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Abstract

Physical-layer network coding (PNC) is an attractive approach to increasing the network

throughput by exploiting the broadcast nature of wireless channels. This thesis focuses on

the application of PNC in a class of wireless networks known as multi-way relay channels

(MRWC), where multiple users share information through a single relay. The primary

objective of the thesis is to develop new uplink and downlink schemes for PNC in MWRC,

with the main focus on signal detection and power allocation.

First, we propose a novel signal detection scheme for PNC in MWRC from the per-

spective of sequential multi-user detection. The extraction of the network codes from the

superimposed user signals at the relay node is formulated as an under-determined lin-

ear system. To solve this problem with low decoding complexity, the proposed method

combines successive interference cancellation (SIC) with Babai estimation for regularized

integer least squares (ILS). We develop a power allocation scheme to enhance the per-

formance of both SIC and ILS steps, and discuss an optimal user pairing strategy based

on the average decoding error probability. The performance of the proposed method im-

proves the relay’s capability of extracting network codes from multiple superimposed

user signals, as demonstrated by the numerical results.

Next, we address the design of power allocation schemes for PNC in downlink MWRC.

The power allocation is formulated as a constrained optimization problem, where the

aim is to maximize the probability of successfully decoding a chain of network codes,

so-called success probability, under a total power constraint when using Babai estimation

for signal detection. Three aggregate measures of success probability are considered over

the participating user terminals, i.e., arithmetic mean, geometric mean, and maximin, and

the solutions are obtained based on the concavity of the related problems. Results demon-

strate the effectiveness of the proposed schemes in improving the success probability in

the reception of a chain of network codes.
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Finally, we propose a new power allocation scheme based on the success probabil-

ity of SIC detection for PNC in uplink MWRC. We develop a generalized expression for

the closed-form success probability of the SIC detection at the relay in the case of pulse-

amplitude modulation (PAM). A constraint optimization is formulated over this prob-

ability subject to the transmit power constraints at the user terminals. We develop an

evolutionary particle swarm optimization (PSO) algorithm to solve the problem, whose

cost function is relatively complex and not necessarily concave. Results show that the

proposed method can improve the quality of network code extraction at the relay.
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Abrégé

Le codage de réseau par couche physique (PNC) est une approche attrayante pour aug-

menter le débit du réseau en exploitant la nature de diffusion des canaux sans fil. Cette

thèse se concentre sur l’application du PNC dans une classe de réseaux sans fil con-

nue sous le nom de canaux de relais multi-voies (MRWC), où de multiples utilisateurs

partagent des informations à travers un seul relais. L’objectif principal de la thèse est de

développer de nouveaux schémas de liaison montante et descendante pour PNC dans les

MRWC, avec un accent particulier sur la détection du signal et l’allocation de puissance.

Tout d’abord, nous proposons un nouveau schéma de détection de signal pour PNC

en MWRC du point de vue de la détection multi-utilisateurs séquentielle. L’extraction des

codes de réseau à partir des signaux superposés des utilisateurs au niveau du nœud de re-

lais est formulée comme un système linéaire sous-déterminé. Pour résoudre ce problème

avec une faible complexité de décodage, la méthode proposée combine l’annulation suc-

cessive des interférences (SIC) avec l’estimation de Babai pour les moindres carrés entiers

régularisés (ILS). Nous développons un schéma d’allocation de puissance pour améliorer

les performances des étapes SIC et ILS, et discutons d’une stratégie optimale de couplage

d’utilisateurs basée sur la probabilité moyenne d’erreur de décodage. La performance

de la méthode proposée améliore la capacité du relais à extraire des codes de réseau à

partir de multiples signaux d’utilisateurs superposés, comme le démontrent les résultats

numériques.

Ensuite, nous abordons la conception des schémas d’allocation de puissance pour le

PNC dans la liaison descendante MWRC. L’allocation de puissance est formulée comme

un problème d’optimisation sous contrainte, où l’objectif est de maximiser la probabilité

de décoder avec succès une chaı̂ne de codes de réseau, appelée probabilité de succès, sous

une contrainte de puissance totale lors de l’utilisation de l’estimation de Babai pour la

détection du signal. Trois mesures agrégées de la probabilité de succès sont considérées

sur les terminaux d’utilisateurs participants, c’est-à-dire la moyenne arithmétique, la moyenne
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géométrique et la maximisation, et les solutions sont obtenues sur la base de la concavité

des problèmes connexes. Les résultats démontrent l’efficacité des schémas proposés pour

améliorer la probabilité de succès dans la réception d’une chaı̂ne de codes de réseau.

Enfin, nous proposons un nouveau schéma d’allocation de puissance basé sur la prob-

abilité de succès de la détection SIC pour PNC dans la liaison montante MWRC. Nous

développons une expression généralisée de la forme fermée de la probabilité de succès de

la détection SIC au niveau du relais dans le cas de la modulation d’amplitude d’impulsion

(PAM). Une optimisation par contrainte est formulée sur cette probabilité sous réserve des

contraintes de puissance d’émission aux terminaux des utilisateurs. Nous développons

un algorithme évolutionnaire d’optimisation par essaims de particules (PSO) pour résoudre

le problème, dont la fonction de coût est relativement complexe et pas nécessairement

concave. Les résultats montrent que la méthode proposée peut améliorer la qualité de

l’extraction du code du réseau au niveau du relais.
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CHAPTER 1

Introduction

In this chapter, we introduce the problem area of the thesis, survey relevant literature and

then summarize the main contributions.

1.1 Motivations and Problem Area

In this modern era, wireless communications have enabled the connection among bil-

lions of people around the globe and become an essential part of our daily lives. From

transaction and entertaining to transportation and manufacturing, nearly every sector of

today’s society relies on wireless technologies in fundamental ways. The increasing need

for faster connections and higher data throughput has become an iconic desire of the con-

temporary general public. Thanks to the efforts of countless researchers and engineers,

evolving technologies from the 1st generation (1G) to the 5th generation (5G) and beyond

are constantly pushing the limits of wireless communications to a whole new level [1].

Physical-layer network coding (PNC) [2, 3], which exploits the broadcast nature of

wireless channels to improve the network throughput, has drawn considerable attention

in recent years [4–6]. In a traditional half-duplex two-way relay channel (TWRC) scenario,

two end users attempt to exchange information with the help of a relay. In contrast to the

conventional network coding (NC) scheme [7, 8], which requires 2 time slots for uplink
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and 1 time slot for downlink transmissions [9], PNC in TWRC only consumes 2 time

slots in total. By exploiting the additive nature of electromagnetic waves at the physical

layer, PNC allows users to send signals simultaneously to the relay using only 1 time

slot. After extracting and decoding the superimposed user signals, the relay encodes this

information into an NC signal and broadcasts it in a subsequent time slot. Upon reception

of the broadcast NC signal, each user decodes the desired signal from the other user by

employing its self-information. Compared with the conventional NC scheme, PNC leads

to a 33% throughput improvement. Hence, it provides an appealing solution to meet

the exacting demands of various applications envisaged for 5G wireless networks and

beyond, such as streaming 4K video, machine-to-machine communications, online cloud

sharing, etc. [10–13]. To explore the full advantage of PNC for these applications, several

studies have been carried out with a focus on specific TWRC issues, such as the design of

symbol mapping [14,15], the effect of time or phase synchronization [16–20], and channel

estimation [21–23].

To extend the application scenarios beyond the conventional TWRC, this thesis fo-

cuses on the use of PNC in a class of wireless networks known as multi-way relay chan-

nels (MRWC), where multiple users share information through a single relay. The pri-

mary objective of the thesis is to develop new uplink and downlink schemes for PNC in

MWRC, with the main focus on signal detection and power allocation.

1.2 Existing works and challenges

This section provides a literature review on existing works and challenges of the PNC in

MWRC regarding the extension of TWRC, the robustness of the network code chain, and

the efficacy of relay detection.
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1.2.1 Extension of TWRC PNC

As a natural extension to TWRC, the use of PNC in MWRC [24] has been less studied.

The superposition of multiple, say N > 2, user signals at the relay increases the difficulty

of extracting network codes due to the mutual interference. The use of a relay equipped

with multiple antennas, say K, provides a simple solution to the MWRC problem since

the spatial diversity can be exploited to diminish interference. Most of the literature on

PNC in MWRC [25–27] focuses on implementation scenarios where the number of relay

antennas is greater than the number of users, i.e., K ≥ N . To some degree, this assump-

tion defeats the inherent idea behind PNC, i.e., that the boost in throughput should result

from natural coding in the wireless medium rather than from the additional cost of space-

time processing. From this perspective, it would seem worthwhile to consider the case

K < N for PNC in MWRC, where the throughput gain is not so much dependent on the

spatial diversity.

To the best of our knowledge, only a limited number of studies have addressed the

problem of PNC in MWRC in the case K < N . In [28], the multiway relay network is de-

composed into smaller building blocks, or atoms, over which existing TWRC techniques

can be applied. In [29], a similar concept is considered where an opportunistic trans-

mission protocol selects pairs of users for sequential transmission. Nonetheless, these

approaches require at least N − 1 time slots for uplink transmission in an N -way relay

channel. In [30], constellation design for simultaneous transmission of user signals in

MWRC is formulated as a constrained optimization, where the aim is to maximize the

minimal distance among the set of network-coded symbols. However, this scheme is de-

signed for AWGN channels where the multiple user signals barely suffer from channel

distortions, and their constellations are correctly superimposed at the relay. Aside from

the intricate design, the scheme’s complexity also increases rapidly when the number

of users or the modulation order becomes large. In general, we find that existing ap-

proaches to the multiway PNC problems tend to follow concepts advanced for TWRC

PNC, and rely on directly obtaining network codes from the superimposed signals at the
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relay. However, unlike the TWRC scenario, this task becomes exceptionally challenging

when the number of colliding signals increases, requiring: the use of special scheduling

via the decomposition of the network into smaller subnets, mitigation of the multiuser

interference for each code extraction, or complicated signaling designs allowing the relay

to resolve codewords from a large superimposed constellation unambiguously. Conse-

quently, these approaches often turn out to either have limited efficiency or suffer from

high complexity.

1.2.2 Robustness of Network Code Chain

In a multi-way PNC system between N users, the relay typically broadcasts a chain of

N − 1 network codes, or symbols, that are designed to be strongly correlated with each

other. Due to the correlation, the decoding performance of the complete set of messages

at the user terminals highly depends on the probability of successfully detecting each

network code in such chains. Hence, it is critical to devise mechanisms that can improve

the probability of symbol detection for downlink PNC transmissions in MWRC.

Existing techniques for multi-user communications, e.g., precoding and power allo-

cation schemes, are often devised based on power domain metrics, such as the signal-to-

noise ratio (SNR), signal-to-interference-plus-noise ratio (SINR), and related quantities,

including achievable information rates. For instance, the design of a precoding matrix

for a multi-user system with an arbitrary number of antennas at the user terminals is ad-

dressed in [31], to mitigate the multi-user interference in the downlink channel. A block

diagonalization approach is considered for the design of downlink multi-user precoders

in [32], [33] where the precoding matrix is generated from the QR decomposition of the

relay-to-user channel matrix to improve the achievable sum rate of the system. In [34],

as an alternative to the SINR and SNR criteria, the authors present a so-called signal-to-

leakage-and-noise ratio (SLNR) precoding scheme that considers the leaked power from

one user to other users in a multi-user multiple-input and multiple-output (MIMO) sys-

tem; the precoder design is thus based on maximizing the SLNR for all users. Some recent
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works focus on alternative metrics such as the energy efficiency for the downlink multi-

user multiple-input and single-output (MISO) systems [35] and target rates for downlink

non-orthogonal multiple access (NOMA) systems [36].

Few works explicitly focus on improving the detection performance of a chain of cor-

related symbols, as needed for PNC in MWRC. In this regard, the success probability of

Babai estimation introduced in [37], can provide a valuable metric for determining and

enhancing the integrity of a chain of network codes received at user terminals. Babai es-

timation is an efficient tool that can be applied to the solution of a variety of estimation

problems in wireless communications. In particular, it provides a suboptimal solution

with low complexity to integer least squares problems occurring in the estimation of cer-

tain linear models [38, 39]. In this context, the success probability of Babai estimation

characterizes the detection performance of a group of symbols within a successive detec-

tion process. However, these works mainly focus on theoretical performance analysis and

do not utilize the success probability as a metric for practical system design.

1.2.3 Efficacy of Relay Detection

Successive interference cancellation (SIC) [40], which mitigates the effects of interference

by discriminating superimposed signals based on their relative power levels, is a widely

adopted detection scheme for multi-user communications. Existing studies on the effi-

ciency of SIC mainly emphasize improving the sum rate of the system, where the aim is

to enhance the average detection accuracy of the signals. For instance, an opportunistic

relay selection strategy for an NC scheme is proposed in [41], where the goal is to choose

the best relay maximizing the SINR among a subset of relays that correctly decoded the

source signals in a previous time slot. In [42], a new superposition code based on PNC

concepts along with two beamforming optimization approaches are presented to achieve

an acceptable symbol error rate (SER) in the SIC detection, as part of an energy harvesting

system for massive MIMO communications at millimeter waves (mmWaves) frequencies.
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Many works exploiting the SIC detection for NOMA systems, such as [43–46], also ad-

dress their respective problems from the perspective of the sum-rate maximization.

Unfortunately, only a limited number of works explicitly focus on improving the ac-

curacy of the entire chain of correlated signals during the SIC process, which is critical for

PNC in MWRC. In this regard, the work in [47] analyzes the closed-form expression of

the word error rate (WER) for the SIC decoders, which characterizes the success probabil-

ity of detecting all signals in the successive process. Thus, the WER provides a valuable

metric for evaluating the quality of the entire chain of detected signals. However, this

work mainly emphasizes theoretical analysis and does not provide further consideration

on how to utilize the metric for practical system design.

