and 5000 iterations of linear warm-up. An initial learning rate 10−3, a weight decay 0.05 

and a final learning rate 5 × 10−6 after 4 × 105 iterations are used. Activation function Gaussian 

error linear units (GELU) [55] is chosen. For feature construction, 𝑘𝑘, 𝜇𝜇′, and 𝐿𝐿′ are set to 4, 2, and 

9, respectively. Model parameters 𝐷𝐷, 𝐿𝐿�, 𝐷𝐷�, 𝑃𝑃1, 𝑃𝑃2, 𝐷𝐷split , 𝜃𝜃T, and 𝑁𝑁𝑡𝑡𝑟𝑟𝑡𝑡𝑓𝑓𝑠𝑠 are set to 80, 54, 162, 18, 

18, 27, 0.5, and 6, respectively. In the proposed transformer block, the Tr-VAD uses 𝑃𝑃1 = 𝑃𝑃2 = 9 
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heads for the MHSA calculation. The dropout rate is set to 0.1. Other model parameter settings 

can be found in Table 5.2. 

 

Table 5.2 Parameter Setting for Tr-VAD 

Layer Name 
# Channels In 

(Units In) 
# Channels Out 

(Units Out) 
Kernel Size Stride Size 

FCN in 
Embedding 

80 324   

1-D Conv.(1) in 
Embedding 

9 54 5 2 

DW(2) in MHSA 27 27 (3, 3) (2, 2) 
1-D Conv. in 

MHSA 
27 54 1 1 

FCN in MHSA 81 162   
1st 2-D Conv. in 

FFN 
27 108 (1, 1) (1, 1) 

DW in FFN 108 27 (3, 3) (1, 1) 
2nd 2-D Conv. in 

FFN 
108 27 (1, 1) (1, 1) 

DW in Classifier 27 27 (5, 5) (2, 2) 
1st FCN in 
Classifier 

243 486   

2nd FCN in 
Classifier 

486 1   

(1)  Conv. stands for convolutional layer; (2) DW stands for the depth-wise convolution block.   

 

5.1.3 Baseline Methods 

For performance evaluation, the proposed methods, AM-cIRM and Tr-VAD from Chapter 3 and 

4, are compared with the following baseline approaches: 
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• rVAD [3]: An unsupervised VAD method which exploits pitch information by calculating 

the 𝑎𝑎 𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖 SNR weighted energy difference. 

• ACAM [29]: First attention-based VAD model which only applies temporal attention. 

• STAM [30]: An attention-based VAD model which exploits both spectral and temporal 

information. 

• DCU-10 [39]: A DNN-based SE model comprised of 10 complex layers which is still 

capable of predicting VAD labels. To this end, the cIRM 𝐌𝐌�𝑆𝑆𝑇𝑇𝐹𝐹𝑇𝑇  is averaged along the 

frequency axis and a VAD decision is made by comparing the magnitude of the averaged 

cIRM with a threshold 𝜃𝜃DCU: 

𝑀𝑀�(𝑖𝑖) =
1
𝐹𝐹
�  
𝐹𝐹−1

𝑓𝑓=0

M� 𝑡𝑡,𝑓𝑓 (5.1) 

VADDCU(t) = �1     if |𝑀𝑀�(𝑖𝑖)| > 𝜃𝜃DCU
0     otherwise 

(5.2) 

where M� 𝑡𝑡,𝑓𝑓  is the 𝑓𝑓𝑡𝑡ℎ  frequency component of the 𝑖𝑖𝑡𝑡ℎ  frame of 𝐌𝐌�𝑆𝑆𝑇𝑇𝐹𝐹𝑇𝑇 , |𝑀𝑀�(𝑖𝑖)|  is the 

magnitude of 𝑀𝑀�(𝑖𝑖) , and 𝜃𝜃DCU  is a threshold set to 0.2 by conducting grid search on 

validation set to optimize VAD performance. 

• AM-Mag: AM-Mag stands for the cIRM-based method which only uses the magnitude 

information from the cIRM. 

All supervised methods including DCU-10, ACAM, and STAM models were trained using the 

same training methods as proposed by the authors in the original papers, and default parameters 

settings were also applied to rVAD.  
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5.1.4 Evaluation Metrics 

For comparison, the F1-score and Detection Cost Function (DCF) [3] are selected as the main 

evaluation metrics for VAD.  

