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Abstract

The performance of speech communication systems, such as hands-free telephony, is known

to seriously degrade under adverse acoustic environments. The presence of noise can lead

to the loss of intelligibility as well as to the listener’s fatigue. These problems can gener-

ally make the existing systems unsatisfactory to the customers especially that the offered

services usually put no restrictions on where they can actually be used. For this reason,

speech enhancement is vital for the overall success of these systems on the market.

In this thesis we present new speech enhancement techniques based on the signal sub-

space approach. In this approach the input speech vectors are projected onto the signal

subspace where it is processed to suppress any remaining noise then reconstructed again

in the time domain. The projection is obtained via the eigenvalue decomposition of the

speech signal covariance matrix.

The main problem with the signal subspace based methods is the expensive eigenvalue

decomposition. In this thesis we present a simple solution to this problem in which the

signal subspace filter is updated at a reduced rate resulting in a significant reduction in

the computational load. This technique exploits the stationarity of the input speech signal

within a frame of 20-30 msec to use the same eigenvalue decomposition for several input

vectors. The original implementation scheme was to update the signal subspace filter

for every such input vector. The proposed technique was experimentally found to offer

significant computational savings at almost no performance side-effects.

The second contribution of this thesis is the incorporation of the human hearing proper-

ties in the signal subspace approach using a sophisticated masking model. It is known that

there is a tradeoff between the amount of noise reduction achieved and the resulting signal

distortion. Therefore, it would be beneficial to avoid suppressing any noise components as

long as they are not perceived by the human ear. However, since the masking models avail-

able are usually developed in the frequency domain it is not straight forward to use them

in the signal subspace framework. Our task consisted in finding a way to map the masking

information calculated in the frequency domain into the eigendomain allowing to develop

a new perceptual signal subspace method. Subjective tests have supported the claim that

the use of the masking criteria has indeed provided the sought performance improvements.

The generalization of the signal subspace approach into a multi-microphone design was

also a subject addressed in this thesis. The method we developed takes the form of a con-
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ventional beamformer followed by a signal subspace postfilter. The postfilter coefficients are

calculated based on the signals gathered from the different available acquisition channels.

In the thesis we describe a novel technique to calculate the filter coefficients via averaging

in the eigendomain. Simulations show that the new method is insensitive to reverberation

time and that it outperforms other competing methods particularly under diffuse noise

fields.

To evaluate the performance of the multi-microphone methods, a tool to digitally sim-

ulate the room reverberation is needed. To this end, we have presented a generalization

of the popular image method into a subband design allowing it to simulate more realistic

enclosures where the reflection coefficients of the surfaces are usually frequency dependent.

The new subband room simulator readily offers important computational savings thanks

to the adopted filterbank design.
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Sommaire

Il est connu que la performance des systèmes de communication par la voix se détériore

lorsqu’ils sont utilisés dans des environnements acoustiques peu favorables. En effet, la

présence du bruit cause la perte de l’intelligibilité et engendre la fatigue chez les auditeurs.

Ces problèmes rendent les systèmes existant sur le marché inintressants pour les clients

surtout que les services offerts par les compagnies de télécommunication ne comportent

aucune restriction sur les endroits où ils seront utiliss. Dans ce contexte, les algorithmes

qui visent à amliorer la qualit du signal parole sont très importants du fait qu’ils permettent

à ces systèmes de satisfaire les attentes du march.

Dans cette thèse, nous présentons des nouvelles techniques, qui visent à rehausser la

qualité de la voix, qui sont bases sur l’approche de sous-espace du signal (SES). Selon cette

approche, les vecteurs du signal sont projets sur le sous-espace du signal où ils sont traits

afin d’liminer le bruit restant. Après ce traitement, les vecteurs seront reconstruits dans le

domaine du temps. La projection est obtenue grâce à la dcomposition en valeurs propres

de la matrice de covariance du signal parole.

Le problème avec l’approche SES est que le coût, en terme de temps de calcul, relié

à la décomposition en valeurs propres est élevé. Dans cette thèse, nous proposons une

technique simple pour résoudre ce problème. Cette technique réduit considérablement le

temps de calcul car le filtre en sous-espace est mis à jour moins fréquemment. Initialement,

l’implémentation de l’approche SES consistait à recalculer un nouveau filtre pour chaque

vecteur. L’originalité de notre technique réside dans l’exploitation de la stationnarité du sig-

nal parole dans un intervalle de 20-30 msec afin d’utiliser la même décomposition en valeurs

propres pour plusieurs vecteurs. Les expériences menées montrent que notre nouvelle tech-

nique réduit considérablement le coût de calcul tout en conservant la même performance.

La deuxième contribution de la présente thèse est l’incorporation des propriétés audi-

tives humaines dans l’approche de sous-espace du signal en utilisant un modèle de masquage

auditif sophistiqué. Il est établi qu’il est difficile de réduire le bruit sans introduire de dis-

torsion. Il serait donc judicieux de l’éliminer seulement quand il est perçu par l’oreille.

Cependant puisque tous les modèles de masquage existants sont développés dans le do-

maine de fréquence, il n’est pas facile d’incorporer les effets de perception dans l’approche

de sous-espace du signal. Notre tâche était justement de trouver une façon de transférer

l’information du masquage, calculée dans le domaine de fréquence, au domaine des valeurs
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propres ce qui permet de concevoir un filtre sous-espace auditif. Les testes subjectifs ef-

fectués ont montré que les sujets préfèrent l’application des critères auditif aux méthodes

traditionnelles.

La généralisation de la méthode sous-espace du signal á un contexte de multi microphone

est aussi un sujet traité dans cette thèse. La méthode développée prend la forme d’un

module de formation de voie conventionnelle suivi d’un post-filtre en sous-espace du signal.

Le calcul des coefficients de ce post-filtre est basé sur les signaux obtenus à la sortie des

différents microphones disponibles. Dans cette thèse, nous décrivons une nouvelle technique

où ces coefficients sont calculés à partir d’une moyenne prise dans le domaine des valeurs

propres. Les simulations effectuées ont montré que la nouvelle méthode est insensible au

niveau de la réverbération et montre une meilleure performance que les méthodes existantes,

surtout quand le bruit peut être modélisé par un champ diffus.

Afin d’évaluer la performance des méthodes multi microphones, il est nécessaire d’avoir

un outil de simulation numérique de la réverbération d’une chambre. C’est pour cela

que nous présentons une généralisation en sous-bandes de la célèbre méthode d’image.

La méthode que nous proposons permet de simuler des chambres plus réalistes où les

coefficients de réflexion des surfaces peuvent être dépendants de la fréquence. Grâce à

sa conception le nouveau simulateur de chambre permet en plus de diminuer le temps de

calcul.
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Chapter 1

Introduction

For centuries, humans have developed well established sounds to convey a certain desired

meaning to a listener hence creating what we call ”speech”. However, noisy environments

hinder the listener’s ability to decode these sounds and match them with their corresponding

meaning, hence degrading the intelligibility, i.e. the listener’s ability to understand what

is being said. Moreover, the presence of sustained noise can cause a significant fatigue or

discomfort to the listener due to a reduced quality. The latter issue is usually more annoying

than the former because most people seem to be unable to tolerate a persistent noise for

long time periods. A certain loss in intelligibility, on the other hand, can be tolerated

to some extent and the listener usually takes advantage of the context to understand the

uttered words and to fill in the missing parts.

Nowadays, in addition to interpersonal communications, speech is also being transmit-

ted via telecommunication channels where the receiver can be either a human or a machine.

In such applications, the need to preserve a good speech quality and intelligibility is a vital

feature. To this end, intensive research in the area of speech enhancement has been con-

ducted during the last three decades and a variety of methods have been developed. These

methods have been found to be very useful in different speech applications.

Yet, due to the complexity of the speech signal, this area of research still poses a

considerable challenge. Indeed, any noise reduction technique has to cope with the tradeoff

between the amount of noise suppressed and the introduced signal distortion. In this thesis

we further investigate this issue and seek to provide novel methods for speech enhancement

based on the so called signal subspace approach (SSA) [41].
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1.1 Applications of speech enhancement

Recent technological advances in Digital Signal Processing (DSP) have opened new horizons

for speech communication applications. Nowadays the services offered to the customers are

very broad and at a very high level of sophistication. Nonetheless, the user’s expectations

are still pushing for even further improvements. Namely, the user is expecting the products

offered to be as satisfactory under noisy conditions as they are in quiet. Such demands can

only be met by the incorporation, in such systems, of increasingly sophisticated and robust

speech enhancement techniques capable to offer the desired performance and to satisfy the

user under the most harsh conditions.

In this section we describe some of the most common applications of speech enhancement

although the content of this thesis is rather general and is not confined to any particular

one of them.

Cellular telephony

The digital mobile technology took the telephone out of its traditional environments to new

places like cars, crowded streets, stock markets and even night clubs. These environments

are characterized by low Signal-to-Noise Ratio (SNR) which would significantly degrade

both the quality and the intelligibility of the transmitted signal. In such situations, a noise

reduction module placed between the Analog-to-Digital converter and the encoder would

reduce the level of the interfering noise and hence improve the perceived speech signal

[30, 52].

For example, for security reasons, some countries have imposed regulations that force

the hands-free utilization of cellular telephones in cars. This scenario makes the level of the

noise caused by the engine, the wind and the wheels, high enough to significantly disturb

any ongoing conversation. For this reason many researchers have tackled this particular

problem resulting in several methods that handle car noise [26, 54, 120].

In addition to that, many speech coders rely on a speech model to efficiently compress

the signal. These models usually become inaccurate in the presence of noise resulting in

an unpleasant signal distortion. A noise reduction module would make this artifact of the

coding scheme less annoying.
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Teleconferencing

Another area which is gaining popularity is teleconferencing. One reason why teleconfer-

encing is important is that it helps reduce the traveling costs by providing a convenient

alternative to group meetings [37] (a feature welcomed by many companies). Unfortu-

nately, teleconferencing systems are typically used in a hands free mode hence making any

interference, such as computer fan or air conditioning noises, more annoying.

In this particular application, microphone arrays have been found useful. They are

usually designed to pick up a speech signal from one desired look direction and reject

interference from other directions [21, 96]. Microphone arrays have also other advantages

and capabilities such as dereverberation [1, 111] and automatic localization and tracking

of one particular speaker on the fly [13, 14, 122].

Speech recognition

Speech enhancement is also found useful in speech recognition whose applications are con-

stantly gaining popularity. These include for example voice activated command function-

ality in cars such as hands-free dialing1. Retrieving driving direction by means of car

navigation systems is another application which becomes more efficient and easier to use

via a voice interface. Manufacturers are also embedding speech recognition engines into

small devices such as PDA’s allowing to access the address book, schedule appointments

and send email in the most convenient way. Indeed, software licenses from embedded speech

is estimated to increase from US $8 million in 2003 to $227 million in 2006 [102].

However, this relatively new technology still has to face many challenges, the most

critical of which seems to be the noise. The presence of noise results in a vast discrep-

ancy between the training and testing conditions. In fact speech recognition engines rely

on mapping the speech waveform to a set of features used to train the so-called Hidden

Markov Models (HMMs). These features, such as the Mel-Frequency Cepstral Coefficients

(MFCC) or the Perceptual Linear Prediction coefficients (PLP), are usually designed in a

way that imitates the human auditory system. During recognition, a similar set of features

is computed and the best match from the stored patterns is picked and recognized as the

uttered word. This technique, although being satisfactory under quiet conditions, drasti-

cally fails under noise. For this reason, a noise compensation module is usually included

1Important for security reasons.



1 Introduction 4

in the frontend in order to obtain a better match between training and testing conditions

of automatic speech recognition (ASR) engines [31]. The use of such modules is found to

significantly improve the accuracy of the recognizer [59, 69, 71]. Microphone array based

noise reduction methods have also been found useful in ASR applications [4, 98].

Hearing aids

Speech enhancement is also beneficial in applications with a humanitarian motive, namely

hearing aids [93]. Users of hearing aids mainly complain about the fact that their equipment

amplifies, in addition to the desired speech signal, all the surrounding noises. Many find this

drawback so serious that they choose the complete silence to the annoying uncomfortable

noisy environment their hearing aid is offering.

Therefore, allowing the hearing aid users to selectively listen to a single sound source,

separating it from the surrounding noises, has obvious advantages in this case.

1.2 Speech enhancement methods

Aware of the importance of speech enhancement, researchers have been continually in-

vestigating new methods which vary according to their performance, complexity, targeted

application and also according to their underlying theoretical principle. We provide below

a brief survey of the most popular methods of speech enhancement; a detailed description

of those most relevant for this thesis will be presented in Chapter 3.

One possible approach is based on parameter modeling of the speech signal for example

with an Auto-Regressive (AR) model [31]. The estimated model parameters are then used

to re-synthesize the speech signal [108, 39, 59]. Even though this scheme may result in

a reduced noise level, the natural sound of speech is significantly degraded during the

synthesis step.

Another more popular class of methods are commonly referred to as the short-term

spectral domain methods or the transform domain methods. In general, in these methods,

the noisy signal is transformed to an appropriate domain where it is filtered by a usually

data dependent filter. This filter suppresses noise by subtracting an estimated noise bias

gathered during non-speech activity periods. Finally, an inverse transform is applied to

recover the enhanced signal in the time domain. Within this class of methods fall the

popular spectral subtraction method [9] and Wiener filtering [31], which are both frequency
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domain methods. Another related technique is the signal subspace method which operates

in the eigendomain [41, 32].

Transform domain methods usually suffer from an annoying artifact known as the mu-

sical noise. It is an artificial residual noise resulting from poor estimation of the speech

and/or noise parameters used for the design of the suppression filter. Several modifica-

tions have been applied to the basic transform domain methods in order to overcome this

drawback. One promising approach is the use of the human auditory masking to alter the

suppression filter coefficients [157, 150, 56]. The principle of this method is that there is

no need to aggressively suppress any noise components as long as they eventually will not

be perceived by the human ear. Doing so, a more satisfactory trade off between speech

distortion and residual noise level can be achieved.

The use of masking properties has also been suggested in noise reduction methods in-

tended for automatic speech recognition applications. One would argue, however, that

this should not have any significant impact since the receiver in this case is a machine

rather than a human. Nonetheless, the reported reduction in recognition error rates can

be explained as follows. On one hand, the most popular set of features used in today’s

ASR engines, for example the Mel-Frequency Cepstral Coefficients (MFCC) or the Per-

ceptual Linear Prediction (PLP) coefficients [31], are designed so that they imitate the

human ear frequency resolution. Therefore including hearing properties in a noise reduc-

tion pre-processor can improve the robustness of those features. On the other hand, from

a philosophical perspective, speech production and perception have evolved hand in hand

over the centuries from the dawn of mankind. Hence, it seems sensible to argue that any

sound produced by humans is only important for intelligibility if it can be perceived by the

human ear. Otherwise, that sound would have never been developed. To make this idea

clearer, it can be noted that an infant, while learning how to ”produce” speech, can only

repeat what he can hear or ”perceive” from the sounds produced around him, particularly

from his parents. For this reason it can be concluded that any sound which is not perceived

by the human ear is redundant for the meaning the speaker seeks to convey. Therefore,

even for a machine, it should be advantageous to decode an input speech signal which has

been enhanced based on masking considerations. Actually this might explain the success

of MFCC and PLP which made them the most popular features in the ASR industry.

Another class for speech enhancement methods is that of multi-microphone methods.

To improve the overall performance, these methods take advantage of added degrees of
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freedom achieved via the use of more than one microphone for sound acquisition. Different

criteria have been proposed for the design of microphone arrays depending on the intended

application. For example, for applications in a diffuse noise field, adaptive postfiltering

is found to be appropriate [170, 117]. For a directional noise source, however, adaptive

beamforming has been proposed [55, 92, 91].

Another method, which can also be viewed as a form of adaptive beamforming is the

classical adaptive noise canceling (ANC) method [164]. ANC attempts to remove noise

components which are correlated with the output of a second reference microphone in

which the desired speech signal is known to be absent.

1.3 Research objectives

Most of the noise reduction methods used in practice are based on conventional frequency

domain approaches; namely: spectral subtraction and Wiener filtering. The popularity of

these methods is mainly due to their low computational load and ease of implementation.

However, the emergence of new applications and the need for more robust performance

of speech communication systems under noisy conditions, require the investigation of new

approaches and the exploration of different tracks for speech enhancement research.

One such promising technique is the signal subspace approach (SSA) which is considered

to be a powerful tool in various signal processing applications. For example, in array

processing, the popular MUSIC algorithm, which is a signal subspace based technique,

has been a considerable breakthrough in direction of arrival (DOA) estimation research

[134, 135]. In speech enhancement, however, the use of SSA remains rather modest. After

its first introduction in 1991 by Dendrinos et al [32], using singular value decomposition

(SVD), and later in 1993 by Ephraim and Van Trees [40, 41], using eigenvalue decomposition

(EVD), the SSA failed to attract much of the researchers’ attention. The work performed

so far has mainly focused on extending the white noise assumption of the original method,

to the more practical colored noise case. Other researchers have attempted to reduce the

relatively costly computational load of the SSA.

This latter problem is the main reason that hindered the use of the SSA in practice and

discouraged researchers (especially from the industry) to pursue any further work in this

direction. Fortunately, the silicon technology is rapidly developing and faster digital signal

processors (DSP’s) are continuously put to the market. Therefore the computational load
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issue is becoming less significant compared to the gain in performance that can be achieved

by employing the SSA instead of the conventional frequency domain methods.

Motivated by the rapid advances in DSP technology, and by the will to provide novel

techniques to speech enhancement research, we seek in this thesis to improve the perfor-

mance of SSA by further analyzing it, examining its drawbacks and uncovering its unex-

ploited capabilities. Our interest in the SSA is particularly stirred by its enormous success

in other applications, and also by the fact that the basic signal subspace method has shown

a considerably better performance than, for instance, basic spectral subtraction [41].

During the research conducted for this thesis, the achieved results have intensified our

belief that paying more attention to the SSA may pave the road to a possible breakthrough

in speech enhancement research, thus opening new horizons and allowing for new applica-

tions that may have been previously considered to be infeasible.

1.4 Main contributions

In this thesis, we are interested in the signal subspace approach to reduce additive broad-

band noise such as car noise, jet cockpit noise or air conditioning noise for speech commu-

nications applications. Our main contributions can be summarized as follows:

Auditory Masking

Recently, new methods exploiting the human auditory masking properties have been suc-

cessfully employed to improve the performance of the frequency domain suppression filters.

However, since the available masking models are usually developed in the frequency domain,

it is not clear how they can be applied in the SSA.

In this thesis we present and investigate a Frequency to Eigendomain Transformation

(FET) which permits to calculate a perceptually based eigenfilter. This filter yields an

improved result where better shaping of the residual noise, from a perceptual perspective,

is achieved. The proposed method can also be used in the general case of colored noise.

We note that by itself, the FET is not a new mathematical concept. The novelty here

is in bringing together two previously known relationships from signal processing and using

them in the context of the signal subspace approach for speech enhancement, allowing the

incorporation of the masking properties of the human auditory system. The developed
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method is referred to as the Perceptual Signal Subspace (PSS) method2.

The performance of this method has been evaluated by informal listening tests, spec-

trogram illustrations and subjective listening tests. These experiments have revealed the

benefit of the proposed approach which results in a less annoying musical noise compared

to other SSA methods. Actually, the word musical noise may no longer be suitable to

describe the residual noise in this case. Indeed, for a given speech signal, the spectrum of

the residual noise is shaped by PSS in such a way that its characteristics are found to be

relatively similar regardless of the original background noise.

In addition to that, the FET has been used to analyze the SSA via a filterbank inter-

pretation. This approach allows to understand the effects of SSA on the speech signal from

a frequency domain perspective. Doing so, some phenomena related to SSA performance,

reported in the literature, were explained leading to better design decisions for PSS.

Reducing the computational load

The main handicap of the SSA, as discussed earlier, is its relatively high computational load.

In this thesis we provide a simple technique to reduce the complexity without introducing

any additional distortion to the signal. This is achieved by reducing the rate at which the

signal subspace filter is updated by exploiting the stationarity property of the speech signal

within one frame of a specific length.

This technique, while preserving the same noise suppression performance, can consid-

erably reduce the computational load. This result has been verified experimentally. This

novel implementation technique is referred to as the Frame-Based EVD method (FBEVD).

Multi-microphone adaptive postfiltering

Our contribution to the signal subspace approach for speech enhancement is further ex-

tended to cover the multi-microphone case. we propose a generalization of the single micro-

phone method into a multi-microphone design by applying the SSA to a composite input

speech vector formed by samples from the different available microphone signals. Then, we

exploit one property of the EVD of the covariance matrix of the extended problem, called

2The majority of the material related to PSS has been presented in ICASSP 2001 student forum [76],
IWAENC 2001 [79], ICASSP 2002 [80] and as a journal paper in IEEE Trans. on Speech and Audio
Processing [81].
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the composite covariance matrix, to develop an improved technique with higher noise re-

duction capabilities while introducing insignificant signal distortion. This is achieved by

performing averaging in the eigendomain to calculate the subspace filter coefficients. This

method is called the Multi-microphone signal subspace method with Eigen-Domain Aver-

aging (MEDA)3. By design, the MEDA can be transformed into an adaptive postfiltering

technique which is experimentally found to be especially powerful in diffuse noise fields

while being little sensitive to changes in the reverberation time.

Room response simulation

To evaluate the performance of the multi-microphone methods, we need to have a tool

to digitally simulate the effects of room reverberation on speech signals. To this end, we

provide a generalization of the popular image method [2], by allowing it to have frequency

dependent reflection coefficients. This added design flexibility offers the possibility to sim-

ulate environments closer to real life conditions hence acquiring a more realistic judgment

on the performance of the evaluated microphone array methods.

The proposed method is based on a subband scheme where the full band room im-

pulse response is decomposed into several subband impulse responses. This design offers a

straight forward fast implementation which permits to reduce the complexity hence saving

the valuable simulations time. This method is called the subband Room Simulator (SRS)4

1.5 Thesis organization

This thesis is organized as follows.

Since an important part of this thesis consists of applying the masking properties to the

signal subspace approach for speech enhancement, a brief description of the human hearing

is presented in Chapter 2. Particularly, the phenomenon of masking is presented and some

of the most popular masking models developed in the literature are described.

Chapter 3 consists of a review of some popular single microphone speech enhancement

methods especially those which are closely related to the context of this thesis. The chapter

includes an introductory section which covers some of the mathematical and signal pro-

3Parts of this method was presented in ICASSP 2001 [78].
4This method was presented in ICASSP 2000 [77].
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cessing concepts important to this thesis. This section also serves as a reference for the

notation and terminology used throughout the thesis.

The main method in the context of this thesis, namely the signal subspace approach

(SSA), is thoroughly described in Section 3.4 where it is introduced and analyzed. The

different linear estimators used to design the eigendomain filter are presented. At the end of

the chapter the computational concerns about the method are raised and remedies proposed

in the literature are given. Finally, the colored noise issue and the methods proposed to

handle it are discussed.

In Chapter 4, we introduce the Frequency to Eigendomain Transformation (FET) and

we describe how it is implemented as a matrix vector product making it suitable for im-

plementation on digital computers. Using the FET, interpreted in a filterbank framework,

we provide an analysis of the SSA which sheds more light on it from a frequency domain

perspective. This analysis serves to better understand the advantages and shortcomings of

the SSA related methods found in the literature.

The FET is used in Chapter 5 to design the novel PSS method. A full algorithm

description is provided. Also in this chapter, we describe the novel Frame-Based EVD

technique for a fast SSA implementation.

Chapter 6 is dedicated to the multi-microphone class for speech enhancement. The

chapter begins with a literature review of the common noise field models and the most

popular microphone array methods. After that, the novel MEDA is introduced and ana-

lyzed.

In Chapter 7 we present the novel subband room simulator. We describe the underlying

algorithm and we quantify the achieved computational savings. At the end of this chapter

we provide experimental results which verify the accuracy of this method as compared to

the original image method.

Experimental results to assess the performance of the proposed novel speech enhance-

ment methods, namely PSS, FBEVD and MEDA, are presented in Chapter 8. These results

show the superiority of those method over competing techniques.

Finally a conclusion and suggestions for future research are presented in Chapter 9.
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1.6 Basic notation

Some of the basic notations and different mathematical symbols used in this thesis are as

follows:

x : Vectors are represented with small letters in bold. Any deviation from this

notation will be properly clarified. Throughout the thesis, vectors are considered to

be column vectors.

A : Matrices are represented with capital letters in bold.

(·)∗ : Complex conjugate.

(·)T : Transpose operator.

(·)H : Hermitian operator.

E{·} : The expected value operator.

Re{·} : The real part of a complex number.

Im{·} : The imaginary part of a complex number.

R{A} : Range or column space of matrix A.

rank{A} : The rank of matrix A.

tr{A} : The trace of matrix A.

F{·} : The (discrete-time) Fourier transform.

F−1{·} : The inverse Fourier transform.
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Chapter 2

The Human Auditory Masking

The major contribution of this thesis, is the incorporation of the human auditory masking

properties into the SSA. To be able to understand the benefit of this approach, it is im-

portant to first have a minimal understanding of the human hearing mechanism and the

resulting masking phenomenon. To this end, we briefly discuss in this chapter the most im-

portant aspects of human hearing and the anatomy of the human auditory device, namely

the ear. We next explain the masking properties and we provide a survey of the most

popular masking models developed in the literature to mimic those properties. The inter-

ested reader can find more details about human hearing and psychoacoustics for example

in [171] and [124].

2.1 An overview of hearing

Sound waves are captured by the ear, and converted into electric impulses transported

by the auditory nerve to the part of the brain responsible for hearing. The ear, which

constitutes the main part of the human hearing system, contains three parts: the outer

ear, the middle ear and the inner ear, as shown in Figure 2.1.

The outer ear consists of the pinna, the ear canal and the eardrum. Sound pressure

variations, transmitted via the ear canal, are converted into mechanical energy by inducing

the vibration of the eardrum. This energy is then amplified in the middle ear through

the vibration of the hammer (malleus), anvil (incus) and stirrup (stapes) along with the

eardrum. The stirrup is connected to the oval window which is the entrance to the inner

ear.
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Fig. 2.1 Anatomy of the human ear [124].

The inner ear consisting of the cochlea is shaped like a snail, and is filled with fluids. The

cochlea is divided along its length by two membranes. One of them, the basilar membrane

(BM), supports the organ of Corti with its sensory hair cells, and plays an important role

in hearing. This membrane detects the vibrations of the stirrup via the surrounding fluids

and oscillates accordingly. The movements of the basilar membrane are sensed by the hair

cells initiating the neural firing that lead to the perception of sound. A cross section of the

cochlea is shown in Figure 2.2.

2.1.1 The basilar membrane

The basilar membrane is narrow and stiff at its base (near the end of the middle ear) and

becomes wider and less stiff at its apex. The cochlea forms 2.5 turns allowing a BM length

of about 32 mm [171]. Due to these physiological properties, each point on the BM is more

sensitive to one distinct frequency called the characteristic frequency. Regions at the base

are more sensitive to high frequencies whereas regions at the apex are more sensitive to low

frequencies.
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A sinusoidal sound traverses the basilar membrane as a traveling wave causing it to

vibrate entirely at the frequency of the tone. The amplitude of the vibration, however,

varies, being strongest at that point whose characteristic frequency matches the tone fre-

quency [124]. The hair cells corresponding to the vibration peak detect this motion and

fire accordingly allowing the brain (which gets this information via the auditory nerve) to

identify the frequency and amplitude of the input signal.

The hair cells are approximately uniformly distributed along the BM whereas their

characteristic frequencies have a logarithmic distribution. This phenomenon is the basis

for the critical band analysis of the human auditory perception. A detailed picture of the

basilar membrane and the organ of Corti is shown in Figure 2.2.

Fig. 2.2 A cross section of the cochlea. The organ of corti can also be seen
in the righthand side figure [124].

2.1.2 Critical bands

A critical band (CB) is a range of frequencies the edges of which indicate an abrupt change

in subjective responses [171]. Less technically, it represents a bandwidth within which the

human ear ability to resolve different frequencies is diminished or almost impaired.

The bandwidth of the CB was first quantified experimentally by Fletcher [46, 171, 124].

In his experiment a tone is masked by a band of noise centered at the tone’s frequency.

The intensity of the tone was set so that it is inaudible in the presence of the noise.

The bandwidth of the noise is then decreased gradually until the tone becomes audible

again. The experiment is then repeated for different frequencies until all corresponding
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Table 2.1 Critical band center and edge frequencies [88].

Band No. Center Frequency (Hz) Edge frequencies (Hz)

1 50 0-100

2 150 100-200

3 250 200-300

4 350 300-400

5 450 400-510

6 570 510-630

7 700 630-770

8 840 770-920

9 1000 920-1080

10 1170 1080-1270

11 1370 1270-1480

12 1600 1480-1720

13 1850 1720-2000

14 2150 2000-2320

15 2500 2320-2700

16 2900 2700-3150

17 3400 3150-3700

18 4000 3700-4400

such bandwidths have been quantified. As expected these bandwidths are found to increase

logarithmically with frequency.

A perceptual measure, called the Bark scale, relates the acoustic frequency to the non-

linear perceptual frequency resolution, in which one Bark covers one critical bandwidth.

The analytical expression used to map the frequency f (in Hertz) to the critical-band rate

z (in Barks) is [171]

z(f) = 13 arctan(0.00076f) + 35 arctan[(
f

7500
)2] (2.1)

The bandwidth of each CB can be related to the center frequency as follows [171]

BW (f) = 25 + 75(1 + 1.4(f/1000)2)0.69 (2.2)
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A simpler relationship is given by [171]

BW (f) =







100 f < 500

0.2f f > 500
(2.3)

which is more intuitive since it makes clear that the critical bandwidths are constant up to

500 Hz and increase with frequency thereafter.

Although equation (2.1) provides a continuous mapping from linear to bark scale many

perceptually based speech processing algorithms use a quantized bark number to index the

critical bands within the frequency range of interest. These bark indices together with their

corresponding critical band center and edge frequencies are shown in Table 2.1.

2.1.3 The absolute threshold of hearing

Even under the most convenient conditions, the human ear still has its limits as to what

extent it can detect sounds. This limit is quantified by the so-called absolute threshold of

hearing. The absolute threshold of hearing (or the threshold in quiet) is the sound pressure

level of a pure tone that is just audible in a noiseless environment. This threshold is well

approximated by the following nonlinear function [148]

Tq(f) = 3.64(f/1000)−0.8 − 6.5 exp(−0.6(f/1000 − 3.3)2) + 10−3(f/1000)4 dB (2.4)

which is representative of a young listener with acute hearing.

2.2 Auditory masking

Due to the physiological properties of the human hearing system, weaker sounds are masked

by stronger sounds taking place close in frequency or time. The reason for this phenomenon

is that the activity caused by the weaker signal (the maskee) in the auditory system is not

detected due to the activity caused by the stronger one (the masker).

Two types of masking can be recognized: simultaneous and temporal masking. Si-

multaneous masking, which is a frequency domain phenomenon, takes place when both

the masker and the maskee are present at the same time, i.e. simultaneously. Temporal

masking occurs when the maskee is presented to the ear after (forward masking) or before
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(backward masking) the masker.

2.2.1 Temporal masking

There are two types of temporal masking. The first is the forward masking which takes

place when the maskee occurs within 200 msec after the end of the masker. It is due to

the fatigue or latency of the neurons. In fact the auditory neurons cannot fire again after

a firing until a latency period of 1-3 msec have elapsed [124]. This suggests that the two

sounds should also be close enough in frequency.

The second type is backward masking which occurs when the maskee comes within 20

msec before the masker and is due to an interference or blockage of the neural information

on its way to the brain [124].

2.2.2 Simultaneous masking

Simultaneous masking, also referred to as frequency or spectral masking, occurs when both

the masker and the maskee are presented to the ear at the same time. It is based on the

frequency resolution of the basilar membrane, or critical band analysis. This type of the

masking phenomenon can be explained as follows.

Consider a tone (the masker) at some frequency f0. A second tone (the maskee) at

frequency f0 + δf will be inaudible if its intensity is below some threshold. This masking

threshold, which depends on δf , is found to be asymmetric in the sense that it is easier

to mask tones at higher frequencies (δf > 0) than tones at lower frequencies (δf < 0).

Besides, the slope of the masking curve was found to be dependent on the intensity of the

masker at higher frequencies whereas at lower frequencies, the slope is constant [171].

Another observation is that the bandwidth of the masking curve increases as f0 in-

creases, that is a wider range of frequencies is affected by the masker if the frequency of the

latter increases. This frequency range is nothing but the critical bands described earlier.

2.3 Masking Models

In order to exploit the masking properties described above in various speech and audio

applications, different masking models emulating the ear’s behaviour have been developed.

Models for both simultaneous and temporal masking have been proposed with various
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complexity and precision. However, while temporal masking was found to be useful, for

example in wideband audio coding [82], it has not been as widely used, especially in speech

enhancement applications, as simultaneous masking. This is because it was found to be less

important than simultaneous masking, in addition to its being more difficult to quantify.

For this reason we only focus in this thesis on models for simultaneous masking.

Most of the masking models developed follow almost the same basic steps: critical band

analysis, application of a spreading function to take care of inter-critical band masking,

subtraction of the masking offset depending on the tonality of the masker and finally

comparison with the absolute threshold of hearing. To facilitate the readers understanding

of these steps, we give in section 2.3.1 a detailed description of one of the first developed

models, namely Johnston’s model [88]. This model is mainly based on the work done by

Schroeder [136] et al. and has been designed for audio coding applications. The reason we

chose to describe this model in detail is its simplicity which makes the different calculation

steps easier to understand. In Section 2.3.2 we describe the MPEG models which are also

used in audio coding. A special emphasis is put on the MPEG model 1 since it is the

masking model opted for in this thesis. In section 2.3.3, a survey of other masking models

will be given.