1.3 Thesis Contributions

As pointed out earlier, the primary objective of the thesis is to develop new uplink and

downlink schemes for PNC in MWRC. Specifically, we mainly focus on signal detection

and power allocation to address various challenges in the extension of PNC to MWRC,

i.e.: the network code extraction, the code chain robustness, and the relay detection ef-

ficacy. The thesis makes several contributions toward this general goal, as further ex-

plained below.

In Chapter 3, we propose a novel scheme for PNC in MWRC from the perspective of

sequential multiuser detection. We consider an uplink MWRC scenario where N users,

each equipped with a single antenna, simultaneously transmit their signal to a relay

equipped with K antennas, where K < N . The extraction of the network codes from the

superimposed user signals at the relay node is formulated as an under-determined linear

system. To solve this problem with low decoding complexity, the proposed method com-

bines SIC with Babai estimation for regularized integer least squares (ILS). Specifically,

SIC decoding is first employed to detect a selected subset of stronger user signals and

remove their interfering effects. Babai estimation is then applied to extract the remaining
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user signals, which is formulated as an ILS problem with reduced dimension. We develop

a power allocation scheme to enhance the performance of both the SIC and ILS steps and

discuss an optimal user pairing strategy based on the average decoding error probability.

Numerical results demonstrate the performance improvement of the proposed method in

extracting network codes from multiple superimposed user signals.

In Chapter 4, we propose a novel power allocation scheme for PNC in downlink

MWRC. The power allocation is formulated as a constrained optimization problem, where

the aim is to maximize the success probability under a total power constraint when using

Babai estimation for signal detection. Optimizing over this metric allows us to maximize

the probability of successfully decoding a chain of network codes. The main contributions

in this part can be summarized as follows. To meet diverse requirements for transmission

quality in applications, we consider different aggregate measures of success probability

over the participating user terminals, i.e., the arithmetic mean, the geometric mean, and

the maximin. We first use an evolutionary particle swarm optimization (PSO) algorithm

to solve the problem for the arithmetic mean, which is non-concave. We then formulate an

alternative concave problem for this measure and find the solution via iterative methods.

We obtain the solutions of the other two problems for the geometric mean and maximin,

which are shown to be concave, via efficient iterative search methods. The proposed

power allocation schemes for downlink PNC in MWRC are evaluated using computer

simulations over Rayleigh fading channels. The results demonstrate the effectiveness of

the proposed schemes in improving the success probability in the reception of a chain of

network codes.

In Chapter 5, which focuses on the uplink of PNC in MWRC, we propose a novel

power allocation for the SIC detection of pulse amplitude modulation (PAM) signals at

the relay. To be specific, we first extend the work in [47] and develop a generalized ex-

pression for the closed-form success probability for SIC detection of the PAM signals. We

then formulate a constrained optimization problem, where the aim is to maximize the

success probability of the SIC detection at the relay under transmitting power constraints
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at the user terminals. Optimizing over this metric maximizes the probability of correctly

detecting the superimposed signals from all the users, which improves the efficacy of

the network code generation at the relay. We conceive a PSO algorithm to solve this

optimization problem where the cost function is complex and not necessarily concave.

The simulation results confirm the validity of the newly derived expression for the suc-

cess probability and also demonstrate the effectiveness of the proposed power allocation

scheme in improving the relay’s ability to extract network codes from the superimposed

signals.

1.4 Organizations

The rest of the thesis is organized as follows. Chapter 2 provides a comprehensive review

of essential background knowledge regarding the conventional NC, PNC, and MWRC.

Chapter 3 focuses on the design of an efficient detection scheme for PNC in MWRC com-

bining the SIC and Babai estimation. Chapter 4 investigates the design of power alloca-

tion schemes for the downlink PNC in MWRC from the perspective of success probability.

Chapter 5 develops a closed-form expression for the success probability of SIC detection

at the relay and presents a power allocation scheme for uplink PNC in MWRC based on

this formulation. Finally, Chapter 6 summarizes and concludes the thesis.

Notations: The following notations are used throughout the thesis, unless otherwise

specified. We use bold lower-case and upper-case letters for vectors and matrices, respec-

tively. A = [aij]M×N denotes an M × N matrix with aij as the (i, j)th entry, while I and 0

are identity and zero matrices of appropriate dimensions. AT and AH denote the trans-

pose and Hermitian transpose of a matrix A. diag(d1, . . . , dn) returns a square diagonal

matrix with diagonal entries d1, . . . , dn. || · || and | · | refer to the Euclidean norm of vectors

and modulus of scalars, respectively.
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CHAPTER 2

Background

This chapter provides a review of essential background knowledge on the conventional

NC scheme, the PNC scheme, and the MWRC. It serves as a foundation to help the reader

better understand the proposed methods in subsequent chapters. The presentation is

organized as follows: In Section 2.1, we reviewed the basic concept of the NC scheme.

In Section 2.2, we proceed to review the PNC scheme, including its principles and more

recent developments. In Section 2.3, the review of the MWRC is provided, including

its application scenarios, general channel model, relay strategies, and recent studies. In

Section 2.4, some concluding remarks are given at last.

2.1 Network Coding

For a long period in the history of communications, the traditional store-and-forward

switching technique has been broadly adopted for conveying information from a source

to a destination through a series of intermediate nodes [48]. The simplicity of this ap-

proach, in which intermediate nodes merely forward the received data without further

modifying the original data contents, has made it dominant in transferring data over a

network. However, with the rapid evolution of modern technologies has come the need

for much increased data throughput. Traditional switching techniques have gradually
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and inevitably fallen behind the curve to meet such demanding needs, especially in to-

day’s crowded network environment environments resulting from the massive produc-

tion of affordable consumer-level electronic devices.

Within this burgeoning context, network coding has emerged as a new paradigm for

boosting the network capacity [7]. In contrast to store-and-forward techniques where the

intermediate node is merely a passive switch, the central idea of network coding is to

allow intermediate nodes to be actively involved in the data transfer by mixing and pro-

cessing original information from multiple data links. By doing this, the amount of infor-

mation transmitted through the network can be greatly reduced and hence, the available

network throughput is improved given the same condition of crowdedness.

The basic concept of network coding in a butterfly structure is illustrated in Fig. 2.1.

A source node S seeks to transfer two bits X1 and X2 to destinations D1 and D2 through

a series of intermediate nodes, labeled as R1,R2, R3, and R4. For simplicity, the data

links are assumed to be error-free with unit capacity. When traditional store-and-forward

techniques are utilized, intermediate nodes only forward the received information to their

neighbors. The network throughput will be mainly limited by the bottleneck node R2. As

the data link between R2 and R4 only has unit capacity but needs to convey both data

bits X1 and X2, it requires 4 time slots to complete the transmission, i.e.: 2 time slots for

receiving and 2 time slots for broadcasting. When network coding is enabled, R2 can

mix X1 and X2 through an exclusive or operation (XOR), denoted as X1 ⊕ X2, and only

broadcast the mixture. Since D1 and D2 respectively know X1 and X2 from other data

links, they can reconstruct X2 and X1 respectively by applying a reverse operation on the

mixed data. In this way, the bottleneck node R2 only needs 3 time slots to convey the

information, i.e., 2 for receiving and 1 for broadcasting.
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Fig. 2.1: Example of network coding in a butterfly structure.

2.2 Physical-layer network coding

Network coding was first introduced to boost the throughput of wired networks. How-

ever, with the rapid development of wireless technologies and widespread availability of

low-cost mobile devices in the past decades, the need for larger network throughput has

become a critical matter [49]. Below, we briefly discuss some of the challenges faced in

boosting the efficiency of wireless communication networks, and how the application of

PNC can help in addressing some of these challenges.

2.2.1 Challenges in Wireless Environments

One major factor that hinders transmission efficiency in wireless communications is sig-

nal interference in the open air. Indeed, in addition to the intended signal from a given

transmitter, a receiver will capture other signals simultaneously emitted by different trans-

mitters. In general, the superposition of the unwanted radio waves corrupts the intended

signals and creates ambiguity when the receiver tries to reconstruct the original infor-

mation. As an inevitable consequence of radio wave propagation in the open air, this
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interference has has traditionally been treated as a destructive phenomenon in wireless

communications.

For years, researchers have spent considerable efforts to find practical solutions to

minimizing or eliminating such interference. Multiplexing techniques such as time-division

multiplexing (TDM) and frequency-division multiplexing (FDM) [50] are probably the

most well-known mechanisms to achieve such a goal. The basic idea behind them, as

illustrated in Fig. 2.2, is to avoid interference by assigning radio signals from different

sources into separated ”cells” in either the time domain or the frequency domain. In

this way, collisions among radio waves in the respective are ideally avoided due to the

orthogonality among cells.
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Fig. 2.2: Time-division multiplexing and frequency-division multiplexing techniques.

Although popular, the multiplexing techniques relying on the separation of signals in

orthogonal domains have their disadvantages. The cost of avoiding interference in such

manners is the need to occupy radio resources in the corresponding domain, i.e., time

and frequency slots. With an excessively high demand for data transmission in today’s

wireless networks, radio resources are becoming incredibly expensive. For example, ac-

cording to a report from the Federal Communication Commission (FCC) of the United

States in 2021 [51], an auction of flexible-use overlay licenses in the 3.7-3.98 GHz band
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alone raised a total of $ 81 billion in gross bid. In practice, the limited nature of available

radio resources leads to network congestion or the reduced quality of service (QoS).

2.2.2 Exploiting the Nature of Wireless Medium

Besides continued efforts to eliminate interference, a new perspective has gradually emerged

and gained popularity. Indeed, by exploiting the nature of the wireless medium, the un-

wanted radio waves that come from other transmitters need not be considered destruc-

tive: with a proper system design, the ”interference” could be put to good use.

As explained in Fig. 2.1, the key to efficiency improvement with network coding lies

in the use of the data mixture. As we have seen, if the intermediate node can directly

receive such a mixture instead of receiving signals separately, the network efficiency will

be improved. Still, achieving this in a wired network is usually challenging, as it requires

modifications to the network structure, such as adding a node to mix the incoming data

before the intermediate node receives them. This is because the data traveling in sepa-

rated wires do not mix until they arrive at a common one.

In contrast, the wireless medium provides a natural way of mixing signals through

the superposition principle (i.e., linearity of wave propagation). Since the introduction

of physical-layer network coding (PNC) in [2], the broadcast nature of the wireless medium

has been extensively exploited to further increase the efficiency. Instead of treating inter-

ference as an harmful factor in the transmission, the PNC scheme takes the mixture (or

superposition) of radio waves in the open air as a natural input to the intermediate node.

The intermediate node then can interpret this mixture and generate the desired network

code from it. By doing so, the number of time slots required for the intermediate nodes

to process the data is reduced.

2.2.3 Principles of Physical-layer Network Coding

The fundamental concept of PNC is illustrated in a two-way relay channel (TWRC) as

shown in Fig. 2.3. TWRC refers to a three-node linear network structure, where source
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nodes, S1 and S2, try to communicate via a relay R. The transmission process can be

completed in 2 time slots by proceeding as follows: In the first time slot, S1 and S2 are

allowed to transmit messages X1 and X2 simultaneously to the relay. For simplicity, we

assume that these messages are binary, i.e., can only take two values represented by op-

posite polarities as in binary phase-shift keying (BPSK) modulation. The electromagnetic

waves carrying the signals are mixed in the open air. The relay thus directly receives the

superimposed signals YR containing superimposed information of X1 and X2. By prop-

erly selecting the permissible values of the messages X1 and X2, and under favorable

conditions of transmissions, it is possible for the relay to generate a network code such

as XR = X1 ⊕ X2 from the received signal YR Subsequently, the relay broadcasts XR to

S1 and S2 in the second time slot. Each node can then recover the desired information by

respectively applying the mixing function on XR and its self-information, e.g., obtaining

X̂2 = XR ⊕X1 at node 1.

Relay

Slot 1

Slot 2

Slot 1

Slot 2

S1 S2

Relay

S1 S2

YR

XR

X1 X2

X1

^

Slot 1

Slot 2

X2
^

X1 X2

X1 X2

XRXR

Network Structure:

Data Flow:

Fig. 2.3: Physical layer network coding in TWRC.
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X1 from node 1 X2 from node 2 Received signal YR Mapping to XR

+1 +1 +2 +1
+1 -1 0 -1
-1 +1 0 -1
-1 -1 -2 +1

Table 2.1: PNC mapping at the relay.

The key to PNC lies with the relay’s ability to deduce the network code XR from the

superposition YR of the transmitted signals. To provide a better understanding of this

process, let us consider a particular example. Suppose that we adopt the exclusive-or

operation as the mixing function, i.e., XR = X1⊕X2 , where values of X1, X2 ∈ {−1,+1}.

We also assume a noise-free channel with unit gain and perfect synchronization at the

relay. In such a case, the superimposed signals YR at the relay can take on three possible

values depending on the input symbol X1 and X2 as shown in Table 2.1. That is,

• YR = +2 when X1 = +1, X2 = +1.

• YR = 0 when X1 = +1, X2 = −1 or X1 = −1, X2 = +1.

• YR = −2 when X1 = −1, X2 = −1.

It is clear that the relay does not necessarily need to know the exact value of X1 and X2

are to generate XR. The proper mapping can be obtained directly from the observation of

YR as follows:

XR =


−1, if YR = 0

+1, if YR = −2 or + 2

(2.1)

Based on the observation of XR, S1 and S2 then use their self-information X1 and X2 to

retrieve the desired information from the network code respectively.