These metrics are explained in more detail below. 

The F1-score takes both accuracy and recall metrics into account, and is commonly used as 

evaluation index of binary classification problems [3]: 

F1 =
2TP

2TP + FP + FN
(5.3) 

where TP, FP, FN represent the number of true positive, false positive, and false negative cases, 

respectively. Higher values of the F1-score metrics suggest better performance. 

The DCF reflects the wrong performance of the model, and it is defined as follows: 

DCF = (1 − 𝛽𝛽)PFN + 𝛽𝛽PFP (5.4) 

where the β is a weighting factor, 𝑃𝑃𝐹𝐹𝑃𝑃 is the rate of FP (also called probability of false alarm) while 

𝑃𝑃𝐹𝐹𝑁𝑁 is the rate of FN (also called probability of missed detection). In practice, β is set to 0.25, 

which penalizes missed speech frames more heavily. Lower values of the DCF metrics suggest 

better performance. 

5.2 Results and Discussion 

In this section, the performance of two proposed methods is compared with the baseline methods 

under different conditions. We first investigate the performance of AM-cIRM against that of the 

baseline methods, then we compare the performance of the Tr-VAD with AM-cIRM. 
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5.2.1 Experimental Results for AM-cIRM 

The comparison results of F1 score (in percent) for the AM-cIRM and baseline methods are 

presented in Table 5.3. The results are averaged over different SNRs and noise types. The numbers 

of parameters of different methods are presented in the second line of the first row. In order to 

compare the robustness of different methods, the noise corrupted TIMIT test datasets with 0.5-

second, 1-second, and 1.5-second-long silence padding and the noise corrupted LibriSpeech test 

set are used. It is clear that all attention-based methods (including ACAM, STAM, and the 

proposed method) achieve better results than non-attention-based methods (including rVAD and 

DCU-10). For the TIMIT testing dataset, in comparison with ACAM, STAM greatly improves the 

performance by introducing convolutional blocks and multi-headed attention module. AM-Mag 

improves the results by 0.3% on F1 score with the use of magnitude information from cIRM. With 

phase information, AM-cIRM further increases the F1 score by more than 0.1%. For the 

Librispeech testing dataset, compared with STAM, the proposed method improves the 

performance by 1.7%. 

Table 5.3 Comparison of F1 (in precent) Score for AM-cIRM and Baseline Methods 

Model Name 

(#parameters) 

rVAD 

(NA) 

DCU-10 

(2808K) 

ACAM 

(957K) 

STAM 

(559K) 

AM-Mag 

(3572K) 

AM-cIRM 

(3613K) 

TIMIT-0.5 90.37 91.52 92.56 98.06 98.43 98.54 

TIMIT-1 87.35 90.78 91.21 98.15 98.48 98.64 

TIMIT-1.5 83.51 88.27 89.44 98.22 98.54 98.72 

LibriSpeech NA 82.52 87.51 88.39 90.07 90.17 

 

Table 5.4 shows the comparison results of DCF which is averaged over different types of noise 

and SNR levels. The AM-Mag improves the results by 0.6% on DCF while the AM-cIRM further 
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improves the performance by more than 0.03%. For the Librispeech testing dataset, compared with 

STAM, the proposed method decreases the DCF by about 3%. 

Table 5.4 Comparison of DCF (in precent) for AM-cIRM and Baseline Methods 

Model Name 

(#parameters) 

rVAD 

(NA) 

DCU-10 

(2808K) 

ACAM 

(957K) 

STAM 

(559K) 

AM-Mag 

(3572K) 

AM-cIRM 

(3613K) 

TIMIT-0.5 5.72 6.14 4.60 1.78 0.94 0.91 

TIMIT-1 5.38 5.12 3.72 1.32 0.72 0.67 

TIMIT-1.5 5.75 5.22 3.38 1.05 0.58 0.52 

LibriSpeech NA 15.29 11.74 13.42 10.55 10.32 

 

Table 5.5 Comparison of F1 Score (in precent) for Different SNRs on TIMIT-1 for AM-cIRM 

Noise Level rVAD DCU-10 ACAM STAM AM-Mag AM-cIRM 

-5 dB 79.51 86.48 85.91 97.78 97.79 98.01 

0 dB 86.03 89.85 90.70 98.08 98.36 98.54 

5 dB 92.44 92.36 95.45 98.30 98.80 98.91 

10 dB 93.98 94.19 96.03 98.46 99.02 99.10 

 