2.3.1 Johnston’s model

Johnston’s model can be considered to be less sophisticated than other models available

nowadays, especially in the context of audio coding. In speech enhancement, however, it

still can provide satisfactory results and is the model used for example in [157, 150]. In

this model, the effect of individual masking components on the global masking threshold

is additive. Besides, although equation (2.1) is continuous, this model uses discrete Bark

numbers corresponding roughly to the upper band edges of the critical bands of interest,

whose number is B. In audio applications, 24 critical bands that cover the human hearing

range, are typically used. For a speech signal sampled at 8 KHz on the other hand, just 18

critical bands are retained. The center frequencies of the CB’s as well as their upper and

lower edge frequencies are shown in Table 2.1.

Johnston’s model consists of the following steps:

1. For every analysis frame, spectral energies within every critical band is summed to
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obtain a unique energy E(i) with i being the bark number,

E(i) =

khi∑

k=kli

|X(k)|2 i = 1, . . . , B (2.5)

where kli and khi are the lower and upper limits of critical band i respectively, and

X(k) is the DFT of the current speech frame. This step accounts for the critical band

analysis of the human ear where all tones with frequencies within the ith critical band

are represented with a single tone with energy E(i).

2. Inter-band masking is accounted for by convolution with a spreading function. This

function has lower and upper skirts of +25 dB and -10 dB per critical band respec-

tively and is given by [136]

SF(dB)(z) = 15.81 + 7.5(z + 0.474) − 17.5
√

1 + (z + 0.474)2 (dB) (2.6)

The spread bark spectrum is then obtained as follows1

C(i) =
B∑

j=1

E(j)SF (i− j) (2.7)

3. Next, the masking threshold is obtained by subtracting a relative threshold offset

depending on the masker type, tone-like or noise-like. The tonality α is measured

using the spectral flatness measure (SFM) in dB:

SFM = 10 log10

G

A
(2.8)

where G is the geometric mean of the signal’s power spectrum and A is its arithmetic

mean. The tonality α is then calculated as

α = min

{
SFM

SFMmax

, 1

}

(2.9)

SFMmax = −60 is defined as the SFM of a sine wave. The relative offset is then

1Note that to correctly perform the convolution the spreading function should be converted from its
decibel representation to a linear scale.
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calculated as follows

O(i) = α(14.5 + i) + (1 − α)5.5 (2.10)

In [157], the above approach is considered to be complicated and a simpler approxi-

mation is used instead to calculate the tonality. It is based on the observation that

speech is typically tone like (α = 1) in low frequencies and noise-like (α = 0) in high

frequencies [139].

The masking threshold is then calculated as follows

T (i) = C(i)10−O(i)/10 (2.11)

4. After comparing it with the absolute threshold of hearing and retaining the maxi-

mum of the two, the masking threshold is mapped from the bark scale to the linear

frequency scale.

2.3.2 The MPEG models

The MPEG standard provides two psychoacoustic models for use in the audio coder [72, 12].

These models calculate the signal-to-mask ratio (SMR) which is the difference (in dB)

between the maximum signal level and the minimum masked threshold level.

The psychoacoustic model 1 [12] is designed for use with Layers 1 and 2 of the MPEG

audio standard whereas the model 2, which is more sophisticated, is mainly designed for

use with the Layer 3.

Psychoacoustic model 1

This model calculates the magnitude spectrum of the input signal by the FFT. Tonal

and nontonal (noise-like) components of the spectrum are then identified. The masking

threshold of each of these individual components is calculated and the resulting individual

thresholds are summed linearly to obtain the global masking threshold. A masking compo-

nent at a particular frequency is discarded if it is below the absolute threshold of hearing

at that frequency.
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The masking threshold of a tonal component is given by

Ttm(j, i) = Xtm(j) +Otm(j) + SF (j, i), (2.12)

where Ttm(j, i) is the masking threshold at i barks due to the masking component located

at j barks. Xtm(j) is the sound pressure level (in dB) of the masking component with

critical band index j. The function Otm(j) is the threshold offset given by

Otm(j) = −1.525 − 0.275j − 4.5 dB (2.13)

Similarly, the masking threshold of each nontonal component is given by

Tnm(j, i) = Xnm(j) +Onm(j) + SF (j, i), (2.14)

where

Onm(j) = −1.525 − 0.175j − 0.5 dB (2.15)

SF (j, i) is the spreading function given by

SF (j, i) =







17(dz + 1) − 0.4X(j) − 6dB −3 ≤ dz < −1 bark

(0.4X(j) + 6)dzdB −1 ≤ dz < −0 barks

−17dzdB −0 ≤ dz < −1 bark

−(dz − 1)(17 − 0.15X(j)) − 17dB −1 ≤ dz < −8 barks

(2.16)

where dz = i− j in barks. The spreading function has no effect on regions of the spectrum

that are outside the range of -3 to 8 barks on the critical band rate scale, relative to the

location of the masking component. X(j) in (2.16) stands for either Xtm(j) or Xnm(j).

Further implementation details of this model will be described in Section 5.4.

Psychoacoustic model 2

In the psychoacoustic model 2, the maskers are not isolated and classified as tonal or non-

tonal. Instead, a tonality index (similar to Johnston’s model) is calculated based on an

unpredictability measure. This measure is used to interpolate between masking thresh-

olds produced by the extreme cases of noise-masking-tone (NMT) and tone-masking-noise
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(TMN). The unpredictability measure is obtained by comparing the actual magnitude and

phase spectral values of the current frame with values that were extrapolated from the

previous two frames. This measure will be close to zero for a tonal signal and close to one

for a noise-like signal. This approach has been found by Johnston to be more appropriate

than the one based on the spectral flatness measure (SFM) [87].

The offset value is then calculated as an interpolation between the offset for NMT (a

constant 5.5 dB) and for TMN (which varies with frequency from 24.5 dB to about 40 dB).

Another model has also been provided by MPEG for use in the Advanced Audio Coding

(AAC) standard [73]. The AAC model is very similar to the MPEG model 2 with the

difference mainly in the offset value for the TMN which is in this case, 18 dB for all bands.

2.3.3 Other masking models

In addition to Johnston’s model and the MPEG models, there exist many other models

which were developed for various speech and audio applications. For example Colomes et

al. [23] proposed a model for use in an audio codec (as well as in an objective perceptual

meter). This model emulates the ear canal effects using a pre-filter then applies FFT to

obtain 2048 spectral lines grouped into 600 bands equally spaced on the bark scale.

Some other models have been developed to be used in objective audio/speech quality

measurements. In this framework, we can mention the PEAQ (for audio) [74, 149] and the

PESQ (for speech) [75] models proposed by the International Telecommunication Union.

Beerends et al. [6] also proposed a model which differs from that of Johnston in that no

tonality of the signal is calculated and the difference in masking between tonal and non-

tonal components is accounted for by a compressed loudness measure. In addition to that,

a more complex spreading function with level dependent upper slope, is used. Other models

used for evaluation of audio quality can be found in [125] and in [67] where a filterbank is

used for the frequency transformation instead of the Fourier transform. Filter bank analysis

is also used in general purpose models such as those described in [27, 28, 131].
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Chapter 3

Single Channel Speech Enhancement:

Background Material

Most speech communication devices use a single microphone for signal acquisition mainly

to reduce the overall cost and to comply with the spatial constraints imposed by the

application. For this reason, a variety of single channel speech enhancement methods and

techniques have been developed during the past decades and are widely used in practice. In

this chapter we go through the most popular methods by studying their underlying theory,

their advantages and drawbacks.

To this end, we first start by introducing some mathematical tools important to un-

derstand the material presented in this chapter and in the thesis in general. Then, we

discuss the widely used frequency domain methods with special emphasis placed on those

methods which exploit the masking properties of the human ear. The interested reader

can find more details for example in [31] and in the references we cite here. This thesis

is mainly concerned about the signal subspace approach, that is why a thorough detailed

discussion of that technique is presented. Finally we attract the reader’s attention to the

crucial problem of noise estimation by providing a brief survey of some of the proposed

techniques in the literature.
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3.1 Mathematical background

In this section we briefly review some of the useful definitions and properties of digital signal

processing, linear algebra and random processes which are relevant to the understanding of

the speech enhancement concepts described in this thesis. The reader can find additional

details for example in [48, 65, 64, 123].

3.1.1 Linear Algebra

Consider an n×mmatrix A = [a1, a2, . . . , am], where ai’s are n dimensional column vectors.

The range of A is defined as

R{A} = {x ∈ C
n : ∃ y ∈ C

m,Ay = x} (3.1)

That is, it is the subspace spanned by the columns of A, hence the alternative name,

column span of A. The dimension of R{A} is given by the rank of A which is the number

of its linearly independent column vectors.

A matrix A is said to be positive semidefinite, A ≥ 0, if for all non-zero vectors x,

xHAx ≥ 0. A is said to be positive definite, A > 0, if xHAx > 0.

A non-zero vector u is an eigenvector of a n×n matrix A if it satisfies Au = λu, where

λ is the corresponding eigenvalue. The eigenvalues and eigenvectors satisfy the following

properties

1. The non-zero eigenvectors u1, . . . ,un corresponding to distinct eigenvalues λ1, . . . , λn

are linearly independent.

2. A Hermitian matrix A, that is AH = A, has real eigenvalues and is positive definite

(A > 0) if and only if these eigenvalues are strictly positive.

3. The eigenvectors of a Hermitian matrix, corresponding to distinct eigenvalues are

orthogonal. i.e. uH
i uj = 0 for λi 6= λj.

4. Any Hermitian matrix A may be decomposed as

A = UΛUH = λ1u1u
H
1 + λ2u2u

H
2 , . . .+ λnunu

H
n (3.2)
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where λi are the eigenvalues of A and ui are a set of orthonormal eigenvectors. Here

Λ = diag{λ1, . . . , λn} is the eigenvalue matrix and U = [u1, . . . ,un] is the eigenvector

matrix. Note that U is unitary1, that is UHU = I. We refer to (3.2) as the eigenvalue

decomposition (EVD) of matrix A.

3.1.2 Discrete-time Signal Processing

Consider an analog continuous signal xc(t) with bandwidth Fs/2. The discrete representa-

tion x(n) of this signal is obtained by sampling xc(t) according to the Nyquist criterion,

x(n) = xc(nTs) = xc(t)|t=nTs
(3.3)

where Ts = 1/Fs and Fs is the sampling frequency.

The Discrete-Time Fourier Transform (DTFT) of x(n) is the complex-valued function

of the continuous variable ω (angular frequency) defined by

F{x(n)} = X(ω) =
∞∑

n=−∞
x(n)e−jωn (3.4)

The Inverse Discrete-Time Fourier Transform (IDTFT) is given by

F−1{X(ω)} = x(n) =
1

2π

∫ π

−π

X(ω)ejωndω (3.5)

Throughout the thesis, time domain waveforms are represented by small letters and the

corresponding capital letters should be understood as their Fourier Transforms.

The DTFT, a complex quantity in general, can be written as

X(ω) = |X(ω)| · ej∡X(ω) (3.6)

where |X(ω)| and ∡X(ω) are the amplitude and the phase of X(ω) respectively.

While the DTFT remains a useful mathematical tool, a more practical representation

of the frequency domain is achieved via the Discrete Fourier Transform (DFT) which is a

1Note that for real entries, Unitary matrices are simply called orthogonal matrices. In addition, Hermi-
tian matrices are then symmetric matrices, and the Hermitian operator (.)H is replaced by a transposition
operator (.)T .
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function of an integer variable k. For a finite-length sequence x(n) defined over the interval

[0, N − 1], the N -point DFT of x(n) is

X(k) =
N−1∑

n=0

x(n)e−j2πkn/N for k = 0, . . . , N − 1 (3.7)

If x(n) = 0 outside the interval [0, N − 1], its DFT is equal to the DTFT sampled at N

equally spaced frequencies in [0, 2π], that is

X(k) = X(ω)|ω=2πk/N (3.8)

The N -point DFT will be represented using the vector

X = [X(0), . . . , X(N − 1)]T (3.9)

The vector X will then be related to the DTFT X(ω) according to (3.9) and (3.8).

In practice the DFT is efficiently calculated using the Fast Fourier Transform (FFT)

which reduces the number of required complex multiplications, when N is a power of 2,

from N2 to N
2

log2N .

3.1.3 Stochastic processes

Speech may be considered as a deterministic signal if a specific waveform is to be processed

or analyzed. However, it may be also viewed as a random process if one is considering the

ensemble of all possible waveforms in order to design a system that will optimally process

the speech signal. In this thesis the speech signal is considered to be a random signal.

Within a short observation interval of about 20-40 msec, a speech signal x(n) is consid-

ered to be a realization of a zero mean and wide-sense stationary (WSS) random process

with autocorrelation function

r̃x(p) = E{x(n)x∗(n+ p)} (3.10)

which is a conjugate symmetric function of p, i.e. r̃x(p) = r̃∗x(−p).
The autocorrelation sequence is often represented in matrix form. Consider the vector
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x = [x(n), x(n− 1), . . . , x(n− P + 1)]T , the covariance matrix is defined as follows

R̃x = E{xxH} =









r̃x(0) r̃∗x(1) · · · r̃∗x(P − 1)

r̃x(1) r̃x(0) · · · r̃∗x(P − 2)
...

...
. . .

...

r̃x(P − 1) r̃x(P − 2) · · · r̃x(0)









(3.11)

It can be immediately observed that R̃x is a non-negative definite Hermitian Toeplitz

matrix, (R̃x = Toeplitz{r̃x(0), r̃x(1), . . . , r̃x(P − 1)}), hence all its eigenvalues are real

valued and non-negative.

The power spectral density (PSD) is defined as the DTFT of the autocorrelation func-

tion,

Φ̃(ω) =
∞∑

p=−∞
r̃x(p)e

−jpω (3.12)

The inverse relationship is obtained via the IDTFT defined in (3.5). We note that the

power spectrum is real and nonnegative, i.e. Φ̃(ω) ≥ 0 for all ω.

The PSD is also a theoretical tool and in practice it needs to be estimated from the

observed data. Several methods for power spectrum estimation were developed and can be

found in classical books like [94] or [116]. In this thesis we are especially interested in two

of these methods namely: the periodogram and the Blackman-Tukey estimators.

The periodogram is defined as follows

Φper(ω) =
N−1∑

p=−N+1

rx(p)e
−jpω (3.13)

where rx(p) is the biased autocorrelation estimate calculated from one finite realization

x(n) of the random process as follows

rx(p) =
1

N

N−|p|−1
∑

n=0

x(n)x∗(n+ p), p = −N + 1, . . . , N − 1 (3.14)

where it is assumed that x(n) = 0 for n < 0 and n ≥ N . It can be verified that the
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periodogram is directly related to the data as follows

Φper(ω) =
1

N
|X(ω)|2 (3.15)

where X(ω) is the DTFT of x(n) over 0 ≤ n ≤ N − 1.

The Blackman-Tukey estimator (BT), on the other hand, is defined as

ΦB(ω) =
P−1∑

p=−P+1

rx(p)wb(p)e
−jωp (3.16)

where wb(p) is a symmetric data window of length 2P − 1.

The properties of these two estimators will be further addressed in Section 4.4. Note

that unless otherwise mentioned all PSD illustrations in this thesis are obtained via the

BT estimator with a triangular (Bartlett) window with P = 32.

3.2 Frequency domain speech enhancement methods

Frequency domain methods for speech enhancement are widely used due to there simplicity.

These methods mainly include spectral subtraction, Wiener filtering and their variants. In

this section we review these methods and discuss some of there limitations and the cures

available in the literature.

3.2.1 Spectral subtraction

In the spectral subtraction method, and its variants [7, 9, 10, 38, 107, 109, 119, 138, 155],

noise reduction is performed in the frequency domain using a data independent transform,

namely, the Discrete Time Fourier Transform (DTFT).

Let x(n) = s(n) + w(n), be a noisy speech signal where s(n) is the clean signal and

w(n) is an uncorrelated additive background noise. In the frequency domain we have

X(ω) = S(ω) +W (ω) (3.17)

In the particular case of power spectral subtraction, an estimate of the squared magni-
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tude spectrum of the clean speech signal is computed as follows

|Ŝ(ω)|2 = max(|X(ω)|2 − |Ŵ (ω)|2, 0) (3.18)

where |Ŵ (ω)|2 is the noise power spectrum estimate obtained during non speech activity

periods. It is known that the human auditory system is relatively insensitive to phase

distortion [160]. Hence the phase of the noisy signal is used to recover the time domain

waveform as follows

ŝ(n) = F−1{|Ŝ(ω)| · ej∡X(ω)} (3.19)

More generally, the spectral subtraction method can be formulated as follows [157]

|Ŝ(ω)| = H(ω) · |X(ω)| (3.20)

where H(ω) is an attenuation function given by [157]

H(ω) =







(

1 − α ·
[
|Ŵ (ω)|
|X(ω)|

]γ) 1

γ

, if
[
|Ŵ (ω)|
|X(ω)|

]γ

< 1
α+β

(

β ·
[
|Ŵ (ω)|
|X(ω)|

]γ) 1

γ

, otherwise

(3.21)

where α is an oversubtraction factor that controls the trade off between the level of the

residual noise and the signal distortion, β is a spectral flooring parameter which adds a

background that helps to mask the (usually annoying) residual noise. The exponent γ

determines the sharpness/smoothness of the attenuation function. Common values are

usually γ = 2 for power spectral subtraction and γ = 1 for amplitude spectral subtraction.

The attenuation function (or filter) H(ω) can be written (for the basic power spectral

subtraction2) as a function of the instantaneous SNR defined as

SNR(ω) =
|X(ω)|2
|Ŵ (ω)|2

(3.22)

in the following way

H(ω) =

[

1 +
1

SNR(ω)

]−1/2

(3.23)

2That is equation (3.18), or equation (3.21) with α = 1, β = 0 and γ = 2.
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Fig. 3.1 Comparison of suppression curves for power spectral subtraction
(continuous) and Wiener filtering (dashed) as a function of the signal to noise
ratio.

A plot of this attenuation function is shown in Figure 3.1.

3.2.2 Wiener filtering

Another closely related method for noise reduction is Wiener filtering. In this framework,

we consider x(n), s(n) and w(n) to be the underlying random processes of the noisy signal,

speech signal and noise signal respectively. The goal is to design a linear filter with x(n) as

input and outputs an estimate for s(n), say ŝ(n), which is optimal in the Minimum Mean

Squared Error (MMSE) sense. This filter is obtained such that the error E{|s(n)− ŝ(n)|2},
is minimized. In the frequency domain, and assuming that the clean speech and noise are

uncorrelated, the solution is given by the classical Wiener filter,

H(ω) =
Φ̃s(ω)

Φ̃s(ω) + Φ̃w(ω)
(3.24)

where Φ̃s(ω) and Φ̃w(ω) are the clean speech and noise PSD’s respectively.

Redefining the instantaneous SNR now as,

SNR(ω) = Φ̃s(ω)/Φ̃w(ω),
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the Wiener filter can be written as

H(ω) =

[

1 +
1

SNR(ω)

]−1

(3.25)

A comparison of the suppression curves of spectral subtraction and Wiener filtering is

shown in Figure 3.1. It can be seen that for low SNR values, Wiener filtering has a

stronger attenuation than spectral subtraction.

3.2.3 Main limitation

Due to poor estimation of signal and/or noise statistics, both Wiener filtering and spectral

subtraction suffer from a residual noise which has an annoying noticeable tonal character-

istics [155]. This processing artifact, usually referred to in the literature as musical noise,

results from spectral peaks randomly distributed over time and frequency. These peaks are

believed to be the outcome of fluctuations in the suppression filter coefficients.

Many solutions have been proposed to overcome this problem: averaging of magnitude

spectra of adjacent frames [9], over-subtraction of noise and introduction of a spectral

floor [7], soft-decision noise suppression filtering [119] and optimal MMSE estimation of

the short-time spectral amplitude [38]. A non-linear spectral subtraction method was also

proposed in which the subtraction factor depends non-linearly on a frequency dependent

SNR [112]. The use of human ear masking properties is another approach proposed in the

literature. Masking will be described in more details in the next section.

Despite this variety of techniques developed over the years, musical noise remains the

major drawback of these frequency domain subtractive methods and further research is still

needed to overcome this difficulty.

3.3 Speech enhancement based on auditory masking

An alternative promising solution to reduce the intensity of the musical noise, is to exploit

the properties of the human auditory system [5, 25, 56, 150, 157]. The idea is based on the

fact that a signal occurring close in time or in frequency to a stronger signal will be masked,

that is, it will not be perceived by the human listener [171]. Following this principle, these

methods attempt not to cancel a noise component as long as its presence is not perceived

because it is masked by a nearby speech component. Ideally, such processing would result
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in giving the spectrum of the residual noise a shape which closely follows that of the desired

speech signal. This objective, which we will be referring to as noise shaping, is expected to

eventually mask the residual noise.

While the use of auditory masking has been first exploited in audio coding [12, 88], it is

also gaining popularity in other fields such as objective evaluation of audio/speech quality

[74, 75, 149], noise reduction, and more recently echo cancellation [57]. In the following,

we present three of the most popular noise reduction methods based on masking threshold.

Other methods have also been introduced in the literature and the interested reader can

find more details in the above mentioned references and the citations therein.

3.3.1 Virag’s method

In Virag’s method [157], spectral subtraction is implemented using the general filter form

given in (3.21). Virag updates the oversubtraction and spectral flooring parameters α and

β, respectively, according to the masking threshold calculated from the currently processed

noisy frame. The dependency of these parameters on the masking threshold is based on

the following relationships

αi(ω) = Fα[αmin, αmax, T (ω)] (3.26)

βi(ω) = Fβ[βmin, βmax, T (ω)] (3.27)

where i is the current frame index. T (ω) is the masking threshold calculated from an initial

estimate of the clean speech spectrum, obtained using the conventional spectral subtraction

applied to the current frame. Virag uses Johnston’s model [88] to calculate the masking

threshold.

The parameters αmin, βmin and αmax, βmax are the minimal and maximal values of the

filter parameters. The function (3.26) that controls the filter parameters is given by

Fα[αmin, αmax, T (ω)] = αmax if T (ω) = min[T (ω)] (3.28)

Fα[αmin, αmax, T (ω)] = αmin if T (ω) = max[T (ω)] (3.29)

Between these extreme values, interpolation based on T (ω) is employed. For example a

linear interpolation can be used.

The idea is to exert more severe suppression when the value of the masking threshold
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is low, and a less severe suppression when the threshold is high. In the latter case, for

instance, more noise is allowed to remain in the enhanced signal since the speech signal is

expected to mask it. A similar approach is used for Fβ[βmin, βmax, T (ω)] in (3.27).

To obtain a good tradeoff between residual noise and signal distortion, the following

values have been proposed by Virag:

αmin = 1 and αmax = 6

βmin = 0 and βmax = 0.02

This method has been reported to provide a better noise suppression performance.

Objective and subjective measures were provided for evaluation. Virag also found that the

use of masking properties improves speech recognition accuracy [157].

3.3.2 Tsoukalas’s method

In the method proposed by Tsoukalas et al. [150], a noise suppression filter is designed

based on a psychoacoustically derived quantity of audible noise spectrum. The audible

noise spectrum Aw(ω) is defined as follows,

Aw(ω) =







Φx(ω) − Φ̂s(ω) if Φ̂s(ω) ≥ T (ω)

Φx(ω) − T (ω) if Φ̂s(ω) < T (ω)
(3.30)

where T (ω) is a masking threshold obtained from Φ̂s(ω) using Johnston’s model [88], Φ̂s(ω)

is a rough preliminary estimate of the clean speech PSD obtained for example using power

spectral subtraction and Φx(ω) is the noisy speech spectrum.

The idea here is to design a filter which would just suppress the audible noise as defined

in (3.30) while keeping all other noise components as long as they are not audible. Such a

filter is given by the following expression

H(ω) =
Φx(ω)

a(ω) + Φx(ω)
(3.31)

where a(ω) is a threshold below which all frequency components are highly suppressed.

Within one critical band with index i, a(ω) takes a unique value according to the following
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relationship

a(ω) = max
ωl(i)≤ω≤ωh(i)

{

Φx(ω)

[

Φx(ω)

max[Φ̂s(ω), T (ω)]
− 1

]}

, ωl(i) ≤ ω ≤ ωh(i). (3.32)

where ωl(i) and ωh(i) are the lower and upper boundaries of the critical band with index

i, respectively.

For best performance, (3.32) requires an accurate estimate of the clean speech spectrum.

Therefore, it was suggested in [150] to just rely on a single value of Φ̂s(ω) per critical band

in order to minimize the dependency on such estimates. This technique is referred to as

sparse speech estimation. Note also that both the masking threshold T (ω) and the noise

spectrum Φw(ω) are assumed to be constant within one critical band.

Accordingly, the following alternative for (3.32) is proposed

a(ω) =
Φw(i)

Φ̂s,min(i)
[Φw(i) + Φ̂s,min(i)], ωl(i) ≤ ω ≤ ωh(i). (3.33)

where Φ̂s,min(i) is the minimum value of Φ̂s(ω) in critical band i.

This option can be modified so that the masking threshold be explicitly used in the

expression of a(ω). This second alternative is found to provide a better performance and

is given by [150],

a(ω) =
Φw(i)

T (i)
[Φw(i) + T (i)], ωl(i) ≤ ω ≤ ωh(i). (3.34)

where T (i) is the masking threshold in the ith critical band.

To further enhance the performance, Tsoukalas et al. suggest to employ an iterative

procedure where in every iteration a new estimate Φ̂s(ω) of the clean speech spectrum is

obtained by applying the suppression filter (3.31). This estimate serves to calculate a new

masking threshold used to update a(ω). The initial estimate of Φ̂s(ω) is still obtained using

spectral subtraction. It is reported that just a couple of iterations are required to obtain

a satisfactory performance of this filter, which still keeps the computational complexity of

the proposed nonlinear filter at an acceptable level [150].
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3.3.3 Gustafsson’s method

In [56], Gustafsson et al. provide an alternative auditory masking based algorithm. The

proposed suppression filter results in an attenuated noise which preserves the original back-

ground noise characteristics.

In this formulation, given a noisy input signal x(n) = s(n)+w(n), the desired estimated

signal at the output of the suppression filter can be written as

ŝ(n) = s(n) + ζw(n) (3.35)

where ζ is a constant noise suppression scale factor which controls the level of the residual

noise. Therefore the difference between this desired residual noise level and the actual

residual noise can be quantified by the so-called residual noise distortion given by

Ew(ω) = Φw(ω)(H(ω) − ζ)2 (3.36)

where H(ω) is the frequency response of the suppression filter, and Φw(ω) is an estimate

of the background noise PSD.

Thus forcing this residual noise distortion to be below the speech masking threshold

curve, and with the constraint 0 ≤ ζ ≤ H(ω) ≤ 1, the suppression filter is found to be

H(ω) = min

(√

T (ω)

Φw(ω)
+ ζ, 1

)

(3.37)

The masking threshold T (ω) is calculated using a mixture of Johnston’s [88] and the MPEG

[12] models.

3.4 The Signal Subspace Approach

The signal subspace approach (SSA) has been originally introduced as a signal processing

technique for speech enhancement by Dendrinos in [32]. In his method, Dendrinos uses

the singular value decomposition of a data matrix to remove the noise subspace and then

reconstruct the desired speech signal from the remaining signal subspace. This approach

gained more popularity when Ephraim and Van Trees proposed a new technique based on

the eigenvalue decomposition of the covariance matrix of the input speech vector [41]. They
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also proposed two new linear estimators based on different optimization criteria to retrieve

the noise free speech from the signal subspace. In this section we analyze this technique in

detail and describe the different linear signal estimators that can be used.

3.4.1 Signal and Noise Models

The speech signal can be modeled by a linear model of the form

s = Ac =

Q
∑

i=1

aici (3.38)

where s = [s1, . . . , sP ]T is a sequence of random signal samples and c = [c1, . . . , cQ]T is, in

general, a zero mean complex random coefficient vector. A ∈ C
P×Q is a model matrix with

linearly independent columns, ai. Therefore rank(A) = Q ≤ P in general. An example of

such a model used with speech signals is the damped complex sinusoid model whose basis

vector is given by [15]

ai = [1, ρ1
i e

jωi1, . . . , ρP−1
i ejωi(P−1)]T (3.39)

In this thesis, the precise underlying model is not important. What is important,

however, is that Q < P which is a valid assumption for speech signals [41]. Hence the

columns of A do not span the entire Euclidean space but rather a subspace referred to as

the signal subspace. Indeed, the span of matrix A would be R{A} as discussed in Section

3.1.1.

The covariance matrix of the vector s in (3.38) is given by3

Rs = E{ssT} = ARcA
T (3.40)

where

Rc = E{ccT} (3.41)

is the covariance matrix of vector c, where we assume that Rc > 0. Accordingly, Rs is

rank deficient with rank(Rs) = Q < P and hence it has P −Q zero eigenvalues.

Suppose now that we have available a P -dimensional noisy observation vector x such

3Unless otherwise mentioned, all signals in this thesis are considered to be real.
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that

x = s + w (3.42)

where w is the noise vector. The noise is assumed to be zero mean, additive and uncorre-

lated with the speech signal. The noise covariance matrix Rw is assumed to be known and

is given by

Rw = E{wwT} = σ2I, (3.43)

that is the noise is a white process with variance σ2. The whiteness assumption is necessary

for the time being to be able to analyze the signal subspace method. The more practical

case of colored noise will need further processing and will be addressed in Section 3.4.5.

With these assumptions, the noisy signal covariance matrix Rx can be written as

Rx = Rs + Rw = Rs + σ2I (3.44)

Now let Rx = UΛxU
T be the eigenvalue decomposition (EVD) of Rx. Here, the

eigenvalue matrix is given by Λx = diag(λx,1, . . . , λx,P ) with λx,1 ≥ λx,2 ≥ . . . ≥ λx,P , and

U = [u1, . . . ,uP ] is the matrix of orthonormal eigenvectors (i.e. UTU = I). Since the noise

is white, the eigenvectors ui are also the eigenvectors of Rs and the eigenvalues λx,i are

given by

λx,i =

{

λs,i + σ2 for i = 1, . . . , Q

σ2 for i = Q+ 1, . . . , P
(3.45)

where λs,i, for i = 1, . . . , Q, are the Q eigenvalues of Rs which are strictly greater than

zero.

Accordingly U can be partitioned as U = [U1 U2] where U1 = [u1, . . . ,uQ] and

U2 = [uQ+1, . . . ,uP ]. Since U is orthogonal we have

U1U
T
1 + U2U

T
2 = I (3.46)

Indeed, U1U
T
1 is the orthogonal projector onto the subspace spanned by the columns of

U1 which is the same as R{A}. This subspace is called the signal subspace. U2U
T
2 , on

the other hand, is the orthogonal projector onto the complementary orthogonal subspace

called the noise subspace. It should be noted however that the noise actually fills the entire

space and is not just confined to the noise subspace.
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3.4.2 Linear Signal Estimation

With the signal and noise assumptions described above, a linear filter H is designed to

estimate the desired speech vector s from the noisy observation x in (3.42). Let ŝ denote

the estimate of s at the filter output,

ŝ = Hx = Hs + Hw (3.47)

The linear estimator H can be calculated in different ways depending on the optimization

criteria employed. We next present the most popular estimators proposed in the literature.

Least Squares Estimator (LS)

A straightforward and simple solution to the estimation problem is to use the Least Squares

(LS) estimate. It is obtained by minimizing the squared fitting error between the observa-

tion vector x and the linear low order speech model of (3.38)

ŝ = Ac0, c0 = arg min
c

||x − Ac||2 (3.48)

Setting the gradient of the above cost function to zero, the LS solution is obtained as

ŝ = Hx = A(ATA)−1ATx (3.49)

It can be seen that ŝ is the projection of the observation vector onto the signal subspace

spanned by the columns of A as discussed earlier. Hence H can alternatively be written in

terms of the eigendecomposition of Rs as follows

H = U1U
T
1 (3.50)

This estimator does not result in any signal distortion (provided that the subspace dimen-

sion Q was correctly estimated) but has the highest possible residual noise [41]. The SNR

gain obtained with this estimator is in the order of P/Q.

Other LS estimators rely on approximating the speech model matrix A (e.g. [83, 128,

129]), which is usually a difficult problem. Unlike these methods, (3.50) shows that such

a model is not required and the desired signal can be simply estimated using the eigende-
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composition of the noisy signal vector covariance matrix.

The Linear Minimum Mean Squared Error Estimator (LMMSE)

The LMMSE estimator is obtained by minimizing the residual error energy as follows

min
H

E{||r||2} (3.51)

where the residual error signal is defined as

r = ŝ − s = Hx − s (3.52)

The solution to this classical problem is given by the Wiener filter

H = Rs(Rs + σ2I)−1 (3.53)

Rewriting (3.53) in terms of the EVD of Rs we get

H = UΛs(Λs + σ2I)−1UT = U1GUT
1 (3.54)

where G is a Q×Q diagonal gain matrix with entries4

gi =
λs,i

λs,i + σ2
for i = 1, . . . , Q (3.55)

The matrix UT
1 is in fact the Karhunen-Loeve Transform5 (KLT) and its effect on the

noisy signal vector x is to calculate the coefficients of its projection onto the signal subspace.

These coefficients have the property of being uncorrelated so that they can be processed

independently using a diagonal gain matrix according to (3.54). The enhanced signal vector

is finally reconstructed in the signal subspace using the matrix U1, the inverse KLT.