It can be noticed that the difference between PNC and traditional NC is how the relay

generatesXR. In the traditional NC,X1 andX2 are transmitted in different time slots, and

the relay generates the network codes based on the explicit information of both signals. In
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PNC, the network code can be directly generated from the superimposed signals, which

requires one less time slot than the traditional method.

2.2.4 Issues and Existing Studies of PNC in TWRC

In this subsection, we provide an extensive literature review on the issues of PNC in

TWRC regarding synchronization, error control, channel estimation.

Synchronization

One of the problems with PNC is that performance degrades when PNC does not run

in perfect synchronization. There are different scales of synchronization problems. First,

packets sent simultaneously by two user nodes do not necessarily arrive at the relay at

the same time. Second, even if packets arrive at the same time, their symbol boundaries

may not coincide, and the symbols of one node may overlap with two or more symbols of

the other node. Third, even if the symbols of two nodes can be perfectly aligned, carrier

frequency synchronization and relative phase shifts may cause problems.

Researchers’ attention has been drawn to solving this key problem of the PNC. In [52],

the authors first present the synchronization problem of PNC and investigate the impact

of imperfect synchronization (i.e., finite synchronization error). In [53], the authors inves-

tigate a general framework for belief propagation (BP)-based receiver decoding that can

efficiently handle the symbol and phase asynchrony problems and incorporate both chan-

nel coding. For non-channel coded PNCs, the BP approach reduces the asynchronous

penalty compared to previous approaches. For channel-coded PNCs, the BP method im-

proves the system performance with both symbol and phase asynchrony compared to the

fully synchronous case. In [54], the authors propose a time synchronization scheme for

broadband TWRC based on two-phase PNC. The synchronization scheme effectively sep-

arates the mixed signals and jointly estimates the time difference and channel parameters

using the preamble in the frequency and time domains.
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Error control

In general communication systems, noise and interference can be destructive to the signal

in the open air. It is no exception for PNC systems, as the disturbance essentially reduces

the ability of the relay to resolve the network code from the superimposed signal. There-

fore, error control with channel coding is one of the most commonly used methods to

cope with these problems.

The paper in [55] investigates link-by-link channel coding for PNC, where a key pro-

cess of the relay station is to transform the superimposed channel coded packets received

from both end nodes into a network coded combination of source packets. It designs a

BP decoding algorithm for repeated accumulation codes of conventional point-to-point

channels to accommodate PNC multiple access channels. In [56], a forward error cor-

rection is employed with a TWRC PNC system. Convolutional codes are considered to

counteract the harmful effects of free-space turbulent channels to improve the reliability

of the system. The authors in [57] design a practical modulation-coded PNC scheme to

approach the capacity limit of Gaussian and fading TWRC. The method can be consid-

ered as a practical embodiment of the compute-and-forward scheme with well nested

lattice codes that can be applied to a wide range of network configurations. The authors

implemented a low-overhead channel precoding system in [58] that accurately aligns the

channels of distributed nodes. The alignment are achieved by three methods, i.e., a chan-

nel precoding system implemented over field-programmable gate array (FPGA) to realize

fast feedback of channel state information, a highly-accurate carrier frequency offset esti-

mation method, and a partial-feedback channel estimation method reducing the amount

of feedback information from the receiver to the transmitters for channel precoding at the

transmitters.
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Channel estimation

In a practical PNC system, the fading channel is also a key factor affecting the ability of

the relay to resolve network codes. Therefore, the relay must effectively estimate both

user-relay channels in TWRC to identify the superimposed signals. Otherwise, an incor-

rect estimation of the channel state can significantly mislead the network code generation

at the relay station. Therefore, channel estimation in PNC systems has also received ex-

tensive attention.

The authors in [59] study the effect of incorrect channel estimation on the performance

of PNC over fading channels. In this study, a statistical lower bound on the variance of the

estimation error is shown, i.e., the relay terminal can tolerate it without introducing NC

errors into the system. In [60], the authors address the joint channel estimation and chan-

nel decoding problem in TWRC PNC systems by combining an expectation-maximization

algorithm and a BP algorithm on a unified factor graph framework. With this approach,

the challenges posed by overlapped signals of multiple users, correlation between data

symbols due to channel coding, and time-varying channels can be effectively addressed.

2.3 Multi-way Relay Channels

A multi-way relay channel (MWRC) is a basic structure of a relay network that generally

involves all possible topological families of information flow between a relay node and

its neighboring nodes. MWRC faces several challenges. For example, relay nodes usually

operate in half-duplex mode, i.e., relay nodes receive and transmit signals in orthogonal

blocks of time or frequency resources, which costs spectral efficiency. In addition, simul-

taneous signals from multiple user nodes usually cause multi-user interference. These

challenges are usually more difficult to conquer than those in TWRC. In this section, we

review the essential background of MWRC, including its application scenarios, general

channel models, relaying strategies, and recent research.
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2.3.1 Application Scenarios

MWRC is a generic channel model that can be used in a wide range of wireless application

scenarios, such as cellular, satellite and aerial communications.

Cellular Communications As the millimeter wave band is used to meet the through-

put demands of evolving wireless services [61–63], the high path attenuation and low

penetration of electromagnetic waves at higher frequencies significantly reduces the cov-

erage of conventional base stations. To solve this problem, the use of repeaters provides

an efficient and economical solution. A typical scenario is when a user is in an enclosed

area, such as an underground parking lot, and intends to connect to a base station on the

ground. A relay can be deployed in the enclosed area to compensate for signal attenua-

tion and connect to the base station via a wired line. The user, the repeater and the base

station thus form a MWRC.

Statellite Communications Satellite communication is another key scenario for MWRC

applications. The architecture of MWRC can be naturally applied to satellite communi-

cations, where satellites act as relay nodes in outer space, receiving signals from sources

on Earth and forwarding them to their destinations [64, 65]. In addition, due to the ad-

vantages of broadband, large coverage and line-of-sight (LOS) transmission, satellites can

effectively serve multiple users and support data exchange over long distances, such as

intercontinental transmissions, which forms an MWRC on a large scale.

Unmanned Aerial Vehicle (UAV) Communications In recent years, UAVs have grown

in popularity for a variety of uses. Due to the high altitude at which the vehicles fly, the

communications established by UAVs are usually subject to less interference. Therefore,

attention has been paid to the use of UAVs as flying wireless access points [66, 67]. In ad-

dition, the flexibility and convertibility of UAVs make it possible to act as an intermediate

mobile node for challenging communication scenarios [68]. For example, in mountainous

areas where base stations are not available or difficult to build, they can act as relay sta-
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tions to easily connect rescue teams. In this case, UAVs and user terminals can form an

MWRC.

2.3.2 General Channel Model

The general model of MWRC can be explained as follows. Without loss of generality,

it is assumed that MWRC consists of N users exchanging information, and due to the

deep fading channel environment, no direct links can be made between users. The data

exchange between all users is through a common relay node. Each user has M antennas

and the relay has K antennas, as shown in the Fig. 2.4.
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UserNUserNUser1User1

User2User2 UserN-1UserN-1

Relay R
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M......

......

......
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K antennas

Fig. 2.4: An illustration of the general model of MWRC.

Each round of information exchange consists of two phases. The first phase is called

the uplink phase, or the multiple access (MA) phase, in which users transmit signals to

the relay station simultaneously. The signals received at the relay station are represented

as follows:

yR =
N∑
i=1

Hixi + nR, (2.2)



2.3 Multi-way Relay Channels 21

where Hi ∈ CK×M denotes the channel matrix between user i and the relay in the uplink

phase; xi ∈ CM represents the transmit signal from user i; yR ∈ CK is the superim-

posed signals received at the relay. nR ∈ CK represents the additive white Gaussian noise

(AWGN) at the relay.

The second stage refers to the downlink phase, or alternatively the broadcast (BC)

phase, in which the relay broadcast signals to the user ends. The ith user’s received signal

is thus represented as follows:

yi = GixR + ni, (2.3)

where Gi ∈ CM×K represents the channel matrix between the relay and the ith user during

the BC phase; xR ∈ CK denotes the signal from the relay; ni ∈ CM denotes AWGN at user

i.

2.3.3 Relay Strategies

As the central node of MWRC, the relay station plays an important role in data trans-

mission. How it receives and forwards data has a direct impact on the performance of

the entire transmission network. There are different strategies for the relay to process the

received data. The most commonly used ones are described below.

Amplify-and-forward (AF) In AF relaying [69], the relay terminal amplifies its received

signal subject to its power constraint and broadcasts to the receivers. The signal sent out

from the relay is typically a linear transformed version of its received signal. That is:

xR = AR[
N∑
i=1

Hixi + nR], (2.4)

where AR = Diag(
√
P1, . . . ,

√
PK) for Pi, i = 1, . . . , K are the power allocated to each

antenna of the relay. The AF relay is simple and cost-efficient to implement in practice.

However, its downside is that the amplification operation by the relay also inevitably
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increases the noise power. Consequently, performance degrades, especially in the low

SNR region where noise is relatively large.

Decode-and-forward (DF) DF relay [70] decodes messages from all the users upon re-

ceiving and broadcasts them to all their receivers. Ideally, with perfect detection, the

relay can recover the exact transmitted user signals and re-encode or pack them for the

downlink transmission. A typical signal sent out from the relay thus can be given as:

xR = AR

N∑
i=1

xi, (2.5)

The DF relay avoids noise amplification in theory. However, the decoding operation at

the relay consumes more resources. Plus, the imperfect detection of user signals also

imposes noises for the downlink transmission.

Compress-and-forward (CF) CF relay utilizes Wyner-Ziv coding [71] to compress the

received signals before forwarding it to the destination. A scheme closely related to the

CF strategy is quantize-map-and-forward (QMF) cooperation [72], in which the received

signals at the relay are quantized before being forwarded to the destination. Like the DF

scheme, the scenario is equivalent to broadcasting a common source to multiple receivers

with correlated side information. However, unlike the DF scheme, the relay only needs to

send a quantized version of the received signals rather than the lossless detected signals.

2.3.4 Existing Studies on MWRC

In this subsection, we review existing research on MWRC in channel estimation, power

allocation, precoding, and beamforming.

Channel estimation

Channel state information is an important to a series of MWRC studies on MWRC, such

as power allocation, precoding, beamforming and relay selection. Channel estimation in
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point-to-point wireless communication systems typically requires two steps. The trans-

mitter first sends a series of pilot signals that are known to both the transmitter and the

receiver; then the receiver estimates the channel after receiving the known pilot signals.

Similarly, in a MWRC system, all users send pilot signals to the relay simultaneously

during the MA phase, and the relay estimates the state of the user-relay channel after re-

ceiving the pilot signals. In the BC phase, the user receives the pilot signal from the relay

and estimates the state of the relay-user channel accordingly.

In [73], the authors develop a channel estimation framework for a multi-way quan-

tized distributed relay network. Three sub-optimal channel estimators (including a linear

channel estimator) are derived to provide lower complexity estimators. In [74], the au-

thors investigate the asymptotic performance of MWRC with MIMO by modeling the

channels to capture imperfect channel estimation, co-channel interference, pilot contami-

nation, and channel aging. The authors in [75] analytically characterize the symbol-error

rate (SER) performance of a functional decode and forward (FDF) MWRC in the pres-

ence of channel estimation errors. Asymptotic expressions for the average SER for a user

in FDF MWRC are obtained based on the M-ary quadrature amplitude modulation with

square constellations. The analysis shows that when a user decodes other users with bet-

ter channel conditions than itself, the decoding user experiences better error performance.

Power allocation

The transmission power of nodes in MWRC needs to be appropriately allocated to im-

prove the QoS of the system. QoS is usually measured by achievable total rate, SNR, bit

error rate (BER) and other metrics. QoS-based power allocation is therefore also one of

the important topics for MWRC research.

In [76], the authors propose a transmission protocol that combines massive MIMO

technology with linear processing, self-interference cancellation, and successive cancella-

tion decoding. Two power allocation schemes are proposed for this system. In the first

scheme, transmit powers at the users and the relay are chosen to maximize the sum spec-
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tral efficiency, subject to a given QoS requirement for each user. In the second scheme, the

objective is energy efficiency, considering the hardware power consumption. The pro-

posed transmission protocol based on both power allocation schemes effectively reduces

the number of time-slots for data exchange among users. The authors in [77] propose a

NOMA based massive MIMO MWRC transmit protocol to enable full-mutual data ex-

change. Closed-form results for the sum rate and the energy efficiency of the proposed

scheme are obtained by using AWGN approximation. A relay power allocation matrix

is designed to maximize the minimum among the user rates, thus maximizing user fair-

ness. The authors in [78] propose an optimization design of beamforming vectors and

power allocation for the MIMO asymmetric MWRC. An iterative algorithm based on or-

thogonal projection with signal subspace alignment is developed for the beamforming

optimization to maximize the effective SNR. Based on the results of beamforming vec-

tors, an optimal power allocation is designed to maximize the system sum rate.

Precoding and Beamforming

Precoding and beamforming have similar evaluation metrics to power allocation, i.e. they

are also usually measured by the total achievable rate, SNR, BER, etc. Similarly, the per-

formance of a communication system in MWRC can be greatly improved by proper pre-

coding and beamforming. Therefore, this area of research has also attracted a large num-

ber of scholars’ attention.