Table 5.5 and Table 5.6 show the detailed results of test TIMIT-1 with different SNR levels 

ranging from -5 dB to 10 dB. For Table 5.5, it is interesting to note that DCUnet and ACAM 

achieve similar performance at low SNRs (-5 dB and 0 dB), which verifies our assumption that 

the cIRM contain useful information for the detection of the presence/absence of speech. AM-

cIRM and STAM achieve similar F1 score at low SNRs while AM-Mag provides more accurate 

predictions at higher SNRs. For Table 5.6, AM-Mag also provides better performance than 

baseline methods. With the use of phase information, AM-cIRM further slightly improves the 

robustness of the method. 
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Table 5.6 Comparison of DCF (in precent) for Different SNRs on TIMIT-1 for AM-cIRM 

Noise Level rVAD DCU-10 ACAM STAM AM-Mag AM-cIRM 

-5 dB 8.31 7.83 6.24 1.50 1.07 1.03 

0 dB 5.83 5.69 3.70 1.36 0.75 0.70 

5 dB 3.90 4.07 2.32 1.25 0.57 0.51 

10 dB 3.47 2.87 2.64 1.18 0.49 0.43 

 

The influence of neighboring frames on the performance of AM-cIRM is also studied. As 

shown in Table 5.7, the relative index of the farthest neighboring frame 𝑅𝑅 = 19 may be too large 

for real-time applications, as we need the 𝑅𝑅 frames from the past and future signal streams, which 

may result in high latency in some scenarios. By reducing the values of 𝑅𝑅 and 𝜇𝜇 and keeping the 

total number of frames 𝐿𝐿 the same, the proposed method is likely to be implemented in real-time 

applications with a slight performance cost. 

Table 5.7 The Influence of Neighboring Frames on the performance of AM-cIRM for the 
TIMIT-1 case (in percent) 

Evaluation 
Metrics 

𝑅𝑅 = 19, 𝜇𝜇 = 9 𝑅𝑅 = 13, 𝜇𝜇 = 6 𝑅𝑅 = 9, 𝜇𝜇 = 4 𝑅𝑅 = 7, 𝜇𝜇 = 3 

F1 Score 98.64 98.52 98.34 98.29 
DCF 0.67 0.61 0.66 0.69 

 

5.2.2 Further Comparison of AM-cIRM and Tr-VAD 

Table 5.8 shows the comparison results of the two proposed methods on TIMIT test dataset. We 

can conclude that the two methods achieve similar performance. Specifically, the AM-cIRM 

model outperforms the Tr-VAD on TIMIT-0.5, while the latter one achieves higher F1 score on 

TIMIT-1. Considering the number of parameters used by the two methods, the Tr-VAD is more 

efficient in tackling VAD problems. 
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Table 5.8 Averaged F1 Score and DCF (in percent) for the Proposed Methods on TIMIT Dataset 

Methods # Parameters 
TIMIT-0.5 TIMIT-1 TIMIT-1.5 

F1  DCF F1  DCF F1  DCF 

AM-cIRM 3613K 98.54 0.91 98.64 0.67 98.72 0.52 

Tr-VAD 376K 98.22 1.81 98.91 0.69 98.75 0.49 

 

Table 5.9 shows the comparison of F1 score and DCF (in percent) for different SNRs on the 

TIMIT-1 dataset. The Tr-VAD demonstrates its robustness under low SNR conditions with 0.6% 

and 0.2% improvement on the F1 score and DCF at -5 dB, respectively. The two proposed methods 

achieve similar performance at higher SNRs. 

Table 5.9 Comparison of F1 Score and DCF (in precent) for Different SNRs on the TIMIT-1 for 
AM-cIRM and Tr-VAD 

Methods 
-5 dB 0 dB 5 dB 10 dB 

F1  DCF F1  F1  DCF DCF F1  DCF 

AM-cIRM 98.01 1.03 98.54 0.70 98.91 0.51 99.10 0.43 

Tr-VAD 98.63 0.84 98.87 0.71 99.03 0.63 99.13 0.58 

 

Fig. 5.1 shows the comparison of the hard VAD decisions produced by baseline methods and 

the proposed methods. The clean signal sample is chosen from the ‘test_clean’ dataset of 