4Note the similarity between the filter in (3.55) and the Wiener filter in (3.24).
5To be precise, the KLT is the matrix UT . However since all eigenvectors in UT

2
will have, according

to (3.55), a weight of zero, UT

1
can indeed be considered to be the KLT.
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The Time Domain Constrained Estimator (TDC)

Instead of minimizing the total residual error energy, the Time Domain Constrained Esti-

mator (TDC) is obtained by minimizing the signal distortion subject to forcing the residual

noise energy to be below some predefined threshold. This can be achieved by decomposing

the residual error signal as follows

r = ŝ − s = (H − I)s + Hw (3.56)

Accordingly, define the signal distortion as

rs , (H − I)s (3.57)

and

rw , Hw, (3.58)

as residual noise. The filter H is then obtained as the solution to the following optimization

problem

min
H

E{||rs||2} subject to
1

P
E{||rw||2} ≤ ασ2 (3.59)

where 0 ≤ α ≤ 1. Using the Kuhn-Tucker necessary conditions for the above constrained

minimization problem [113], the optimum filter H is a feasible stationary point if the

gradient of the Lagrangian,

L(H,µ) = E{||rs||2} + µ(E{||rw||2} − αPσ2) (3.60)

is equal to zero and

µ(E{||rw||2} − αPσ2) = 0 for µ ≥ 0. (3.61)

The solution is then given by [41]

H = Rs(Rs + µσ2I)−1 (3.62)

where µ is the Lagrange multiplier. The latter can be shown to satisfy the following

relationship with α [41]

α =
1

P
tr{R2

s(Rs + µσ2I)−2} (3.63)
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In terms of the EVD of Rs, the filter H (3.62) can be written as

H = U1GUT
1 (3.64)

where G is a Q×Q diagonal gain matrix with entries

gi =
λs,i

λs,i + µσ2
for i = 1, . . . , Q (3.65)

Note that (3.65) only differs from (3.55) by the Lagrange multiplier µ, and that both are

indeed the same when µ = 1. Equation (3.65) can then be interpreted as a Wiener filter

with a variable noise level (controlled by µ).

Equation (3.63) can also be simplified and we can find that the Lagrange multiplier

satisfies

α =
1

P

Q
∑

i=1

(
λs,i

λs,i + µσ2

)2

(3.66)

The Spectral Domain Constrained Estimator (SDC)

The second estimator proposed in [41], is the spectral domain constrained approach (SDC),

where the enhancement filter H is the solution to the following optimization problem

min
H

E{||rs||2}, subject to

{

E{|uT
i rw|2} ≤ αiσ

2 for 1 ≤ i ≤ Q

E{|uT
i rw|2} = 0 for Q < i ≤ P

(3.67)

The goal here is to minimize the signal distortion subject to keeping every spectral com-

ponent of the residual noise, within the signal subspace, below some predefined threshold.

Those spectral components in the noise subspace, on the other hand, are set to zero. Again

using the Khun-Tucker necessary conditions, the solution to this problem is given by [41]

H = U1GUT
1 (3.68)

where the entries of the gain matrix G = diag(g1, . . . , gQ) are given by

gi =
√
αi for i = 1, . . . , Q (3.69)
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3.4.3 About the gain function

Table 3.1 The gain functions corresponding to different linear signal esti-
mators

Signal Estimator Gain function gi

LS 1

LMMSE
λsi

λsi
+σ2

TDC
λsi

λsi
+µσ2

SDC
√

αi

In theory, the gain matrix entries in (3.69) can be independent of the input data.

However, exploiting information available from the signal and noise statistics may lead to

a better choice of the gain coefficients. To this end, a commonly used quantity is the SNR

of the ith spectral component, defined as

γi = λs,i/σ
2 (3.70)

Ideally, one would like to turn off spectral components with very low SNR and keep those

components with very high SNR unchanged. This may be achieved by letting gi = f(γi),

where f(.) is an increasing function satisfying

f(0) → 0, and

f(∞) → 1 (3.71)

A possible choice of f is

f(γ) =
γ

γ + µ
(3.72)

leading to the TDC solution given in (3.65) (the Wiener gain function with variable noise

level). A second choice is the exponential function

f(γ) = exp(−ν/γ) (3.73)
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which gives

gi =
√
αi = e−νσ2/λs,i i = 1, . . . , Q. (3.74)

This gain function is the one used in this thesis. This choice is motivated by the fact that

this decaying exponential gain function is found to have more noise suppression capabilities.

Besides, for ν = 1, the first order Taylor approximation of g−1
i in (3.74) is the inverse of

the Wiener gain function in (3.65) with µ = 1 [41].
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Fig. 3.2 The gain function f(γ): exponential (3.73) with ν = 1 (thick),
Wiener (3.72) with µ = 1 (dotted) and with µ = 2 (dashed).

Figure 3.2 shows a plot of these gain functions for comparison. Note that the Least

Squares (LS) estimator discussed in Section 3.4.2 is also a special case of the SDC with

gi = 1 for all i. The gain functions associated with the four different estimators presented

are summarized in Table 3.1.

3.4.4 The SSA implementation

To implement the SSA, length-P speech vectors are input at a rate of P/2 samples. To

preserve the whiteness of the noise, only a rectangular window is used in the analysis phase.

Each of these vectors, xn = [x(n), . . . , x(n− P + 1)]T , is multiplied by an enhancing linear

filter H. To synthesize the signal, the 50% overlapping enhanced vectors are then Hanning

windowed and combined using the overlap-add approach [31].

Since the speech signal is not stationary over the whole utterance, the filter H should be

updated as a new vector comes in. To this end, an estimate of the noisy speech covariance
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matrix Rx is obtained and its EVD is calculated6. Using (3.45), the eigenvalues of the

clean covariance matrix are estimated as follows

λs,i = max{λx,i − σ2, 0} (3.75)

where λx,i is the ith eigenvalue of Rx and σ2 is the noise variance estimated during non-

speech activity periods.

In what follows we provide details about some implementation and parameter selection

issues.

Estimating the covariance matrix

The linear signal estimators described earlier assume exact knowledge of the second order

statistics of the noisy signal and noise process. In practice however this information needs

to be estimated from the available noisy observation vectors, xn = [x(n), . . . , x(n−P+1)]T .

An estimate Rx,n of the covariance matrix of xn can be obtained from the empirical

covariance of 2N +1 non-overlapping noisy vectors in the neighborhood of xn. To this end,

we assume that conditions of stationarity and ergodicity are satisfied for a data window of

length (2N + 1)P . For speech, these conditions are considered to be satisfied for a window

which is around 30 msec long [31]. The estimate Rx,n can then be obtain as follows

Rx,n =
1

2PN

i=NP∑

i=−(N−1)P+1

xn+ix
T
n+i (3.76)

= XnX
T
n (3.77)

where Xn is a P × 2PN data matrix given by

Xn =
1√

2PN
[xn−(N−1)P+1, . . . ,xn−1,xn,xn+1, . . . ,xn+NP ] (3.78)

The signal subspace can now be calculated either by EVD of the covariance estimate Rx,n

or via the SVD of the data matrix Xn. Since it does not require the explicit computation of

the covariance matrix, the SVD needs less computations in addition of being more stable in

6For simplicity of notation, we avoid the use of a hat to denote estimated quantities. Such notation will
be used when it is necessary to avoid ambiguity.



3 Single Channel Speech Enhancement: Background Material 45

the case of an ill-conditioned data matrix [50]. However, the SVD does not allow the use of

more structured covariance matrices. Namely, it was observed that a Toeplitz covariance

matrix would better represent speech signals and would yield a better noise reduction

performance [41].

To derive such a Toeplitz covariance matrix, the biased autocorrelation function esti-

mator obtained from L = 2NP observation samples is calculated as follows

rx(p) =
1

L

NP−p
∑

i=−(N−1)P+1

x(n+ i)x(n+ i+ p) for p = 0, . . . , P − 1 (3.79)

The Toeplitz covariance is then formed as follows

Rx =









rx(0) rx(1) · · · rx(p− 1)

rx(1) rx(0) · · · rx(p− 2)
...

...
. . .

...

rx(p− 1) rx(p− 2) · · · rx(0)









(3.80)

The EVD of this matrix is calculated and is used to compute the signal subspace filter as

described earlier.

The effect of the window length L

The choice of the window length L = 2NP is a crucial design decision. To obtain better

covariance estimates, L should be as long as possible. However, in the current application,

we are limited by the non-stationarity of the speech signal. For this reason, we choose

L = 256 (that is 32 msec at 8 KHz sampling rate).

Our simulations showed that for shorter windows (or frames), the covariance estimates

are not reliable resulting in a higher level of the musical noise. Longer frames, on the other

hand, considerably reduce the level of the residual noise at the price of more signal distortion

(due to the violation of the stationarity assumption). Such distortion will be more evident

at unvoiced instances of speech because they are generally shorter in duration and weaker

in energy.
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Fig. 3.3 (a) The residual error signal and (b) the signal distortion energy
(dashed) and residual noise energy (continuous), as a function of the model
order P .

The effect of the model order P

Another important parameter is the model order P . Figure 3.3 (a) shows the effect of

P on the total residual error energy E{‖r‖2} while in Figure 3.3 (b) the residual noise

E{‖rw‖2} and the signal distortion E{‖rs‖2} are shown separately. At low values of P , the

SSA exhibits high signal distortion due to the fact that not enough correlation coefficients

are available to accurately estimate the signal subspace. This results in the loss of signal

components important for intelligibility. The residual noise, however, is low because, for

the same reason, many of its components would have been forced to zero. The figure also

shows that the higher P is, the lower the residual error energy. The latter converges to a

minimum value for P > 30 suggesting that no more gain in performance could be achieved

by further increasing the value of P . Moreover, higher values of P may even increase the

residual error signal energy (as can be seen in Figure 3.3 (a)) because not enough samples

are available for estimating the covariance matrix (these results were obtained for a fixed

frame length L = 256).

Besides, increasing P would drastically increase the computational load. This is because

the SSA is based on the exact EVD of a P × P covariance matrix which requires O(P 3)

floating point operations (FLOPS). Figure 3.4 shows the number of Matlab FLOPS per
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Fig. 3.4 The number of Matlab FLOPS per input sample as of function of
the model order P .

input sample required by the SSA. It can be seen that the computational load increases

with P .

The effect of the control parameter ν

In the exponential gain function, the parameter ν serves as a free parameter that controls

the trade off between the residual noise level and the signal distortion, defined in (3.56).

Figure 3.5 shows a plot of the signal distortion energy E{‖rs‖2}, the residual noise energy

E{‖rw‖2}, and the total residual error energy E{‖r‖2} as a function of the parameter

ν in the exponential gain function (3.74). It can be seen that as ν increases, the signal

distortion increases and the residual noise level decreases. Consequently, the minimum

values for the total residual error energy is obtained when ν is around 1.5. Listening

tests however show that ν = 2 is a better choice from a perceptual perspective. This

can be explained by the fact that humans prefer a lower noise level at the expense of

more signal distortion. Note that since the noise and the speech signal are uncorrelated,

E{‖r‖2} = E{‖rs‖2} + E{‖rw‖2}.
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Fig. 3.5 The total residual error signal energy (thick), the signal distortion
energy (dotted) and the residual noise energy (dashed), as a function of ν.

3.4.5 Handling colored noise

One problem with the signal subspace approach is that it is based on the white noise

assumption. However, almost all common noise types encountered in real life are colored.

Therefore extra techniques should be included with the signal subspace method to handle

the colored noise case for it to be useful in practice. Fortunately, several such techniques

have been proposed in the literature with satisfying results.

Prewhitening

In [41], prewhitening is proposed as a remedy to the colored noise case. It consists of

multiplying the noisy input vector x by R
− 1

2

w , the square root of the colored noise covariance

matrix Rw = E{wwT}. The prewhitened signal is obtained as

x̆ = R
− 1

2

w x = R
− 1

2

w s + R
− 1

2

w w = s̆ + w̆ (3.81)

It can be verified that E{w̆w̆T} = I. Hence w̆, the prewhitened noise component, is now

white with variance equal to one. This can be seen in Figure 3.6 where the spectrum of

a Volvo car noise signal sampled at 8 KHz, has been whitened yielding the relatively flat

unit variance (0 dB) spectrum shown in the figure. The power spectra were obtained using
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the Blackman-Tukey estimator with a Bartlett window. In Figure 3.7, the same result is

shown for an F16 jet cockpit noise. It can also be seen that the noise spectrum has been

flattened but not to the same degree as in the Volvo noise case.
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Fig. 3.6 The power spectrum of a Volvo car noise (thick) and the spectrum
of the corresponding prewhitened signal (thin).

The EVD obtained from the signal x̆ can now be used instead of the EVD obtained

from x to calculate a filter H̆ using any of the linear estimators presented earlier. However,

since the desired speech signal is also affected, the inverse of the prewhitening matrix, R
1

2

w,

is applied as a postfilter to undo the effect of prewhitening. This is called dewhitening.

Accordingly, the overall effective enhancing filter becomes

H = R
1

2

wH̆R
− 1

2

w (3.82)

The prewhitening and dewhitening matrices can be obtained using the Cholesky decom-

position of the noise covariance matrix or more safely (in case the latter is not invertible or

near singular) using its eigenvalue decomposition. Consider the EVD Rw = UwΛwUT
w =

Uw,1Λw,1U
T
w,1, where Λw,1 contains only non-zero eigenvalues and UT

w,1 has the correspond-
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Fig. 3.7 The power spectrum of an F16 jet cockpit noise (thick) and the
spectrum of the corresponding prewhitened signal (thin).

ing eigenvectors as its columns, then

R
1

2

w = Uw,1Λ
1

2

w,1U
T
w,1 (3.83)

R
− 1

2

w = Uw,1Λ
− 1

2

w,1U
T
w,1 (3.84)

We shall refer to this method as the PreWhitening based Signal Subspace method (PWSS).

The effect of prewhitening will be further addressed and analyzed in Section 4.3.

In [69, 70] prewhitening is accomplished using a filter designed from the coefficients of

an autoregressive model of the noise. Suppose that the noise signal can be modeled by an

AR process of order q,

w(n) = −
q
∑

i=1

a(i)w(n− i) + v(n) (3.85)

where v(n) is a white Gaussian process with variance σ2. Then after estimating the AR

parameters, using the modified covariance method [94], the prewhitening filter impulse

response is obtained as follows,

h(n) =

{

â(n) if 0 ≤ n ≤ q

0 otherwise,
(3.86)
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where â(n) are the estimates of the AR model parameters and â(0) = 1. The inverse filter

impulse response, say h−1(n), on the other hand is given by

h−1(n) = −
q
∑

i=1

â(i)h−1(n− i) + δ(n), for n = 0, 1, . . . (3.87)

where δ(0) = 1 and δ(n) = 0 for n 6= 0.

The generalized eigenvalue decomposition method

Prewhitening can alternatively be realized as an integral part of the subspace decomposition

using the generalized EVD [68] or the generalized SVD [84]. The idea is to find a matrix

that would diagonalize both Rs and Rw simultaneously. Such a matrix would satisfy [68],

VTRsV = Λ (3.88)

VTRwV = I (3.89)

where V and Λ are the eigenvector matrix and the eigenvalue matrix of R−1
w Rs, respectively.

Hence the optimal filter (3.68) can be modified as follows

H = V−TGVT (3.90)

It should be noted that VT is no longer the KLT corresponding to Rs and that V is

not orthogonal. The gain matrix G is chosen as discussed earlier to satisfy the desired

optimization criterion. The noise variance, however, should now be set to one, that is

σ2 = 1.

The Raleigh Quotient method

As discussed earlier, the prewhitening technique consists of using x̆, in (3.81), instead of

x for the filter design. Therefore, the filter will shape the noise spectrum according to the

spectrum of s̆, the modified speech vector, rather than s. Hence the filter in equation (3.82)

is not necessarily optimal in the sense of its noise shaping capabilities [121].

Alternatively, another method to handle colored noise, consists of replacing the constant



3 Single Channel Speech Enhancement: Background Material 52

noise variance in (3.70) by the noise energy in the direction of the ith eigenvector, given by

ξi = uT
i Rwui (3.91)

which is the Raleigh quotient associated with ui and Rw for i = 1, . . . , Q. Here ui is the

ith eigenvector of the clean covariance matrix estimate, R̂s, with corresponding eigenvalue

λs,i. R̂s is estimated from the noisy covariance matrix as follows

R̂s = Rx − Rw (3.92)

Since R̂s, so obtained, is no longer guaranteed to be positive definite, the rank Q is chosen

as the number of strictly positive eigenvalues λs,i. The gain function is calculated, for

example using the exponential function (3.74), in the following way,

gi = f(λs,i/ξi) = e−νξi/λs,i for i = 1, . . . , Q (3.93)

This method, which we will refer to as the Raleigh Quotient Signal Subspace method

(RQSS), was found to be superior to the prewhitening technique in the sense that better

noise shaping is achieved [121, 130]. This method also requires less computations than

PWSS because no matrix inversion is involved. RQSS was the basis for the method de-

scribed in [121] and [130]. In the latter it was used in conjunction with a subspace tracking

technique in order to reduce the computational load.

In [121] further processing is added to RQSS by classifying the speech frames as speech

dominated or noise dominated. The procedure described above is applied during speech

dominated frames. During noise dominated frames on the other hand, the EVD of the

noise covariance matrix is used instead of that of the estimated clean speech covariance

matrix. This alternative scheme is described next.

Let Rw = UwΛwUT
w be the EVD of Rw where Uw = [uw,1 . . . uw,P ] and Λw =

diag{λw,1, . . . , λw,P} are the corresponding eigenvector and eigenvalue matrices respectively.

The gain coefficients are now given by

gi = f(φi/λw,i) = e−νλw,i/φi for i = 1, . . . , Q (3.94)

where φi = uT
w,iRxuw,i − λw,i, for i = 1, . . . , Q. That is φi is the speech energy estimate
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in the direction of the ith eigenvector of Rw obtained by subtracting the noise energy from

the noisy speech energy along that direction. The rank is again chosen such that φi > 0 for

i = 1, . . . , Q. However, our experiments show that while this method indeed outperforms

the PWSS method, the main gain in performance is due to the Raleigh quotient technique

rather than the frame classification approach.

The RQSS will be used to evaluate the merit of using the human hearing properties in

the novel Perceptual SSA method, which will be presented in Chapter 5. It will also be

generalized into a multi-microphone design in Chapter 6, leading to another novelty of this

thesis. RQSS basically represents the methods in [130] and [121] where our experiments

revealed that the superiority of these methods over the original SSA with prewhitening can

mainly be attributed to the use of the Raleigh Quotient approach.

3.5 Noise Estimation

For all single channel speech enhancement methods, noise estimation remains a very chal-

lenging problem. Indeed, all these methods rely on an accurate estimation of the back-

ground noise for an acceptable performance. Inaccurate estimation of the noise usually

results in the suppression of important speech components or the increased intensity of

the musical noise. For this reason, much research effort has been put to improve noise

estimation methods though still non of the proposed approaches is fully satisfactory.

Most common methods require a voice activity detector (VAD) to make a hard decision

on the presence or absence of speech in the input speech frame. Based on that decision the

noise estimate is updated using a first order recursive system as follows

Φw(ω,m) = ρΦw(ω,m− 1) + (1 − ρ)Φx(ω,m) (3.95)

where Φ̂w(ω,m) and Φx(ω,m) are the noise PSD estimate and the input noisy speech PSD

of frame m respectively. The parameter 0 ≤ ρ ≤ 1 is a forgetting factor selected to adjust

the sensitivity of the noise update scheme to new input data. For example during speech

activity, ρ is set to one so that the previous noise estimate is kept unchanged. In the

context of SSA, an estimate of the noise covariance matrix is updated in a similar way

Rw,m = ρRw,m−1 + (1 − ρ)Rx,m (3.96)
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where R̂w,m and Rx,m are the noise covariance matrix estimate and the noisy speech co-

variance matrix for the mth frame respectively.

This approach has been found useful and is widely used in practice. However its ef-

fectiveness is highly dependent on the accuracy of the VAD. Otherwise, if a speech frame

is mistakenly labeled as a speech free frame, then the noise estimate becomes inaccurate

resulting in the suppression of important speech components. Indeed, the assumption that

speech and noise are uncorrelated, on which almost all noise reduction methods are based,

would be violated.

3.5.1 Voice activity detection

Voice activity detection is unfortunately a very difficult problem especially at low SNR

conditions. Over the years, several methods have been developed which mainly rely on

extracting some measured features and comparing them with thresholds to decide on the

presence or absence of speech. For non-stationary noise, these thresholds have to be time

varying.

The most popular VAD methods are based on the energy of the input signal. This

energy, in the presence of speech, is believed to be higher than the background noise.

Therefore, if the calculated energy is above a predefined threshold then the current analysis

frame is labeled has a speech active frame [90, 89, 165]. Other methods include those based

on zero crossing [90], a periodicity measure [151], cepstral coefficients [11] and adaptive

noise modeling [168]. A fusion of two (or more) of these measures has also been proposed

[147].

In the adaptive signal subspace approach proposed in [130], a voice activity detector

based on the principal component of noisy speech, i.e the largest eigenvalue λx,1 of the

covariance matrix has been proposed. As will be seen in Section 4.2, the largest eigenvalue

corresponds to the energy of the first speech formant. The method consists of tracking

the minimum and maximum of the principal component and setting a threshold value to

be 1/12th the distance between them. Voice activity is detected if λx,1 is greater than the

minimum value by at least that threshold.

We note also that lately, in [142], it was reported that voice activity detection errors

can be tolerated if they are at a rate of no more than 20% of the time.



3 Single Channel Speech Enhancement: Background Material 55

3.5.2 Quantile based noise estimation

Despite the variety of VAD techniques developed, these techniques still do not offer sat-

isfactory results especially under very noisy conditions. Non-stationary noise also poses a

serious obstacle as it necessitates updating the decision thresholds on the fly, which is not

a straightforward task.

Alternatively, some researchers have recently proposed to estimate the noise continually

even during speech activity making the presence of a VAD unnecessary. One such approach,

is the so called quantile based noise estimation method (QBNE). Originally proposed in

[143], this method is actually an extension of the histogram approach of [66]. This technique

is driven by the assumption that the noise is stationary or at least its statistics are changing

slower than those of the clean speech. This assumption is frequently encountered in many

real life situations. In fact it is known that even during speech activity, the speech signal

does not permanently occupy all frequency bands. Accordingly, it is possible to assume

that for a long enough period of time, the energy per frequency band is at the noise level.

Hence the noise estimate Φw(ω,m) at the mth frame is obtained in the following way.

Let the current and previous T−1 noisy speech frames Φx(ω, t), for t = m−T+1, . . . ,m,

be stored in a length T buffer. These PSD’s are then sorted in an ascending order such

that

Φx(ω, t1) ≤ Φx(ω, t2) ≤ . . . ≤ Φx(ω, tT ) (3.97)

where tj ∈ [m − T + 1,m]. The qth quantile for every frequency is taken as the noise

estimate for the current frame at that frequency,

Φw(ω) = Φx(ω, t⌊qT ⌋) (3.98)

where ⌊.⌋ denotes flooring to the nearest integer. That is, q = 0 gives the minimum, q = 1

gives the maximum and q = 0.5 gives the median. In [118] the minimum has been used

whereas in [42, 43, 143] it was reported that the median has a better performance as it

is less vulnerable to outliers. In the case of the median, the underlying assumption is

that for T frames, one particular frequency is occupied by a speech component in at most

50 % of the time. A closely related approach based on minima tracking for recursive noise

estimation is also reported in [22] and [33].
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3.6 Summary

In this chapter we provided a survey of some of the single channel speech enhancement

methods. For the frequency domain methods we focused on Wiener filtering and spectral

subtraction and we discussed their main limitation, namely, the musical noise. As a remedy

to this artifact, we examined in detail three methods based on auditory masking which were

reported to make of the musical noise less annoying with no increased signal distortion.

We then provided a detailed presentation of the signal subspace approach for speech

enhancement which is the basic method in this thesis. Unlike its frequency domain counter-

parts, the SSA performs in a signal dependent domain controlled by a KLT derived from

the signal covariance matrix. We examined the sensitivity of the method to changes in

the design parameters and we examined the modifications proposed in literature to gen-

eralize the SSA so that it can handle colored noise situations. The SSA is reported to

yield improved noise reduction performance in general though at the expense of increased

complexity.

Finally, we addressed the problem of noise estimation which is very crucial to all single

channel speech enhancement methods. Usually, these methods rely on a VAD to continue

updating a noise estimate until speech presence is detected at which point the update is

frozen. We briefly discussed some VAD techniques and then presented a relatively newer

alternative where noise estimation can still be carried out even during speech activity.
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Chapter 4

The Frequency to Eigendomain

Transformation

Like most single channel speech enhancement methods, the SSA, presented in Section

3.4, suffers from the annoying residual noise known as musical noise. Tones at random

frequencies, created due to poor estimation of the signal and noise statistics, are at the

origin of this artifact. In Section 3.3, we have presented some methods that propose to

solve this problem by exploiting the human masking properties. These methods are based

on the fact that the human auditory system is able to tolerate additive noise as long as it is

below some masking threshold. It has been reported that this approach allowed to reduce

the intensity of the musical noise [5, 25, 56, 150, 157].

Recently, a DCT based SSA imitating the human hearing resolution was proposed [156].

However, no algorithm which employs a sophisticated hearing model with a KLT based SSA

is available1. The reason is that the SSA does not operate in the frequency domain where

the available masking models are developed. Indeed, as discussed in Chapter 2, almost all

existing masking models were developed in the frequency domain mainly because the human

hearing properties were studied (hence understood) as a function of frequency. Therefore,

any attempt to use auditory masking to enhance the performance of SSA, should first

identify a way to map the human hearing properties from the frequency domain to the

eigendomain.

In this chapter, we adopt two known relationships in signal processing and linear algebra

1Lately, however, after we published parts of our work in [76] and [78], some methods addressing this
issue have emerged, for example [99] and [97].
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that relate the EVD of a signal covariance matrix to its PSD and vice versa [53, 64]. These

relationships, which we will refer to as the Frequency to Eigendomain Transformation

(FET) and its ”inverse” (IFET), will be used in the context of speech enhancement to map

the auditory masking properties from the frequency domain to the eigen-domain. This, as

will be shown in Chapter 5, allows to design a signal subspace filter which takes advantage

of the masking properties to yield better residual noise shaping from a psychoacoustic

perspective. Recall that noise shaping refers to modifying the residual noise spectrum in a

way that it takes the shape of the desired speech signal hence making it less audibale due

to masking effects.

Our new method, referred to as the Perceptual Signal Subspace (PSS) method and which

we introduce in Chapter 5, uses the IFET to obtain a PSD estimate of the speech signal

which is used to compute a masking threshold. This threshold is mapped to the eigendomain

using the FET relationship and a modified gain function is calculated accordingly yielding

the PSS method.

We also use the FET to provide an analysis of the SSA according to a filterbank inter-

pretation. This interpretation helps to view the SSA from a different angle and to explain

its effect on the input signal PSD. Accordingly, we discuss and try to explain some SSA

related observations reported in the literature. This interpretation also serves to motivate

our choice of the gain function for the proposed PSS method.

4.1 Derivation

Consider a real zero mean WSS stochastic process x(n) with autocorrelation function

r̃(p) = E{x(n)x(n+ p)}

The PSD of x(n) is defined as follows

Φ̃(ω) =
∞∑

p=−∞
r̃(p)e−jωp (4.1)

In practice, however, we need to estimate the PSD from a single realization of x(n) over a

finite time interval, say n ∈ [0, . . . , L− 1]. To this end, consider the biased autocorrelation
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estimator given by

r(p) =
1

L

L−1−p
∑

n=0

x(n)x(n+ p) p = 0, . . . , L− 1 (4.2)

with r(−p) = r(p) and r(p) = 0 for |p| ≥ L. The PSD can then be estimated using the

periodogram defined as [64]

Φ(ω) =
L−1∑

p=−L+1

r(p)e−jωp (4.3)

Now let R = Toeplitz
(
r(0), . . . , r(P − 1)

)
be the covariance matrix estimate of x(n)

with λi being its ith eigenvalue and ui = [ui(0), . . . , ui(P − 1)]T being the corresponding

unit-norm eigenvector. The rank of R is in general Q ≤ P , so that λi = 0 for i > Q.

Property 4.1.1 The eigenvalues λi, for i = 1, . . . , Q, can be written in terms of Φ(ω) in

the following way

λi =
1

2π

∫ π

−π

Φ(ω)|Vi(ω)|2dω for i = 1, . . . , Q (4.4)

where

Vi(ω) =
P−1∑

p=0

ui(p)e
−jωp (4.5)

is the Discrete-Time Fourier Transform of the entries ui(p) of the eigenvector ui.

Proof: By definition the eigenvalue λi can be written as

λi = uH
i Rui

=
P−1∑

p=0

P−1∑

q=0

u∗i (p)r(p− q)ui(q) (4.6)

Using the relationship between the autocorrelation function estimate and the periodogram,

i.e. the inverse DTFT of (4.3):

r(p) =
1

2π

∫ π

−π

Φ(ω)ejωpdω (4.7)
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we have

λi =
P−1∑

p=0

P−1∑

q=0

u∗i (p)ui(q)
1

2π

∫ π

−π

Φ(ω)ejω(p−q)dω (4.8)

Recalling the definition of Vi(ω) (4.5) and rearranging terms we get

λi =
1

2π

∫ π

−π

Φ(ω)Vi(ω)V ∗
i (ω)dω (4.9)

Which completes the proof.

In this thesis (4.4) is called the Frequency to Eigendomain Transformation (FET).

This relationship constitutes a mapping from the frequency domain to the eigendomain.

Therefore, if we have available a masking threshold T (ω) calculated using one of the masking

models described in Section 2.3, then this threshold can be mapped to the eigendomain

using the FET. The so obtained eigenvalues, or more accurately ”masking energies”, will

reflect the masking properties associated with the currently processed speech frame.

Any masking model, however, requires an estimate of the clean speech PSD in order

to calculate the masking threshold. To this end, assuming that the clean speech estimate

is available in the eigen-domain, we need a second relationship, or a sort of inverse FET,

which maps the available EVD to the frequency domain. Such relationship can be obtained

using the Blackman-Tukey PSD estimator.

As discussed in Section 3.1.3, the Blackman-Tukey estimator can be obtained by mul-

tiplying r(p) in (4.3) by a length 2P − 1 window wb(p), where P ≤ L as follows

ΦB(ω) =
P−1∑

p=−P+1

r(p)wb(p)e
−jωp (4.10)

Property 4.1.2 If wb(p) is a Bartlett (triangular) window, then ΦB(ω) can be written in

terms of the eigenvalue decomposition of R in the following way [64, 94]

ΦB(ω) =
1

P

Q
∑

i=1

λi|Vi(ω)|2 (4.11)

Proof: Consider the Blackman-Tukey estimate (4.10), assuming a triangular window
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(i.e. wb(p) = 1 − |p|
P

for |p| < P ), we get

ΦB(ω) =
1

P

P−1∑

p=−P+1

r(p)(P − |p|)e−jωp (4.12)

The above summation over p is readily expressible as a double summation as

ΦB(ω) =
1

P

P−1∑

p=0

P−1∑

q=0

r(p− q)e−jω(p−q) (4.13)

From the eigenvalue decomposition formula (3.2),

R =
P∑

i=1

λiuiu
H
i ,

we note that

r(p− q) =
P∑

i=1

λiui(p)u
∗
i (q) (4.14)

Substituting (4.14) into (4.13) and recalling the definition of Vi(ω) (4.5), we finally obtain

ΦB(ω) =
1

P

Q
∑

i=1

λi|Vi(ω)|2 (4.15)

where the limit of the summation is changed from P to Q because λi = 0 for i > Q.

The FET and IFET relationships developed here are intended to be used as the inverse

of each other. However, it should be stated that mathematically speaking, this is not true

in general. In fact, while the Blackman-Tukey PSD estimate ΦB(ω) can be expressed in

terms of the EVD of the covariance matrix of the signal x(n) as in the IFET relationship

(4.11), inserting it instead of Φ(ω) in the FET relationship (4.4), will not yield the signal

eigenvalues λi’s, that is

λi 6=
1

2π

∫ π

−π

ΦB(ω)|Vi(ω)|2dω (4.16)

in general2.

2Equality is obtained if the signal x(n) was white.
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4.2 A filterbank interpretation

By design, the SSA is always viewed and analyzed from a linear algebra perspective. How-

ever since our understanding of speech signals is best in terms of its frequency spectrum,

it seems beneficial if we can provide a frequency domain interpretation of the SSA in order

to better understand its behaviour. A filterbank interpretation has been given for example

in [60] and [85] yielding a modified SSA based method (with an SVD implementation). We

further pursue this interpretation here using the FET and consequently try to explain some

phenomena related to SSA.

In this section, all signals are sampled at 8 KHz hence have a bandwidth of 4 KHz. The

speech power spectra estimates shown in the figures, are obtained using the Blackman-

Tukey estimate calculated using a length 2P − 1 Bartlett window, with P = 32, from a

length L = 256 frame.

d
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V P
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Fig. 4.1 A block diagram of the filterbank interpretation of the FET

Consider a filter bank with P analysis filters with frequency responses Vi(ω) for i =

1, . . . , P as shown in Figure 4.1. That is, every filter has a finite impulse response ui(p)

for p = 0, . . . , P − 1. Now let x(n), a random process with PSD Φ(ω), be the input to this

filterbank. Thus, the PSD Φi(ω) of the output xi(n) at the ith filter is given by [65]

Φi(ω) = Φ(ω)|Vi(ω)|2 (4.17)

Using FET (4.4), it can be seen that the total energy at the output of the ith filter is
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Fig. 4.2 The magnitude squared of the ith eigenfilter Vi(ω) for the vowel
/a/ in the word ”cats”, for i = 1, . . . , P . The thick line shows the PSD of the
speech signal.

actually the ith eigenvalue λi,

λi =
1

2π

∫ π

−π

Φi(ω)dω (4.18)

Therefore, the SSA actually consists of dividing the input signal into several subbands.