In [79], the paper studies the beamforming design for the MIMO MWRC with clus-

tered full data exchange. A linear signal alignment in the model under a rank-constrained

rank-minimization (RCRM) framework is considered. The RCRM problem is decom-

posed into independent rank-minimization subproblems, and an iterative algorithm for

the beamforming design is thus proposed. The authors of [80] consider a network in

MWRC with multiple users exchanging information. In this work, relay beamforming

matrices and users’ linear processing receivers are designed in the broadcast phases to

maximize SINR under the relay power constraint. To further improve the performance,
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the SIC at each user’s receiver is implemented based on the SINR criterion to sequen-

tially decode symbols from other users. The work of [81] introduces a non-regenerative

MWRC, where a half-duplex multi-antenna relay station assists multiple nodes commu-

nicating with each other. Three low complexity linear transceiving beamformers based

on zero-forcing, minimum mean square error, and maximization of SNR criteria are de-

veloped for N-phase multi-way relaying.

Relay Selection

In a larger scale MWRC communication network, the presence of multiple relay nodes

provides higher adaptability and greater redundancy to the system. In such systems, ef-

fective optimization of communication links will allow the whole system to operate more

efficiently. Therefore, relay selection or scheduling is also one of the many techniques

investigated to improve the performance of MWRC systems.

In [82], the authors present a cloud-driven uplink framework for multi-way multiple-

antenna relay systems, which aids joint symbol detection in the cloud. A multi-way relay

selection protocol is proposed based on the selection of the best user link. A selection

algorithm is devised based on the maximum-minimum-distance and channel-norm of

user link to find the optimal link in the proposed system. In [83], the authors consider a

network in MWRC in which all source nodes share their data with the help of multiple

single-antenna relay nodes. A joint relay selection and power allocation scheme based on

an approximation of the instantaneous symbol error probability incorporating error prop-

agation is devised for the network. The authors in [84] develop a relay-selection strategy

for multi-way cooperative multi-antenna systems that are aided by a central processor

node. A multi-way relay selection strategy is proposed based on selecting the best link,

exploiting the use of buffers and PNC, called multi-way buffer-aided max-link.
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2.4 Chapter Summary

This chapter presented a review of the conventional NC schemes, the PNC scheme, and

the MWRC architecture. Specifically, we first introduced the development of the con-

ventional NC and its fundamental principle, which serves as a technical basis for this

thesis. We then introduced PNC, which is an evolutionary scheme based on the conven-

tional NC. Next, we discussed the most common issues of PNC in TWRC and reviewed

existing solutions to them. Finally, we reviewed the background of MWRC, including

its application scenarios, general channel model, relay strategies, and existing studies.

This background review provides necessary information and serves as the basis for the

research contributions presented in the subsequent chapters of this thesis.
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CHAPTER 3

Efficient Detection Scheme for Physical-layer
Network Coding in Multiway Relay Channels

In this chapter, we propose a novel scheme for PNC in MWRC from the perspective of se-

quential multiuser detection. We consider an uplink MWRC scenario whereN users, each

equipped with a single antenna, simultaneously transmit their signal to a relay equipped

with K antennas (K < N ). Extraction of the network codes from the superimposed user

signals at the relay node is formulated as an under-determined linear system. The pro-

posed method combines SIC with Babai estimation for regularized ILS to solve this prob-

lem with low decoding complexity. Specifically, SIC decoding is first employed to detect

a selected subset of stronger user signals and remove their interfering effects. Babai es-

timation is then applied to extract the remaining user signals, which is formulated as an

ILS problem with reduced dimension. We develop a power allocation scheme to enhance

both SIC and ILS steps’ performance and discuss an optimal user pairing strategy based

on the average decoding error probability. Numerical results demonstrate the perfor-

mance improvement of the proposed method in extracting network codes from multiple

superimposed user signals.
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3.1 System Model

As illustrated in Fig. 3.1, we consider a half-duplex multiway relay network where N

users share information with each other through a common relay R. User terminals are

equipped with single antenna while the relay is equipped with K < N antennas1. We

assume that there is no direct link among users, i.e., information exchange between two

users needs to go through the relay. We consider radio transmission over narrow-band,

i.e., frequency flat, slow fading channels. As a common assumption adopted in most

existing works on PNC in TWRC [19, 85], perfect channel estimation and time synchro-

nization are available for any node in the network. Data transmission proceeds in two

stages, namely: multiple access (MA) or up-link and broadcast (BC) or downlink.

h1 hN

UserNUserNUser1User1

User2User2 UserN-1UserN-1

Relay R

...

K antennas

Fig. 3.1: Illustration of the MWRC system model.

3.1.1 MA Stage

Simultaneous Transmission

In the MA stage, all users simultaneously transmit signals to the relay so that only a

single time slot is consumed. The signal transmitted by the ith user is given by
√
P isi,

where si is a discrete random modulation symbol with zero mean and unit variance,

1The use of K ≥ 2 makes it possible to exploit spatial diversity. While K can take on any integer value,
the main focus in this work is on the case K < N .
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while Pi is the allocated power to this user. To simplify the exposition, binary phase shift

keying (BPSK) modulation is assumed, i.e., si ∈ {−1,+1}, although generalization to

other symbol constellations are possible. The superimposed signals received at the relay

are represented by:

y = HAs+ nR, (3.1)

where y = [y1, . . . , yK ]
T ∈ CK×1 is the vector of received signals at the relay antennas, s =

[s1, . . . , sN ]
T ∈ {−1,+1}N×1 is the vector of user symbols, H = [h1,h2, . . . ,hN ] ∈ CK×N is

the channel matrix with column hi ∈ CK×1 representing the channel vector between the

ith user and the relay, A = diag(
√
P1,
√
P2, . . . ,

√
PN), and nR ∈ CK×1 is an additive noise

vector with zero mean and covariance matrix σ2I.

Relay Detection and Network Coding

After the transmission, the relay generatesN−1 valid codewords by selectingN−1 pairs

of users and assigning to each pair a network code based on the received signal vector y.

Different strategies are possible for the selection of the N − 1 user pairs [86], represented

by (i, j) where i, j ∈ {1, 2, . . . , N}, i < j. In the sequel, we denote by C the selected set of

N − 1 signal pairs. For instance, a straightforward approach consists in forming pairs by

sequentially selecting neighboring user signals, i.e.:

Cseq = {(i, i+ 1) | i = 1, 2, . . . , N − 1}. (3.2)

Alternative strategies that lead to improved performance are considered in Section 3.3.4.

For each pair (i, j) ∈ C, the next step consists in estimating the selected user signals si

and sj . To elucidate this step, let us expand (3.1) as follows:

y =

(
hi

√
Pisi + hj

√
Pjsj

)
︸ ︷︷ ︸

desired signals

+

(∑N

m=1
m/∈{i,j}

hm

√
Pmsm + nR

)
︸ ︷︷ ︸

interference+noise

, (3.3)
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where the first term contains the desired signal pair while the second term represents

multi-user interference and noise. Based on (3.3), in the literature on PNC, estimation of

the desired signal pair is typically formulated as a constrained least-squares problem, i.e.:

{ŝi, ŝj} = arg min
si,sj∈{−1,+1}

||y − hi

√
Pisi − hj

√
Pjsj||2. (3.4)

Clearly, the multi-user interference may severely degrade the quality of these estimates

when N increases.

At last, a valid network code is generated for each pair of estimated signals by ap-

plying a so-called mixing function, represented by sij = ϕ(ŝi, ŝj), where sij denotes the

resulting network code. A common choice of mixing function ϕ(·), which is used in this

work for simplicity, is the bit-wise modulo-2 sum on the logical values of the estimated

signals. Equivalently, this corresponds to multiplication in the finite field {−1,+1}, i.e.:

sij = ϕ(ŝi, ŝj) = ŝiŝj. (3.5)

Consequently, by proceeding in this manner for every selected pair (i, j) ∈ C, a finite

sequence of N − 1 codewords is generated, i.e., {sij}(i,j)∈C .

3.1.2 BC Stage

During this stage, the relay broadcasts the network codes in {sij}(i,j)∈C to the users. Since

any uplink performance gain or loss will be accordingly passed on to the BC stage, the

choice of the downlink transmission approach does not directly affect the performance

evaluation of the detection schemes at the relay. For simplicity, we therefore consider a

conventional scheme for the BC stage, namely, sequential broadcast using one time slot

per code so thatN−1 time slots are needed for a complete broadcast of the code sequence.

Specifically, if sij is broadcast in a given time slot, the signal received at user m is given

by:

rm = gm
√
Prsij + nm, (3.6)
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where Pr is the total transmit power of the relay, gm = hm ∈ C is the reciprocal downlink

channel gain, and nm ∈ C is the downlink noise. The channel gain gm includes the com-

bined effect of beamforming or pre-coding at the relay followed by parallel transmission

from the K relay antennas to user m. Under the slow fading assumption, gm remains

constant during the BC stage.

Based on the observation of rm in the corresponding time slot, user m obtains an es-

timate of sij (which we assume error-free for simplicity). Once the broadcast phase is

completed after N − 1 time slots, user m stores the detected code sequence {sij}(i,j)∈C and

then uses its self-information sm to obtain the complete signal vector s. For instance, if

C = Cseq, user m obtains s by iteratively recovering each user signal from the detected

sequence {sij}(i,j)∈Cseq , which is described as:

sk+1 = ϕ(sk,k+1, sk), for k = m,m+ 1, . . . N − 1

sl−1 = ϕ(sl−1,l, sl), for l = m,m− 1, . . . 2
(3.7)

where the initial input sm is the self-information of user m. An example of such process

Network codes

Recovered signalss
1

s
2

s
4

s
5

s
12

s
34

s
45

s
3

s
23

Self-information

Fig. 3.2: Example of the iterative recovery process for Cseq at user 3. User 3 first uses its

self-information to decode s2 and s4 and then detects s1 and s5.
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is presented in Fig. 3.2. For the recovery to be effective, the selection strategy (i.e., set C)

must guarantee that all user signals are retrievable at an arbitrary user terminal. If C is

not well designed, e.g., replacing (3, 4) by (1, 3) in Cseq, the code sequence is invalid since

the signal vector s can not be fully recovered in the BC stage.

3.2 The Proposed Method

According to (3.3)-(3.4), the presence of multi-user interference in the superimposed sig-

nals at the relay decreases the reliability of the estimated network codes {sij}(i,j)∈C , espe-

cially when N is large. In this section, we discuss methods to overcome this issue with

the relay detection by first investigating the SIC process, Babai estimation for ILS, and the

regularized ILS. We then develop the proposed method to resolve the user symbols from

the superimposed signals in the MA stage.

3.2.1 Successive Interference Cancellation

SIC can be used at the relay to mitigate the interfering effect, by discriminating signals

on the basis of their relative power levels. Specifically, the user signal with the largest re-

ceived power is first detected and its interfering effect removed from the observation; the

detection then proceeds sequentially to the next strongest signal. SIC will be used here as

a preliminary step to remove part of the multi-user interference in (3.4), thereby facilitat-

ing the subsequent estimation of weaker signals by a more sophisticated ILS technique.

Under the assumption of known channel state information and power allocation scheme2,

let us arrange the user signals in ascending order of their received power at the relay. That

is, define ϱi = ||hi||2Pi and assume that ϱi < ϱj , ∀i < j. Also let γi denote the SINR under

the assumption of perfect signal cancellation at each iteration of the SIC process, i.e.:

γi =
ϱi∑

j<i ϱj + σ2
. (3.8)

2Power allocation is discussed in detail in Section 3.3.
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Using this notation, the SIC detection can be described by Algorithm 1, where γo is a

threshold for detection. At the ith iteration, when γi > γ0 the algorithm detects the dom-

inant user signal si as the solution of LS problem (3.9) and then cancels its effect from

the current observation vector in (3.10). Ideally, this process repeats for each iteration

until the weakest signal s1 is detected. Hence, with a proper power allocation scheme,

an estimated signal vector consisting of all user symbols can be detected, as given by

ŝ = [ŝ1, . . . , ŝN ]
T .

Algorithm 1 SIC
1: i = N, y(i) ← y
2: while i ≥ 1 do
3: if γi > γ0 then
4: Detecting si from y(i):

ŝi ← arg min
ξ∈{−1,+1}

||y(i) − hi

√
Piξ||2. (3.9)

5: Removing influence of si:

y(i−1) ← y(i) − hi

√
Piŝi. (3.10)

6: else Break while
7: end if
8: i = i− 1.
9: end while

Note that the SIC process does not depend on the number of relay antennas K. Algo-

rithm 1 is thus always executable as long as the condition on γ0 is satisfied. In theory, this

process can recover the user signals at the relay for systems with arbitrary dimensions in-

cluding underdetermined ones, i.e.,N > K. In practice, however, the estimation accuracy

of ŝi highly depends on the relative strength of the term hi

√
Pisi in y(i) at each iteration.

Specifically, the accuracy of ŝ depends on the power difference among the received user

signals at the relay. With a given power limit PT on the user terminals (i.e., Pi ≤ PT )

and fixed channel gains, when the number N of the colliding user signals increases, the

conditions for successful application of SIC cannot be maintained. Either the power dif-

ference between user signals is too small or the weaker signals are dominated by noise
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and interference. To overcome this critical dilemma, we propose to use a complementary

ILS-based solution for the detection of weaker signals.