LibriSpeech corpus and is indexed by ‘61-70968-000’. The transcript of the 4.9-second-long clean 

signal is: “He began a confused complaint against the wizard who had vanished behind the curtain 

on the left”. The top sub-figure shows the waveform of the clean signal, the remaining sub-figures 

show the hard VAD decisions obtained by applying different methods to a noisy signal which is 

obtained by adding the ‘airport’ noise from the AURORA noise corpus to the clean signal, the 

SNR of the noisy signal is 0 dB. DCU-10 and rVAD use different thresholding strategies as 
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discussed in Section 5.1.3 and Section 2.2, respectively; the remaining methods uniformly use a 

threshold of 0.5 for hard thresholding. From the figure we can tell that, the AM-cIRM correctly 

predicted the starting and the ending of the speech despite that it wrongly predicted the middle 

non-speech part. The Tr-VAD precisely predicted the starting and the ending of the speech as well 

as the middle non-speech parts. 

 

Fig. 5.1 Comparison of the hard VAD decisions produced by different methods. 
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Table shows the running time required by different VAD methods to process 1680 utterances 

(about 2.38 hours) from TIMIT-1 dataset. The experiments were conducted on a platform equipped 

with Intel Core i7-10700F CPU, NVIDIA GeForce RTX 2070 SUPER GPU. Please note that the 

rVAD only used CPU while the rest of them used both CPU and GPU. Again, the Tr-VAD 

demonstrates its efficiency with significantly less execution time compared to other DNN-based 

methods. 

Table 5. 10 Running time required for inference 

Running Time rVAD DCU-10 ACAM STAM 
AM-
cIRM 

Tr-VAD 

Total time  
(in seconds) 

86 251 1263 132 269 82 

Averaged time(2)  

 (in milliseconds) 
100.4 293.0 1474.1 154.1 314.0 95.7 

(1) ACAM needs 1263 seconds for MRCG feature extraction and seconds for decision making. 
(2) Averaged time required for inferencing a 10-second-long utterance. 

 

To validate the effectiveness of each part of the Tr-VAD network, we further conduct ablation 

studies on it. As shown in Table 5.11, the baseline Tr-VAD uses the AFPC features discussed in 

the Section 2.1, and has shown about 0.4% increase in F1 score compared to the one using log-

Mel filter bank coefficients, while the use of MFCC contributes no better performance than the 

use of filter bank coefficients. The use of MultiLayer Perceptron (MLP)-based FFN results in 

similar F1 score and DCF to the baseline method with the cost of 3 times more parameters used. 

Similarly, the architecture with the original Multi-Headed Attention (MHA) operation used in the 

vanilla transformer [40] also requires more parameters to be trained but does not contribute to 

obvious performance improvement. 
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Table 5.11 Ablation Study on Tr-VAD on TIMIT-1 (in percent) 

Evaluation 
Metrics 

Baseline 
Tr-VAD * 

Log-Mel 
Filter Bank 

MFCC 
MLP-based 

FFN 

Original 
MHA** 

# Parameters 376K 376K 376K 1527K 901K 
F1 Score 98.91 98.53 98.52 98.88 98.87 

DCF 0.69 0.76 0.91 0.71 0.65 
*  The baseline Tr-VAD uses AFPC features, depth-wise convolution-based FFN, and depth-wise 
convolution-based MHSA. 
** The original MHA uses 9 heads in this experiment. 

 

The influence of neighboring frames on the performance of Tr-VAD is also studied. With step 

size 𝜇𝜇′ = 4, 𝑘𝑘 = 4, 𝜇𝜇′ × 𝑘𝑘 = 16 frames from the past and future signal streams are needed. As 

shown in Table 5.12, by reducing the step size 𝑢𝑢 and keeping the total number of frames 𝐿𝐿′ and 𝑘𝑘 

the same, the proposed method is likely to be implemented in real-time applications with a slight 

performance cost.  