In every band, a gain function depending on the average SNR in that particular band is

applied and then the whole signal is re-synthesized in the time domain.

This filterbank, however, is different from other common ones, such as the DFT filter

banks, in that instead of having the passbands of the analysis filters uniformly distributed

over the frequency range of interest, the ”eigen” analysis filters are signal dependent. In

Figures 4.2 and 4.3, these filters are shown for the case of a vowel (/a/) and an affricate

(/ch/), respectively. The figures show the PSD of the input signal (thick line) together
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Fig. 4.3 The magnitude squared of the ith eigenfilter Vi(ω) for the affricate
/ch/ in the word ”each”, for i = 1, . . . , P . The thick line shows the PSD of
the speech signal.

with the magnitude squared of the frequency response of the P = 32 eigen analysis filters,

|Vi(ω)|2.
In Figure 4.2, for the vowel, it can be seen that the first four filters correspond to the

first formant whereas the next two filters correspond to the second formant. The third

formant (also important for intelligibility) can be found in the pass-bands of the 12th, 13th

and 14th filters. The passbands of the analysis filters corresponding to the affricate /ch/ are

also shown in Figure 4.3. It can also be seen that the passbands of the filters corresponding

to the largest eigenvalues coincide with the first formant of this speech signal.

As mentioned in Section 3.2, the output of the single channel frequency domain methods

usually suffer from spectral peaks randomly distributed over time and frequency which are
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commonly referred to as musical noise. This artifact mostly occurs due to poor estimation

of the speech and noise statistics resulting in ”random” fluctuations in the suppression

filters both over time and frequency. Therefore, the proposed remedy to this problem

usually consists of trying to smooth the filter coefficients. The use of masking in speech

enhancement can be also viewed as smoothing in the frequency domain by applying some

perceptual criteria. In the SSA, and using the filterbank interpretation, it can be readily

noted that this approach accomplishes such smoothing by obtaining the average SNR within

every passband of the eigen analysis filters. The reduction of the musical noise, commonly

reported for SSA based methods, can actually be attributed to this phenomenon.

In addition to that, and since the passbands of the analysis filters are usually located

around the speech formants, the residual noise spectrum will eventually be shaped according

to the desired speech spectrum. This shaping entails a masking effect which would further

suppress the noise, from a perceptual standpoint, with a relatively lower signal distortion.

This suggests that adding further masking criteria, based on known human auditory

properties, to the SSA suppression filters could result in improved noise shaping hence

enhancing the overall performance. This is what we will try to achieve by the novel PSS

method developed in this thesis and described in the next chapter.

4.3 The effect of noise

In the previous section we concluded that the SSA can be viewed from a filterbank stand-

point where the analysis filters are data dependent. The passbands of those filters, espe-

cially the first few eigenvectors with largest eigenvalues, usually track the formant locations

of the input speech signal. This conclusion, however, is based on clean signal covariance

matrices. Therefore it would be informative if we can observe the behaviour of the analysis

filters in the presence of noise.

To this end, let Vs,i(ω) be the DTFT of the ith eigenvector calculated from a clean speech

covariance matrix and let Vx,i(ω) be the one calculated from the noisy speech covariance

matrix. Recall that the indices, i, are obtained by sorting the eigenvalues in decreasing

order.
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Fig. 4.4 The magnitude squared of the first six eigenfilters Vi(ω) for the
vowel /a/ in the word ”cats”, calculated from a clean signal (thick) and from
a noisy signal at 0 dB SNR (thin).

4.3.1 Using the noisy covariance matrix

Figure 4.4 shows a plot of Vs,i(ω) (thick line) and Vx,i(ω) (thin line) for i = 1, . . . , 6, for

the vowel /a/. The noise is that of a Volvo car added at 0 dB SNR. Figure 4.5 shows the

corresponding spectra for the affricate /ch/.

It can be seen that in both cases, the analysis filters were significantly affected by the

noise. Indeed, while Vs,1(ω), for example, had captured the speech first formant, the noise

had shifted the passband of Vx,1(ω) to a lower frequency band. Actually, as can be seen

in Figure 3.6, the noise, which has a low-pass nature, has most of its energy concentrated

in this low frequency band. Therefore, this spectral peak caused by the noise, had been

”treated” by the EVD as if it was the first speech formant3. The actual formant is only

3At 0 dB the noise energy was high enough for its corresponding eigen analysis filter to be placed in
the first position by the sorting operation.
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Fig. 4.5 The magnitude squared of the first six eigenfilters Vs,i(ω) (thick)
and Vx,i(ω) (thin) for the affricate /ch/ under Volvo car noise at 0 dB SNR.

captured by the second filter as can be seen in Figure 4.4. The second formant, originally

found in the passband of the fifth and sixth filters in Figure 4.2, has yet to be resolved.

This result is expected since at 0 dB, the speech formants have less energy than that of

noise and the frequency bands with the highest energy are no longer those of the formants.

Indeed, our tests show that for SNR values above 5 dB, the passbands of Vx,1(ω) are almost

identical to those of Vs,1(ω).

In [130] the KLT was obtained from the EVD of the noisy signal and satisfactory results

were reported. The above discussion actually supports to some extent this choice for low

to moderate noise levels. Although the eigenvectors would be different from those of a

clean signal, the speech formants would eventually be resolved by the analysis eigenfilters.

However, for best performance, and to isolate the noise energy, it is desirable to use an

estimate of the clean speech covariance matrix.
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In their method also, Rezayee and Gazor [130] propose a VAD based on tracking the

principal component (i.e. the largest eigenvalue) of the noisy covariance matrix. Based on

the previous discussion, transitions from non-speech to speech segments may not necessarily

be reflected in the energy of the principal component. Actually, among others, the following

two scenarios are likely to occur. Under very low SNR conditions, the first eigenvector

(which corresponds to the principal component) would continue to track the frequency band

of the noise energy peak whereas the speech formants will be resolved by other eigenvectors.

Hence the presence of speech can pass undetected by the VAD. For example, this would be

the case for weak fricatives or affricates (like /ch/ as shown in Figure 4.5), which are very

likely to occur at word beginnings. Under high SNR conditions, the eigenfilter passband

can shift to the location of the first formant hence neglecting (filtering out) the noise energy.

Therefore, while the ”origin” of the principal component energy had changed, it would not

necessarily show an increase which would trigger the detection of speech presence.

The above described problem can result in inaccurate speech endpoints hence the can-

cellation of weak, though important, speech sounds. This is perceived as signal clipping at

word boundaries. This artifact had been indeed reported in [130] though it is claimed that

listeners did not consider this as a serious problem that hinders intelligibility.
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Fig. 4.6 The effect of prewhitening on the power spectrum of the vowel /a/,
for two types of noise, Volvo car (up) and F16 jet cockpit (down): Original
(thick) and after prewhitening (dashed).
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Fig. 4.7 The effect of prewhitening on the power spectrum of the affricate
/ch/, for two types of noise, Volvo car (up) and F16 jet cockpit (down): Orig-
inal (thick) and after prewhitening (dashed).

4.3.2 The effect of prewhitening

In the original SSA method [41], prewhitening was used to handle colored noise. As ex-

plained in Section 3.4.5, the input noisy vector x is prewhitened by multiplying it with

R
−1/2
w , where Rw is the noise covariance matrix. Then the EVD of the covariance matrix

Rx̆ of the prewhitened signal, x̆ = R
−1/2
w x, is used to design the signal subspace filter. Let

the analysis eigen filter corresponding to the ith eigenvector of Rx̆ be denoted as Vpw,i(ω).

The effect of this prewhitening is shown in Figures 4.6 and 4.7 for /a/ and /ch/ re-

spectively. It can be seen that while the position of the formants remains unchanged, their

energies, relative to each other, do change. This can be seen in the case of /a/ where

the three formants after prewhitening, have almost the same energy level, with the third

formant becoming the dominant one in the case of the Volvo car noise. The speech spectra

of the affricate /ch/, on the other hand, appear to be less affected by prewhitening. This

can be explained by the fact that this particular phoneme has a unique formant occurring

in the higher bands of the frequency range of interest. Hence, the spectrum is less vulner-

able to the prewhitening matrix corresponding to the low pass Volvo car noise. With the

F16 noise, the high frequency peak in the noise spectrum (as can be seen in Figure 3.7)

inflicted a larger effect where the wide formant has been split into two slightly separated

peaks. These modification made to the speech spectra, affect the perceptual information

they carry. For this reason, and since this information is important to calculate a masking

threshold, we rule out the option of prewhitening while designing the perceptual signal
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Fig. 4.8 The magnitude squared of Vs,i(ω) (thick) Vpw,i(ω) (thin) for /a/
under Volvo car noise at 0 dB SNR.

subspace method.

The effect of prewhitening can also be understood via the eigen analysis filters Vpw,i(ω).

Indeed, the dominant formant in the prewhitened PSD of /a/ (when corrupted by Volvo car

noise) became the third formant. Therefore, as can be seen in Figure 4.8, the passbands of

Vpw,1(ω) and Vpw,2(ω) are now located at the frequency band of of the third formant instead

of the first formant as it is the case with Vs,1(ω) and Vs,2(ω). For the F16 cockpit noise,

the first and second formants of the prewhitened signal have the highest energies hence it

can be seen from Figure 4.9 that the passband of Vpw,1(ω) and Vpw,2(ω) are spread over

the frequency bands occupied by these two formants. In both noise type cases, the most

important first formant has not been uniquely isolated by any of the first ten eigen analysis

filters shown in the Figures.



4 The Frequency to Eigendomain Transformation 71

0 0.5 1 1.5 2 2.5 3 3.5 4

−20

0

20
i=1

(d
B

)

F16 cockpit noise

0 0.5 1 1.5 2 2.5 3 3.5 4

−20

0

20
i=2

(d
B

)

0 0.5 1 1.5 2 2.5 3 3.5 4

−20

0

20
i=3

(d
B

)

0 0.5 1 1.5 2 2.5 3 3.5 4

−20

0

20
i=4

(d
B

)

0 0.5 1 1.5 2 2.5 3 3.5 4

−20

0

20
i=5

(d
B

)

0 0.5 1 1.5 2 2.5 3 3.5 4

−20

0

20
i=6

(d
B

)

0 0.5 1 1.5 2 2.5 3 3.5 4

−20

0

20
i=7

(d
B

)

0 0.5 1 1.5 2 2.5 3 3.5 4

−20

0

20
i=8

(d
B

)

0 0.5 1 1.5 2 2.5 3 3.5 4

−20

0

20
i=9

(d
B

)

Freq (KHz)
0 0.5 1 1.5 2 2.5 3 3.5 4

−20

0

20
i=10

(d
B

)

Freq (KHz)

Fig. 4.9 The magnitude squared of Vs,i(ω) (thick) Vpw,i(ω) (thin) for /a/
under F16 cockpit noise at 0 dB SNR.

The affricate /ch/, on the other hand, and due to its spectral characteristics, is less

affected by prewhitening as can be seen in Figure 4.7. Therefore, Vpw,i(ω)’s are closer to

Vs,i(ω)’s with a slight shifting effect with F16 noise (Figure 4.11) and an almost exact match

with the Volvo noise (Figure 4.10) especially for the first few eigen analysis filters.

4.4 Properties of the Blackman-Tukey Spectrum estimator

Since the Inverse FET provides a PSD estimate based on the Blackman-Tukey spectrum

estimator, we found it necessary to examine the properties of this estimator to verify how

adequate it is for the current application.

The periodogram is a very popular spectrum estimator because it can be directly calcu-

lated from the samples of x(n), as shown in (3.15). However its drawback is that it suffers
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Fig. 4.10 The magnitude squared of Vs,i(ω) (thick) Vpw,i(ω) (thin) for /ch/
under Volvo car noise at 0 dB SNR.

from a high variance given by [94],

Var{Φ(ω)} ≈ Φ̃2(ω) (4.19)

where Φ̃(ω) is the exact PSD of the underlying random process. This variance is in general

considered to be high and can not be tolerated. Precisely, in the current application, the

same signal subspace filter designed using the FET, will be applied to several overlapping

adjacent vectors as will be discussed in section 5.1. Therefore, it is preferable that the

designed filter have a minimal variance.

In the Blackman-Tukey estimator, the variance is reduced by multiplying the auto-

correlation function by the window. The variance in the case of a Bartlett window is
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Fig. 4.11 The magnitude squared of Vs,i(ω) (thick) Vpw,i(ω) (thin) for /ch/
under F16 cockpit noise at 0 dB SNR.

approximately [94]

Var{ΦB(ω)} ≈ Φ̃2(ω)
1

L

P∑

i=−P

w2
b (i) ≈ Φ̃2(ω)

2P

3L
(4.20)

which is less than Var{Φ(ω)} since P ≤ L.

This lower variance is obtained at the expense of a reduced resolution. The Blackman-

Tukey estimate is a smoothed version of the periodogram due to the convolution with the

Fourier Transform of the window in the frequency domain. So the resolution depends on

the bandwidth of the main lobe of the window which in turn depends on its size and type.
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Fig. 4.12 The power spectral density estimate for the vowel /a/ obtained
using the periodogram (thin) and the Blackman-Tukey estimate (thick).

In our case, for a length 2P − 1 Bartlett window the resolution ∆ω is given by [64]

∆ω ≈ 0.64
2π

P
(4.21)

So for P = 32 at 8 KHz sampling rate, the resolution will be 160 Hz which will result in

a wideband spectrum which smoothes the fine structure of the harmonics while preserving

formant structure. For example in the case of vowels, the first three formants, important

for speech intelligibility, are on the average 1 KHz apart [124] so they will be well identified

with the Blackman-Tukey spectral estimator.

The resolution of the periodogram, on the other hand, is 0.892π
L

, that is 28 Hz when

L = 256 [64]. So the periodogram will reveal unnecessary details for the present application

where the goal is to calculate the masking threshold which is a smooth function of frequency

due to the linear and nonlinear transformations applied to the input speech signal PSD.

In Figures 4.12 and 4.13, the periodogram and the Blackman-Tukey estimates of the

vowel /a/ and the affricate /ch/ respectively, are shown. It can be seen that the formants

can be clearly seen in the BT estimate whose low variance is also evident. The periodogram,

on the other hand, reveals a high frequency resolution coupled with a high variance. Indeed

this high variance is behind the fluctuations in the calculated filter coefficients, in say

spectral subtraction, which causes the creation of the musical noise artifact.
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Fig. 4.13 The power spectral density estimate for the affricate /ch/ ob-
tained using the periodogram (thin) and the Blackman-Tukey estimate (thick).

4.5 Implementation

If the FET and IFET relationships (4.4) and (4.11) respectively, are to be useful in practice,

an implementation using the Discrete Fourier Transform (DFT) instead of the DTFT should

be provided. This would allow the use of a matrix-vector product operation, which can be

easily handled by digital computers .

In practice we have available a signal x(n) for which the covariance matrix estimate

R is calculated. The EVD of R is obtained as R = UΛUT where U = [u1, . . . ,uP ] and

Λ = diag(λ1, . . . , λP ). The eigenvalues can also be expressed as a vector in the following

way

λ = [λ1, λ2, . . . , λP ]T (4.22)

Consider now any eigenvector ui = [ui(0), . . . , ui(P−1)]T . As mentioned earlier, this vector

can be viewed as a length-P signal ui(p) which is equal to zero outside the interval [0, P−1].

The K-point DFT of ui(p), defined in (3.7), is given by

Vi(k) =
P−1∑

p=0

ui(p)e
−j2πkp/K for k = 0, . . . , K − 1 (4.23)

where K ≥ P is assumed. Using (3.8), Vi(k) is related to the DTFT Vi(ω), defined in (4.5),
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by

Vi(k) = Vi(ω)
∣
∣
∣
ω= 2π

K
k

for k = 0, . . . , K − 1 (4.24)

Now define the vectors

vi = [vi(0), . . . , vi(K − 1)]T for i = 1, . . . , P. (4.25)

where

vi(k) = |Vi(k)|2 for k = 0, . . . , K − 1 (4.26)

and let the K×1 vector ΦB = [ΦB(0), . . . ,ΦB(K − 1)]T be the discrete Blackman-Tukey

estimate such that

ΦB(k) = ΦB(ω)
∣
∣
∣
ω= 2π

K
k

for k = 0, . . . , K − 1

ΦB can be written using the IFET relationship (4.11) in the following way

ΦB =
1

P

P∑

i=1

λivi (4.27)

In matrix notation, (4.27) can readily be written as

ΦB =
1

P
Vλ (4.28)

where V is a K × P matrix given by

V = [v1, . . . ,vP ] (4.29)

Since λi = 0 for i > Q, it is enough to just retain the first Q columns so that V =

[v1, . . . ,vQ]. For the same reason, in practice, we have λ = [λ1, λ2, . . . , λQ]T .

In a similar way, if a PSD estimate Φ = [Φ(0), . . . ,Φ(K − 1)]T is available, a set of

energies ξ = [ξ1, . . . , ξP ]T reflecting the spectral content of Φ into the eigen-domain can be

obtained using the FET relationship (4.4) which can be approximated with the following

implementation

ξ =
1

K
VTΦ (4.30)
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4.5.1 Selecting the DFT size

As can be noted, equations (4.30) and (4.28) are an approximation to the FET and IFET

relationships respectively, obtained via the DFT. Therefore, to assess the validity of this

approximation, one needs to find the condition on the value of the DFT size.

Using the definitions given earlier, (4.30) can be written as

ξi =
1

K

K−1∑

k=0

Φ(k)|Vi(k)|2 (4.31)

where |Vi(k)|2 is given by (4.24) and is related to the length P sequence ui(p) by

Vi(k) =
P−1∑

p=0

ui(p)e
− 2π

K
pk (4.32)

Substituting Vi(k) in (4.31) and rearranging the summations we obtain

ξi =
P−1∑

p=0

P−1∑

q=0

u∗i (p)ui(q)
1

K

K−1∑

k=0

Φ(k)e
2π
K

(p−q)k

︸ ︷︷ ︸

r̂(p−q)

(4.33)

Comparing the above equation with (4.6), repeated below for convenience

λi =
P−1∑

p=0

P−1∑

q=0

u∗i (p)r(p− q)ui(q) (4.34)

it can be concluded that ξi = λi if r̂(p) = r(p) where

r̂(p) =
1

K

K−1∑

k=0

Φ(k)e
2π
K

pk (4.35)

Now suppose that x(n) is a length-L sequence, i.e. x(n) = 0 for n < 0 and n > L − 1

and that Φ(k) is obtained as the periodogram of x(n) given by

Φ(k) =
1

L
|X(k)|2 =

1

L
X(k)X∗(k) (4.36)
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where X(k) is the K-point DFT of x(n). Then, (4.35) can be written as

r̂(p) =
1

L

1

K

K−1∑

k=0

X(k)X∗(k)e
2π
K

pk (4.37)

RecognizingX∗(k) as the DFT of x(−n), r̂(p) is actually the (scaled) circular convolution of

x(n) and x(−n), i.e. a circular autocorrelation [123]. Therefore to force this circular auto-

correlation to be equal to the desired autocorrelation r(p), over the interval 0 ≤ p ≤ P − 1,

the DFT should satisfy the condition4 K ≥ L+ P − 1 [123].

On the other hand, suppose that the signal PSD Φ(k), was the Blackman-Tukey estimate

defined as

ΦB(k) =
P−1∑

q=−P+1

r(q)w(q)e−
2π
K

qk (4.38)

where w(q) is a length 2P − 1 window. In this case the best that can be achieved is

r̂(p) = r(p)w(p) for − P + 1 ≤ p ≤ P − 1 (4.39)

where now the condition required is K ≥ 2P−1. Actually this condition should be satisfied

in order to obtain the BT estimate using the IFET implementation (4.28).

Therefore, for P = 32, the FET and IFET relationships can be implemented using a

DFT of size K = 64. However, and since the obtained BT spectrum is used to calculate

a masking threshold and then mapped again to the eigendomain, a larger DFT size was

experimentally found to yield better results. This is because the used masking model gives

better masking threshold estimates if more frequency lines were used. For this reason the

DFT size is set to K = 256, which equals the frame length considered in this thesis.

4.6 Summary

In this chapter we presented a Frequency to Eigendomain Transformation (FET). It basi-

cally sets a bridge between the frequency domain and the eigendomain. The FET served

as an analysis tool which offered a different interpretation of the SSA. Namely, a filter-

bank interpretation with the eigenvectors as analysis filters and the eigenvalues as the total

4Actually this condition is required when calculating the autocorrelation sequence efficiently via the
FFT [123].
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energy at the output of those filters. The analysis provided supports the claim that the

SSA results in a better residual noise spectrum shaping (hence less annoying musical noise)

than, say, spectral subtraction. This is because the KLT makes the suppression focused

around the frequency bands occupied by the speech formants.

Using the FET we also attempted to explain the results reported in the literature

for some SSA based methods. The benefit of this is to acquire a more comprehensive

understanding of the SSA allowing to avoid its drawbacks and to take the most advantage

of its strong points. The analysis performed here shall also motivate some of our design

decisions which are to be included in the new perceptual signal subspace method we present

in the next chapter.
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Chapter 5

The Perceptual Signal Subspace

method

In this chapter we seek to further improve the noise shaping capabilities of the SSA by al-

tering its noise reduction mechanism according to perceptual criteria. This can be achieved

by modifying the gain function so that instead of being dependent on the SNR along a par-

ticular direction (or subband), it becomes dependent on the ratio of the masking energy

to the noise energy along that direction. This approach is driven by the assumption that

as long as the noise is below a masking threshold, it will not be audible. Therefore, recall-

ing the inevitable trade-off between the extent of noise reduction and the resulting signal

distortion, it would be beneficial if we avoid to suppress any noise component which is not

perceived any way.

In addition to its benefit as an analysis tool, the FET can also be used as a design tool

which permits to calculate the masking energy along every spectral component, via a so-

phisticated masking model. The resulting method is called the Perceptual Signal Subspace

method (PSS) which will be experimentally shown, in Chapter 8, to provide a better noise

reduction performance than the classical SSA by offering a better trade off between the

signal distortion and the residual noise level. The PSS is designed so that it can handle

the general case of colored noise.

The main handicap of the SSA remains its relatively high computational load resulting

from the expensive EVD computation. In this chapter we also show how this burden can

be considerably reduced without any performance side-effects. The idea simply exploits the
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stationarity assumption of the speech signal in the same way it is exploited by traditional

frequency domain methods. The proposed new technique can be used with any SSA based

method as an alternative to the original implementation scheme.

5.1 Calculating the eigenvalue decomposition

The disadvantage of the signal subspace approach is the relatively high computational load

mainly due to the expensive eigenvalue decomposition. This drawback made the engineers

working on speech enhancement rather reluctant to use the SSA in practice. However,

with the impressive development in the DSP technology and the continuous increase in the

available processing speed and computational power, it is believed that the more robust

SSA can eventually compete with the widely used frequency domain methods.

The complexity issue has however been addressed in the literature and several ap-

proaches have been proposed to tackle this problem. These techniques include fast EVD

and subspace tracking methods. Moreover, attempts to approximate the KLT using the

Discrete-Cosine Transform (DCT) have also been recently applied to speech enhancement

[71, 156].

We here briefly describe some of these methods then we propose a novel technique

developed in this thesis which reduces the computational load without any side-effect on

the noise reduction performance of the SSA.

5.1.1 Fast eigenvalue decomposition methods

One solution for the complexity issue is to replace the exact EVD by other fast subspace

methods which are capable to reduce the complexity from O(P 3) to O(P 2Q) operations

per sample where Q is the rank of the matrix. For example in [166], the structure of

the covariance matrix is exploited and the so-called Lanczos algorithm [50] is used to

reduce the required computations by only calculating the Q principal eigenvectors (and

their corresponding eigenvalues) which span the signal subspace. For example, for a speech

signal sampled at 8 KHz, the effective rank of the covariance matrix of a voiced frame (which

constitute the majority of a speech sentence) would be around 10 to 15, for a P = 32 model.

Therefore, great computational savings could be achieved by approximating the exact EVD

using such fast methods.
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5.1.2 Subspace tracking methods

Another technique which follows a similar scheme is subspace tracking. Rather than trying

to calculate the EVD from scratch, the subspace trackers seek to update an already existing

EVD as more data becomes available. In [130] a fast implementation of the SSA for

speech enhancement has been developed based on the Projection Approximation Subspace

Tracking (with deflation) method (PASTd) which reduces the complexity to O(PQ) per

sample using the Recursive Least Squares (RLS) algorithm [167]. The PASTd algorithm

does not guarantee the orthogonality of the eigenvectors, this is why it was reported in

[85] that better results can be achieved using the Fast Orthogonal Iteration (FOI) based

algorithm [145]. In [62] a rank-revealing ULV decomposition [144] has been also used

for speech enhancement. Another O(PQ) subspace tracking algorithm based on Givens

rotations and which guarantees the orthogonality of the eigenvectors is also reported in

[19] but has yet to be tested in a speech enhancement application.

Unfortunately, there seem to be some problems associated with applying subspace track-

ers to speech enhancement. The reason is that these methods are based on estimating the

covariance matrix using a sliding exponential window. During our experiments however,

we noticed that shifting the window at a high rate added reverberation to the enhanced

speech signal. This result, which has also been confirmed in [85], suggests that a sliding

exponential window may be inadequate for speech enhancement applications. Therefore,

subspace trackers can only be applied if the EVD update scheme is carried out on a sample

by sample basis1, which does not lead to the apparent great computational savings. In

fact, an exact EVD has a computational cost of O(P 3), but since it is only calculated every

P/2 samples, this complexity is reduced to O(P 2) per sample2. A subspace tracker on the

other hand can at best achieve a O(PQ) per sample complexity.

5.2 The Frame Based EVD method

In this thesis we develop a novel implementation scheme which helps to overcome the

computational issue of the SSA. The method we propose here is a modification of the

approach used in [41] and described in Section 3.4.4. The idea is based on the stationarity

1As in the case of the method reported in [130].
2Moreover, if a fast eigenvalue decomposition is used, for example [166], the complexity would be O(PQ)

per sample.
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assumption of the speech signal. This assumption is already exploited in [41] to calculate

the covariance matrix required for the subspace filter design, but we apply it here in a

different manner.

5.2.1 Description

Let the speech signal x(n) be divided into length L overlapping frames xi(m) with a shift

of D samples,

xi(m) = x(iD +m), m = 0, . . . , L− 1 (5.1)

This frame is used to obtain the biased autocorrelation function estimate as follows

rx(p, i) =
1

L

L−p
∑

m=0

xi(m)xi(m+ p) p = 0, . . . , P − 1 (5.2)

These autocorrelation coefficients are used as described in Section 3.4.4 to calculate the

subspace filter Hi. Note that this filter has now a subscript i to emphasize the fact that it

is computed based on the signal samples of the ith frame.

Every frame is divided into smaller P -dimensional overlapping vectors with a 50% over-

lap as shown if Figure 5.1. The frame length L is chosen to be a multiple of P so that there

will be in total 2L
P
−1 vectors in one frame. Like all frequency domain methods, the speech

signal within every frame is assumed to be stationary so that these vectors would all have

the same covariance matrix and hence the same subspace filter Hi. Therefore we have

ŝi,jP/2 = Hixi(jP/2) for j = 2, . . . ,
2L

P
(5.3)

where the input vector xi(m) = [xi(m), xi(m−1), . . . , xi(m−P +1)]T and the filter output

ŝi,m is defined in a similar way. The output vectors are then multiplied by a length-P

Hanning window and synthesized using the overlap-add method to obtain one enhanced

frame ŝi(m) = ŝ(iD+m). Finally every frame is multiplied by a second length-L Hanning

window and the total enhanced speech signal is recovered using the overlap-add synthesis

technique. A 50% overlap is also applied to these larger analysis frames, that is D = L/2.

In this way every input vector is enhanced using filter designed from two different analysis

frames which allows to compensate for any speech non-stationarity. This is analogous to

frequency domain methods where frame overlap is applied, with every length-L frame of
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noisy speech being enhanced using a unique filter.

One frame 

One vector 

Fig. 5.1 Illustration of the partition of the speech signal into frames and
vectors.

5.2.2 Computational savings

In the original SSA implementation described in Section 3.4.4 the EVD, with complexity

O(P 3), is carried out every P/2 samples resulting in a total complexity in the order of

O(P 2) per sample as discussed earlier.

In the new FBEVD scheme, the EVD is only needed every frame at a rate of L/2

samples, where L is the frame length. Thus, if L = κP then the computational cost of the

EVD would reduce to O(P 2/κ). That is the computational savings will be proportional to

κ = L/P .

For example for L = 256 and P = 32, we have κ = 8. This results in reducing the

cost of EVD calculation by a factor of 8. Knowing that the largest computational burden

of the SSA arises from the EVD, this factor constitutes a significant saving at almost

no performance degradation as will be shown in the experimental results. Coupling this

method with one of the fast EVD techniques discussed earlier would considerably reduce

the overall computational load.

The FBEVD will be evaluated in Chapter 8 where the computational savings and the

incurred performance degradation, if any, will be measured.
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5.3 The perceptual gain function

As discussed in Section 3.4, the SSA consists of projecting the input noisy speech vector

onto the signal subspace and then suppressing any remaining noise by multiplying the

signal energy along every spectral direction by a specific gain. This gain is chosen to be a

function of the signal to noise ratio where this function satisfies condition (3.71).

The objective is to apply severe noise suppression along a spectral direction if the

corresponding SNR is low. This SNR, defined in Section 3.4.2, is given here again for

convenience

γi =
λs,i

ξi
for i = 1, . . . , Q (5.4)

where ξi is the noise energy along the ith direction as defined in (3.91) and λs,i is the ith

eigenvalue of the clean speech signal.

Since the noise becomes inaudible if it is below the masking threshold, it is advantageous

to modify the gain function making it dependent on a perceptually significant quantity.

This quantity, hereafter referred to as the Mask to Noise Ratio (MNR), is defined as

γ̄i =
θi

ξi
for i = 1, . . . , Q (5.5)

that is, it is the ratio of the masking energy θi to the noise energy ξi for the ith spectral

component.

From a filterbank perspective, the above quantity provides a measure of the audible

noise at the output of every analysis filter. Note that this approach is analogous to the

one adopted by Tsoukalas [150] and Gustafsson [56] as shown in (3.34) and (3.37) respec-

tively. In those frequency domain methods, different gain functions are used but both are

dependent on the MNR which is calculated for every frequency3.

The MNR (5.5) can now be used for the gain function f(γ̄i). As was mentioned earlier,

the exponential gain function (3.74) is being used in this thesis. Hence the diagonal entries

of the gain matrix will be given by

gi = e−νξi/θi (5.6)

During our experiments we observed that in most cases we have θi < λs,i so that γ̄i < γi.

3In [150] the MNR is actually kept constant within one critical band as discussed in Section 3.3.2.
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Therefore using the gain function (5.6) results in a more severe noise cancelling (recall that

the gain function is an increasing function of γi as can be seen in Figure 3.2). However

since the gain is now obtained via a perceptual criterion, the control parameter ν can be

reduced in order to obtain less signal distortion without making the residual noise more

audible. Our experiments show that an acceptable range is 0.5 ≤ ν ≤ 1 with ν = 0.8 being

a satisfactory value for most conditions. As ν increases beyond that value some undesired

signal distortion starts to occur.

Nonetheless, during weak energy frames, such as unvoiced fricatives, the spectrum is

rarely characterized in terms of formants because low frequencies are not excited and the

excited upper resonances have broad bandwidths [124]. This can be verified in Figure

4.3 (or 4.7) for the affricate /ch/ as compared to the vowel /a/ in Figure 4.2 (or 4.6).

Therefore, in such cases, the masking threshold estimate may not be accurate enough and

it can happen that λs,i be smaller than θi with the result that, if θi is used, not enough

noise reduction is achieved, due to estimation errors. In particular, at transitions from

silence to speech activity periods, the residual noise has a non smooth character which may

be uncomfortable to some listeners.

Our informal listening tests show that modifying the gain function by taking the mini-

mum of λs,i and θi helps to improve the performance. The gain function hence becomes

gi = e−νξi/ min(λs,i,θi). (5.7)

This gain function is the one used in this thesis and the corresponding enhancement method

is referred to as the Perceptual Signal Subspace (PSS) method.

Other gain functions

During our research some other gain functions have also been tested. Although the gain

(5.7) was found to have the best performance, we found it beneficial to mention here the

other options too.

The first alternative is based on the idea that if the MNR is greater than 1, along some

spectral direction, then no noise suppression is required on that direction since the noise
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would be masked anyway. hence the gain function would be given by

gi =

{

e−νξi/λs,i if ξi > θi

1 else
(5.8)

This gain function resulted in a slightly less distorted signal but failed to reduce the intensity

of the musical noise.

Using the same reasoning as in (5.6), the above gain function can be modified as follows

gi =

{

e−νξi/θi if ξi > θi

1 else
(5.9)

In this case a slight improvement is achieved but the musical noise is still not as much

masked as it is in the case of (5.7). Attempting to do so by increasing ν results in added

signal distortion. It should be noted though that on some noise types such as car noise,

this gain function gave better performance than RQSS.