3.2.2 Babai Estimation for Overdetermined ILS

MUD in linear systems can also be achieved by solving an ILS problem for the unknown

user signals [37, 87–89]. Specifically, upon receiving the superimposed signal vector y in

(3.1), the relay may attempt to solve the following problem:

min
s∈B
||y −HAs||2, (3.11)

where B is the constraint set of the transmitted signal vector s. Here, B is determined by

the constellation of user signal symbols, i.e., B = {−1,+1}N . A solution to (3.11) can be

obtained by the reduction and search processes. When the system is overdetermined3,

i.e., K ≥ N , matrix H can be reduced by an QR decomposition with column pivoting,

written as:

HΠ = [Q1,Q2]

 R

0

 = Q1R (3.12)

where Π is a permutation matrix of order N decided by algorithms such as LLL-P, V-

BLAST, or SQRD (see [37] and the references therein), Q = [Q1,Q2] ∈ CK×K is unitary,

and R ∈ CN×N is upper triangular. The reduced ILS problem is expressed as:

min
s̄∈B
||ȳ − R̄s̄||2 (3.13)

where ȳ = Q1
Hy, R̄ = RΠHAΠ, and s̄ = ΠHs. For later convenience, we define the

permuted matrix Ā = ΠHAΠ = diag(
√
P̄1, . . . ,

√
P̄N), where P̄i denotes the power al-

located to s̄i. Note that the optimization problem (3.11) is NP-hard. To efficiently find

3An overdetermined system is often defined as one for which K > N ; however, to simplify the presen-
tation, we include the case K = N as part of this condition.
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a reasonable estimate of s̄, a sub-optimal solution called the Babai point s̄B is of inter-

est instead [37, 90]. The determination of s̄B involves a sequence of element-wise (binary

searches) where at each step, starting from the bottom row of ȳ − R̄s̄ and moving up,

previously detected signals are canceled followed by nulling of the residual. This process

can be described as follows:

s̄i =

⌊
(ȳi −

N∑
j=i+1

r̄ij s̄j)/r̄ii

⌉
, (3.14)

for i = N, . . . , 1, where ⌊·⌉ denotes the nearest integer in {−1,+1}. The Babai point for

estimating s is thus sB = Πs̄B.

We note that the Babai estimator is designed to trade accuracy for low detection com-

plexity. A hard decision on each s̄i is used in Babai estimation since the interfering effect of

detected signals needs to be removed at each iteration. Therefore, this could lead to error

propagation in the successive cancellation process and cause the performance degrada-

tion compared to a soft decision on the complete set of signals s̄i, i = 1, . . . , N . However,

since the detection at each iteration depends on the information from previous iterations,

the soft decision has much higher complexity as it requires the cancellation process to

repeat multiple times to obtain enough information, i.e., all possible Euclidean distances

from the received signals to the constellation points, for decision making.

3.2.3 Formulation of Regularized ILS

According to (3.14), Babai estimation finds a solution to the problem (3.11) for the over-

determined system, i.e., when K ≥ N ; however, it fails for the under-determined system,

i.e., when K < N . In such a case, (3.12) generates a K × N upper-trapezoidal matrix

R that has N − K + 1 nonzero entries in the Kth row. The additional non-zero terms

create difficulties in the successive estimation of s̄i for i = N, . . . ,K in (3.14). Specifically,
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following the QR decomposition of (3.1), we obtain:

ȳi = r̄iis̄i +
N∑

j=i+1

r̄ij s̄j + n̄i, (3.15)

where n̄i is the ith entry of n̄ = QH
1 nR. The interfering term

∑N
j=i+1 r̄Kj s̄j in (3.15) causes

error propagation in the successive estimation process, undermining the reliability of the

estimates s̄i.

To overcome this problem, we can regularize the cost function in (3.11) and formu-

late the regularized problem as an over-determined system with extended dimensions, to

which (3.14) can be applied. Specifically, the ILS problem (3.11) is equivalent to:

min
s∈B
||y −HAs||2 + λ||As||2, (3.16)

where λ > 0 is a regularization parameter. Since ||As||2 is constant under the constraint

s ∈ B, if s∗ is the optimal solution to (3.11), it is also the solution to (3.16). Once λ is

determined, problem (3.16) can be formulated as:

min
s∈B
||y̆ − H̆As||2, (3.17)

where y̆ = [yT ,0T
N×1]

T and H̆ = [HT ,
√
λIN×N ]

T . Since the dimension of H̆ is extended to

(K +N)×N , Babai estimation can be applied directly to solve (3.17). We thus can obtain

a reduced system similar to (3.13) , but with corresponding variables given by ȳ = Q̆H
1 y̆,

R̄ = R̆Π̆HAΠ̆, s̄ = Π̆Hs, where matrices Q̆ = [Q̆1, Q̆2], R̆ and Π̆ now refer to the QR

decomposition of H̆ as in (3.12).

The regularization parameter λ, whose choice is usually related to the noise variance

σ2, affects the efficiency of general search algorithms such as sphere decoding [91, 92]. In

the context of Babai estimation, the regularized system corresponding to (3.16) is written
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as: y
0

 =

 H
√
λI

As+

 nR

−
√
λAs

 . (3.18)

Since the noise and the signal vectors nR and s are independent, n̆R = [nT
R, (−

√
λAs)T ]T

has the covariance matrix Σ̆ = diag(σ2, . . . , σ2, λP1, . . . , λPN). After the QR reduction,

the variance of the ith entry of n̄ = Q̆H
1 n̆R is a weighted arithmetic mean of the diagonal

entries of Σ̆, given by:

q̆H
i Σ̆q̆i =

K∑
j=1

q̆2ijσ
2 +

N−K∑
l=1

q̆2i,K+lλPl, (3.19)

where q̆i is the ith column vector of Q̆1. On the one hand, a small value of λ is desirable

to reduce the noise variance and its harmful effects on the estimation accuracy. On the

other hand, too small a value of λ can make the matrix H̆ ill-conditioned, which may

create numerical instability in the estimation process. In practice, we find that λ should

be chosen so that the noise variances for n̄ and nR are on the same level. In light of the

power constraint Pi ≤ PT and considering the variance expression in (3.19), we adopt

λ = σ2/PT as the regularization parameter for the Babai estimation in this chapter.

3.2.4 The Proposed Algorithm

There still remain some issues regarding SIC and Babai estimation. As pointed out ear-

lier, under power constraint on the user terminals, i.e. Pi ≤ PT , the performance of SIC

will degrade as N increases. Besides, the ILS regularization in (3.16) is achieved via the

introduction of a non-informative term λ||As||2, which is equivalent to the injection of ex-

traneous noise in an augmented system as seen in (3.18)-(3.19). When N ≫ K, this noise

becomes a dominant factor in the solution of (3.17), which ultimately limits the ability of

Babai estimation to resolve the user signals.

To overcome these problems, we propose a new algorithm that combines SIC and

Babai estimation to efficiently solve problem (3.11) in the under-determined case K < N .

The algorithm derivation relies on two main ideas. First, we note from (3.15) that after
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the QR decomposition, there only remain N − K + 1 superimposed users signals in ȳK ,

instead of the N original signals. From the perspective of SIC, this operation is beneficial

since it allows for larger power differences among the remaining signals. This suggests

that we only apply SIC to extract {s̄i|i = K, . . . , N} from ȳ, thereby taking advantage

of the reduced number of colliding signals. Second, if a portion of the user signals, say

N −L > 0, can be removed from the detection before the application of Babai estimation,

this will reduce the regularized system dimension, i.e., lessen the gap between N and

K from N − K to L − K. Consequently, this will limit the harmful effects of the non-

informative term λ||As||2 on the solution of the regularized ILS problem, as discussed

above.

To be specific, the proposed algorithm, which is presented as Algorithm 2, starts with

a QR reduction of the original system (3.11). Under the assumption K < N , this yields:

ȳ = QH
1 y, Ā = ΠHAΠ, R̄ = RĀ, (3.20)

where Q = [Q1] ∈ CK×K is unitary and Π is a permutation matrix of order N so that

|r̄K,i| ≤ |r̄K,j|, ∀i < j ∈ {K, . . . , N}. The original system is now reduced to (3.13) where

s̄ = ΠHs.

The SIC detection is then executed, aiming to resolve the last N −K+1 signals {s̄i|i =

K, . . . , N} of s̄ from ȳK . Let γi denote the SINR at iteration i, and let L denote the first

value of i, as this index decreases from N to K, at which the condition on the required

SINR for SIC detection is no longer met, i.e. γL < γ0 for some threshold γ0. At this point,

the SIC process is interrupted and we set s̄L = [01×L, s̄L+1, . . . , s̄N ]
T . The algorithm then

cancels the effect of the detected signals in s̄L from ȳ and generates related quantities as

follows:

yT = ȳ − R̄s̄L, sT = Ts̄

HT = RTT , AT = TĀTT
(3.21)
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where T = [IL,0L×(N−L)] is a truncation matrix.

The above steps lead us to the following truncated ILS problem with reduced dimen-

sion:

min
sT∈{−1,+1}L

||yT −HTAT sT ||2, (3.22)

where the aim is to determine the remaining user signals in sT . If L = K, the problem is

overdetermined (see footnote 3) and Babai estimation as described in (3.14) can be applied

directly to (3.22). If L > K, however, the truncated problem is under-determined and ILS

regularization of (3.22) is needed prior to Babai estimation.

Proceeding as in Section 3.2.3, we define:

y̆T = [yT
T ,0

T
L×1]

T , H̆T = [HT
T ,
√
λIL]

T . (3.23)

We next perform the QR decomposition of H̆T , which gives the unitary matrix Q̆T =

[Q̆T1, Q̆T2] ∈ C(K+L)×(K+L), the permutation matrix Π̆T of order L based on the CH algo-

rithm in [87], and the upper triangular matrix R̆T = Q̆H
T1H̆T Π̆T ,. With the help of this

decomposition, the regularized system is reduced to

min
s̄T∈{−1,+1}L

||ȳT − R̄T s̄T ||2, (3.24)

where s̄T = Π̆H
T sT and

ȳT = Q̆H
T1y̆T , R̄T = R̆T ĀT , ĀT = Π̆TAT Π̆

H
T

(3.25)

At this point, Babai estimation can be applied to solve (3.24).
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Algorithm 2 The proposed algorithm
1: procedure QR-FACTORIZATION:
2: Input: H, A, y.
3: QR decomposition: [Q,R,Π] = qr(H)
4: Return: ȳ, Ā, R̄. ▷ Refer to (3.20)
5: end procedure
6: procedure PARTIAL DETECTION USING SIC
7: Initialize: i = N, ȳ(i) ← ȳK .
8: while i > K do
9: if γi ≥ γ0 then

10: Detect s̄i from y(i):

s̄i ← arg min
ξ∈{−1,+1}

|ȳ(i) − r̄K,iξ|2.

11: Cancel the effect of s̄i:

ȳ(i−1) ← ȳ(i) − r̄K,is̄i.

12: else Break while
13: end if
14: i = i− 1.
15: end while
16: Return L = i, s̄L = [0, s̄L+1, s̄L+2, . . . , s̄N ]

T .
17: Removing the effect of s̄L.
18: Obtain: yT , HT , AT . ▷ Refer to (3.21)
19: end procedure
20: procedure REGULARIZED ILS
21: Regularization of the truncated system.
22: Obtain: y̆T , H̆T ▷ Refer to (3.23)
23: QR reduction of the regularized ILS system.
24: Obtain: ȳT , R̄T , ĀT ▷ Refer to (3.25)
25: Apply Babai estimation to solve:

min
s̄T∈{−1,+1}L−1

||ȳT − R̄T s̄T ||2

▷ Refer to (3.14)
26: Return: s̄T
27: end procedure
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3.3 Power Allocation and User Pairing

In this section, a power allocation scheme for the proposed method that combines Babai

estimation and SIC is developed. An optimal selection strategy for user pairs is also

presented based on the decoding error probability.

3.3.1 Power Allocation for Babai Estimation

The comprehensive performance analysis of Babai estimation for overdetermined ordi-

nary and box-constrained ILS problems can be found in [37, 87, 93]. Key results from

these studies indicate that in the absence of a power allocation mechanism and when the

noise level is small, the success probability, i.e., Pr(sB = s) where sB is the Babai point,

is upper bounded by a function of the determinant of the upper triangular factor from

the QR decomposition (see (3.11)-(3.12)). Furthermore, the upper bound is reached if the

diagonal entries of this matrix factor are identical.

In the context of Algorithm 2, Babai estimation is applied to (3.24) where the upper

triangular matrix R̄T (following the QR decomposition of H̆T ) is given by:

R̄T = R̆T ĀT =


√
P̄ ′
1r̆11 . . .

√
P̄ ′
Lr̆1,L

. . . ...√
P̄ ′
Lr̆L,L

 , (3.26)

where ĀT = diag(
√
P̄ ′
1, . . . ,

√
P̄ ′
L) is the corresponding power allocation matrix of s̄T

after the permutation Π̆T . According to the stated property of the success probability, it

is desirable that the diagonal entries of R̄T be equal, i.e.:

P̄ ′
i |r̆ii|2 = η, ∀i ∈ {1, . . . , L}, (3.27)

where η is a constant. However, when considering the power constraint on the user termi-

nals, i.e. P̄ ′
i ≤ PT , power allocation based on (3.27) is not always practical. Indeed, when
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matrix R̆T is ill-conditioned, i.e. max{|r̆ii|}/min{|r̆ii|} ≫ 1, the fulfillment of (3.27) for

larger |r̆ii| requires the transmitted power P̄ ′
i needs to be very small, causing the additive

noise to become overwhelming during the detection.

Instead of equalizing the diagonal entries of R̄T , we could try to maximize the SNR

of each received user signal. Assuming perfect cancellation at each iteration of the Babai

estimation, the SNR of the ith user signal in s̄T is given by:

τi = P̄ ′
i |r̆ii|2/σ2

i , i = 1, . . . , L, (3.28)

where σ2
i is the noise variance after the regularization and the QR reduction, which is

given by σ2
i = q̆H

T1iΣ̆T q̆T1i, where Σ̆T = diag(σ2, . . . , σ2, λP̄1, . . . , λP̄L) and q̆T1i is the

ith column vector of Q̆T1 in (3.25). While the SNR in (3.28) is maximized by allocating

maximum power to each user, i.e. P ′
i = PT , this approach cannot be employed here.