Table 5.12 The Influence of Neighboring Frames on Tr-VAD on TIMIT-1 (in percent) 

Evaluation Metrics 𝑘𝑘 = 4, 𝜇𝜇′ = 4 𝑘𝑘 = 4, 𝜇𝜇′ = 3 𝑘𝑘 = 4, 𝜇𝜇′ = 2 

F1 Score 98.91 98.78 98.57 

DCF 0.69 0.73 0.83 

 

5.3 Summary 

In this Chapter, we described the methodology used to evaluate the performance of the proposed 

AM-cIRM and Tr-VAD networks, and subsequently compared their performance to that of 

baseline methods by presenting experimental results. The results showed that both proposed 

methods achieve improved VAD performance compared to baseline methods from the literature 

in low to medium SNR environments. However, Tr-VAD is more efficient than AM-cIRM as it 
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requires fewer network parameters to achieve a similar performance. The results also indicate that 

the use of AFPC features with Tr-VAD can guarantee better performance. 
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Chapter 6 

Conclusion and Future Work 
 

This chapter provides some concluding remarks about the research presented in this thesis. 

Specifically, Section 6.1 presents a brief summary of the thesis work, while Section 6.2 lists 

suggestions for possible future work in this area. 

6.1 Thesis Overview and Contributions 

In this thesis, we proposed a novel voice activity detection method that uses a complex Ideal Ratio 

Mask extractor for auxiliary feature extraction, and a voice activity detector to aggregate features 

and estimate the presence/absence of speech. Below, we provide a chapter-wise sequential 

overview of the main topics discussed in this work: 

• In Chapter 1, a concise summary of the voice activity detection problem was presented. 

This was followed by a comprehensive literature survey on the conventional and deep 

neural network-based methods of voice activity detection, such as DNN-based VAD 

models using auxiliary features and attention mechanism-based methods. 

• In Chapter 2, background theories including the acoustic feature extraction process, one 

non-DNN-based method, and one state-of-the-art attention-based model STAM were given. 

The two methods served as benchmarks and were compared with the proposed methods. 
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• In Chapter 3, the proposed attention-based complex IRM-aware DNN method for VAD, 

AM-cIRM, was introduced. This framework is composed of a cIRM feature extractor, a 

feature transformation module, and a VAD module. The AM-cIRM method takes 

advantages of cIRM and uses attention mechanisms of STAM to focus on more important 

information within the acoustic feature set. 

• In Chapter 4, a novel transformer-based DNN method for VAD, Tr-VAD, was proposed. 

The new architecture splits the input features into patches and applies efficient depth-wise 

convolution operations on them, this strategy significantly reduces computation 

complexity. 

• In Chapter 5, the proposed methods were compared with baseline methods and were 

evaluated based on F1 score and detect cost function. The results showed that the two 

proposed methods achieved state-of-the-art performance. Chosen as cIRM extractor, the 

DCUnet demonstrates decent VAD performance compared to classical method. Despite 

that STAM is able to achieve excellent performance, the adding of cIRM extractor allows 

the model more robust under low SNRs conditions. Tr-VAD, on the other hand, 

demonstrates its efficiency by providing similar performance with AM-cIRM with about 9 

times fewer parameters. The experiments also show that the depth-wise convolution-based 

feed-forward network and multi-headed self-attention module save considerable 

computation cost and a significant amount of parameters. The use of a combination of 

audio fingerprinting features with Tr-VAD also can guarantee better performance. 
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6.2 Future Work 

In this section, we point out some possible directions for future research work. 

• The use of DUCnet-based cIRM extractor allows the network to learn auxiliary features. 

However, since a large number of parameters are required for the cIRM feature extractor, 

it is desirable to explore other DNN-based methods using a low-complexity approach. It 

would also be interesting to explore the influence of other acoustic features on the 

performance of the voice activity detection system.  

• The proposed transformer-based method, Tr-VAD, is non-hierarchical, using the same 

architecture for all transformer encoder blocks. It would be interesting to construct a 

hierarchical structure by starting from small-sized patches and gradually merging 

neighboring patches in deeper transformer layers. Indeed, many attempts have been made 

and they demonstrated improvement using the hierarchical transformer-based architecture 

on computer vision [44] and natural language processing tasks [56]. 

• The experiments are limited to additive noise, however, in practice strong reverberation 

may negatively impact the VAD decisions. Thus, it would be interesting to study the effect 

of reverberation on the proposed schemes and attempt to improve the robustness of the 

systems. 

• VAD is an integral and important part of many speech-based applications such as 

speech/speaker recognition, speech enhancement and so on. Improved stand-alone 

performance of VAD algorithms does not always guarantees to achieve improved 

performance of a speech-based application where the VAD algorithm is used. Therefore, 

it would be interesting to see how the proposed approaches behave when integrated into 

other speech-related applications.  
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