The third and final alternative worth mentioning is to make the gain function dependent

on the ratio of the signal energy to the difference between the masking and noise energies,

that is

gi = e−ν max(ξi−θi,0)/λs,i (5.10)

In this case, like in (5.8) and (5.9), the gain is set to one if the noise energy is below the

masking energy. Otherwise, the amount by which the noise exceeds the masking energy

is accounted for in the gain function (5.10). Interesting results have been achieved with

this gain where the signal distortion had been considerably reduced. however, the residual

noise had sometimes an annoying character (different from that of the musical noise) which

cannot be tolerated by some listeners. For this reason (5.7) was preferred. It should be

noted that for best performance, ν should be set here to a higher value (around 7 or 8).

5.4 Calculating the masking threshold

In the course of our research, two masking models were used. Optimizing the masking

model is in fact beyond the scope of this thesis but the use of model which would provide

the expected performance boost is essential. We first have used the Johnston model and

some initial experimental results were obtained. However, we found that better results are
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achieved with MPEG1 model 1 (hereafter the MPEG model) described in Section 2.3.2.

For this reason, this model has been adopted in this thesis and unless otherwise mentioned

the results reported here are based on it. Our choice was motivated by, on one hand, the

satisfactory results we were able to achieve with this model, and on the other hand, by the

wide spread and successful use of this model in audio coding applications. Our choice was

also motivated by its relative implementation simplicity4.

The steps required to calculated the masking threshold using the MPEG model are

described in Section 2.3.2 and further details can be found in [12]. In our implementation

we basically followed the same described steps except for labeling tonal and non-tonal

components. Actually we needed to alter the labeling steps for the following reason.

In the original model, tonal components are selected based on finding local maxima and

comparing their magnitude with some thresholds to omit the outliers. After finding the

tonal components, all other frequencies are designated as non-tonal. However to reduce the

computation, just a single non-tonal component is allowed within one critical band with

its location chosen to be the geometric mean of the frequencies within that band. This

results in a smooth threshold compared to the original periodogram spectrum from which

it is calculated.

This approach is no longer appropriate in our case because a different PSD estimate,

namely the Blackman-Tukey estimate, is used. This estimate, as discussed in Section 4.4,

has a lower variance and is therefore smoother. Besides just the formant structure is re-

tained hence no harmonics can be found. Therefore the parameters proposed in the original

algorithm to select the tonal and non tonal components no longer hold and modifying the

decision rules became inevitable. For this reason, the modifications described shortly have

been adopted and the resulting masking threshold had no significant differences with the

one obtained via the original approach (where a periodogram is used).

To find tonal components, all local maxima are selected. Therefore if Φ(k) is the

Blackman-Tukey PSD estimate obtained via a K-point DFT, then a frequency with index

k is added to the tonal maskers list Tm if

Φ(k) > Φ(k ± 1)

4For example we ruled out using the MPEG model 2 because it requires the phase information to
calculate the tonality index. This quantity, by design, is not available in the PSS method.
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Fig. 5.2 The power spectral density (continuous) and the corresponding
masking threshold (dashed) of the vowel /a/.

In the original MPEG model, only frequencies with power 7 dB greater than that of their

neighbors are retained in Tm. In our implementation this turned out to be useless due to

the smoothness of the spectrum.

After that, all frequencies in the neighborhood of a tonal component are also added

to Tm. A neighborhood is chosen to be three spectral lines from any particular tonal

component. That is, if k0 is a tonal component, then so are k0 + k for k = −3, . . . , 3.

All the remaining frequencies are then labeled as non-tonal and form the non-tonal or

noise-like list Nm. To preserve the smoothness of the spectrum, all frequencies are retained

for the masking threshold calculation as compared to the one bark resolution of the original

algorithm.

Finally the global masking threshold at a particular frequency with index k is calculated

in the following way

Φthr(k) =
∑

i∈Tm

Ttm(zi, zk) +
∑

i∈Nm

Tnm(zi, zk) for k = 0, . . . , K/2 (5.11)

where Ttm(zi, zk) and Tnm(zi, zk) are the individual masking thresholds at zk barks due

to the tonal and non-tonal masking components, respectively, located at zi barks. The
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mapping from linear frequency to bark domain is done using (2.1) as discussed in Chapter

2, that is

zk = z

(
k

K
Fs

)

(5.12)

where Fs is the sampling rate. Individual tonal and non-tonal masking thresholds are

calculated as explained is Section 2.3.2. An example of a masking threshold obtained using

the above described algorithm is shown in Figure 5.2 for the vowel /a/.

Note that since this masking threshold model is based on continuous functions, increas-

ing the DFT size of the used spectrum was found to improve the overall speech enhancement

performance.

5.5 Calculating the noise energies

Noise estimation is a crucial step for all speech enhancement methods. As discussed in

Section 3.5, a noise estimate can be obtained, and updated, during non-speech activity

periods, with the help of a VAD.

In the context of SSA, another difficulty is related to handling colored noise since the

original approach has been developed for the white noise case, a situation rarely encountered

in practice. In this thesis, colored noise is handled in a similar way to the RQSS method

described in Section 3.4.5. In the context of PSS this technique is implemented as described

next.

Consider the Raleigh Quotient ξi associated with noise covariance matrix estimate Rw

and ui, the ith eigenvector of the clean speech covariance matrix. ξi, which is actually

the noise energy along the ith spectral direction, is calculated according to (3.91) which is

repeated here for convenience

ξi = uT
i Rwui (5.13)

This energy is used in the gain function instead of the constant noise variance σ2. Using

a similar procedure to the one described in Section 4.5, (5.13) can be written in a similar

way to (4.4) as follows

ξi =
1

2π

∫ π

−π

Φw(ω)|Vi(ω)|2dω (5.14)

where Φw(ω) is the PSD estimate of w. Recall that Rw = Toeplitz(rw(0), . . . , rw(P−1)) and

Φw(ω) is the DTFT of the noise autocorrelation estimate rw(p). Following the filterbank
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interpretation of the SSA, presented in Section 4.2, ξi is actually the noise energy in the ith

subband. This interpretation can further justify the use of the Raleigh Quotient to handle

colored noise, as discussed earlier.

In matrix notation (5.14) can be expressed as

ξ =
1

K
VTΦw (5.15)

where ξ = [ξ1, ξ2, . . . , ξQ]T and the matrix V, defined in (4.25) and (4.29), is obtained

using a K-point DFT of the eigenvectors of the clean covariance matrix Rs. The vector

Φw = [Φw(0), . . . ,Φw(K−1)]T is the chosen to be the Blackman-Tukey PSD estimate of the

noise calculated using a K-point DFT. Although (5.15) and (5.13) are not mathematically

equivalent, experimental results showed no significant impact of this design decision on the

ultimate noise reduction performance.

Computing the noise energies, ξi, with (5.15) is preferred to (5.13) because it requires

less arithmetic operations. This is because the matrix V is also needed in the masking

threshold computation phase and there will be no additional cost in using it here.

5.6 The overall PSS algorithm

In this section we describe in detail all the steps required to implement the proposed

PSS method. Figure 5.3 shows a block diagram of this method. The role of every block

is explained next. Recall that, to reduce the computational load, PSS is implemented

according to the frame by frame scheme described in Section 5.2. Hence, unless explicitly

mentioned, all the steps described next are performed for one length-L frame.

1) Noise Estimation

The role of this block is to provide a noise estimate to be used by PSS. As we have

mentioned earlier, during non-speech activity periods, an autocorrelation function and a

PSD estimate of the noise, can be obtained. Both the autocorrelation sequence rw(p) and

the PSD estimate Φw should be calculated. The latter is obtained using the Blackman-

Tukey estimate by multiplying rw(p) with a length 2P − 1 Bartlett window.
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Fig. 5.3 Block diagram of the proposed perceptual signal subspace method

2) Calculating the signal subspace:

According to the discussion of Section 4.3 and our initial experimental tests, the best per-

formance would be achieved using a KLT calculated from a clean speech covariance matrix.

Therefore, in PSS, we estimate the clean signal autocorrelation function by subtracting the

estimated noise autocorrelation function from the noisy signal autocorrelation function as

follows

rs(p) = rx(p) − rw(p)

The clean signal covariance matrix is obtained as Rs = Toeplitz{rs(0), . . . , rs(P−1)}. Next

the EVD of the matrix Rs is calculated yielding the eigenvalue vector λ = [λ1, . . . , λQ]T ,

the eigenvector matrix U1 and the corresponding matrix V as discussed in section 4.5. In

this case, Rs is not guaranteed to be positive definite hence the rank Q of Rs is chosen to

be the number of strictly positive eigenvalues of Rs.
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3) The masking threshold:

In this step, we use the IFET, equation (4.28), to obtain a clean speech PSD estimate

Φs =
1

P
Vλ

This estimate is used to calculate the masking threshold Φthr as described in Sections 2.3.2

and 5.4. The masking energies θ = [θ1, . . . , θQ]T are then obtained using the FET (4.30),

θ =
1

K
VTΦthr

As discussed earlier a DFT with size K = L has been used in order to obtain masking

energies resulting in a better enhancement performance.

4) The KLT:

For every vector within the current frame, the signal coefficients in the signal subspace are

obtained by multiplying the input vector x by the KLT matrix UT
1 .

5) The gain matrix:

The so obtained signal coefficients are multiplied by a diagonal gain matrix G to reduce

the undesired interfering noise along every eigen direction. The gain matrix entries are

calculated as follows.

Using FET, obtain the noise energies ξ = [ξ1, . . . , ξQ]T as follows

ξ =
1

K
VTΦw

where the noise estimate Φw is obtained from the noise estimation module. The gain

function is then calculated as

gi = e−νξi/ min(λi,θi) for i = 1, . . . , Q

and the gain matrix is given by G = diag(g1, . . . , gQ).
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6) The IKLT:

The enhanced signal vector is finally recovered in the signal subspace using the inverse KLT

matrix U1. Specifically, the clean speech vector estimate is given by

ŝ = U1

[
GUT

1 x
]

Every output vector is then multiplied by a Hanning window and using the overlap-add

synthesis technique, one frame of speech is recovered. Multiplying this frame by a second

(larger) Hanning window and again using the overlap-add synthesis technique, the overall

clean speech estimate ŝ(n) is obtained.

5.7 Summary

In this chapter, using the Frequency to Eigendomain Transformation (FET), we presented

a new perceptual signal subspace method designed according to the masking properties of

the human auditory system. This method modifies the gain function so that the noise be

suppressed according to the ratio of its energy to the masking energy along a particular

eigen direction. In addition to white noise, the proposed method is also capable of handling

the more general and more practical case of colored noise.

To enhance the method, we also proposed a novel frame-based technique for EVD

calculation which takes into account the stationarity assumption of the speech signal for

a long enough period of time. This is important since the major drawback of SSA based

methods is currently their relatively high computational load.

In Chapter 8, we provide some experimental results which test the performance of the

proposed PSS method and reveal its superiority over competing methods. The computa-

tional savings arising from the FBEVD technique will also be assessed.
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Chapter 6

The Multi-Microphone Approach

Single channel speech enhancement methods have usually been the most appealing ap-

proach in practice. Their popularity stems mainly from their low cost and ease of imple-

mentation. However, their performance still does not meet the expectations of the ever

demanding speech industry market. Indeed, the need for more satisfactory speech quality

and intelligibility under, for example, very harsh acoustic conditions such as in-car hands

free applications, has steered the researchers’ attention to multi-microphone techniques

where the added speech acquisition channels seem to offer better solutions to the speech

enhancement problem.

Nowadays, microphone arrays find applications in different areas including teleconfer-

encing [21], hands-free telephony [54, 117], hearing aids [93] and speech recognition [4, 98].

They were successfully used to reduce both noise and reverberation [1, 3, 47, 111, 117, 137].

Promising results in a combined cancellation of noise and echo have also been reported

[26, 36].

Depending on the underlying noise field, whether diffuse or directional, several micro-

phone array methods have been proposed in the literature. These methods usually exploit

both the spatial and temporal redundancy in the acquired speech signals to filter out the

interfering noises. The use of the signal subspace approach in microphone arrays, how-

ever, has not received much attention. This is in contrast to other signal processing areas,

such as array processing, where the signal subspace tool is commonly used. Namely, the

MUSIC algorithm, which is a signal subspace based technique, has been considered as a

breakthrough in direction of arrival (DOA) estimation research [134, 135].
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In this chapter, we extend the single channel signal subspace technique for speech

enhancement into a multi-microphone design. The proposed method, called the Multi-

microphone Eigen-Domain Averaging method (MEDA), exploits a property of the covari-

ance matrix of the signals gathered from the different available microphones to improve

the noise suppression capabilities of the SSA. Indeed, the structure of the covariance ma-

trix is taken advantage of to accomplish averaging in the eigen domain resulting in filter

coefficients less vulnerable to the environmental conditions.

By design, the MEDA is mainly intended for diffuse noise field applications where

its performance has been experimentally found to be considerably higher than competing

methods designed for such noise fields. As compared to this category of methods, the

MEDA significantly reduces the residual noise level while maintaining a similar signal

distortion. Under directional noise, the performance of MEDA is again superior to these

methods although it is not as good as specialized methods.

This chapter starts by presenting the problem multi-microphone speech enhancement

and then a description of the most common noise field models available in the literature

is given. Next, a survey of some popular multi-microphone methods is given. After that,

the novel MEDA method is described and analyzed. Experimental results assessing the

performance of MEDA and comparing it with some competing methods are given in Section

8.5 of the next chapter.

6.1 Problem formulation

Consider an array of M microphones where the distance between every pair with indices

m and l is given by dml. The microphones are assumed to be omni-directional and having

a flat frequency response equal to one1.

Besides, we assume a far-field situation where plane wave propagation can be consid-

ered to be valid. In this case the signal attenuation can be assumed to be equal for all

microphones. In a far-field situation, the sound sources should be far enough from the

microphone array and usually the following condition should be satisfied [115]

r >
Fsd

2
M1

c
(6.1)

1This ideal situation is however rarely met in practice and the microphone response is usually modeled
as a convolutional noise.
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where r is the distance from the source to the center of the array, Fs is the sampling rate

and c is the speed of sound. The distance dM1 between the 1st and the M th microphone

represents the total size of the array. Violating this conditions implies a near-field situation

in which spherical wave propagation and signal attenuation should be considered.

In general the direct path signal will make an angle θ with the array axis. An angle

of θ = 0◦ is called broadside whereas an angle of θ = 90◦ or θ = −90◦ is called end-fire.

The angle θ is called the direction of arrival (DOA) of the sound source. A DOA different

from zero degrees (i.e. non broadside) will result in the signal arriving at two different

microphones at different times. The time delay between two microphones with indices m

and l is given by

τml =
dml sin θ

c
(6.2)

Generally, the time delay is measured with respect to one particular microphone, say

having index m = 1, and τm then represents the time delay between microphone 1 and

microphone m. Hence, we have τml = τm − τl and obviously τ1 = 0.

6.2 Time delay compensation

Time delay estimation is very crucial for the performance of microphone arrays as it is

needed to steer the microphone array towards one specific direction (the look direction) in

order to synchronize the desired speech signal from the direct path over all microphones.

This is usually done by compensating the incurred time delays between the different chan-

nels by passing the acquired microphone signals through a time delay compensation module.

Let ym(n) be the sampled discrete speech signal at the output of the mth microphone.

The signal at the output of the time delay compensation module is then given by

xm(n) = ym(n− δm) for m = 1, . . . ,M (6.3)

where δm = −τmFs. Since the time delays are usually non integers, the above operation is

generally implemented using interpolation filters [86].

Doing so, xm(n) can then be written as

xm(n) = s(n) + wm(n), m = 1, . . . ,M (6.4)
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where s(n) is the desired speech signal and wm(n) consists of all interfering signals includ-

ing additive noise and possibly convolutional noise due to reverberation and a non flat

microphone frequency response. In the forthcoming sections however, the convolutional

noise is ignored and the noise term is assumed to be uncorrelated with the speech signal.

Due to its importance, several methods for time delay estimation (TDE) or DOA esti-

mation have been proposed in the literature. One of the most popular methods employed

is the generalized cross-correlation method (GCC) [100]. The GCC owes its popularity to

its simplicity and robustness. One of the GCC based estimators, the PHAse Transform es-

timator (PHAT), has been recently found to be optimal under reverberant conditions [58].

Actually, reverberation is found to limit the performance of the GCC [18]. To cope with

this problem, several other methods have been proposed, for example [14, 13, 122, 146]. A

good survey on time delay estimation can be found in [16].

A survey of other DOA estimation methods, which are not necessarily designed for

speech signals, can also be found in [101]. Among these methods are the high resolution

subspace based methods which involve the EVD of the spatial covariance matrix. These

methods include the MUSIC [134, 135] and ESPRIT [133] algorithms. These methods,

however, are mainly designed for narrowband signals and thus are not appropriate for

speech signals. Further processing is therefore suggested such as the use of Coherent Signal

Subspace (CSS) methods [161]. In this approach, focusing matrices are used to align

narrow-band components within the receiver bandwidth prior to forming covariance matrix

estimates at each frequency [153]. Another approach for wideband direction of arrival

estimation are the frequency independent beamforming methods [162, 106].

In what follows, it will be assumed that ”perfect” time delay compensation pre-processing

has been performed so that the desired signal can be assumed to be exactly synchronized

over all microphones. Only the signal xm(n) will then be considered and, for simplicity,

will be referred to as the output of the mth microphone. Equivalently, this implies that

it is assured that the direct path desired signal is impinging on the array from broadside

(θ = 0◦).

6.3 Noise field models

Consider an array consisting of M microphones where the signal at the output of the mth

microphone is given by xm(n) for m = 1, . . . ,M . The noise field is usually characterized
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by the so-called spatial coherence function defined as [117]

Γml(ω) =
Φml(ω)

√

Φm(ω)Φl(ω)
(6.5)

where Φml(ω) is the cross-power spectrum of the signals at microphone m and microphone

l and Φm(ω) and Φl(ω) are their respective PSD’s. Often, just the magnitude squared

coherence (MSC), given by Cml(ω) = |Γml(ω)|2, is used. Note that 0 ≤ |Γml(ω)|2 ≤ 1.

Of interest, also, is the average coherence function of the noise field for all sensor pairs

m 6= l, given by

Γ(ω) =
2

M(M − 1)

M−1∑

m=1

M∑

l=l+1

|Γml(ω)| (6.6)

where the magnitude operator is used to ensure that the average coherence function is a

real positive quantity2. This function measures the amount of coherence (or correlation)

between the signals at two microphones at a particular frequency. A coherence of zero

indicates that the two signals are completely uncorrelated whereas a value of one indicates

a total correlation.

6.3.1 Incoherent noise field

As indicated from its name, an incoherent field occurs when the signals at two microphones

are completely uncorrelated at all frequencies. Hence the coherence function would have

a constant value equal to zero. This may occur for example with the internal noise of the

microphones.

For most noise fields in practice, however, this is rarely satisfied for all frequencies.

While an incoherent noise field assumption is often used for microphone array filter design,

the best scenario that can occur is the so called diffuse noise field, described in the next

section.

6.3.2 Diffuse noise field

A diffuse noise field (or ambient noise) occurs when there is a superposition of an infinite

number of plane waves, due for example to an infinite number of sound sources, impinging

2Sometimes the real part can also be used instead.
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on the array from different directions. This has been found to be a suitable model in

reverberant enclosures where the large number of wall reflected signals would eventually

form a diffuse noise field [103, 58]. This model is also found to be valid to characterize the

noise field inside cars [52].

In a diffuse noise field the coherence is real valued and is given by [117]







Re{Γml(ω)} = sinc
(
ωdml
c

)

Im{Γml(ω)} = 0
(6.7)

where dml is the distance between the mth and lth microphones and c is the speed of sound.

In this thesis, the sinc function is defined as sinc(x) , sinx/x.

Therefore, two microphone signals can be considered to be uncorrelated if they are

only composed of high frequencies. At low frequencies, on the other hand, the coherence

increases approaching unity as the frequency gets closer to 0 Hz. Indeed, to obtain a low

coherence, the inter-microphone distance dml should be set to meet the condition

dml >
c

2fmin

(6.8)

where fmin is the lowest frequency of interest.

Increasing the distance however, may result in violation of the far-field assumption and

in making the array more vulnerable to steering errors.

6.3.3 Coherent noise field

The third noise filed type which is commonly encountered in practice is the coherent noise

field. A coherent noise field occurs when there is one sound source impinging from one

direction at an angle θ. This situation is also often referred to as a directional sound

source. In this case the coherence function is given by [117],







Re{Γml(ω)} = cos

(

ω cos(θ)dml
c

)

Im{Γml(ω)} = − sin

(

ω cos(θ)dml
c

) (6.9)

Note that the magnitude of this coherence is equal to one for all frequencies.
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6.4 Multi-microphone methods

In this section we describe some of the most popular multi-microphone methods of speech

enhancement. The detailed description of these techniques can be found in the references

cited herein.

6.4.1 Fixed beamforming

In the conventional delay-and-sum (DS) beamformer [44, 45, 95, 96], the delayed micro-

phone signals at the output of the delay compensation module are weighted and summed

as follows

z(n) =
1

M

M∑

m=1

amxm(n) (6.10)

where am’s are some fixed (non-adaptive) weights used to give the beam pattern a specific

desired shape. In a near-field situation these weights can be used to compensate for the

signal attenuation and to equalize the level of the direct path signal over all channels. They

can also be used as a remedy to microphones with different gains. In this thesis however,

this weighting, also often referred to as shading, is not considered and is supposed to be

unnecessary.

The main lobe width of the beam pattern is frequency dependent and becomes wider

at low frequencies for a given fixed inter-microphone distance. This results in poor perfor-

mance at low frequencies. This phenomenon lead to the development of frequency invariant

beamformers [51, 20]. Frequency invariant beamforming can also be achieved using nested

arrays [45, 95]. In such microphone arrays, a subarray is used for every frequency band

so that the frequency and inter-microphone distance product remains relatively constant.

Clearly, sub-arrays with larger inter-microphone distances are used for low frequencies and

sub-arrays with smaller distances, are used for high frequencies. Unfortunately, a large

number of microphones is then needed to achieve an acceptable spatial selectivity which

is not practical in general in terms of spatial placement and the total cost of the whole

system.

The noise reduction factor of the DS beamformer is given by [120]

NRF (ω) =
1

1

M
+

(

1 − 1

M

)

Γ(ω)

(6.11)
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where M is the number of microphones and Γ(ω) is the average coherence function given in

(6.6). Note that the noise reduction factor is defined as the ratio of the noise energy at the

output of the beamformer to the energy of the original corrupting noise at the input of one

microphone3. It can be seen that the performance of the DS beamformer is proportional

to the number of microphones. For example for an incoherent noise field (Γ(ω) = 0), the

noise reduction factor is NRF (ω) = M . This fact confirms that large microphone arrays

are required to achieve an acceptable performance.

Unfortunately, in most applications of interest, just a few microphones can actually

be used. For example in car applications4, the car makers may refuse to install more

than two microphones. The reason for that is mainly the spatial constraints which make it

complicated to employ a larger number of microphones. In addition to that, the total cost of

the whole system can increase in a way to make the achieved performance improvement too

expensive to be desired. For this reason, fixed beamformers are usually used in conjunction

with other techniques to maintain a satisfactory performance despite the small number of

microphones used. Such techniques, discussed next, are mainly adaptive beamforming and

adaptive postfiltering.

6.4.2 Adaptive beamforming

To overcome the limitations of the DS beamformer in speech enhancement applications,

adaptive beamforming has been proposed [92, 91, 141]. These systems are usually based on

the so called Generalized Sidelobe Cancelor (GSC) [55], which results from the transforma-

tion of a constrained optimization problem into a non-constrained one [154]. As illustrated

in Figure 6.1, the GSC consists of a conventional fixed DS beamformer and a blocking

matrix. The blocking matrix is designed to block the desired signal in the look direction

in order to obtain a speech free estimate of the noise. The output of the blocking matrix

is used to adaptively steer a null in the directions of the interference. The GSC, how-

ever, suffers from what is known as the signal cancellation effects. This takes place when

there is leakage of the desired signal into the blocking matrix resulting in serious signal

distortion [163]. For example in reverberant rooms the GSC is known to have considerable

performance limitations [8].

3The noise energy is commonly assumed to be equal at all microphones.
4such as hands-free telephony which is increasingly being enforced by law in many countries for security

reasons.
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Fig. 6.1 The Griffiths-Jim beamformer or the Generalized Side-lobe Can-
cellor (GSC).

A classical noise reduction method which can also be viewed as a form of adaptive

beamforming is the adaptive noise canceling (ANC) method. ANC uses a dual-microphone

concept which can be successfully used for speech enhancement if there is a high coherence

of the noise in the two channels while the speech is present in just one of these channels

[30, 52, 158, 159, 164]. However, in most practical situations, both requirements can not

be met at the same time.

While adaptive beamforming shows in general good performance for directional inter-

ference (coherent noise field) it is no better than a DS beamformer in diffuse or incoherent

fields [8]. For example, in a car environment, the noise field (mainly due to the engine) is

considered to be diffuse. Therefore, adaptive beamforming is not expected to have a good

noise reduction performance. This observation is also valid for ANC [52].

6.4.3 Adaptive postfiltering

For diffuse noise fields, adaptive postfiltering has been proposed as a better alternative for

noise reduction. Actually, these systems usually assume an incoherent noise field to derive
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the transfer function of the suppression filter. This assumption is reasonable for high

frequencies but is untrue for low frequencies as discussed in Section 6.3.2. For this reason,

the noise reduction capabilities at low frequencies is usually no better than a conventional

delay-and-sum beamformer. However, adaptive postfiltering remains the best design to use

in diffuse fields and usually further processing is applied to enhance performance at low

frequencies.

Depending on the design criterion, the post-filter can take different forms: a Wiener filter

[117, 170], an LMS-type adaptive filter [169], a coherence function based filter [105, 104], a

combination of coherence and Wiener filtering [114] and a combination of Wiener filtering

and spectral subtraction [120]. A block diagram of this method is shown in Figure 6.2.
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Fig. 6.2 A block diagram of an array of four microphones with an adaptive
postfilter.

Adaptive postfiltering consists of a conventional DS beamformer5

z(n) =
1

M

M∑

m=1

xm(n) = s(n) +
1

M

M∑

m=1

wm(n) (6.12)

Then, to further reduce the remaining noise components at the beamformer output, z(n)

is post-filtered via a Wiener filter having the following frequency response

H(ω) =
Φzs(ω)

Φz(ω)
(6.13)

5Weighting as in (6.10) can still be used to improve the directivity of the array [117].
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where Φzs(ω) is the cross-power spectrum of s(n) and z(n), and Φz(ω) is the power spectrum

of z(n). The noise and the speech are assumed to be uncorrelated, so using (6.12) we have

Φzs(ω) = Φs(ω) and H(ω) can then be written as

H(ω) =
Φs(ω)

Φz(ω)
(6.14)

In practice, however, Φs(ω) is not available and needs to be estimated. This estimate

is obtained by exploiting the signals from the different available channels in the following

way

Φ̂s(ω) =
2

M(M − 1)
Re

{
M−1∑

i=1

M∑

j=i+1

Φxixj
(ω)

}

(6.15)

where the real part is used in order to reduce any possible coherent noise components in the

input channels6 [170]. This estimate is used to replace Φs(ω) in (6.14). In this formulation,

it is assumed that an incoherent noise field (which is usually employed as an approximation

to a diffuse field) is used.

Alternatively, the postfilter can be estimated using the average coherence function,

defined in (6.6), over all microphone pairs. The frequency response of the filter will then

take the following form [104],

H(ω) =
2

M(M − 1)

M−1∑

i=1

M∑

j=i+1

|Φxixj
(ω)|

√
Φxi

(ω)Φxj
(ω)

(6.16)

Due to the underlying noise field assumption, this technique is suitable in applications

where the environment can be modeled by a diffuse noise field, such as in cars or reverberant

rooms.

6.4.4 The Multi-microphone SVD method

So far, just a few attempts to use the signal subspace approach in a microphone array for

speech enhancement have been reported. In [4] the EVD of the spatial covariance matrix

is used to design a minimum variance (MV) beamformer to improve the performance of

speech recognition systems in noisy environments. In this approach the so-called coherent

6Comparable results can also be obtained by taking the magnitude instead of the real part [117].



6 The Multi-Microphone Approach 106

signal subspace approach using a focusing matrix [161] is employed.

A second method, which is more relevant to the context of this thesis as will be seen

shortly, is the so called Multi-microphone Singular Value Decomposition (MSVD) method

[35, 34]. We next provide a brief description of the MSVD.

Consider the PM -dimensional noisy observation vector x̄(n) formed by stacking the

different microphone signal vectors above each other as follows

x̄(n) = [x1(n)T , . . . ,xT
M(n)]T = s̄(n) + w̄(n) (6.17)

where s̄(n) is the clean speech vector and w̄(n) is the noise vector. M is the number of

microphones and P is the dimension of the sub-vectors given by

xm(n) = [xm(n), xm(n− 1), . . . , xm(n− P + 1)]T

From these stacked vectors, a L×MP data matrix X̄(n) at time index n is formed in

the following way,

X̄(n) =









x̄T (n)

x̄T (n+ 1)
...

x̄T (n+ L− 1)









(6.18)

or equivalently

X̄(n) = [X1(n) X2(n) . . . XM(n)] (6.19)

where Xm(n), for m = 1, . . . ,M , is a L×P data matrix obtained from L + P − 1 data

samples as follows,

Xm(n) =









xm(n) xi(n− 1) . . . xm(n− P + 1)

xm(n+ 1) xm(n) . . . xm(n− P + 2)
...

...
...

xm(n+ L− 1) xm(n+ L− 2) . . . xm(n+ L− P )









(6.20)
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that is,

Xm(n) =









xT
m(n)

xT
m(n+ 1)

...

xT
m(n+ L− 1)









(6.21)

Hereafter, the time index n will be dropped for simplicity.

In a similar way, a Lw×MP noise data matrix W̄ is formed using Lw, not necessarily

consecutive, stacked vectors gathered during non speech activity periods.

Consider now the Generalized Singular Value Decomposition (GSVD) of X̄ and W̄

given by

X̄ = V̄xdiag{σi}ŪT (6.22)

W̄ = V̄wdiag{ηi}ŪT (6.23)

where V̄x and V̄w are two orthogonal matrices and Ū is an invertible, but not necessarily

orthogonal, matrix. Accordingly, an optimal Wiener filter minimizing the residual error

signal energy can be obtained as [35]

H̄ = Ū−T diag{1 − L

Lw

· η
2
i

σ2
i

}ŪT (6.24)

The estimate of the clean speech data matrix is then obtained as ˆ̄S = X̄H̄.

In the (deterministic) signal subspace methods which use the SVD of a data matrix such

as in [61, 84], averaging along the sub-diagonals of the resulting clean speech data matrix

estimate is carried out in order to obtain the final enhanced speech signal. However, in

[35], it is suggested that this averaging step is not optimal. The optimal filter is rather

obtained by selecting the column of H̄ in (6.24) which corresponds to the smallest element

on the diagonal of the matrix W̄TW̄H̄. Since finding such an element is costly in terms

of the required computations, it is claimed that picking the middle column is enough to

obtain a satisfactory result.

MSVD is found to outperform other beamforming methods, namely fixed beamforming

and the GSC. This performance superiority is due to the fact that the implemented signal

subspace filter can be viewed as a cascade of a spatial filter (beamformer) and a Wiener-like
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postfilter which depends on the SNR at the output of the beamformer. The beamformer

stage automatically steers the array in the direction of the desired speech signal and places

a null in the direction of the interference. Unlike the GSC, for instance, the gain of the

main lobe is not equal to one and will generally depend on the signal to noise ratio giving

rise to a postfilter like behaviour. This property lead to the reported improved performance

of the MSVD over the GSC.

Another merit of the MSVD method is that it makes no assumptions on the DOA of the

desired speech signal making it less vulnerable to steering errors. However, this is achieved

at the cost of a degradation in performance as the number of interfering signals increases

[34]. Consequently, this drawback resulted in a poor performance under reverberant con-

ditions with the degradation becoming more serious as the reverberation time increases.

Indeed, this behaviour was confirmed in our experimental results as will be seen in Section

8.5. Therefore, it can be concluded that while MSVD remains a robust speech enhancement

tool under directional noise, its capabilities remain rather modest under diffuse noise fields.

6.5 The multi-microphone EVD approach

In this section we present an extension of the single microphone SSA into a multi-microphone

design. The method developed here, although by itself can be considered as a novelty of

this thesis, mainly serves as a basis for the new MEDA method which will be presented in

the Section 6.6.

Consider a microphone array consisting of M microphones. Define, as in (6.17), the

PM -dimensional composite input vector x̄,

x̄ = [xT
1 , . . . ,x

T
M ]T = s̄ + w̄ (6.25)

where s̄ is the clean speech vector and w̄ is the noise vector defined in a similar way.

Assume that the noise and speech are uncorrelated so that the noisy Composite Co-

variance Matrix (CCM), R̄x = E{x̄x̄T}, of the noisy composite vector can be written
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as

R̄x =









Rx,11 Rx,12 · · · Rx,1M

Rx,21 Rx,22 · · · Rx,2M

...
. . .

...

Rx,M1 · · · · · · Rx,MM









= R̄s + R̄w (6.26)

where R̄s and R̄w are the clean speech and noise CCM’s respectively. Rx,ml is the cross-

covariance matrix between microphones m and l, i.e. Rx,ml = E{xmxT
l }.