Indeed, we note from (3.15) that some of the user signals contained in sT , specifically s̄i

for i = K, . . . , L, will interfere during the SIC process of Algorithm 2, which is aimed

at removing the last N − L signals in s̄L from ȳ prior to the Babai estimation. Hence,

the elaboration of an adequate power allocation also requires consideration of the SIC

process, which is discussed in next.

3.3.2 Power Allocation for SIC

Let’s consider the power allocation for the user signals detected during the SIC process,

i.e., {s̄i| i = L+ 1, . . . , N}. Referring to (3.8), (3.20) and the SIC procedure in Algorithm 2,

the SINR of s̄i is given by:

γi =
P̄i|rK,i|2∑i−1

j=K P̄j|rK,j|2 + σ2
, (3.29)

where the noise variance σ2 is preserved by the unitary transformation Q1. Assuming per-

fect interference removal, a reliable estimate of s̄i is achieved if it is sufficiently stronger

than the remaining interference plus noise. This requires γi to exceed a given threshold,

say γi ≥ γ0, i = L+ 1, . . . , N. On the one hand, the greater the value of γi, the more
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reliable is the estimate of s̄i is. On the other hand, each s̄i (except for s̄N ) is seen as inter-

ference to its predecessors in the SIC process, suggesting that γi for i = L + 1, . . . , N − 1

be also restrained. Considering this trade-off, a suitable approach for the selection of the

powers P̄i under the constraint P̄i ≤ PT , is to maximize the minimum value of γi [94]. The

problem can be formulated as:

max
{P̄i}Ni=L+1

min {γi| i = L+ 1, . . . , N} (3.30a)

s.t. P̄i ≤ PT , i = L+ 1, . . . , N, (3.30b)

where in this discussion, the values of P̄K , . . . , P̄L are assumed to be fixed. We find that

the direct solution of such a maximin problem is quite challenging. Alternatively, we

therefore replace problem (3.30) by the following more tractable form, where the goal is

to maximize a lower bound on the SINRs γi:

max
{P̄i}Ni=L+1,γ

γ (3.31a)

s.t.
P̄i|rK,i|2∑i−1

j=K P̄j|rK,j|2 + σ2
≥ γ, (3.31b)

P̄i ≤ PT , i = L+ 1, . . . , N. (3.31c)

To solve problem (3.31), we first express constraint (3.31b) into the following form:

P̄i|rK,i|2 ≥ γ(
i−2∑
j=K

P̄j|rK,j|2 + σ2 + P̄i−1|rK,i−1|2) (3.32)

where the last term is constrained as:

P̄i−1|rK,i−1|2 ≥ γ(
i−2∑
j=K

P̄j|rK,j|2 + σ2). (3.33)
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Substituting (3.33) into (3.32) and proceeding iteratively for i = N, . . . , L+ 2, we obtain a

relaxed set of conditions:

P̄i|rK,i|2 ≥ γ(γ + 1)i−L−1ς2, i = L+ 1, . . . , N, (3.34)

where

ς2 =
L∑

j=K

P̄j|rK,j|2 + σ2 (3.35)

is the variance of the interfering terms from the perspective of s̄L+1. For the largest value

of γ satisfying each inequality in (3.34), we have:

P̄i|rK,i|2 = γ(γ + 1)i−L−1ς2, i = L+ 1, . . . , N. (3.36)

Since P̄i|rK,i|2/P̄i−1|rK,i−1|2 = γ + 1 > 1, we infer that P̄i|rK,i|2 is decreasing as index i

runs from N to L + 1. Note that signal s̄N is the first one to be canceled and hence does

not interfere with the detection of the remaining signals. For this reason, the maximum

power can be assigned to this signal, i.e., P̄N = PT , such that:

PT |rK,N |2 = γ(γ + 1)N−L−1ς2, (3.37)

from which γ can be obtained.

3.3.3 Power Allocation for Proposed Algorithm

Referring to (3.25)-(3.24), let us represent permutation matrix Π̆T of order L by a bijection

π of {1, . . . , L} onto itself, mapping index i of sT to index j = π(i) of s̄T , so that s̄i = s̄Tj and

accordingly, P̄i = P̄ ′
j . Since the signals s̄i for i = K, . . . , L are detected as part of the Babai

estimation process, it is desirable for their SNRs to be as large as possible. This suggests

that the value of ς2 in (3.35), which involves P̄i for i = K, . . . , L, can not be too small.
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However, considering (3.37), we see that under a power constraint, this requirement on

ς2 conflicts with that of maximizing γ.

To overcome this difficulty, we modify the single objective problem (3.31) into a multi-

objective optimization problem over γ for the SIC process and τi, i = 1, . . . , L, for the

Babai estimation. The modified problem is formulated as:

max
{P̄i}Li=1,γ

[γ, τ1, . . . , τL], (3.38a)

s.t. P̄T |rK,N |2 = γ(γ + 1)N−L−1ς2 (3.38b)

P̄i ≤ PT , for i = 1, . . . , L, (3.38c)

where ς2 is given in (3.35) and P̄i = τjσ
2
j/|r̆jj|2 with j = π(i).

There exist several approaches [95] to solve the multi-objective problem (3.38). Here,

we adopt the weighted-sum method, which aggregates the multiple objectives into a sin-

gle objective via a linear combination with positive weight. Since all user signals are of

equal importance in the network coding process, it is fair to consider that variables γ and

τi are also equally important. In addition, γ has an influence on the detection performance

of N − L user signals. Hence, we assign the weight N − L to γ and a unit weight to each

τi for i = 1, . . . , L. The problem (3.38) is then converted into:

max
{P̄i}Li=1,γ

(N − L)γ +
L∑

j=1

τj (3.39a)

s.t. P̄T |rK,N |2 = γ(γ + 1)N−L−1ς2, (3.39b)

P̄i ≤ PT , for i = 1, . . . , L. (3.39c)

Since problem (3.39) involves a single objective with non-linear constraint, a standard

nonlinear programming solver can be applied to obtain the solution, denoted as {P̄ ∗
i }Li=1
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and γ∗. The power allocation in terms of P̄i is thus given as:

P̄i =


P̄ ∗
i , i = 1, . . . , L

γ∗(γ∗ + 1)i−L−1ς∗2/|rK,i|2, i = L+ 1, . . . , N

, (3.40)

where ς∗2 =
∑L

i=K P̄
∗
i |rK,i|2 + σ2, and γ0 = γ∗ is set as the threshold for stopping the SIC

process. Finally, the desired powers Pi of the transmitted signals in (3.1) can be obtained

by applying an inverse permutation of Π in (3.20) to P̄i for i = 1, . . . , N .

3.3.4 User Pairing Strategy

1
2

3
4

5
6

Fig. 3.3: Illustration of the tree structure of the sequential pairing strategy Cseq in a 6-way

relay network. The graph demonstrates a process where user 3 decodes all other user

signals by proceeding through the branches in two directions.

As explained in Section 3.1, the detected user signals at the relay need to be encoded

into network codes. The pairing strategy, represented by the set C of pairs (i, j), will

influence the decoding performance of user terminals in the BC stage. For this reason, it

is worth considering an optimal selection strategy for the user pairs at the relay.

From the perspective of graph theory, a valid strategy C can be represented as a tree,

where the N users and the N − 1 user pairs form the vertices and edges respectively,

and each pair of vertices in the tree is connected by a unique path. Taking a 6-way relay

network as an example, the graph of a sequential pairing strategy Cseq (see (3.2)) takes

the form of the tree depicted in Fig. 3.3. The iterative decoding process in a specific user

terminal, as given by (3.7) for Cseq, is equivalent to a walk in tree, starting from the vertex
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of that user, and progressing towards the other users. In general, when a user terminal i

decodes the signal of a user j, the corresponding path along the tree C is given by:

L(i,j) = {(i, a), (a, b), . . . , (d, j)} ⊂ C, (3.41)

where a, b, . . . , d represent the intermediate vertices.

Let us denote by ψij the decoding error probability of signal sj in user terminal i.

Essentially, ψij depends on the network codes sαβ , where (α, β) ∈ L(i,j). The reliability of

sαβ is related to both up-link and down-link transmissions, which can be characterized by

error probabilities ψul
(α,β) and ψdl,i

(α,β) respectively. For binary signaling, a correct code sαβ is

generated in the MA stage when two correct or two wrong decisions are made on sα and

sβ . Hence, ψul
(α,β) can be expressed as:

ψul
(α,β) = ψeα(1− ψeβ) + ψeβ(1− ψeα), (3.42)

where ψeα and ψeβ represent the error probabilities for the estimation of signals sα and sβ

at the relay. The probability ψdl,i
(α,β) is determined by the quality of the link from the relay

to user i during the BC stage, as represented by (3.6). Under the slow fading assumption

for the downlink channels, the error probabilities ψdl,i
(α,β) can be regarded as identical for

different edges (α, β) ∈ L(i,j).

We note that an odd number of incorrect codes along L(i,j) leads to a wrong decision

on sj , while an even number leads to a right decision. Hence, obtaining the exact value

of ψij requires a careful consideration of the error propagation effects which entails high

computational costs. For simplicity, we approximate these effects by adopting a high SNR

assumption as proposed in [96], i.e., ignoring even numbers of propagated errors whose

small probabilities have negligible influence on ψij . Numerical results later demonstrate

that our approximation approach has a comparable effect to that observed in [96]. As-

suming independence of the uplink and the downlink transmissions, ψij is hence given
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by:

ψij = 1−
∏

(α,β)∈L(i,j)

(1− ψul
(α,β))(1− ψ

dl,i
(α,β)). (3.43)

For a given pairing strategy C, the average decoding error probability can be ex-

pressed as:

ψavg
e =

1

N2 −N

N∑
i=1

N∑
j=1,j ̸=i

ψij, (3.44)

where ψij is given by (3.43).Finally, an optimal strategy C∗ can be found by an extensive

search over all valid pairing strategies C so that the minimum ψavg
e is achieved:

C∗ = argmin
C
ψavg
e . (3.45)

In (3.45), the search space consists of all the spanning trees of a simple undirected con-

nected graph onN vertices [97], the size of which is determined by Cayley’s Formula [98].

In this work, the various error probabilities entering the calculation of the objective (3.44)

are obtained through a simulation approach.

3.4 Simulation Experiments and Discussions

This section presents numerical evaluation results of the proposed scheme for PNC in

MWRC. To this end, we use Monte Carlo experiments based on the following system

configuration. BPSK signaling is adopted at both the relay and the user terminals, whose

maximum transmitting power is normalized to PT = 1. We assume the various radio

links to be Rayleigh fading, i.e., the entries of the channel matrix H in (3.1) are modeled

as independent complex circular Gaussian random variables with zero mean and unit

variance. The noise variance at each receiving antenna is adjusted to obtain the desired

SNR level. To simplify the discussion and minimize the effects of indirect factors in the
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performance comparison among the different estimation schemes , we consider uncoded

systems as in, e.g., [99]. 4

3.4.1 Conventional SIC and Babai Estimation
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Fig. 3.4: BER performance of conventional SIC and Babai estimation for different choices

of N and K

4Indirect factors, such as channel coding which adds redundant bits to the transmitted data stream for
error corrections, can improve the BER performance regardless of what estimation scheme is employed.
However, the use of such techniques can push down the BER values to an extremely low level where it can
be more difficult to observe meaningful gains brought by the use of different estimation schemes. For this
reason, we demonstrate the system performance in our simulations by only considering uncoded systems
to avoid any ambiguity caused by these indirect factors. Nevertheless, the integration of channel coding
within the proposed schemes remains worthy of investigation for real-world applications.



3.4 Simulation Experiments and Discussions 50

We begin by investigating the BER performance of the conventional SIC and the Babai

estimation in solving underdetermined systems. Fig. 3.4(a) shows the BER performance

of SIC for K = 3 relay antennas and different numbers of user N . We can observe that

as N increases from 4 to 7 in this case the BER increases rapidly at any given SNR level.

This effect, which is caused by the reduction of the power difference between the user

signals as N increases, illustrates the fundamental limitation of SIC discussed in Section

3.2.4. Fig. 3.4(b) shows the BER performance of Babai estimation for N = 6 users and

different numbers of antennas K. It is seen that as K increases from 2 to 5, the BER

decreases rapidly at any given SNR level. This result illustrates the harmful effects of the

non-informative term in (3.16) when the system becomes severely rank deficient.
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 ( 2)
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Fig. 3.5: Impact of λ on the BER performance for Babai estimation.
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Next, we investigate the effect of the regularization parameter λ in (3.16) on the per-

formance for Babai estimation. Fig. 3.5 illustrates the BER versus λ = ℓσ2 with ℓ ∈

{0.05, 0.1, 0.2, 0.5, 1, 1.5, 5, 10, 20} for different SNR levels under configuration N = 6, K =

4. It can be seen that the best performance5 is obtained when λ ≈ σ2/PT = σ2, which

supports our proposed choice for this parameter in Section 3.2.3.

3.4.2 Evaluations of Proposed Method
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Fig. 3.6: BER performance of the proposed algorithm, conventional SIC, Babai estimation,

MMSE estimation and ML estimation for N = 6 and K = 2.

5We note that different combinations of N and K will result in different BER vs λ curve. However, the
trend of these various curves is similar to that exhibited in Fig. 3.5: in particular, the best performance is
achieved when λ ≈ σ2. For this reason, we only consider a system with N = 6 and K = 4 for demonstration.
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Fig. 3.6 compares the BER performance of the proposed Algorithm 2 to the conven-

tional SIC and Babai estimation in the case N = 6 and K = 2. Results of minimum

mean square error (MMSE) and ML estimations are also presented as benchmarks for

comparison. A specific power allocation scheme is used for each one of these methods as

exposed in Section 3.3, in order to optimize performance. From the result, we note that

the Babai estimation slightly outperforms the other two methods in the low SNR range

from 0dB to 12dB, but its advantage quickly disappears afterward. Beyond this point, our

proposed Algorithm 2 with power allocation (3.40) exhibits the best performance, with a

rapid falloff in BER as the SNR increases. Although the performance of SIC is superior to

Babai estimation at high SNR, the gains are limited compared to the proposed algorithm.