A far-field situation is assumed so that signal attenuation is constant over all micro-

phones. Besides recall, as mentioned in Section 6.2, that we assume perfect time delay

compensation has already been applied so that the desired direct path speech signal is in

phase over all M microphones. Therefore, similar to (6.4), the noisy observation vector can

be written as

xm = s + wm, for m = 1, . . . ,M. (6.27)

which implies that the clean speech CCM can be written as

R̄s =







Rs · · · Rs

...
. . .

...

Rs · · · Rs







(6.28)

where Rs = E{ssT} is the covariance matrix of the clean speech vector s.

At this point we introduce the MP×P matrix C = [IP , . . . , IP ]T where IP is a P×P
identity matrix. This matrix will be frequently used in this chapter to simplify the notation

and to facilitate the forthcoming derivations. The properties of this matrix are discussed

in detail in appendix A.

The matrix R̄s can then be written using C as follows

R̄s = CRsC
T (6.29)

It can be readily seen that if Rs has rank Q ≤ P then R̄s will also have rank Q. Thus,

if R̄s = V̄Λ̄sV̄
T is the EVD of R̄s then there will be just Q non-zero eigenvalues and we

can write V̄ = [V̄1 V̄2] where V̄1 is a MP×Q matrix spanning the signal subspace and

having as columns the eigenvectors of R̄s corresponding to the non-zero eigenvalues7.

7Recall that the eigenvalues are as usual sorted in a decreasing order.
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6.5.1 Filter design

The objective now is to design a linear filter H̄ in order to estimate the composite clean

speech vector s̄ as

ˆ̄s = [ŝT
1 , . . . , ŝ

T
M ]T = H̄x̄. (6.30)

Similar to the single microphone case, the filter H̄ may be obtained for example as

the solution to the following optimization problem in which the residual error energy is

minimized,

min
H̄

E{||r̄||2} (6.31)

where the residual error signal r̄ is defined as

r̄ = ˆ̄s − s̄ = H̄x̄ − s̄ (6.32)

The solution to this problem is the classical Wiener filter

H̄ = R̄s(R̄s + R̄w)−1. (6.33)

Using the EVD of R̄s, (6.33) becomes

H̄ = V̄Λ̄s(Λ̄s + V̄T R̄wV̄)−1V̄T (6.34)

Assuming, for now, a spatio-temporal white noise situation in which the noise CCM

can be written as R̄w = σ2IMP where σ2 is the noise variance in each of the M channels.

In this case the filter H̄ in (6.34) can be written as

H̄ = V̄1ḠV̄T
1 (6.35)

where in general, as in the single microphone case, Ḡ is a Q×Q diagonal gain matrix with

entries depending on the signal to noise ratio in every spectral direction. For example the

gain coefficients can take the following form,

ḡi =
λ̄s,i

λ̄s,i + µσ2
for i = 1, . . . , Q. (6.36)

where λ̄s,i is the ith eigenvalue of R̄s. The control parameter µ is added in order to provide
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a tradeoff between the signal distortion and the residual noise level. In this chapter, this

gain function is used because it resembles the gain function of the MSVD method which

will be used for evaluation.

Based on our previous assumptions of synchronized microphone signals and constant

signal attenuation, the clean speech vector estimate is finally obtained by taking the average

of the individual sub-vectors,

ŝ =
1

M

M∑

m=1

ŝm

=
1

M
CT [H̄x̄] (6.37)

6.5.2 The spatio-temporal colored noise case

If the noise was a spatio-temporal colored noise, then the noise CCM would not have a

diagonal form. To handle such a scenario, only the noise energy in the direction of every

eigenvector is accounted for in the filter H̄. This energy can be calculated as

ξ̄i = v̄T
i R̄wv̄i i = 1, . . . , Q (6.38)

which is the Raleigh Quotient associated with the noise CCM R̄w and v̄i, the ith eigenvector

of R̄s. The gain coefficients in (6.36) can then be altered in the following way

ḡi =
λ̄s,i

λ̄s,i + µξ̄i
for i = 1, . . . , Q. (6.39)

This approach is similar to the one used in the modified SSA method, described in

Section 3.4.5 and referred to as the RQSS method. Variants of the RQSS have been

reported to handle colored noises better than prewhitening [130, 121]. For this reason

the method described in this section will be hereafter referred to as the Multi-microphone

RQSS (MRQSS) method.

The validity of the approximation

V̄T R̄wV̄ = diag{ξ̄1, . . . , ξ̄M}, (6.40)

used above, will be further addressed in Section 6.6.
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6.5.3 Estimating the Covariance matrix

Since the clean speech CCM is not known it needs to be estimated. As in the RQSS method

this approximation is given by by R̄x − R̄w, where the noise CCM R̄w is obtained during

non-speech activity periods. The noisy CCM R̄x can be estimated in two different ways as

explained below.

In the first approach, the covariance matrix is calculated as8

R̄x =
1

L
X̄T (n)X̄(n) (6.41)

where X̄T (n) is a data matrix formed at time index n as given in (6.19) and (6.20).

Alternatively, the CCM can be obtained as a Toeplitz matrix by stacking the individual

cross-covariance matrices as in (6.26). These are Toeplitz matrices defined as

Rx,ml =










rx,ml(0) rx,ml(1) . . . rx,ml(P − 1)

rx,ml(−1) rx,ml(0) . . .
...

...
. . .

...

rx,ml(−P + 1) . . . rx,ml(0)










(6.42)

where rx,ml(p) is the cross-correlation function between the signals at microphones m and

l and is given by

rx,ml(p) =
1

L

L−1−|p|
∑

n=0

xm(n)xl(n− p) for p = −P + 1, . . . , P − 1 (6.43)

As in the single microphone case, the second approach seems more appropriate as it

allows to preserve the Toeplitz structure of the covariance matrices which is found to

yield better performance in speech enhancement applications [41]. This second approach

is adopted in this thesis.

8The time index n is dropped in R̄x for simplicity.
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6.6 The Eigen-Domain Averaging method

In this section we present a novel method for microphone array speech enhancement which is

based on the MRQSS. This method exploits the structure of R̄s to modify the MRQSS using

averaging in the eigendomain. This method is then referred to as the Multi-microphone

Eigen-Domain Averaging method (MEDA).

6.6.1 Derivation

The MEDA is mainly based on the following important property which results from the

special structure of the speech CCM R̄s.

Property 6.6.1 Suppose that v̄i = [vT
i1, . . . ,v

T
iM ]T , where vim’s (m = 1, . . . ,M) are P -

dimensional vectors, is the ith unit norm eigenvector of R̄s with corresponding eigenvalue

λ̄s,i, where λ̄s,i > 0, i.e. it is one of the first Q principal eigenvalues of R̄s. Then we have

vi1 = vi2 = . . . = viM (6.44)

and ui =
√
Mvi1, is a unit norm eigenvector of Rs with corresponding eigenvalue

λ̄s,i

M .

Proof: Using (6.29), the product R̄sv̄i can be written as

R̄sv̄i = CRsC
Tvi = C

(

Rs

M∑

m=1

vim

)

Now since v̄i is an eigenvector of R̄s then by definition we have R̄sv̄i = λ̄s,iv̄i, so forcing a

subvector-wise equality we get9

Rs

M∑

m=1

vim = λ̄s,ivil for l = 1, . . . ,M. (6.45)

The left-hand side of (6.45) is constant for all l, and since λ̄s,i > 0, then we have (6.44).

Using this result (6.45) can be written as

Rsvi1 =
λ̄s,i

M
vi1 (6.46)

9Note that for a P -dimensional vector x, Cx = [xT ,xT , . . . ,xT ]T .
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Therefore vi1 and λ̄s,i/M are an eigenvector and the corresponding eigenvalue of Rs, re-

spectively.

Now to find the unit norm eigenvector, we note that

v̄T
i v̄i =

M∑

m=1

vT
imvim = MvT

i1vi1 (6.47)

and since by definition v̄T
i v̄i = 1, then it can be seen that ui =

√
Mvi1 is the ith unit norm

eigenvector of Rs.

For the remaining PM − Q eigenvectors, and since R̄s is non-negative definite, the

corresponding eigenvalues will be constant and equal to zero. Therefore

Rs

M∑

m=1

vim = 0 for i = Q+ 1, . . . , PM. (6.48)

Two cases can then arise
∑M

m=1 vim ∈ N (Rs) (I)

∑M
m=1 vim = 0 (II)

(6.49)

where N (Rs) is the null space of Rs (the noise subspace). Since the dimension of N (Rs)

is P − Q then case (I) will occur at most for P − Q eigenvectors and (II) will be satsfied

for the remaining P (M − 1) eigenvectors of R̄s.

Property 6.6.1 tells us that the eigenvector matrix V̄1 can be written in terms of the

eigenvector matrix U1 of Rs as follows

V̄1 =
1√
M

CU1 (6.50)

where multiplying every column of U1 by C from the left has the effect of stacking M

copies of the same vector to form a PM -dimensional vector. The scaling is needed to

obtain unit-norm eigenvectors.

Therefore, given a matrix V̄1 satisfying property 6.6.1, it can be easily seen that an

estimate of U1 can be obtained by taking the average of all sub-vectors in every column.



6 The Multi-Microphone Approach 115

This estimate can be written with the aid of the C matrix as follows

Û1 =
√
M

[
1

M
CT V̄1

]

=
1√
M

CT V̄1 (6.51)

Using (6.50), we can replace V̄1 in (6.35) so that the filter H̄ = V̄1ḠV̄T
1 be written as

H̄ =

(

1√
M

CU1

)

Ḡ

(

1√
M

CU1

)T

= 1
MC

(
U1ḠUT

1

)
CT

Let H = U1ḠUT
1 be a P×P matrix, then we have

H̄ =
1

M
CHCT . (6.52)

That is, using the definition of the matrix C, we have

H̄ =
1

M







H · · · H
...

. . .
...

H · · · H







(6.53)

Using this result, the clean speech estimate in (6.37) can be written as

ŝ = 1
MCT

(
H̄x̄
)

= 1
MCT

(
1
MCHCT x̄

)

Recognizing CTC as MIP and re-arranging terms, we get

ŝ = H

(
1

M
CT x̄

)

(6.54)

which can be viewed as a conventional beamformer with a signal subspace postfilter H.
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6.6.2 Handling spatio-temporal colored noise

Now we need to reformulate (6.38) in order to obtain the noise energies ξ̄i’s using the

eigenvector matrix U1. Recalling the definition of ξ̄i and using (6.50) we get

ξ̄i = v̄T
i R̄wv̄i

=
(

1√
M

Cui

)T

R̄w

(
1√
M

Cui

)

= uT
i

(
1

M
CT R̄wC

)

︸ ︷︷ ︸

A

ui

(6.55)

where the matrix A is actually a weighted sum of all the M2 block matrices, Rw,ml, of

dimension P×P corresponding to the noise cross-covariance matrices between microphones

m and l, i.e.

A =
1

M
CT R̄wC =

1

M

M∑

m=1

M∑

l=1

Rw,ml (6.56)

Therefore the matrix A is actually a weighted estimate of the noise covariance at the output

of the fixed beamformer which can be shown to be equal to A/M . Indeed, in the case of

an incoherent noise field, i.e. Rw,ml = 0 for m 6= l, A reduces to the noise covariance

matrix Rw, where it is assumed that the noise has the same covariance matrix over all

microphones.

Now noting that λ̄s,i = Mλs,i, the gain coefficients on every spectral direction defined

in (6.39) can be re-written as

ḡi =
λs,i

λs,i + µ
ξ̄i
M

=
λs,i

λs,i + µξi
= gi (6.57)

where ξi = ξ̄i/M , which suggests that the gain function actually accounts for the fact that

the noise energy at the output of the beamformer would be reduced by a factor of M .

With the above described procedure the errors resulting from the approximation (6.40)

are reduced especially under coherent noise fields where the MEDA method significantly

outperforms the MRQSS method as will be shown in the experimental results. Indeed, while

the Raleigh Quotient approach is found to be a reasonable approximation, though inaccu-

rate mathematically, to handle temporal colored noise, it seems to be not really appropriate
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to deal with coherent noise fields. This resulted in the relatively poor performance of the

MRQSS particularly under directional noise. In MEDA, on the other hand, the averaging

process carried out in (6.56) in addition to the eigendomain averaging carried out to esti-

mate the eigenvectors, has the benefit of reducing the impact of noise hence improving the

performance especially under diffuse fields. Under directional noise, this type of averaging

helped to maintain a considerably better performance of MEDA over MRQSS. Actually an

analogous approach is commonly used in frequency domain adaptive postfiltering methods

to cancel the noise components as can be seen (6.15).

6.6.3 Analysis
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Fig. 6.3 The four subvectors of the first six eigenvectors of R̄s calculated
during a frame containing the vowel /o/, for a signal corrupted by an incoher-
ent white noise at 0 dB input SNR.

In this section we try to assess the validity of property 6.6.1 by examining the the
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Fig. 6.4 The four subvectors of the first six eigenvectors of R̄s calculated
during a frame containing the fricative /f/, for a signal corrupted by an inco-
herent white noise at 0 dB input SNR.

eigenvectors of the CCM R̄s and observing to what extent and under what conditions

equation (6.44) holds.

To this end, we consider an array of M = 4 microphones in an incoherent noise field.

Three different frames corresponding to a noise only frame, a fricative /f/ and a vowel /o/

are to be examined. These frames are picked from a sentence in which the desired signal

is corrupted by computer generated white noise at 0 dB SNR. For every frame we plot

the subvectors vim, for m = 1, . . . ,M corresponding to the first six eigenvectors10 v̄i, for

i = 1, . . . 6, of R̄s.

These waveforms are shown in Figures 6.3 , 6.4 and 6.5 for the vowel /o/, the fricative

/f/ and the noise frame respectively. The norms of the eigenvector estimates ûi, obtained

by taking the average of the subvectors as in (6.50), is shown in Figure 6.6 for the three

10These eigenvectors have the largest eigenvalues.
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Fig. 6.5 The four subvectors of the first six eigenvectors of R̄s calculated
during a noise only frame, for a signal corrupted by an incoherent white noise
at 0 dB input SNR.

frames. Shown are the norms ‖ûi‖2 for the eigenvectors with strictly positive eigenvalues

λ̄s,i, i.e. for i = 1, . . . , Q.

For the vowel, it can be seen in Figure 6.3 that (6.44) is satisfied to a large extent for

the shown eigenvectors, which usually carry the most important speech content. A slight

deviation from the exact match can be seen in the 5th and 6th eigenvectors which will result

in the norms ‖ûi‖2 being less than unity as can be seen in Figure 6.6 (a). This suggests that

along these particular spectral directions the SNR is low enough for the noise to have an

impact on the eigenvectors. This phenomenon can be more clearly observed in the fricative

case shown in Figure 6.4. Indeed, this speech sound is usually weak with an SNR much

lower than in a vowel frame. For this reason the discrepancies between the four subvectors

can be seen even with the eigenvector with the largest eigenvalue (i.e. i = 1). Actually the

averaging operation yielding the eigenvector estimate ûi is expected to reduce the effect of
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Fig. 6.6 The norm ‖ûi‖2 of the eigenvector estimates of Rs under incoher-
ent white noise at 0 dB SNR, for three frames with different speech content.

noise hence improving the overall speech enhancement performance by obtaining a more

reliable subspace estimate.

In the noise only frame results shown in Figure 6.5 it can be seen that the subvectors

seem to have a largely random relationship with respect of each other making their average

be relatively close to zero as can be seen in the norm ‖ûi‖2 for this particular frame shown

in Figure 6.6 (c). It can be seen in that figure that the norm has an almost constant

value equal to 0.2 for most of the eigenvalue indices. This complies with case (II) in (6.49)

which states that the subvectors of P (M − 1) eigenvectors would actually add up to zero.

The other norms which have a slight larger value may correspond to case (I) where the

sum of the subvectors belongs to the null space of Rs. This phenomenon would result in

the cancellation of the (speech free) signal content in those directions, hence obtaining an

improved noise reduction performance while introducing little or no distortion.

This result suggested the use of a thresholding mechanism in which the eigenvectors

ûi’s with norms below a certain threshold are omitted from the matrix Û1. However, ex-

perimental simulations showed that the performance was highly dependent on the choice of

the threshold and similar results could also be obtained by adjusting the control parameter

µ in the gain function (6.57). Actually, for any eigenvector with a very low ‖ûi‖2, the

corresponding noise energy ξi, as calculated in (6.55), will also be low and will approach

zero. Therefore, and since the eigenvalue λs,i is not affected by this phenomenon, the SNR

in that direction will be very high leading to a gain coefficient close to one in (6.57). Thus,

while the gain matrix will entail no noise reduction, the signal energy will be reduced in

that spectral direction by the low norm of the eigenvector estimate ûi. Hence, instead
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of relying on a pre-selected threshold, a better effect is actually automatically obtained

in which the tradeoff between the gain coefficient and the eigenvector norm balances any

signal subspace estimation errors.

Sensitivity to steering errors
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Fig. 6.7 The four subvectors of the first six eigenvectors of R̄s of the vowel
/o/ extracted from a signal corrupted by an incoherent white noise at 0 dB
input SNR. The desired speech DOA is 10 degrees.

In the following experiment we try to assess the effect of steering misadjustment that

may result from errors in the time delay compensation module. In this experiment the

same setup as described earlier is maintained except that now the desired speech signal

impinges on the array at an angle of 10 degrees off the look direction (the array is steered

to 0 degrees). Figures 6.8 and 6.7 show the waveforms of the subvectors vim, m = 1, . . .M ,

for /o/ and /f/, respectively, for the first four eigenvectors11, i.e. i = 1, . . . , 4. Figure 6.9

shows the norms ‖ûi‖2 for i = 1, . . . , Q.

11Note that while comparing Figures 6.3 and 6.7 can be instructive, comparing Figures 6.4 and 6.8 for
the fricative /f/ is not possible since the order of the eigenvectors has changed due to the sorting operation
and not all of them are illustrated.
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It can be seen from these figures that the eigenvectors were indeed affected by this

steering misadjustment. The effect can be better seen in Figure 6.7 where the subvectors,

which had an almost exact match in Figure 6.3, seem now to have a constant phase shift

with respect of each other. This phase shift resulted in a reduction of the norm of the

eigenvector estimates ‖ûi‖2 as shown in Figure 6.9 (a). The effect on the fricative /f/ is

higher since it is coupled with a higher vulnerability to noise, as discussed in the previous

experiment.

This would indeed affect the performance by increasing the distortion due to the overall

signal cancellation (including the noise). However, this drawback is not as serious as it

appears to be because the overall effect of these steering errors is actually reduced by the

trade off offered by the increased gain coefficients (because the estimated noise energies

will be lower). This claim will be experimentally verified in Chapter 8.5.

Our experiments also revealed that the phase shift between the subvectors depended on

the directional of arrival of the desired speech signal and on the inter-microphone distance.

This suggests that if further research is conducted in this direction, this result may be used

for time delay estimation leading to a self calibrating microphone array. The accuracy of

such an approach and its ultimate performance has yet to be investigated.

6.6.4 The overall MEDA algorithm

In this section we present the overall detailed algorithm of the MEDA method.

To reduce the computational load, and as in the single microphone case, we use the

frame-based SSA implementation developed in this thesis and presented in Section 5.2.

Accordingly, the samples in every length L frame from the M channels are used to estimate

the cross-correlation coefficients as in (6.43). Then, these coefficients are used to form the

noisy CCM R̄x directly arranged into a Toeplitz structure as shown in (6.42) and (6.26).

The noise CCM R̄w is obtained in a similar way during non-speech activity periods. The

EVD of the difference R̄x − R̄w is used to obtain an estimate of the clean speech CCM

eigenvector and eigenvalue matrices V̄ and Λ̄s respectively.

The rank Q of R̄s is obtained as the number of strictly positive eigenvalues λ̄s,i. The

corresponding eigenvectors are used to form the columns of the transformation matrix
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Fig. 6.8 The four subvectors of the first six eigenvectors of R̄s of the frica-
tive /f/ extracted from a signal corrupted by an incoherent white noise at 0
dB input SNR. the desired speech DOA is 10 degrees.

V̄1 = [v̄1, v̄2 . . . , v̄Q]. The matrix V̄1 is used to estimate the matrix U1 as follows

Û1 =
1√
M

CT V̄1 = [û1, . . . , ûQ] (6.58)

the noise energies are then calculated as

ξi =
ξ̄i
M

=
1

M2
ûT

1

(
CT R̄wC

)
ûi, for i = 1, . . . , Q (6.59)

and the speech eigenvalues are obtained as

λs,i =
λ̄s,i

M
, for i = 1, . . . , Q (6.60)

Using these quantities, the entries of the gain matrix G = [g1, . . . , gQ] are calculated as

follows

gi =
λs,i

λs,i + µξi
(6.61)
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Fig. 6.9 The norm ‖ûi‖2 of the eigenvector estimates of Rs under incoher-
ent white noise at 0 dB SNR, for two frames with different speech content. In
this case the desired speech signal DOA is 10 degrees.

The clean speech estimate is finally obtained as

ŝ = Û1GÛT
1

(
1

M
CTx

)

(6.62)

The individual overlapping P -dimensional vectors estimated as in (6.62) are combined

using the overlap-add technique and the total speech signal is obtained by combining all

frames as explained in Section 5.2. Note that the matrix C is used here just to simplify

the notation and that the resulting multiplications are actually avoided by performing the

corresponding equivalent additions as explained in Appendix A.

6.7 Including the perceptual criteria

Since the MEDA subspace filter is applied as a postfilter, it is straight forward to couple

this method with the Perceptual Signal Subspace (PSS) method presented in Chapter 5 in

order to improve the overall performance by including the human hearing properties in the

design. This combination can be done by using MEDA to estimate the eigenvalues and the

eigenvector matrix of the clean speech covariance matrix Rs. Then, the gain coefficients in

(6.57) are modified to include the perceptual criteria as described in Section 5.6.
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6.8 Summary

In this chapter we have presented a novel multi-microphone method based on the signal

subspace approach. The new method exploits a property of the EVD of the signal compos-

ite covariance matrix in order to perform averaging in the eigendomain, hence the name

MEDA. This property states that an eigenvector of the CCM has equal subvectors. The

weighted sum of those subvectors can then be used to estimate the eigenvectors of the

speech covariance matrix which span its signal subspace.



126

Chapter 7

The subband room response

simulator

To be able to design and evaluate the microphone array methods presented in the thesis, it

is useful to have a fast and flexible way to digitally simulate the effect of a reverberant room

on the acoustic signals at the input of the microphone array. To this end, the image method

[2], was proposed to simulate the discrete-time room impulse response. The contribution of

every image to the total effect, is represented by a weighted impulse shifted to the discrete

time instant closest to the actual arrival time.

The image method, however, does not precisely estimate the echo arrival times because

the latter are usually not multiples of the sampling period [126]. Hence, in multi-microphone

systems for example, this method fails to give a good estimate to the very important inter-

microphone phase resulting in serious simulation errors. To solve this problem, Peterson

suggests to distribute the arriving echo over several samples according to a low pass response

function centered at the actual echo arrival time [126]. A generalization of this method to

a moving point source in a reverberant room is presented in [17].

Peterson’s modified image method, although being widely used, is not capable of pro-

viding a realistic estimate of the room impulse response. The reason is that it does not

account for the dependency of the wall reflection coefficients on frequency. Instead, the

low-pass image method considers that the reflection coefficients are constant over all the

frequency range of interest. Table 7.1 (from [132]) shows the frequency dependent absorp-

tion coefficients (equal to one minus the reflection coefficients squared) for some common
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material used in rooms.

Table 7.1 A brief list of absorption coefficients of some materials, as a func-
tion of frequency in Hz [132].

Frequency (Hz)

Material 125 250 500 1000 2000 4000

Concrete block, unpainted 0.36 0.44 0.31 0.29 0.39 0.25

Concrete block, painted 0.10 0.05 0.06 0.07 0.09 0.08

Glass, window 0.35 0.25 0.18 0.12 0.07 0.04

Plaster on lath 0.14 0.10 0.06 0.05 0.04 0.03

Plywood paneling 0.28 0.22 0.17 0.09 0.10 0.11

Carpet on pad 0.08 0.24 0.57 0.69 0.71 0.73

Gypsum board, one-half inch 0.29 0.10 0.05 0.04 0.07 0.09

Drapery, lightweight 0.03 0.04 0.11 0.17 0.24 0.35

Another difficulty with the image method is the computation cost of the convolution

operation needed to calculate the acoustic response between two points in a reverberant

room. Precisely, L multiplications per input sample, where L is the length of the impulse

response, are required. Unfortunately, because of the room acoustic properties, L is gen-

erally a large number. This computational burden increases in the multi-microphone case

because the costly convolution is repeated with all microphones.

In this chapter we present a subband room simulator (SRS) with added design flexibility

for modeling the frequency dependent reflection coefficients in a computationally efficient

manner. This is achieved using a subband scheme where the input signal is divided into

K channels and every subband signal is convolved with a subband impulse response (SIR)

at a sampling rate reduced by a factor M ≤ K. We first show how to calculate the

SIR’s so that if the reflection coefficients are kept constant with respect to frequency, then

the resultant overall impulse response is equal to that designed with the low-pass image

method. We then show how the SIR’s can be accordingly modified so that an overall

impulse response with frequency dependent reflection coefficients is achieved. In addition

to this added design flexibility, the implementation of the SRS significantly reduces the

number of required multiplications compared to the image method thereby providing an

efficient solution to the room impulse response simulation problem.
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7.1 Uniform DFT filter banks

Subband filtering has been used efficiently in various applications in the field of signal

processing especially in speech coding and adaptive filtering [152, 24]. It owes its popularity

to the frequency flexibility and the computational savings that it offers.

In our approach, we exploit these two properties to provide a fast implementation

scheme to the image method and to provide more degrees of freedom to the currently used

image method.

In the proposed SRS, a uniform DFT filter bank is used to realize the subband analysis

and synthesis. In this approach, the input signal is divided into K adjacent subbands by a

bank of complex demodulators whose outputs are lowpass filtered by the antialiasing filter

f(n) and then downsampled by M to a lower sampling rate. After performing any desired

modification on the subband signals, they are upsampled to the initial rate, lowpass filtered

by the anti-imaging filter g(n) and modulated back to their original spectral position. The

output is finally obtained by summing the sub-signals. A critical design issue here is the

choice of the downsampling factor M . In many practical implementations oversampling,

that is M < K, is used. It is indeed one of the simplest and most efficient ways to reduce

the subband aliasing when modifications are made to the subband signals [49]. Several

methods are now available for the design and realization of oversampled DFT filter banks

[29, 63]. In this chapter we use the approach of [110] for the filterbank design which

also proved useful in the context of acoustic echo cancellation. A detailed analysis of this

filter bank design method can be found in [110]; however for convenience of our upcoming

derivations, we present a brief summary of it here. The block diagram of the specific DFT

filterbank under consideration is illustrated in Figure 7.1, where x(n) denotes the input

signal sampled at the rate Fs.

The z-transform Xk(z) of the subband signals xk(m), where k = 0 . . . K − 1 denotes

the subband index and m is the discrete time index at low sampling rate (i.e. Fs/M), is

written as

Xk(z) =
1

M

M−1∑

m=0

F (z1/MW−m
M )X(z1/MW−m

M W k
K) (7.1)

where WK = exp(j2π/K) and WM = exp(j2π/M). F (z) and G(z) are the z-transforms of

the filters f(n) and g(n) respectively. In the z-domain, the synthesizer output y(n) may be
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Fig. 7.1 Block diagram of the DFT filterbank.

expressed as

Y (z) =
1

M

M−1∑

m=0

Tm(z)X(zW−m
M ) (7.2)

The approach of [110] uses a special set of modulators, namely: W−kn
K in the analysis and

W
k(n+1)
K in the synthesis. Assuming for now that the subband signals are not modified, we

have

Tm(z) =
K−1∑

k=0

W k
KF (zW−k

K W−m
M )G(zW−k

K ) (7.3)

Because F (z) and G(z) have the same cutoff frequency (ωc = π/K), and since M < K,

Tm(z) ≈ 0 for m 6= 0 [110]. So the aliasing components can be neglected in (7.2) which

reduces to

Y (z) =
1

M
T0(z)X(z) (7.4)

In order to have a constant group delay and hence reduce the phase distortion, f(n) and

g(n) are chosen to be FIR filters of length N such that g(n) = f(N − n − 1). Now if

N = nfK, where nf is an integer, then Tm(z), for m = 0, can be written in the frequency

domain as

T0(e
jω) = e−j(N−1)ω

K−1∑

k=0

| F (ejωW−k
K ) |2 (7.5)

Obviously the response of the filter bank has a linear phase. Thus, by designing a prototype
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filter f(n) such that the magnitude of T0(e
jω) is equal to one, i.e.

K−1∑

k=0

| F (ejωW−k
K ) |2≈ 1 (7.6)

the total distortion will be a pure delay. In [110], the design of f(n) to approximate these

requirements is achieved by interpolation of 2-channel QMF filters (found in lookup tables

[24]) by a factor of K/2.

For the implementation of the oversampled DFT filter bank, we use the weighted-

overlap-add (WOA) structure because it allows flexibility in choosing M as any arbitrary

integer [24]. This approach needs in the order of 2(log2K + nf )K/M multiplications per

input sample (MPIS), which is generally a very low cost for most practical values of K, M

and nf .

7.2 The Subband Room Simulator (SRS)
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Fig. 7.2 Block diagram of the SRS algorithm.

The room simulator that we propose in this chapter is based on a subband implementa-

tion of the convolution with the room impulse response in the subbands at the low sampling

rate. As seen in Figure 7.2, in which a block diagram of the SRS is shown, every subband

signal is convoloved separately with a different subband impulse response (SIR). Calculat-

ing these SIR’s is a critical design problem in our method. To this end, we first show how to
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calculate the SIR’s from a desired full band reference impulse response h(n). The latter can

be obtained from real measurements or can be a synthetic one calculated using the lowpass

image method of [126], for instance. This method, just exploits the computational saving

advantage of the SRS quantified in Section 7.2.3. However, it is an essential step in our

developments because it explains, from a signal processing perspective, the reason behind

the solution we are proposing for the subband impulse responses. After that, equipped

with this solution, we present the subband image method which uses the image method to

calculate hk(m) in a subband scheme.

7.2.1 Calculating the subband impulse responses

In this section, we show how to calculate the SIR hk(m), so that the system in Figure 7.2,

has an impulse response equal to a desired room response h(n). Including the convolution

with hk(m), Tm(z) in (7.3) becomes

Tm(z) =
K−1∑

k=0

W k
KF (zW−k

K W−m
M )G(zW−k

K )Hk(z
MW−kM

K ) (7.7)

where Hk(z) is the z-transform of hk(m). Our aim is to find an Hk(z) which if upsampled

and modulated (due to applying the synthesis bank to it) makes the transfer function of

the whole system equal to the desired transfer function H(z). As we explain below, this

can be done by feeding h(n) to an analysis bank so that

Hk(z) =
1

M

M−1∑

m=0

F̃ (z1/MW−m
M )H(z1/MW−m

M W k
K) (7.8)

where F̃ (z) is the z-transform of f̃(n) which is an FIR lowpass filter with cutoff frequency

γπ/K. Since M < K then we can still argue that Tm(z) ≈ 0 for m 6= 0, that is, and after

substituting (7.8) in (7.7), the only term that remains is

T0(z) =
K−1∑

k=0

W k
KF (zW−k

K )G(zW−k
K )

1

M

M−1∑

l=0

F̃ (zW−k
K W−l

M )H(zW−l
M ) (7.9)

If in addition we have γ < K/M then we can and again argue that the pass-band of

F (zW−k
K ) will fall well into the stop band of F̃ (zW−k

K W−l
M ), hence only the terms for l = 0
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will remain in the second summation of the above equation. Thus T0(z) can be written as

T0(z) =
1

M

K−1∑

k=0

W k
KF (zW−k

K )G(zW−k
K )F̃ (zW−k

K )H(z) (7.10)

Substituting (7.10) in (7.4) we get

Y (z) =
1

M2
A(z)H(z)X(z) (7.11)

where in the frequency domain A(ejω) is

A(ejω) = e−j(N−1)ω

K−1∑

k=0

|F (ejωW−k
K )|2F̃ (ejωW−k

K ) (7.12)

Our experiments show that if f̃(n) = f(n), then the magnitude of A(ejω) will have valleys

at the boundaries of the frequency subbands which significantly distort the final result.

Therefore, f̃(n) is chosen to have a slightly bigger bandwidth than f(n) (that is γ > 1).

Property 7.2.1 If f̃(n) is chosen to be a linear phase FIR filter (designed using a window

of length N = nfK), and if nf is an even number, then A(ejω) will have a linear phase

with group delay d = 3N
2
− 1 and its magnitude be given by

|A(ejω)| =
K−1∑

k=0

|F (ejωW−k
K )|2|F̃ (ejωW−k

K )|. (7.13)

Proof:

To begin the proof, we note that f̃(n) has a group delay p = N/2 = nfK/2, so

F̃ (ejω) = |F̃ (ejω)|e−jpω (7.14)
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Therefore

A(ejω) = e−j(N−1)ω

K−1∑

k=0

|F (ejωW−k
K )|2|F̃ (ejωW−k

K )|e−j(ω− 2π
K

k)p (7.15)

= e−j(N−1+p)ω

K−1∑

k=0

|F (ejωW−k
K )|2|F̃ (ejωW−k

K )|ej 2π
K

kp (7.16)

Using the fact that nf is a multiple of 2, the exponential term in the summation can be

written as

exp

(

j
2π

K
kp

)

= exp

(

j
2π

K
.
nfK

2
.k

)

= exp (jnfkπ) = 1 (7.17)

Which completes the proof.