From the result, we also note that conventional MMSE estimation is not effective in solv-

ing under-determined problem while the ML estimation achieves the best performance

at a cost of exhaustive search for the optimal solution.

In Fig. 3.7, we investigate the throughput performance of the proposed algorithm,

which is defined as the rate of correct signal detection at the relay. For the sake of com-

parison, we also consider the Atom I building block structure in [28], which decomposes

the network into N − 1 subnets to allow simultaneous transmission from only 2 users at

a time (TWRC). This is in contrast to the proposed algorithm which allows simultane-

ous transmission from all N users (MWRC) during the MA stage. Specifically, Fig. 3.7

shows the throughput versus SNR for K = 4 and N ∈ {6, 8}, as obtained by transmit-

ting 50 × 103 symbols from each user within a common time interval for both schemes.

The results clearly illustrate the advantages of the proposed MWRC detection algorithm,

which leads to a nearly 4dB SNR gain over the Atom I TWRC scheme. Indeed, under the

constraint of a fixed transmission time, Atom I must reduce the amount of time allocated

to each subnet, which tends to increase the error rate for the individual user signals.

Next, we compare the decoding complexity of Algorithm 2 to a constellation design

approach, i.e., the minimal constellation distance maximization in [30]. The decoding

complexity here refers to the number of constellation points that need to be searched at the
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Fig. 3.7: Throughput performance of the proposed algorithm and the Atom I building

block approach [28].



3.4 Simulation Experiments and Discussions 54

3 4 5 6

Number of users (N)

0

10

20

30

40

50

60

70

D
ec

od
in

g 
C

om
pl

ex
ity

Proposed approach
Constellation design approach

Fig. 3.8: Decoding complexity for the proposed algorithm and the constellation design

approach [30].
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relay for signal detection, assuming BPSK signaling. In our algorithm, due to its sequen-

tial nature, this number is simply 2N ; for the algorithm in [30], the complexity is obtained

by simulations6. Fig. 3.8 illustrates the decoding complexities versus the number of users

N for the two approaches. We note that our approach has a linear growth in complex-

ity with N , which is a prominent advantage over the constellation design method. The

latter needs to generate a large size constellation to avoid the codeword ambiguity as N

increases, e.g., it is 64 when N = 6 in this experiment. Due to this nature, its decoding

complexity grows exponentially with N .
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Fig. 3.9: CPU time for the proposed algorithm and the searching algorithm.

The effectiveness of Algorithm 2 in reducing the computational complexity of the es-

timation process is further demonstrated by comparing it to the sphere decoding (SD)

approach [100], which is a widely used iterative search algorithm for solving ILS prob-

lems. Fig. 3.9 shows the consumed CPU time per user symbol versus the number of users
6We note that the method in [30] assumes an additive white Gaussian noise (AWGN) channel and does

not perform well over Rayleigh channels. For this reason, AWGN is used in order to evaluate its decoding
complexity. We also note that the case of BPSK corresponds to the choice M = 2 in [30].
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N for both algorithms under K ∈ {2, 4}. We note that the CPU time of Algorithm 2 is

significantly less than that consumed by SD. Indeed, due to the system’s rank deficiency,

the latter algorithm needs to search back and forth repeatedly to detect a given user sig-

nal, which is often costly. Meanwhile, the proposed algorithm can better cope with the

rank deficiency by combining two different sequential process, namely SIC and Babai

estimation, which simplifies the search process and allows for a significant reduction in

complexity.
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Fig. 3.10: Comparison between the approximation approach used in ψij in (3.43) and the

one adopted in [96].

In order to demonstrate the applicability of the proposed algorithm with higher mod-

ulation schemes, we also conduct an experiment using the QPSK modulation. Fig. 3.11(a)

shows the BER performance of BPSK and QPSK modulations when N = 6 and K = 2.

From the result, a 3 to 4 dB performance loss for the QPSK modulation is observed. We



3.4 Simulation Experiments and Discussions 57

note that the results are obtained from an uncodThe observed performance degradation

in fgoing from BPSK to higher order modulation QPSK is reasonable for a system operat-

ing in the presence of multi-user interference. Fig. 3.11(b) shows the decoding complexity

versus the number of users for the two modulation schemes. Although higher than that

of the BPSK modulation, the complexity of the QPSK modulation remains linear with

respect to N which is still efficient.
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Fig. 3.11: BER performance and decoding complexity of the proposed algorithm with

QPSK modulation.
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3.4.3 User Pairing Strategy

In this part, we investigate the effect of the selected pairing strategy C on the performance

of network coding in MWRC. To begin, we validate the approximation used in the deriva-

tion of the error probability (3.43) by comparing the results with the approach from [96],

which also relies on the SNR assumption. Fig. 3.10 shows the average downlink BER

versus the error probability of sequentially paired network codes at the relay, when eval-

uated according to the two approximation approaches for N ∈ {4, 8}. From this figure,

we find that the BER curves for the two approaches exhibit a similar linear trend and re-

main reasonably close to each other.This shows that our approach has a similar effect to

that of [96] when approximating the error propagation.

4 6 8 10 12 14 16 18 20

SNR (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

B
E

R

Optimal pairing
Least effective pairing
Sequential pairing

N=6, K=2

N=5, K=2

Fig. 3.12: BER performance for different user pairing strategies.
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Fig. 3.13: Comparisons between the optimal strategy and the star-shape strategy of [101].

The corresponding BER performances of the two strategies are evaluated in both the pro-

posed system and the non-simultaneous decode-and-forward system of [101].
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Next, we consider three different strategies: the sequential strategy Cseq defined in (3.2)

and commonly adopted in the literature [30]; the proposed optimal strategy C∗ defined

as the optimal spanning tree minimizing the average decoding error probability in (3.45);

and a so-called least effective strategy Cw, defined as the spanning tree that yields the

worst performance in (3.45). Fig. 3.12 shows the BER versus SNR obtained with these

three strategies for two different system configurations, corresponding to K = 2 and N ∈

{5, 6}. It is observed that the proposed optimal strategy C∗ leads to a notable reduction

in the BER when compared to the other two strategies, especially in the case N = 6,

where the conventional strategy Cseq provides only a marginal improvement over the least

efficient strategy Cw.

Finally, we compare our optimal pairing strategy with the star-shape pairing strategy

in [101], which pairs the signal from the user having the maximum channel gain with

each one of the remaining signals. We incorporate each strategy in both the proposed

system and the non-simultaneous system of [101], and then evaluate the corresponding

average BER versus SNR. Fig. 3.13(a) and Fig. 3.13(b) respectively show the performance

comparison between the two pairing strategies in each system. Due to the existence of

multiuser interference in our system, the use of the signal with the maximum channel

gain in the star-shape strategy does not yield the optimal performance, as shown in Fig.

3.13(a). In contrast, in a system with non-simultaneous transmission where multiuser

interference does not exist, the performance of both strategies is identical, as seen in Fig.

3.13(b).

3.5 Chapter Summary

In this chapter, we considered an uplink MWRC scenario for PNC, where N users, each

with single antenna, simultaneously transmit their signals to a relay equipped with K

antennas (K < N ). A novel detection scheme was proposed at the relay to iteratively re-

solve user signals and remove their interfering effects from the signal set. The proposed
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scheme combines a conventional SIC and a regularized ILS solution using Babai estima-

tion to solve an underdetermined ILS problem. We developed a power allocation scheme

for the proposed method, and also investigated an optimal user pairing strategy to reduce

the decoding error rate at the user terminals. Simulation results revealed the achievable

performance improvement of the proposed method in the detection of network codes for

PNC in MWRC. While this chapter focused on the signal processing aspects of PNC in

MWRC, the further consideration of related information theoretic aspects (e.g., achievable

rate region), remains an interesting avenue for future work.
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CHAPTER 4

Optimal Power Allocation Based on Success
Probability for Downlink PNC in Multi-way Relay
Channels

In this chapter, we propose novel power allocation schemes for PNC in downlink MWRC.

The power allocation is formulated as a constrained optimization problem, where the aim

is to maximize the probability of successfully decoding a chain of network code, termed

success probability, under a total power constraint when using Babai estimation for sig-

nal detection. Specifically, to meet the different requirements for quality of service in

applications, we consider different aggregate measures of success probability over the

participating user terminals, i.e.: arithmetic mean, geometric mean, and maximin. For

each measure, we formulate a constrained optimization and solve the problem accord-

ingly based on its concavity. We first use an evolutionary PSO algorithm to solve the

problem for the arithmetic mean, which is non-concave. We then formulate and itera-

tively solve an alternative concave problem for this measure. We also obtain the solutions

of the other two problems for the geometric mean and maximin, which are concave via

iterative search methods. The proposed power allocation schemes for downlink PNC in

MWRC are evaluated using computer simulations over Rayleigh fading channels. The

results demonstrate the effectiveness of the proposed schemes in improving the success

probability in the reception of a chain of network codes.
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4.1 System model

In this section, we introduce the system configuration and the downlink transmission

model for PNC in MWRC.

4.1.1 System Configuration

The general setup for download PNC in MWRC is illustrated in Fig.4.1. The relay, say R,

is equipped with K antennas, while each user terminal, say Ui, i = 1, . . . , N , is equipped

with M antennas. In this work, we focus on the so-called overdetermined problem where

M ≥ K. In practice, this corresponds to a situation where R and Ui are of similar scale,

such as in collaborations among multiple base stations [102] or among mobile devices

in vehicle-to-vehicle (V2V) communications [103] 1. The radio channel between R and

Ui is assumed to be flat fading, and therefore represented by a matrix Hi ∈ CM×K . It is

assumed that R has full knowledge of all the channels while each Ui has knowledge of

its respective channel Hi. Each Ui has a message to share with all other users, which is

denoted asmi ∈ Fq, where Fq is a finite integer field of q elements. It is assumed that these

messages are available at R, following uplink transmission as in [104, 105].

In the downlink stage, R uses the messages in the set {m1,m2, ...,mN} to generate a

code vector c = [c1, c2 . . . , cN−1]
T ∈ FN−1

q , consisting of N − 1 codewords ci to be broad-

cast to the N users over multiple time slots. To be specific, each entry ci is generated

through the application of a network coding function ϕ on a pair of user messages, i.e.,

(mi,mj), i ̸= j. In this work, the function ϕ : F2
q → Fq is chosen as the modulo-q addition

of its operands. That is, for any two integers a, b ∈ Fq, we define:

ϕ(a, b) = a⊕ b = (a+ b) mod q (4.1)

1For clarification, in Chapter 3, we considered an underdetermined problem for the uplink relay recep-
tion where the number of users is greater than the number of receiving antennas at the relay (N > K). In
this chapter, we focus instead on an overdetermined problem for the downlink user reception where the
number of receiving antennas at users can realistically be greater than the number of transmitting antennas
at the relay (M ≥ K).
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Fig. 4.1: Downlink model of PNC in MWRC. The relay broadcasts N − 1 network codes

to the users, which then use Babai estimation to decode messages from the other users.

For MWRC, there exist several ways to generate c [101]. Since our focus is on the down-

link transmission, we select the sequential pairing strategy for simplicity, which is given

as:

ci = ϕ(mi,mi+1), i = 1, . . . , N − 1 (4.2)

4.1.2 Downlink Transmission

The transmission scheme of downlink PNC in MWRC is described as follows. The relay

R breaks up c into T = ⌈(N − 1)/K⌉ packets, where ⌈·⌉ denotes the ceiling function. Each

packet can be expressed as a length-K vector2 ct ∈ FK
q where the index t ∈ {0, 1, . . . , T−1}.

The relay R then broadcasts the packet ct to all users over T consecutive time slots.

To this end, the relay maps each ct to a baseband signal vector s(t) ∈ CK for the

transmission. The mapping is implemented element-wise through a bijective function

φ : Fq → B, where B with cardinality q represents the transmitted signal constellation.

2To simplify the analysis, we ensure that every packet is of length K by appending a vector c̄ ∈ Fl
q ,

consisting of l = KT − (N − 1) pseudo codewords, to c. We assume that c̄ is known to all terminals prior
to the communication, so that it can be correctly removed by any receiving terminal.
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Specifically, denoting by si(t) and ct,i the i-th entries of s(t) and ct, respectively, we have:

si(t) = φ(ct,i), for i = 1, 2, ..., K. (4.3)

The set B depends on the particular modulation scheme employed for digital transmis-

sion. To simplify our discussion, we hereby set q = 2 and define B = {−1,+1}.

The signal x(t) sent from R is written as:

x(t) = As(t) (4.4)

where the diagonal matrix A = diag(
√
P1,
√
P2, ...,

√
PK) ∈ RK×K

+ is the power allocation

matrix, with Pi being the power allocated to the ith antenna. The signal received at Ui is

thus given by:

yi(t) = Hix(t) + ni(t) = HiAs(t) + ni(t) (4.5)

where ni(t) ∈ CM×1 is the additive noise at Ui, which is modeled as a complex circular

Gaussian vector with zero mean and covariance matrix σ2I.

Each Ui estimates s(t) for t = 0, 1, ..., T − 1, obtains the corresponding codewords ct,i

through (4.3), and collects them into the code vector c. User Ui then utilizes its own mes-

sage mi and c to decode the messages mj of Uj for all j ̸= i. This concludes the general

process of the downlink broadcast phase. From now on, we will focus on the transmis-

sion of a single packet in a specific time slot, hence the time index t will be dropped for

convenience.