Since A(ejω) has a linear phase then we are sure that there will be no phase distortion

in the output signal y(n) in (7.11). In what follows we show that with this choice of filters

the magnitude distortion is at an acceptable level.

Since the bandwidth of f(n) is 2π/K, then just two consecutive terms of the summation

in (7.13) need to be considered in our analysis, namely

|A(ejω)| = |F (ejωW−k
K )|2|F̃ (ejωW−k

K )| + |F (ejωW
−(k+1)
K )|2|F̃ (ejωW

−(k+1)
K )| (7.18)

for ω ∈ [2πk/K, 2π(k + 1)/K]. If f̃(n) = f(n) then at frequencies far enough from the

subband edges, the magnitude of A(ejω) will be close to unity as a consequence of (7.6).

That is |A(ejω)| will be close to the response of the filter-bank without the convolution

operation. However, at ω = πk
K

, f(n) is designed such that |F (π/K)| = −3 dB (at the

cutoff frequency) [24], therefore, if f̃(n) = f(n), then

|A(ejπk/K)| ≈ 2(0.707)3 ≈ −3 dB (7.19)

This would result in large magnitude distortions at the subband boundaries. Hence in our

design we choose to use a different filter f̃(n) with a larger pass band. Namely, we use

another lowpass filter f̃(n), with the same length as f(n), designed, for example, using a

Hamming window. Far enough from the subband boundaries, |A(ejω)| will still have an

acceptable ”flatness”. At ω = kπ/K, on the other hand, |A(ejπk/K)| ≈ -6 dB when γ = 1.
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Therefore to improve the performance at these frequencies, a filter with a larger cutoff

frequency is used. It is difficult to quantify the improvement we obtain with this method

but from Figure 7.3 it can be seen that increasing γ (without exceeding K/M) decreases

the magnitude distortion from -6 dB at γ = 1 to -1.3 at γ = 1.2 and to as little as -0.4 dB

at γ = 1.3.
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Fig. 7.3 |A(ejω)| with different values of γ, (dashed) γ = 1.2 and (continu-
ous) γ = 1.3, (thick) f̃(n) = f(n) (because |A(ejω)| is periodic, just a portion
of the spectrum is shown for clarity).

7.2.2 The subband image method

Based on the results of the previous section, we can now derive the subband image method.

In the lowpass impulse method [2, 126], the response h(n) of a microphone at location x

to an impulse excitation at location x0 can be expressed as follows

h(n) =
1

4π

∑

r

βr

τr
ψr(n) (7.20)

where c is the speed of sound, r is the index of the image at position xr, τr =‖ xr − x ‖ /c
is the echo arrival of the image r, βr is the corresponding composite reflection coefficient

and ψr(n) is a sampled version of a continuous, Hanning-windowed, lowpass filter ψr(t)
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centered at the echo arrival time τr and is given by [126]

ψr(t) = ψ(t− τr) (7.21)

and

ψ(t) =
1

2
[1 + cos(2πt/Tw)]sinc(2πfct) for −Tw/2 ≤ t ≤ Tw/2 (7.22)

where Tw is the length of the lowpass filter and fc is its cutoff frequency.

Now (7.8) written in the time domain becomes

hk(m) =
∑

n

f̃(mM − n)h(n)W−kn
K (7.23)

Then, substituting (7.20) in (7.23) and after changing the summation order we get

hk(m) =
1

4π

∑

r

βr,k

τr
ξr,k(m) k = 0 . . . K − 1 (7.24)

where

ξr,k(m) =
∑

n

f̃(mM − n)ψr(n)W−kn
K (7.25)

Note that a subscript k is added to the composite reflection coefficient βr to indicate that

with this formulation it is possible to assign different reflection properties to each subband.

One possible way to implement (7.24) and (7.25) is to perform subband analysis to

the lowpass function ψr(n) corresponding to every new image and update the subband

responses hk(m) accordingly. Once the SIR’s hk(m) are computed they are used as in

Figure 7.2 to simulate a synthetic room impulse response.

7.2.3 Computational load

At this reduced sampling rate, the SIR’s hk(m) have a length L/M where L is the length

of the overall impulse response h(n). Consequently, L/M multiplications are needed every

M samples for all the K channels. So, KL/M2 MPIS are required to accomplish the

convolution operations. On the other hand, if the putput is obtained by direct convolution

with h(n), L MPIS will be needed. Hence the total computational savings will be in the
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order of
M2

K

[ 1

1 + α(L)

]

(7.26)

where α(L) = 2M(log2K + nf )/L. For most practical cases, L is very large so α(L) is

usually a fraction between 0 and 1. Asymptotically, α(L) → 0 so the savings are in the

order of M2/K.

Actually since the subband signals are complex, the convolution requires twice as much

multiplications as stated above. However, since both the input signal x(n) and the room

impulse response h(n) are real in the present application, this can be overcome using the

symmetry properties of the subband signals and avoid unnecessary repeated calculations.

That is, Yk(m) = Y ∗
K−k(m) for k = 0 . . . K/2 − 1.

7.3 Experimental Results
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Fig. 7.4 Image method impulse response h(n) (up) SRS impulse response
ĥ(n + d) (down).

In this section we describe the experiments made to test the performance of the new

subband room simulator. We start by comparing the simulated room impulse response

of the new method with that of the original image method, so the reflection coefficients

in this case are constant for all frequencies. The room to be simulated has dimensions

(15,10,4) with a microphone at positions (9,3.75,0.7) and a loudspeaker at (2,1.5,1.5). The

dimensions are in meters and the origin of the coordinate system is at one of the lower
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corners of the room. The reflection coefficients are set to 0.9 for the walls and 0.7 for the

floor and ceiling. The length of the impulse response is 256 msec that is L = 2048 samples

at 16 KHz sampling rate.

For the filter bank we use the following parameters, K = 32, M = 24, N = 256. The

prototype filter f(n) is obtained via interpolation (see [110]) from the 2-channel QMF filter

16A in [24] (nf = 8). The second filter f̃(n) is designed by windowing (using a Hamming

window) with γ = 1.3. With these parameters α(L) in (7.26) is 0.3 leading to savings in

the number of multiplications by a factor of about 13 times. The impulse response h(n)
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Fig. 7.5 Magnitude Squared of the error |E(ejω)|2

computed with the image method [2, 126], and the SRS impulse response ĥ(n+d) (where d

is the group delay of A(ejω)) computed with the direct method of Section 3.1, are shown in

Figure 7.4. Figure 7.5 illustrates the magnitude squared of the Fourier transform E(ejω) of

the error function e(n) = h(n)− ĥ(n+d). The arithmetic mean of the error squared is −40

dB. Figure 7.6 shows how this arithmetic mean varies with the choice of the downsampling

factor M when K = 32. This figure justifies our choice for M = 24.

Additional experiments were made with audio data of speech, music and percussion

recordings. A few persons were asked to listen to the recordings after adding reverber-

ation to them using full band convolution with h(n) and using the SRS. To have some

psychological effect, these people were indirectly given the impression that their ability to

detect some kind of difference between two audio recordings is being tested. However, they

disappointedly reported their inability to perceive any difference.
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Fig. 7.6 Mean error squared in dB versus the downsampling factor M

Further simulations were made using the subband image method of Section 7.2.2 to test

the effect of varying the reflection coefficients with frequency. Demo files with description

of the room environment of every experiment can be found on the web site [140]. These

demo files demonstrate the flexibility so achieved to simulate different environments, which

is not possible with the classical image method. With this method acoustic properties close

to those of very reverberant enclosures like churches and Turkish baths were simulated.

7.4 Conclusion

In this chapter, a fast Subband Room Simulator (SRS) is presented. Basically the method

uses a subband filter bank to perform convolution operations at a reduced sampling rate,

hence reducing the computational complexity. This reduction facilitates the evaluation of

algorithms designed for the increasingly growing research area of multi-microphone systems.

The interesting property of the SRS is that it can be implemented in a way that offers more

flexibility in choosing the room acoustic parameters. Namely, different reflection coefficients

can be assigned to different frequency bands. Our experiments show that no difference can

be perceived between reverberation added using the traditional image method or using

the SRS with constant reflection coefficients. Moreover experimental results show that

changing the reflection coefficients over the frequency range of interests allows to simulate

more realistic acoustic environments.
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Chapter 8

Experimental Results

In this chapter we present experimental results evaluating the different novel signal sub-

space techniques developed in this thesis. We first begin the chapter by describing the

performance evaluation tools utilized and then we introduce the setup employed in the

various experiments.

In Section 8.3, we evaluate the novel fast Frame Based EVD (FBEVD) implementation

scheme we propose for the signal subspace approach. In this technique, presented in Section

5.2, the stationarity of the speech signal is exploited in order to reduce the rate at which the

signal subspace filter is updated. Consequently, the costly EVD calculation becomes less

frequent resulting in considerable computational savings. The experiments carried out first

measure any incurred signal degradation then the computational savings are quantified.

In Section 8.4, we assess the performance of the new Perceptual Signal Subspace method

(PSS) introduced in Chapter 5. In this method, human masking properties represented by

a threshold calculated by means of a frequency domain masking model, are mapped to the

eigendomain via a Frequency to Eigendomain Transformation (FET). Doing so, a set of

masking energies are acquired and used to modify the signal subspace gain function and

have it bear perceptual criteria. In the experiments, we present some informal listening

tests observations supported by spectrogram illustrations. Then, the results of several

subjective tests which measure the performance of PSS against competing signal subspace

methods are given.

Finally, in Section 8.5, the novel Multi-microphone signal subspace method with Eigen-

domain Averaging (MEDA) is evaluated. This approach, described in Chapter 6, takes
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advantage of the structure of the spatio-temporal covariance matrix, referred to as the

composite covariance matrix (CCM), in order to perform averaging in the eigendomain.

This operation contributes to cope with the corrupting noise interference hence results

in robust signal subspace filters. MEDA is evaluated against competing methods under

different SNR levels and different reverberation conditions for various noise types. The

sensitivity of MEDA to steering errors is also assessed.

8.1 Performance measures

It is important for all speech enhancement methods to have available tools which measure

their performance and provide a means to compare them against other competing methods.

One such tool is to assess the performance visually via graphical illustrations. Waveform

illustrations of the speech signals, though can be sometimes useful, are not usually very

informative. Spectrograms, on the other hand, can offer a more valuable performance

evaluation since more accurate conclusions about the residual noise level (and shape) and

the signal distortion can be drawn from them. In this Chapter, spectrograms are used for

evaluation and they will be often supported by observations from informal listening tests.

Actually, the most reliable measure in the context of speech, is based on subjective

evaluation. In subjective tests, human listeners (the actual and eventual users of the tested

methods) are asked to give their opinion on the enhanced signals based on some specified

criteria. Subjective measures will be used in this Chapter to evaluate the performance of

the proposed PSS method.

Subjective tests are usually very time consuming and difficult to make because the

human subjects who take the tests are not usually available as desired. Therefore, alterna-

tively, objective measures are often used. A thorough survey of different objective measures

and their correlation with subjective test results can be found in [127]. In what follows we

describe the objective measures we use in this thesis.

The aim of the objective measures is to provide a numerical value which allows to

evaluate the merit of using one enhancement technique against another. That is, given a

noisy input signal x(n) = s(n) + w(n), where s(n) is the clean speech signal and w(n) is

the noise signal, an estimate ŝ(n) for s(n) can be obtained from the noisy signal via some
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filtering operation which can be represented as

ŝ(n) = Hx {x(n)} (8.1)

where Hx {·} represents the series of filters derived from the noisy signal (hence the subscript

x) on a frame by frame basis.

The most popular objective measure is the segmental SNR. In general, the SNR within

one frame (with index t) is defined as the ratio of the speech energy to the noise energy.

Hence, the (instantaneous) SNR in dB for the tth frame would be given by

SNRt(s, w) = 10 log10

L−1∑

n=0

|s(tD + n)|2 − 10 log10

L−1∑

n=0

|w(tD + n)|2 (8.2)

where L is the frame length and D is the frame shift usually chosen as D = L/2 (for a 50%

overlap). The input segmental SNR, denoted as SNR(s, w), is then obtained by taking the

arithmetic mean of the individual local SNR’s per frame, in dB, over all available frames

in the given speech signal1 , i.e.

SNR(s, w) =
1

T

T−1∑

t=0

SNRt(s, w), in dB (8.3)

where T is the number of speech activity frames in the signal under consideration.

The output segmental SNR is calculated as SNR(s, s − ŝ) which is the energy ratio of

the clean speech to the residual error signal which includes residual noise as well as signal

distortion. The noise reduction performance and the signal distortion can alternatively be

measured using two separate measures by proceeding in the following way.

When the filtering process is linear (as is the case with the methods considered in this

thesis) then Hx{·} in (8.1) can be written as

ŝ(n) = Hx {s(n)}
︸ ︷︷ ︸

ŝr(n)

+Hx {w(n)}
︸ ︷︷ ︸

ŵr(n)

(8.4)

where the output signal components ŝr(n) and ŵr(n) correspond to the input s(n) and w(n)

1The segmental SNR is then the geometric mean of the energy ratios before transforming them into the
log domain.
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respectively. During simulations, the noise w(n) is artificially added to the clean signal s(n)

to form the noisy signal x(n). This latter signal is used to calculate the suppression filters

represented by the operation Hx{·}. The filtering itself, however, is performed on every

component separately, that is

ŝr(n) = Hx {s(n)} (8.5)

ŵr(n) = Hx {w(n)} (8.6)

Doing so, the linearity property of the filters is used to obtain the total output signal as

ŝ(n) = ŝr(n) + ŵr(n). With this scheme, the noise reduction capabilities and the incurred

signal distortion can be measured separately as described next.

The noise reduction capabilities of one method is measured using the noise reduction

factor (NRF) defined as

NRF = SNR(w, ŵr) (8.7)

That is, it is the energy ratio of the input noise signal to the output residual noise signal.

The signal distortion (DIST) is measured using the cepstral distance as follows

DIST = cepd(s, ŝr) (8.8)

where the cepstral distance is defined as

cepd(s, ŝr) =
2J∑

j=1

(c(j) − ĉ(j))2 (8.9)

where c(j) and ĉ(j) are the cepstral coefficients of s(n) and ŝr(n) respectively in one frame

and J is the model order chosen to be equal to 8 [105]. The cepstral coefficients are

calculated according to the method described in [127].

In the multi-microphone case the output signal components are obtained as

ŝr(n) = Hx {s1(n), . . . , sM(n)} (8.10)

ŵr(n) = Hx {w1(n), . . . , wM(n)} (8.11)

whereM is the number of microphones. In this context the NRF is measured as SNR(w1, ŵr)
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and the signal distortion as cepd(s1, ŝr). In the case of reverberated signals, we still use

s1(n) to measure the signal distortion since the dereverberation problem is not covered in

this thesis.

The method with the best performance will have the highest NRF while maintaining

the minimal signal distortion. Note that there are available some standardized techniques

to measure the quality of speech signals such as the PESQ approach by ITU [75]. However,

to our knowledge, this standard, originally developed to evaluate speech coding methods,

has not been validated for speech enhancement evaluations. For this reason we chose not

to use this measure in our experiments.

8.2 Experimental Setup

8.2.1 Test sentences

For performance evaluation we used female and male sentences the content of which are

shown in Table 8.1. These sentences will often be referred to by the acronyms given in the

table. Sentences S1 and S2, used in one of the tests described, were recorded by both female

and male speakers. The other sentences which are used more often in the experiments, are

only recorded by female speakers for F1-3 and male speakers for M1-3. All the recordings

were sampled at Fs = 8 KHz.

Table 8.1 Sentences used for performance evaluation.

Female sentences:
F1 : Cats and dogs each hate the other.
F2 : A lathe is a big tool.
F3 : Grab every dish of sugar.

Male sentences:
M1 : Post no bills on this office wall.
M2 : Primitive tribes have an off beat attitude.
M3 : Live wires should be kept covered.

Male & Female sentences:
S1 : The ship was torn apart on the sharp reef.
S2 : Sickness kept him home the third week.
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Unless otherwise mentioned, the results reported (specifically those involving objective

measures) are based on the average of the values corresponding to each of the six sen-

tences F1-3 and M1-3. During our research, other sentences were also used. However, we

found that increasing the number of sentences does not significantly alter the results and it

merely smoothes the obtained curves without changing the conclusions that can be drawn

from them. Therefore, to save the simulation time, we decided to restrict our reported

experimental results to these six phonetically rich sentences.

Since voice activity detection is beyond the scope of this thesis, the start and end points

of speech for all these sentences have been manually labeled. Through out the experiments,

the noise estimate is obtained using signal samples before the start of speech. Evaluation

has been performed after clipping the non speech activity periods.

8.2.2 Noise types

The performance of the tested methods was evaluated under different noise types and SNR

levels. The noise types used are presented in Table 8.2. For simplicity, these noises will

sometimes be referred to with the corresponding acronyms shown in the table.

Table 8.2 Noise types used for performance evaluation.

WHT : Computer generated white noise.
VLV : Volvo car noise.
LEO : Leopard military vehicle noise.
JET : F16 jet cockpit noise.
FRZ : Freezer motor noise.
CMP : Computer fan noise.
KCH : Kitchen fan noise.
DRY : Dryer noise.

Again, throughout the research, other noise types were tested with similar observed

results. However we restrict our reported experiments to the noises in Table 8.2 because

they were found to be representative of the general behaviour of the tested methods.

While evaluating PSS and FBEVD, we have used WHT, JET, LEO, VLV and FRZ

noises. The Blackman-Tukey PSD estimates of the last four (colored) noises are shown

in Figure 8.1. The evaluation of the MEDA method was performed with the WHT, FRZ,

CMP, KCH and DRY noises. The reason behind this choice is that in the multi-microphone
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Fig. 8.1 Power spectral densities, obtained using the Blackman-Tukey esti-
mator, of four colored noise types.

case, a room environment is tested. In such a setup, it would not be realistic to have a car

engine noise, for instance, as the noise source.

8.2.3 Parameter values

• Frame length: L = 256

At 8 KHz, the sampling rate used in all experiments, the frame length would be 32

msec which is good enough for the assumed speech stationarity.

• Model order: P = 32

Our experiments showed that this value offers a good trade off between complexity

and performance. Actually increasing P beyond this value does not significantly
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improve the performance in a manner worth the added complexity. For comparison

purposes, the same value is also used for MSVD2.

• Synthesis window: Hanning

Both Hanning and Hamming windows were tested. It was found that the former gives

a slightly better performance. The difference, however, was not that much significant.

• Gain function:

In general, the decaying exponential gain function (3.73) is found to have better noise

reduction capabilities. This gain function is used in the single microphone case.

However, for comparison purposes, we use the Wiener like gain function (6.57) in the

multi-microphone case as stated in Section 6.6. This is because it resembles the gain

functions used in the MSVD and the frequency domain Wiener adaptive postfiltering

methods. The value of the control parameters for each method are specified later.

• DFT size: K = 256

Experimental results showed that using a DFT with size 256 results in a better

performance due mainly to a more accurate masking threshold. A detailed discussion

on the value of K is given in Section 4.5.1.

8.2.4 Reverberation simulation

In the multi-microphone case, most experiments involve evaluation under reverberant con-

ditions. The reverberated signals are obtained by the new subband room simulator (SRS)

presented in Chapter 7. The room configuration used is shown in Figure 8.2. A linear

array with M = 4 omni-directional microphones is used with a 5 cm inter-microphone

distance. The microphones are assumed to have a flat frequency response equal to one.

The microphones as well as the noise and speech sources are placed at a height of 1m. The

room height is 3m. Unless otherwise mentioned, the speech and noise direction of arrival

(DOA) are 0◦ and 45◦ respectively.

The speech and noise sources are placed at a distance far enough from the microphone

array so that the far-field assumption is not violated. The far-field assumptions implies

2In fact the value of 20 is proposed in [35] where it is also reported that the performance actually
improves by increasing the value of P (for example to 32).
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that the signal attenuation due to propagation is constant over all microphones. For the

used room configuration, and at 5 cm inter-microphone distance, the minimum distance

between the sound source and the array would be according to (6.1)

r >
Fsd

2
M1

c
=

8000(0.2)2

340
= 0.94 meters (8.12)

The selected inter-microphone distance will also guarantee that all frequencies above 340

Hz will be incoherent as given by (6.8).

The reflection coefficients of the walls, roof and floor are chosen to have the same value.

This value will be changed according to the experiments to yield a different reverberation

time. The reverberation, denoted as T60, will be used to describe the amount of reverber-

ation. The reverberation time is defined as the time required for the sound pressure level

to decay to -60 dB of its original value. It can be measured for example using Sabine’s

formula [103]

T60 =
0.163V

S(1 − β2)
(8.13)

where V is the room volume and S is the total surface area and β is the reflection coefficient,

assumed to be constant for all the surfaces.
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Fig. 8.2 Reverberant room setup.

In one particular case, frequency dependent reverberation times are assumed. Simu-

lating such a scenario is made possible thanks to the novel SRS developed in Chapter 7.
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The reverberation times per frequency band, shown in Table 8.2.4, are chosen so that they

imitate the room acoustics described in [117]. This room will be referred to as the FDRT

room, for Frequency Dependent Reverberation Time.

Table 8.3 The frequency dependent reverberation times, and the corre-
sponding reflection coefficients, used in the FDRT room.

Frequency band (Hz) Reverberation time (msec) Reflection coeff.
0-250 650 0.923
250-1000 490 0.896
1000-2000 330 0.842
2000-4000 250 0.785

In the multi-microphone experiments all results are obtained for 5 noise realizations, 6

speech sentences, and are repeated for 5 noise types. Hence for every signal source (speech

and noise) 5×5×6=150 filtering operations are performed for every tested reverberation

time T60 or input SNR value to obtain the corresponding reverberant signal. For example,

for 8 input SNR values, this filtering is repeated 150×2×8=2400 times in just one experi-

ment. This large number revealed the significant benefit of using the novel SRS in reducing

the computational load and allowing to perform these experiments in a considerably shorter

period.

8.3 The Frame Based EVD method

In this section we evaluate the performance of the new Frame Based EVD implementation

method (FBEVD) introduced in Section 5.2. In the signal subspace approach, overlapping

vectors of length P = 32 are enhanced. In the original SSA implementation in [41], and

as described in Section 3.4.4, a new signal subspace filter is calculated for every such

vector implying that an EVD is carried out every P/2 = 16 samples resulting in a high

computational cost. In the FBEVD scheme, it is assumed that the covariance matrix of

the speech signal, hence its EVD, is relatively constant within a frame of length L = 256.

Consequently, the same signal subspace filter can be used to enhance all the signal vectors

within that frame. Since the frames have a 50% overlap, the EVD is only computed every
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128 samples hence giving rise to considerable computational savings. The enhanced vectors

are multiplied by a Hanning window and overlap-added to form the enhanced frame. The

so obtained frames are then multiplied by a second Hanning window and synthesized with

the overlap-add technique to yield the total enhanced speech signal.

8.3.1 Performance evaluation

To evaluate the performance of FBEVD, we run experiments using RQSS, described in

Section 3.4.5, on the six sentences (F1-3, M1-3) and the five noise types (JET, LEO, VLV,

FRZ, and WHT). The performance is measured using the noise reduction factor and the

cepstral distance as explained in Section 8.1.

The experiment consists of testing the performance of RQSS as a function of the frame

length L. The value varies from L = P = 32, as it is the case with the original SSA

implementation, to L = 256, the frame length suggested in this thesis. To calculate the

autocorrelation function, though, a window with a fixed number of samples (256 samples)

is used in all cases. For FBEVD, this is accomplished by adding samples on both sides of

the current frame to acquire the necessary number of samples. Note that when L = P ,

just a single synthesis Hanning window is used. That is, the Hanning window normally

used during the frame synthesis is replaced by a rectangular window so that the same

implementation as in the original SSA is retained.
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Fig. 8.3 The noise reduction factor versus frame length L for different input
noise levels.

Figures 8.3 and 8.4 show the noise reduction factor and the signal distortion of the

FBEVD for different input noise levels as a function of the frame length L. It can be
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seen that there is essentially no significant effect on the performance as the frame length

increases. The particular cases of L = 32 and L = 256 (the original SSA implementation

and the frame length used in this thesis, respectively) are shown in Figure 8.5. Again it

can be seen that the FBEVD has almost no effect on performance. It should also be noted

that, at low SNR conditions, informal listening tests reveal that increasing the frame size

actually smoothes the residual noise making its musical character less annoying and the

overall signal more pleasant to the human ear.
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Fig. 8.5 Performance comparison of the proposed FBEVD implementation
and the original SSA implementation in terms of noise reduction factor (up)
and signal distortion (down).
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8.3.2 Computational savings

We now try to quantify the computational savings achieved by the FBEVD method. We

do that by measuring the time spent to process one speech file and divide the result by the

total number of samples. Hence the quantity we use to compare the computational load

for different frame lengths is the processing time per input sample (TPIS) in msec. These

experiments were run on a 2.4 GHz Pentium IV processor with 512 MB of memory.
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Fig. 8.6 The time per input sample needed by RQSS versus the frame length
L (up) and versus 1/L (down).

It can be seen from Figure 8.6 that as the frame length increases the TPIS decreases,

i.e. it is inversely proportional to the frame length L. For example, with the original

SSA implementation (L = P = 32) about 0.16 msec per sample were needed whereas for

L = 256 this figure goes down to 0.03 msec. Actually, from the bottom plot of Figure 8.6

it can be verified that the TIPS increases linearly with 1/L. Therefore we conclude that

compared to the original implementation, the computational savings achieved by FBEVD

are proportional to L/P . Indeed this is expected since the frames have an overlap of 50%

and there are 2L/P − 1 vectors per frame.

Note also that at 8 KHz sampling rate, the sample period is about 0.12 msec so we

can say that even with a Matlab implementation, and thanks to the available processing

power, the proposed method was able to bring the required computational burden to an

affordable real time level.

In Figures 8.7 and 8.8 we again show the required TPIS versus L and 1/L respectively

but this time we seek to observe the added computational load due to the use of masking.

The curves show TPIS for RQSS as well as PSS with three different masking models,
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Fig. 8.7 The time per input sample needed by RQSS and PSS (with differ-
ent masking models) versus the frame length L.
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Fig. 8.8 The time per input sample needed by RQSS and PSS (with differ-
ent masking models) versus 1/L.

namely, Jhonston’s model, the original MPEG model and the modified MPEG model3. It

can still be concluded that in all four situations the required processing time is increasing

linearly with 1/L.

Moreover, we can conclude from these figures that with the FBEVD method, the added

complexity due to the masking threshold calculation and all the subsequent calculations

such as computing the matrix V via FFT4 is negligible. For L = P however, the added

complexity is very high which may render the proposed PSS method not suitable in practice

3These models are presented in Chapter 2 and Section 5.4.
4The matrix V, needed for FET and defined in (4.25), has on its columns the magnitude squared DFT

of the eigenvectors of the clean covariance matrix Rs.
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if FBEVD was not used (see L = 32 in Figure 8.7). Besides, we note that the modifications

we made on the MPEG model, as discussed in Section 5.4, did not result in serious com-

plexity increase despite the high frequency resolution used as compared to the one bark

resolution of the original model.

Finally we note that the proposed PSS method with the FBEVD implementation, in

addition to the improved speech enhancement performance it offers (as we will see shortly),

is actually faster than RQSS when implemented with the original SSA scheme, i.e L = P .

These computational savings can be further improved by employing a fast EVD method

and also by using a more efficient masking model.

8.4 The Perceptual Signal Subspace method

In this section we evaluate the gain in performance achieved by the novel Perceptual Signal

Subspace method (PSS) presented in Chapter 5. The evaluation is based on informal

listening tests and spectrogram illustrations and especially on different subjective tests.

Since a fundamental concept in the proposed method is that as long as the corrupting noise

is not audible, it is allowed to stay in the enhanced signal, we found it more instructive to

base our evaluation on subjective tests rather than objective measures. These subjective

tests are mainly A-B tests where the listener has to choose a preferred sentence from pairs of

recordings representing different enhancement methods. Another subjective test measuring

a quantity called the ”noise shaping score” is designed in this thesis and is used to measure

the capability of the different methods to shape the spectrum of the residual noise according

to the desired speech signal spectrum.

PSS is evaluated against two other methods. Namely the Raleigh Quotient method

presented in Section 3.4.5 in which the noise energy along every eigen-direction is used to

handle the colored noise case. This approach is the basis for the methods described for

example in [130] and [121]. The second method the PSS is evaluated against is the original

SSA method with prewhitening (PWSS) presented in [41] and described in Section 3.4.5 of

this thesis.

In order to maintain a relatively constant signal distortion across the different methods,

the control parameter in the decaying exponential gain function (3.73) was set to ν = 0.8

in PSS and ν = 1 in RQSS and PWSS. This choice is also made so that, for comparison

purposes, some residual noise can still be audible.
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Fig. 8.9 Spectrogram illustrations of the performance of PWSS, RQSS and
PSS on the Male sentence when corrupted with white noise.

8.4.1 Informal listening tests and spectrogram

During informal listening tests, the performance of PSS was evaluated against PWSS and

RQSS on different sentences corrupted with several noise types. This evaluation revealed

the superiority of our proposed method. Indeed, PSS resulted in a less audible residual

noise while maintaining a similar level of signal distortion as the competing methods.

This claim is supported by the spectrogram illustrations shown in Figures 8.9, 8.10,

8.11 and 8.12 for WHT, FRZ, JET and LEO noises respectively. The sentence shown is

the male sentence M1. It can be seen from these figures that all the formants, important

for intelligibility, are preserved while the noise is almost completely canceled whenever the
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Fig. 8.10 Spectrogram illustrations of the performance of PWSS, RQSS
and PSS on the Male sentence when corrupted with freezer motor noise.

speech is absent. For PWSS and RQSS, on the other hand, the musical noise is clearly

seen (and indeed heard) especially for white noise where the random tones are present in

all frequency bands due to the flat spectrum of the original corrupting noise.

In the case of JET noise for example, shown in Figure 8.11, the high frequency peak

(around 2.8 KHz) as can be seen in Figure 8.1, is still present for PWSS and RQSS which

almost completely failed to cancel the noise at that frequency. In fact, even for PSS, that

peak seemed to reduce the benefit of using masking as compared to other noise types, and

the achieved improvement was not that much evident. This might be explained by the fact

that the high frequency peak might have affected the accuracy of the masking threshold
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Fig. 8.11 Spectrogram illustrations of the performance of PWSS, RQSS
and PSS on the Male sentence when corrupted with F16 jet cockpit noise.

estimate, resulting in a lower performance compared to other noises.

Another important result observed during informal listening tests, is that with PSS,

the perceived residual noise has relatively the same spectral characteristics whatever was

the original corrupting noise. Note that we deliberately chose the value of the control

parameter ν in the gain function so that the signal distortion be at an acceptable level and

be more or less the same across the three methods while allowing the residual noise to be

audible to some extent (that is, not completely suppressed).

For PSS the residual noise kept little of its original character with its energy increasing

and decreasing according to the energy of the speech signal itself. Actually for this reason,
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Fig. 8.12 Spectrogram illustrations of the performance of PWSS, RQSS
and PSS on the Male sentence when corrupted with Leopard vehicle noise.

as explained in Section 5.3, equation (5.7), we used the minimum operator in an attempt to

make the transition between speech activity and non-activity periods smoother and hence

more natural, resulting in a more pleasant signal.

The spectrogram illustrations back this claim where ”visually” one cannot distinguish

signals corrupted by different noises after enhancing it with PSS. This, again according

to the spectrograms, is not true for PWSS and RQSS where the difference can be easily

seen. We refer to this phenomenon as noise shaping which describes the ability of the

enhancement method to give the spectrum of the residual noise a shape which resembles

that of the speech signal itself, hence making the noise inaudible by masking it without
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Table 8.4 A-B test 1: White noise at different input SNR levels. Shown
are the percentage of times where PSS was preferred, compared to the noisy
signal and the original SSA.

Input Compared with Compared with
SNR noisy signal SSA

5 dB 92% 71%
-5 dB 85% 78%
-10 dB 85% 92%

being completely suppressed. The above mentioned result will be further supported by

the noise shaping score obtained via a subjective test which we conceived to reveal this

particular property (see Section 8.4.5).

We note also that PWSS and RQSS are very sensitive to the value of ν which controls

the trade-off between the signal distortion and the level of the residual noise. The best

performance is achieved by tuning that parameter according to the application conditions,

that is the noise type, the SNR level and the speech utterance itself. For PSS, on the other

hand, such tuning is not necessary and the masking threshold seems to take care of it.

Actually ν is chosen to be small for PSS because the masking threshold is already lowered

by subtracting the masking offset from it. This masking offset, as presented in Chapter 2,

depends on the tonality of the signal, that is whether it is noise like or tone like. Therefore,

the value of ν is indirectly tuned to suit the situation under consideration, which is exactly

the aim of this approach.

8.4.2 A-B test 1: White noise

In this subjective test carried out during an early stage of our research, the performance of

PSS on signals corrupted by white noise for different SNR levels, was evaluated5. In this

experiment, PSS was implemented using Johnston’s masking model.

The following methodology was used: Sentences S1 and S2 were spoken by the same

speaker and played from a single file, separated by a short pause. Four such speech files

obtained from two male and two female speakers were used. Each of the four original

recordings was corrupted with additive computer generated white noise at three input

SNR levels (5 dB, -5 dB and -10 dB). The 12 test files so obtained were enhanced using

5The results of this test have been reported in [79].
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Table 8.5 A-B test 2: Colored noise case with four different noise types.
Shown are the percentage of times where PSS was preferred, compared to
noisy signal, PWSS and RQSS.

Noise Type SNR (dB) Compared with Compared with Compared with
noisy signal PWSS RQSS

FRZ -4 100% 90% 80%
LEO -4 100% 100% 100%
VLV -10 80% 85% 60%
JET 0 60% 70% 60%

the proposed PSS method and the SSA. The SSA here denotes the method proposed by

Ephraim and Van Trees, that is PWSS but in this case, since the noise is already white,

no prewhitening is required.

For every test file two comparisons were made: PSS versus SSA and PSS versus noisy

speech, leading to a total of 24 pairs. 14 subjects participated in the test among which

there were two who worked in the speech processing field but were not familiar with the

sentences. The subjects were asked to compare the two recordings of every pair and choose

the one they prefer.

Table 8.4 shows the results of this test. On the average the subjects voted for the

proposed PSS method over the noisy signal 87% of the times and over the SSA 80% of

the times. The PSS becomes more useful at very low SNR conditions where the subjects

preferred the use of masking to enhance the speech signals 92% of the times.

8.4.3 A-B test 2: Colored noise I

A second subjective A-B test has been carried out to verify the performance of PSS under

different types of colored noise. In this test, the 2.2 sec long F1 female sentence has been

used6.

The noises tested were FRZ, VLV, LEO and JET. The different input SNR levels for

every noise type are shown in Table 8.5. Another group of 14 people7 were asked to evaluate

the performance of the new PSS method and to compare it with the original noisy signal,

the PWSS and the RQSS. None of the subjects worked in the speech processing field. 12

6The results of this test have been reported in [80].
7The subjects are different from those who participated in A-B test 1.
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pairs of recordings were presented to the subjects: for each pair, they were asked to vote

for the signal they preferred. In this test a neutral answer was also allowed if they could

not perceive any difference.

Table 8.5 shows the results of this test. It can be seen that PSS outperformed the other

two enhancing methods especially with LEO noise were all the subjects voted for PSS. We

note that in the JET noise case 40% of the subjects voted for the noisy signal because they

preferred the existing noise to the obtained signal distortion. However, these subjects said

that if the 2.2 sec test signal had been longer they would have changed their preference

because the noise would be more disturbing and they would be less able to tolerate it.

8.4.4 A-B test 3: Colored noise II

In A-B test 2, the results showed the superiority of our proposed method over the competing

methods. However, due to the test’s design, the results do not reveal the criteria which

were actually behind the achieved improvement. That is, whether the improvements were

due to a lower signal distortion, a lower residual noise energy or both. For this reason, we

decided to repeat the test and modify it so as to allow the subjects to tell what exactly

they preferred in the enhanced signals.

In this test we again used sentence F1 (the Female sentence) and also added sentence M1

(the male sentence) which is 3 sec long. The same four noises were used, that is FRZ, VLV,

LEO and JET, all at 0 dB segmental SNR except VLV which was at -5 dB. The number of

people who took part in the test was 18 among which three worked in the speech processing

area but were unfamiliar with the sentences. The majority of the subjects were in their

late twenties.

In total, 8 pairs of recordings per test were presented to the subjects where each pair

consisted of a speech signal enhanced using PSS and a second enhanced with a competing

method, namely RQSS and PWSS . A separate test has been conducted for every sentence.

For each pair, they were asked to vote for the signal they preferred (A, B or X if they had

no preference) according to three different criteria:

• Intelligibility: Which signal was easier to understand?

• Quality : Which signal was less noisy?

• Overall: Putting the previous two criteria together, which signal was preferred?
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Table 8.6 A-B test 3: preference results for the Female sentence.

Noise Signal Distortion
PSS X PWSS PSS X RQSS

FRZ 20% 73% 7% 20% 73% 7%
VLV 33% 40% 27% 27% 40% 33%
JET 14% 50% 36% 33% 47% 20%
LEO 53% 40% 7% 33% 53% 13%
Noise Residual Noise

PSS X PWSS PSS X RQSS
FRZ 67% 27% 7% 60% 40% 0%
VLV 73% 20% 7% 47% 40% 13%
JET 57% 43% 0% 47% 47% 7%
LEO 87% 0% 13% 80% 13% 7%
Noise Overall

PSS X PWSS PSS X RQSS
FRZ 67% 27% 7% 60% 33% 7%
VLV 80% 13% 7% 67% 20% 13%
JET 50% 43% 7% 47% 40% 13%
LEO 87% 13% 0% 80% 20% 0%

Tables 8.6 and 8.7 show the results of this test for the female and male sentences respec-

tively. It can be seen that the PSS method outperforms the other two methods especially

for the female sentence. In general, the subjects found that the three methods provided a

relatively similar amount of distortion to the enhanced signals, with the exception on the

Female-LEO and Male-VLV cases where the use of PSS resulted also in a less distorted sig-

nal than PWSS. Overall, the merit of PSS is in that it succeeds to maintain an acceptable

level of distortion while offering a better noise reduction (masking) performance.

Nonetheless, it should be noted that some of the subjects voted in favor of PSS because

they find that the corresponding enhanced signals had less residual noise and also was

”easier to understand”. This is because the presence of noises made it more difficult to

figure out what has been said. That is, according to these subjects, intelligibility and

quality are two very related features.

PSS had a considerable success over RQSS and PWSS in the case of LEO, VLV and to

a less extent FRZ. For example in the LEO case, the subjects preferred PSS over RQSS

80% and 67% of the times for the female and male sentences respectively. Compared with
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Table 8.7 A-B test 3: preference results for the Male sentence.

Noise Signal Distortion
PSS X PWSS PSS X RQSS

FRZ 28% 56% 17% 28% 61% 11%
VLV 72% 22% 6% 47% 29% 24%
JET 17% 61% 22% 11% 72% 17%
LEO 39% 39% 22% 50% 28% 22%
Noise Residual Noise

PSS X PWSS PSS X RQSS
FRZ 67% 22% 11% 50% 33% 17%
VLV 89% 11% 0% 59% 41% 0%
JET 44% 39% 17% 28% 67% 6%
LEO 89% 6% 6% 83% 17% 0%
Noise Overall

PSS X PWSS PSS X RQSS
FRZ 61% 33% 6% 56% 39% 6%
VLV 89% 6% 6% 71% 18% 12%
JET 39% 44% 17% 39% 56% 6%
LEO 83% 11% 6% 67% 17% 17%

PWSS, these figures were at 87% and 83% respectively. Note that when the subjects did

not vote for PSS, that was mostly because they were unable to perceive any difference

rather than because PSS had a poorer performance.

In the JET case, the improvement achieved over the two competing methods was not

as obvious as it is with the other noises. The test results revealed that many subjects were

not able to perceive such improvement especially compared with RQSS. In fact, due to the

characteristics of the JET noise (and to its high level), the masking threshold estimate was

poor resulting in inaccurate values of the perceptual energies θi’s which turned out to be

most of the time larger than the original eigenvalues λi’s. Since the gain function (5.7) takes

the minimum of the two, the masking threshold becomes ineffective and PSS behaves in a

close manner to RQSS. If the minimum is not utilized, serious clipping of important speech

parts occurs leading to an undesired signal distortion. Hence, the minimum operator acts

as a protector that ensures that PSS would at least have the same performance as RQSS

or PWSS whenever the masking threshold estimate is not very accurate.
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8.4.5 The residual noise shaping score

As mentioned earlier, during informal listening tests, we have observed that signals en-

hanced with PSS have residual noise characteristics which are relatively similar, regardless

of the original corrupting noise. This result supports our claim that PSS yields improved

noise shaping and hence better masking. Noise shaping here means that the residual noise

spectral characteristics have been modified, or shaped, by the enhancement method in a way

that perceptually it sounds as close as possible to the desired speech signal. Consequently,

a speech signal corrupted by two different noises would, after enhancement, arguably have

the residual noises in both cases sound relatively the same.

To confirm this result, we have conceived a new subjective test which provides a ”resid-

ual noise shaping score” serving to compare the performances of the different methods

according to the above mentioned criterion.

The subjects were presented with a pair of signals enhanced by the same method but

corresponding to different noises. Then they were asked to concentrate just on the back-

ground noise and to compare its characteristics in the two recordings. The comparison is

based on how similar or different these characteristics are in the two signals, regardless of

the loudness. The subjects had to score their decision according to a 5-level rating scheme

as shown in Table 8.8. Again we have used the same four noises resulting in 6 pairs for

every method. In total, for the three methods, 18 pairs per test were presented to the

subjects. Two tests, one for every sentence, had been designed.

Due to this relatively high number, the subjects were asked to make their decisions after

listening to a group of three pairs at a time. Every group corresponded to a different noise

pair and every pair within one group corresponded to one of the three enhancing methods8.

The aim of doing so was to help the subjects establish a kind of reference. This makes the

scores a relative measure rather than an absolute one.

Table 8.8 Rating scheme for the residual noise shaping score test.

1 : Completely different
2 : Different
3 : Don’t know
4 : Similar
5 : Very similar

8This grouping criterion was of course not revealed to the subjects.
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Table 8.9 Residual noise shaping scores for the female (F) and male (M)
sentences.

Noise pair PSS RQSS PWSS
F M F M F M

LEO, FRZ 4.3 4.2 2.3 2.2 1.5 1.1
VLV, FRZ 4.1 3.8 2.5 2.1 1.2 1.4
LEO, VLV 4.7 4.5 2.1 1.8 1.5 1.7
LEO, JET 3.3 2.8 1.5 1.2 1.8 1.6
VLV, JET 3.0 2.7 2.1 1.9 2.0 2.1
JET, FRZ 3.8 3.7 3.1 2.9 2.7 3.1
Average 3.9 3.6 2.3 2.0 1.7 1.8

The detailed scores for the different noise pairs for the two sentences are given in Table

8.9. It can be seen that PSS got a higher score on average than RQSS and PWSS which

shows that it achieves a relatively better noise shaping than the other two competing

methods.

8.5 The Multi-microphone Eigen-Domain Averaging method

In this section, we evaluate the performance of the new proposed Multi-microphone sig-

nal subspace method with Eigen-Domain Averaging (MEDA) under different conditions.

The MEDA is compared against a competing signal subspace method, namely the MSVD

method from [35, 34] which was described in Section 6.4.4. In order to verify the benefit

of using eigendomain averaging, MEDA is also compared against the MRQSS presented

in Section 6.5 and which constitutes the basis of the MEDA method. This comparison

allows to assess the merit of the eigendomain averaging technique which constitutes the

main difference between MEDA and MRQSS .

Another approach we evaluate MEDA against is when RQSS is applied individually to

every channel and the average output of the M filters is taken as the estimated speech

signal9. This approach has been suggested in [61] as a generalization of the SSA into a

multi-microphone design. We refer to this method as SSM where M is the number of

microphones. For instance SS4 is RQSS applied to 4 microphones, the number used in the

9RQSS is the single channel signal subspace method which uses the Raleigh Quotient approach to handle
the colored noise case.
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experiments. More accurately, the SSM estimate is obtained as follows

ŝ =
1

M

M∑

m=1

Hmxm (8.14)

where Hm is the RQSS filter calculated in the mth channel.

As will be demonstrated shortly, MEDA is particularly useful under diffuse noise con-

ditions. For this reason, its performance is also compared to that of the popular frequency

domain adaptive Wiener postfilter described in Section 6.4.3. This method, referred to here

as the Wiener method, is mainly based on the algorithm presented in [170] and adopted in

many variant methods including [117]. As discussed in Section 6.4.3 this method is known

to have a good performance in diffuse noise fields.

As stated in Section 6.6 the Wiener like gain function 3.72 is used in MRQSS, MEDA

and SS4. The control parameter is chosen to be µ = 0.8 for MEDA and MRQSS and

µ = 0.6 for SS4. This choice is made in order to obtain, whenever possible, the same

signal distortion across all methods. The evaluation is then generally based on the noise

reduction factor (NRF). Refer to Section 8.1 for definition of the signal distortion and the

noise reduction factor used here.

In all experiments the results are given for white noise and colored noise. The latter

case is obtained as the average over 4 noise types, namely FRZ, DRY, KCH and CMP (see

Table 8.2). The individual detailed performance of these noises is given in Appendix B.

Note that MEDA, MRQSS and SS4 are all implemented using the fast FBEVD imple-

mentation scheme developed in this thesis and described in Section 5.2. MSVD is imple-

mented using the batch (non-recursive) mode described in [34].

8.5.1 Performance versus input SNR level

To evaluate the performance of MEDA as a function of input SNR, three experiments were

conducted. The three experiments were carried out using the room configuration described

in Section 8.2.4 and depicted in Figure 8.2. In every experiment the reverberation conditions

are changed in order to test a different environment.
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Fig. 8.13 Performance evaluation under different input segmental SNR lev-
els at 400 msec reverberation time for white noise.
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Fig. 8.14 Performance evaluation under different input segmental SNR lev-
els at 400 msec reverberation time for colored noise.

Experiment 1

In the first experiment, the performance under relatively reverberant conditions is assessed.

The reverberation time is set to T60 = 400 msec which can be considered to be within the

range of a typical room. Figure 8.13 shows the results for white noise while Figure 8.14

shows the results for colored noises. In this experiment, MEDA is evaluated against MSVD,

MRQSS and SS4.

Under these reverberation conditions, it can be seen that MEDA outperforms the other

methods at all SNR levels. This superiority is characterized by a higher NRF coupled

with a lower distortion especially at low SNR conditions. Particularly, we note the low

performance of MSVD especially at low SNR where it results in a high signal distortion
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while offering about 2dB less noise reduction than MEDA. The failure of MSVD in these

conditions can be explained by the fact that this method is not capable to cope effectively

with this type of interference where the high reverberation time makes the noise field

better described as diffuse. As mentioned in Section 6.4.4, MSVD has relatively limited

capabilities when the number of noise sources increases [34]. Consequently, in a diffuse

noise field, MSVD finds difficulties tracking the noise source, which seems to be impinging

from all direction, hence fails to steer a null to the correct noise direction.

MEDA, on the other hand, seems to cope better with these conditions as the assump-

tions set for its filter design, namely that the noise is uncorrelated on different microphones,

are met to an acceptable degree. Indeed, the eigendomain averaging technique appears to

considerably boost the performance of MEDA over MRQSS. In fact, in this experiment, as

well as in the forthcoming experiments, MEDA systematically outperforms MRQSS both in

terms of the noise reduction capabilities and signal distortion, a result which demonstrates

the merit of the eigendomain averaging feature which differentiates MEDA from MRQSS.

Experiment 2

In this experiment, the reverberation time is reduced to 100 msec, that is, the noise field is

now more accurately described as a coherent noise field with a directional noise source at

a DOA of 45 degrees. The results of this experiment are depicted in Figures 8.15 for white

noise and 8.16 for colored noise.

It can be observed in these figures that the performance of MSVD has undergone a sig-

nificant improvement compared to the previous experiment. In fact, the low reverberation

allowed this method to detect the direction of the noise more accurately and to successfully

eliminate it by steering a null towards it. MEDA, on the other hand, managed to relatively

keep the same performance as in the reverberant conditions though not as good as MSVD

in this case. It continues nonetheless to outperform MRQSS as expected.

Conducting research to improve MEDA’s performance for this kind of interference and

make it match that of MSVD is believed to be beneficial. One possible approach could

be to exploit the phase in the subvectors of the calculated eigenvectors of the composite

covariance matrix (CCM), defined in (6.26). During non-speech activity periods, this phase

may be used to estimate the DOA of the noise. Then, instead of the simple conventional

beamformer considered here, a more sophisticated design which uses the estimated DOA
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to steer a null in the direction of the noise source may be employed. The output of this

beamformer is then fed to the MEDA postfilter.
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Fig. 8.15 Performance evaluation under different input segmental SNR lev-
els at 100 msec reverberation time for white noise.
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Fig. 8.16 Performance evaluation under different input segmental SNR lev-
els at 100 msec reverberation time for colored noise.

It can also be noted that SS4 shows a better NRF than MEDA but this is achieved

at the expense of a non-tolerable signal distortion. In fact this distortion can be reduced

by properly adjusting the control parameter µ, which trades off noise reduction to signal

distortion, in the gain function. However, this would result in a lower NRF hence the

overall performance remains unacceptable. Actually we noticed that the performance of

SS4 is largely dependent on µ which is not a desirable feature in practice where it is preferred

to maintain an acceptable performance under all or most conditions without any parameter
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adjustment. This important property is experimentally found to be met by MEDA10.
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Fig. 8.17 Performance evaluation under different input segmental SNR lev-
els for white noise in the FDRT room.
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Fig. 8.18 Performance evaluation under different input segmental SNR lev-
els for colored noise in the FDRT room.

Experiment 3

In this third experiment, a more realistic environment is tested. Precisely, the FDRT room

is used to simulate an enclosure with frequency dependent reverberation times as shown

in Table 8.2.4. Such environment is believed to better simulate realistic room conditions

where it is known, as discussed in Chapter 7, that the reflection coefficients, hence the

10Actually the chosen value for µ affects the performance but once fixed, the behaviour of MEDA remains
relatively stable under most conditions.
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reverberation times, are usually dependent on frequency. In this experiment, in addition

to the other signal subspace methods, we also evaluate MEDA against the Wiener method.

The results of this experiment are shown in Figures 8.17 for white noise and 8.18 for colored

noise.

Again the same observations as in the previous experiments can be made in this case.

Again MEDA outperforms the other three signal subspace methods and in addition, we also

note its superiority over the frequency domain Wiener method. Under these conditions,

MEDA exhibits a higher NRF for a similar signal distortion. The Wiener method actually

outperforms MRQSS either in terms of signal distortion, noise reduction or both. This

again confirms that the superiority of MEDA can mainly be attributed to the eigendomain

averaging technique.

8.5.2 Performance versus reverberation time

We next evaluate MEDA as a function of the reverberation time. The room setup described

in Section 8.2.4 is again used here. The same reflection coefficient, which also does not

depend on frequency, is used for all room surfaces. This coefficient is varied in order

to assess the performance of the tested methods as a function of the reverberation time.

Two experiments will be performed each with a different input SNR level. In the first

experiment, very noisy conditions (SNR = 0 dB) were tested and the results are shown in

Figure 8.19 for white noise and Figure 8.20 for colored noise. In the second experiment, 10

dB input SNR conditions were tested. The results are shown in Figure 8.21 and 8.22 for

white noise and colored noise respectively.

These experiments confirm the observations made earlier. Indeed it is clearly seen that

MEDA relatively maintains the same or slightly better NRF as T60 increases. The signal

distortion also improves with increasing T60. The MSVD, on the other hand, shows a

significant drop in NRF as T60 increases. This makes it unsuitable for a diffuse noise field

as compared to its superiority under directional interference.

We note also that as far as the signal distortion is concerned, all methods, except SS4,

exhibit a moderate increase in distortion until T60 is about 200-300 msec then it starts

to decrease again. A sound explanation for this result can be as follows. For MSVD,

its performance is generally best at low reverberation conditions since the interference can

then be regarded as directional noise. As the reverberation time increases, however, MSVD
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Fig. 8.19 Performance evaluation under different reverberation times for
white noise at 0 dB input SNR.
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Fig. 8.20 Performance evaluation under different reverberation times for
colored noise at 0 dB input SNR.

starts to confuse the noise with the desired speech signal due to reverberation. This results

in the observed increase in signal distortion with the suppression filter attempting to cancel

more noise. As T60 increases further, the noise reduction capabilities of MSVD drastically

drops as can be seen in Figures 8.19-8.22. Analogously to the GSC which is known to be no

good than a conventional beamformer in diffuse noise fields [8], the MSVD is also expected

to behave in a similar manner as it fails to steer the null in the direction of the noise.

As less noise cancellation takes place less signal distortion is incurred, which explains the

observed shape of the curves.

For the Wiener method, and to a lesser extent MEDA and MRQSS, the opposite sce-

nario occurs. At high reverberation, the noise field is arguably diffuse in which case the
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Fig. 8.21 Performance evaluation under different reverberation times for
white noise at 10 dB input SNR.
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Fig. 8.22 Performance evaluation under different reverberation times for
colored noise at 10 dB input SNR.

adaptive postfiltering methods are known to perform best [117]. As the reverberation de-

creases, the diffuse assumption is gradually violated hence the resulting increase in signal

distortion. As the reverberation decreases further the interference becomes more appro-

priately described as directional in which case adaptive postfiltering methods behave as a

conventional beamformer and consequently the distortion decreases with the decrease in

noise reduction.

The monotonous decrease in the signal distortion exhibited by SS4 as the reverberation

increases is, however, just the result of the less sever noise suppression exerted by the single

channel RQSS. Actually taking the average of the individual filter outputs, as given by

(8.14), is experimentally found to have little, if any, effect on the resulting signal distortion.
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Fig. 8.23 Performance evaluation under different speech DOA in the FDRT
room for white noise at 0 dB.
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Fig. 8.24 Performance evaluation under different speech DOA in the FDRT
room for colored noise at 0 dB.

8.5.3 Sensitivity to steering errors

As discussed in Section 6.6.3, the DOA of the desired speech signal might be a concern in

the proposed MEDA method since the filter design is based on the assumption that this

signal is perfectly synchronized over all available microphones. For this reason, we test in

this experiment the robustness of MEDA against steering errors. To this end, the FDRT

room (see Table 8.2.4 for the used reverberation times per frequency band) is considered

and the DOA of the desired speech signal is varied while maintaining a fixed distance of 1

m from the center of the microphone array. The noise, on the other hand, is maintained

at a fixed DOA of 45◦ as shown in Figure 8.2. The input segmental SNR is set to 0 dB.

The results of these tests are shown in Figures 8.23 and 8.24 for white and colored noises
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respectively.

These figures show that the NRF increases when the speech DOA deviates from the

assumed 0◦ broadside direction. However, this increase is actually due to an overall signal

cancellation including the suppression of the desired speech signal. Therefore the NRF is

not informative in this situation and the signal distortion is the only measure to look at.

Note that for SS4 the NRF is almost constant because the noise suppression is carried

out on every channel independently from the other channels. Consequently the noise reduc-

tion factor is not affected by the direction of arrival of the desired speech signal. Steering

errors, however, do increase the signal distortion.

The MSVD seems to be the least affected by steering errors both in terms of NRF and

distortion. These results can be explained by the fact that MSVD makes little assumptions

on the direction of the desired speech signal. Note however that as the speech source gets

closer to the noise source (positive DOA’s) the performance deteriorates.

MEDA on the other hand, is found to be perturbed by the steering errors as expected.

However, it still outperforms MRQSS for a misalignment below 5◦ for colored noise and

10◦ for white noise. For this reason, we can say that the performance superiority of MEDA

can still be maintained if, for example, the steering errors are confined to changes in head

position. In fact, for the array and speaker positions shown in Figure 8.2, at a distance

of 1 m from the array, a head movement of ±10 cm will result in a deviation of about ±
6◦. Coupled with a robust time delay compensation module, MEDA is expected to provide

satisfactory results. We believe though that further research in this direction should be

pursued to improve the overall robustness. A possible solution could be to use the phase

shift in the estimated eigenvectors to design a self-calibrating MEDA approach as discussed

in Section 6.6.3.

8.6 Conclusion

In this chapter we provided an experimental assessment of the different methods developed

in this thesis.

The proposed Frame Based EVD (FBEVD) implementation of the SSA is found to offer

considerable computational savings at almost no performance degradation side-effects. This

is important since it is believed that the computational issue is the main reason behind the

non-popularity of the SSA despite its performance superiority over competing methods.
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The FBEVD technique was presented in Section 5.2. Coupling this technique with some

form of fast EVD calculation or subspace tracking can give rise to an even more efficient

implementation.

After that, we evaluated the novel perceptual signal subspace method (PSS) developed

in Chapter 5. It was found, mainly via a series of subjective tests, that PSS provides a

perceptually improved performance with a more pleasant speech signal and a less annoying

musical noise. Particularly, it was found that the shape of the residual noise remains

relatively similar regardless of the original corrupting noise. This result confirms the noise

shaping (hence masking) capabilities of PSS. When implemented in conjunction with the

FBEVD technique, the added complexity due to the calculation of the masking threshold

and its mapping into the eigendomain was insignificant.

Finally, we tested the novel signal subspace multi-microphone method presented in

Chapter 6. The MEDA method was found to be a useful speech enhancement tool especially

under diffuse noise fields. The performance of MEDA was found to be relatively stable as

the reverberation increases. The concern about the sensitivity of MEDA to look direction

errors is found to be acceptable and in general it is not more serious than other methods.

It was noted that MEDA can still be superior to other methods if the user is instructed to

keep a fixed body position while allowed to move his head, even in the absence of a time

delay compensation module. Nonetheless, further research can lead to improving MEDA’s

robustness to steering errors and to directional noise sources.

We note also that during the multi-microphone experiments, the benefit of using the

novel subband room simulator, described in Chapter 7, was found to be useful as it signif-

icantly reduced the total simulation time.
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Chapter 9

Conclusion and Future Work

Speech, by far, remains the most adequate communication tool adopted by humans. For this

reason inventions have multiplied over the years offering the customers a more convenient

and a more effective use of their preferred communication tool. Supported by the ever

growing ambitions and creativity of humans, these systems started to operate under new

environments where they are required to offer the same ”quality of service” under adverse

conditions as they do under quiet. To achieve this goal, speech technology applications

emerging on the market nowadays, are in desperate need for sophisticated robust noise

cancellation techniques which will allow for a satisfactory operation under the most harsh

conditions.

In this thesis, the objective was to build upon the ongoing research efforts and to make a

useful contribution to the speech enhancement area. To this end, we investigated the most

popular speech enhancement methods and analyzed their advantages and shortcomings.

Among the various available techniques and approaches, we were mainly interested in the

signal subspace approach (SSA). This choice is mainly motivated by the fact that the SSA

is widely considered as a powerful processing tool, for example in the array signal processing

area. Besides, the findings reported in the literature of the research conducted so far has

revealed that the SSA, when used in speech enhancement applications, outperforms other

popular frequency domain techniques.

Actually, the main reason for the non-popularity of the SSA in speech enhancement

applications, is the relatively heavy computational load it incurs due to the expensive

eigenvalue decomposition (EVD) operation. Fortunately, this handicap is gradually loos-
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ing its impact as the recent enormous developments in the DSP technology have offered

unprecedented computational power at an affordable low cost.

Nonetheless, we have not ignored this problem in this thesis and the reduction of the

computational load of the SSA without significant performance side-effects was one of the

issues we addressed. Indeed, we provided a novel implementation scheme for the SSA

which we believe may eventually replace the commonly used approach. Our method, called

Frame-Based EVD (FBEVD) technique, was experimentally found to considerably reduce

the computational burden bringing it to a low cost affordable in real time. The FBEVD

simply exploits the stationarity of the speech signal to reduce the rate at which the signal

subspace filter is updated. The interesting aspect of this technique is that it accomplishes

the desired computational savings without any significant performance degradation.

This technique can open the way to future research in which some fast EVD or subspace

tracking techniques can be coupled with the FBEVD. Such a combination, in conjunction

with the available high computational power, may lead to efficient robust signal subspace

noise reduction methods which can seriously compete with the frequency domain methods,

by providing a better tradeoff between performance and computational cost.

The second contribution of this thesis was the incorporation of masking properties

of the human ear in the signal subspace approach. The difficulty here arises from the

fact that the existing masking models needed to represent the human hearing properties,

are generally developed in the the frequency domain. Our work consisted of adopting

some signal processing tools making them serve as a mapping between the frequency and

the eigen-domains. This mapping, called the Frequency to Eigendomain Transformation

(FET), made it possible to represent the perceptual information in the eigendomain leading

to a signal subspace filter with improved masking capabilities.

Indeed, a series of subjective tests have revealed the benefit of our Perceptual Signal

Subspace (PSS) technique which was designed based on the FET . Particularly, our carefully

designed subjective tests showed that PSS achieves a perceptually low residual noise level

while maintaining a low signal distortion. One of our tests supported the claim that the

residual noise spectral shape remains relatively similar regardless of the original corrupting

interference.

One particular issue we encountered during our research was that the masking model

we used (as well as other models) are mainly designed for speech coding applications and

are not necessarily suitable for speech enhancement. In our specific case, we calculate
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the masking threshold based on a low variance, low resolution spectral estimate, namely

the Blackman-Tukey estimate. However, since the masking model we used (the MPEG

model 1) was intended for a periodogram spectrum, we needed to alter the implementation

of the model in order to accommodate it to the encountered differences in the spectral

characteristics. While our modifications have indeed resulted in an improved performance,

we still believe that putting more effort into the model design would lead to an even better

speech enhancement performance.

Moreover, the FET was also used to analyze the SSA from a filterbank standpoint

allowing to understand the underlying mechanism from a frequency domain perspective,

which is usually more intuitive and instructive for speech signals. The analysis performed

confirmed that the eigenvectors of the signal covariance matrix can actually be viewed as

filters the pass bands of which usually track the location of the speech formants. The

eigenvalues, on the other hand, are the total signal energy at the output of those filters.

The third contribution of this thesis consisted of generalizing the single channel SSA

into a microphone array design. The new proposed method is called the Multi-microphone

signal subspace method with Eigen-Domain Averaging (MEDA). In this design, we ex-

ploit one property of the the speech composite covariance matrix (CCM) which carries the

spatio-temporal statistics of the signals gathered from the different available microphones.

This property states that, under some certain assumptions, an eigenvector of the CCM has

equal subvectors. The weighted sum of those subvectors can then be used to estimate the

eigenvectors of the speech covariance matrix which span its signal subspace. This eigendo-

main averaging results in filter coefficients which are more robust to environmental noise

leading to an improved speech enhancement performance. The new method is implemented

as a conventional beamformer followed by a signal subspace adaptive postfilter.

MEDA has been experimentally found to have a relatively constant performance under

different reverberation conditions. This performance can actually slightly improve with

increasing reverberation time since that gives rise to a diffuse noise field where the assump-

tions made by MEDA are better met. Experiments showed that MEDA outperforms the

popular frequency domain adaptive postfiltering technique which is known to be suitable

for diffuse noise fields. Under a coherent noise field, MEDA manages to maintain a rela-

tively stable performance which is however not as good as methods which can suppress the

interference by steering a null towards the noise source.

The experiments in general confirm that the performance superiority of MEDA can
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mainly be attributed to the proposed eigendomain averaging technique.

Future research consists in improving the performance of MEDA under directional noise.

This can possibly be done by exploiting the observed phase shift in the subvectors of the

eigenvectors of the CCM whenever a signal is impinging on the array at an angle different

from the one it is steered to. This behaviour can be used in order to estimate the direction

of arrival of the interference, during non-speech activity periods, and then design a scheme

to cancel the noise impinging from that direction. Besides, these phase shifts can be further

investigated in order to conceive a way to build a self-calibrating array in which steering

errors are compensated for automatically within the noise reduction algorithm.

Finally, we also developed a novel room simulator which allows to digitally simulate

more realistic reverberant enclosures by making it possible to assign frequency dependent

wall reflection coefficients in the calculated room impulse responses. The proposed method

does so by generalizing the popular image method into a subband implementation. This

scheme, by design, readily provides savings in the computational load when computing the

simulated reverberated speech signals. This method was particularly useful in this thesis

in order to evaluate the performance of the novel MEDA multi-microphone method.
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Appendix A

Properties of the matrix C

In this appendix we define and present some of the properties of the matrix C used in

Chapter 6 to simplify the derivations. This matrix is a MP×P matrix and is defined as

follows

C = [IP , . . . , IP ]T (A.1)

where IP is a P×P identity matrix.

Multiplying a P -dimensional vector x from the left by C has the effect of stacking M

copies of the vector x above each other to form an MP -dimensional vector, that is

Cx =









x

x
...

x









(A.2)

Multiplying a MP -dimensional vector y = [yT
1 , . . . ,y

T
M ]T from the left by CT , where

yi’s are P dimensional sub-vectors, adds up these sub-vectors in the following way,

CTy =
M∑

i=1

yi (A.3)

Therefore using (A.2) and (A.3) it can easily be seen that

If y = Cx then x =
1

M
CTy (A.4)
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The reciprocal, however, is not necessarily true.

These results can be extended to matrices in the following way. Consider the P×P
matrix B then we have,

CBCT =







B · · · B
...

. . .
...

B · · · B







(A.5)

that is CBCT is a MP×MP matrix equal to IM ⊗B where IM is an M×M all ones matrix

and ⊗ is the Kronecker product [50].

In a similar way, and defining the MP×MP matrix A as

A =







A11 · · · A1M

...
. . .

...

AM1 · · · AMM







then we have

CTAC =
M∑

i=1

M∑

j=1

Aij (A.6)

Finally using (A.6) and (A.5) respectively we obtain

CTC = CT IMPC = MIP (A.7)

and

CCT = CIPCT = IM ⊗ IP (A.8)
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Appendix B

Detailed MEDA Experimental

Results

In Section 8.5, all the experimental results of the multi-microphone methods were given for

white and colored noises. While the white noise was computer generated, the colored noise

results were obtained as the average performance of four colored noise types. Namely, a

kitchen fan a computer fan, a dryer and a freezer motor noise. For the interested reader, he

detailed results of these noises are given in this appendix for all the experiments described.
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Fig. B.1 Performance evaluation under different input segmental SNR lev-
els at 400 msec reverberation time for various colored noises.
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Fig. B.2 Performance evaluation under different input segmental SNR lev-
els at 100 msec reverberation time for various colored noises.
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Fig. B.3 Performance evaluation under different input segmental SNR lev-
els in the FDRT room for various colored noises.
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Fig. B.4 Performance evaluation as a function of reverberation times for
different types of colored noise at 0 dB input SNR.
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Fig. B.5 Performance evaluation as a function of reverberation times for
different types of colored noise at 10 dB input SNR.
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Fig. B.6 Performance evaluation under different speech DOA in the FDRT
room for different colored noises at 0 dB.
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