4.2 Essential Background

In this section, we review the underlying principles of Babai estimation and summarize

key results for its success probability in terms of the signal power. A conventional power

allocation method serving as a benchmark and a PSO serving as a numerical tool for

non-convex optimization problems are also discussed.
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4.2.1 Babai Estimation

After dropping time index t, the model in (4.5) becomes:

yi = Hix+ ni = HiAs+ ni (4.6)

for i = 1, . . . , N . The maximum likelihood estimate of the transmitted signal s is the

solution of the integer least squares (ILS) problem:

min
s∈{−1,+1}K

||yi −HiAs|| (4.7)

Since the ILS problem is NP-Hard, an optimal solution to the detection problem generally

requires high time complexity. To reduce the computation load for user terminals with

limited capability, we adopt a suboptimal solution approach, called the Babai estimation

[37], which allows each Ui to estimate s by successively canceling interference.

Specifically, the so-called Babai point sB for overdetermined problem (4.7) where M ≥

K and sBi ∈ {−1,+1} is defined below:

sBK = ⌊ℜ(bK)⌉B, bK =
ỹK√
PKr

(i)
KK

(4.8a)

sBj = ⌊ℜ(bj)⌉B, bj =
ỹj −

∑K
k=j+1

√
Pkr

(i)
jk s

B
k√

Pjr
(i)
jj

(4.8b)

for j = K − 1, . . . , 1, where ℜ(·) denotes the real part and the operator ⌊·⌉ rounds to

the nearest value in B. In these equations, vector ỹ = [ỹ1, . . . , ỹK ]
T and upper triangular

matrix Ri = [r
(i)
jk ]K×K are obtained from the QR factorization of Hi, i.e.:

Hi = [Q1,Q2]

Ri

0

 , ỹ = QH
1 yi. (4.9)

Without loss of generality, according to [37], the diagonal entries of Ri can always be set

to non-negative values through simple transformations of the QR decomposition in (4.9).
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4.2.2 Success Probability of Babai Estimator

In the context of Babai estimation, the probability of successfully detecting a series of

successive signals provides a convenient metric for characterizing the integrity of the

detected chain of signals. Specifically, the so-called success probability of sB at Ui is defined

as [37]:

ρi =Pr(sB = s) = Pr(sB1 = s1|sB2 = s2, · · · , sBK = sK)×

· · · × Pr(sBK−1 = sK−1|sBK = sK) Pr(s
B
K = sK)

(4.10)

From the definition of sB, we can conclude that when sj = −1, sBj = sj if and only if

(iff) ℜ(bj) ∈ (−∞, 0], and when sj = 1, sBi = sj iff ℜ(bj) ∈ (0,+∞). Thus, based on [37],

the probability of sBj = sj , given previous signals have been correctly detected, is given

as:
Pr(sBj = sj|sBj+1 = sj+1, · · · , sBK = sK)

= Pr(sj = −1) Pr(ℜ(bj) ≤ 0|sBj+1 = sj+1, · · · , sBK = sK)

+ Pr(sj = 1)Pr(ℜ(bj) > 0|sBj+1 = sj+1, · · · , sBK = sK)

=
1

2

1√
πσ

[∫ 0

−∞
e
− (t−(−1))2

σ2/(Pj(r
(i)
jj

)2)dt+

∫ +∞

0

e
− (t−(+1))2

σ2/(Pj(r
(i)
jj

)2)dt

]
=

1

2

(
1 + erf(

√
Pjr

(i)
jj /σ)

)
(4.11)

where erf(x) = 2√
π

∫ x

0
e−t2dt. Then we have:

ρi =
K∏
j=1

1

2

(
1 + erf(

√
Pjr

(i)
jj /σ)

)
. (4.12)

4.2.3 Conventional Adaptive Power Allocation

As power allocation is generally considered essential for multi-user systems, conven-

tional strategies mainly focus on boosting the spectral efficiency. A typical example of

such a strategy, as being discussed in [106], is to maximize the channel capacity. Specifi-

cally, the capacity of the channel betweenR andUi is expressed as: Ci = W
∑K

j=1 log2

(
1 +

λi,jPj

σ2

)
,

where W is the channel bandwidth which can be regarded as a constant value and λi,j for
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j = 1, · · · , K are the eigenvalues of HiH
H
i . The optimal power allocation is obtained by

maximizing the average channel capacity of all R-U channels, i.e.,

max
P1,··· ,PK

1

N

N∑
i=1

[
W

K∑
j=1

log2

(
1 +

λi,jPj

σ2

)]
(4.13a)

s.t. :
K∑
j=1

Pj ≤ PT , Pj ≥ 0. (4.13b)

where PT is the total transmit power at the relay. However, this metric is not practical

for a PNC system whose performance highly depends on the success probability of the

chain of network codes, i.e., the signal vector s in (4.6) being correctly received by user

terminals. Hence, it is beneficial to find an alternative power allocation approach for the

PNC system in MWRC.

4.2.4 Particle Swarm Optimization

When the objective function of an optimization problem is neither convex nor concave, it

can take tremendous time for standard methods, such as the interior point and ellipsoid

methods to identify every local optima and find out the global optimal solution [107,108].

PSO was introduced in [109] as an advanced, evolutionary computation technique for

solving such complex optimization problems. Due to its many advantages, PSO has since

been used widely in recent years to solve a variety of constrained optimization problems

in science and engineering [110–115].

The PSO method, summarized as Algorithm 3, starts with random initialization of a

swarm of individuals points or particles, within the problem feasible region. Each parti-

cle then iteratively approaches a gradually better approximation to the optimal solution

by taking steps (i.e., directions and step sizes) that are coordinated by the movement of

the entire swarm. This coordination is impacted by three factors of particle behaviors,

namely: inertia, cognition and sociality. To be specific, in each step, a particle intends to

move to its personal best position, called Obest, while being attracted by the current best
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position in the swarm found by other members, called Gbest. Hence, a particle will move

forward to a new position reaching a compromise between these two best positions. The

trajectory of such motion is determined by a weighted sum of three distinct components,

i.e.: ∆CD along current direction of motion (inertia); ∆Obest in the direction of Obest, as

obtained through exploitation of local search space (cognition); and ∆Gbest in the direction

of Gbest, as obtained from swarm exploration (sociality) [116]. All particles follow such a

common rule for compromising their personal Obest with the global Gbest, which is up-

dated along with the entire swarm movement. Under appropriate conditions, the swarm

iteratively converges to the same position which is a solution to the problem [117].

Algorithm 3 PSO algorithm

1: Randomly spread particles over the feasible region
2: Set starting locations of particles as their Obest

3: Initialize Gbest based on Obest

4: while particles have not converge yet do
5: for each particle do
6: Update position:

new direction = ∆CD +∆Obest +∆Gbest
new position = current position + new direction

7: Evaluate new position with objective function
8: Update best positions:
9: if new position is better than Obest then

10: Obest← new position
11: if Obest is better than Gbest then
12: Gbest←Obest

13: end if
14: end if
15: end for
16: end while
17: return Gbest

4.3 Proposed methods

The success probability of Babai estimation is a critical performance measure for the net-

work codes. Hence, allocating power at relay R to improve this probability is a meaning-
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ful way of enhancing the reliability of downlink PNC transmissions. In this section, the

power allocation is formulated as constrained optimization problems, where the aim is to

maximize the success probability under power constraints. Specifically, we consider three

different aggregate measures of success probability over the participating user terminals,

i.e.: arithmetic mean, geometric mean, and maximin.

4.3.1 Average Success Probability (Arithmetic Mean)

We focus on optimizing the average success probability at the user terminals, which ben-

efits the reception reliability of the multi-way system over an ensemble of channel re-

alizations. In our approach, the average success probability is estimated as the arith-

metic mean of the success probability over all users terminals. Considering (4.12) for

i = 1, · · · , N , the average success probability is given as:

ρave =
1

N

N∑
i=1

ρi =
1

N

N∑
i=1

[
K∏
j=1

1

2

(
1 + erf(

√
Pjr

(i)
jj /σ)

)]
. (4.14)

An optimization problem can be formulated to maximize (4.14) subject to a total power

constraint PT , i.e.:

max
P1,··· ,PK

1

N

N∑
i=1

[
K∏
j=1

1

2

(
1 + erf(

√
Pjr

(i)
jj /σ)

)]
(4.15a)

s.t. :
K∑
j=1

Pj ≤ PT , Pj ≥ 0. (4.15b)

However, the cost function in (4.15a) is not necessarily concave in its feasible region. Pop-

ular numerical methods such as the interior point method thus may not necessarily con-

verge to the global optima. In order to ease this difficulty and obtain a good result for the

average success probability at user terminals, two approaches are proposed below.



4.3 Proposed methods 71

PSO Approach

We solve non-concave optimization problem in (4.15), we conceive a PSO-based algo-

rithm which stochastically searches for the global optima of the problem. The resulting

procedure, which is summarized as Algorithm 4, is explained in further details below.

At iteration time t ∈ N, each particle in a swarm of size S is characterized by its position

vector Xt
m = [P t

m1, . . . , P
t
mK ]

T ∈ RK
+ and a velocity vector Vt

m = [vtm1, . . . , v
t
mK ]

T , where

m ∈ {1, . . . , S} is the particle index, P t
mj is the particle m’s current solution to power

Pj , and vtmj is the jth velocity component, j ∈ {1, . . . , K}. During the iteration, each

particle adjusts its trajectory towards its own previous best position Obest, and towards a

global best position attained by any member within the swarm Gbest. Obest and Gbest are

determined by evaluation of the cost function f(Xt
m) ≡ ρavg in (4.14) during the particle’s

motion. In order to confine the motion within the feasible region of the problem, we

incorporate a penalty to the cost function f(Xt
m), and use instead:

F (Xt
m) = f(Xt

m)− Ωmax{0,∆Pm,−Pm1, . . . ,−PmK}, (4.16)

where ∆Pm =
∑K

j=1 P
t
mj − PT , and Ω is a penalty factor. Considering that f(Xt

m) ranges

from 0 to 1, we set a relatively large value for Ω. Thus, once a particle motion violates the

constraints, F (Xt
m) deteriorates dramatically to a small value so that this position will not

be considered as any form of best positions in the swarm.

The velocity Vt+1
m directing the particle to its next position Xt+1

m is generated accord-

ing to the three aforementioned factors characterizing the swarm movement, i.e., inertia,

cognition, and sociality. Specifically, the component of Vt+1
m along dimension j is updated

as:

vt+1
mj = ωtvtmj + c1r

t
1(Obest,mj − P t

mj) + c2r
t
2(Gbest,mj − P t

mj), (4.17)

where ωt is the inertia weight, c1 and c2 are the constant cognitive and social parameters

respectively, and rt1 and rt2 are random scaling factors uniformly distributed in [0, 1], as
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represented by the function Rand() in Algorithm 4. Then the new position on dimension

j is accordingly given as:

P t+1
mj = P t

mj + vt+1
mj . (4.18)

The inertia weight ωt and parameters c1, c2 control the impact of the previous motion onto

the current one. The determination of these parameters largely depends on empirical re-

sults [117]. A large inertia weight is preferred to enhance the global exploration efficiency

in the early stage of the search while its value is reduced for better local exploitation accu-

racy in the late stage. Hence, we damp ωt at each iteration by a constant factor 0 < µ < 1

throughout the evolutionary process, i.e.:

ωt+1 = µωt. (4.19)

The algorithm eventually comes to a stop when the movement of the swarm stalls. This

is considered to occur when the largest change in the objective value for the swarm, i.e.:

max{∆m = |F (Xt
m)− F (Xt−1

m )|,m = 1, . . . , S}, is less than a chosen small threshold value

ϵ. Based on our experience, with the damping of the inertia weights in (4.19), the algo-

rithm always converges within a certain number of iterations for a specific swarm size

for our problem. The reason behind this observation is that the Gbest always tends to at-

tract all particles together. With each particle gradually approaching Gbest, the decreasing

damping ratio on the inertia weight reduces the particle velocity which gradually pre-

vents them escaping from Gbest. Thus, under a sufficiently large number of iterations, all

particles will eventually converge to the same location. For this reason, to improve the

efficiency and consistency of the algorithm, we set empirically a maximum number of

iterations Tmax as the ultimate stopping criterion. The eventual global best position of the

swarm Gbest is thus considered as the solution to the power allocation problem in (4.15).
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Algorithm 4 PSO solution to average success probability based power allocation

1: Input: S = swarm size; Tmax = number of max iterations; F (·) = penalized cost
function for power allocation; ϵ = stopping criteria

2: Initialization:
3: Initialize parameters ω0, c1, c2, r01, r02
4: for each particle m = 1 to S do
5: Initialize positions X0

m randomly in the feasible region
6: Initialize velocity V0

m = 0
7: Initialize best known position Obest,m = X0

m

8: Evaluate cost F (X0
m)

9: end for
10: Initialize swarm’s best known position Gbest, where F (Gbest) = max{F (X0

m)|m =
1, . . . , S}

11: Main iterations:
12: for t = 1 to Tmax do
13: for particle m = 1 to S do
14: for dimension j = 1 to K do
15: Update velocity:

vtmj =ω
t−1vt−1

mj + c1r
t−1
1 (Obest,mj − P t−1

mj )

+ c2r
t−1
2 (Gbest,j − P t−1

mj )

16: Update position:
P t
mj = P t−1

mj + vtmj

17: end for
18: Update Obest,m:
19: if F (Xt

m) > F (Obest,m) then

Obest,m ← Xt
m

20: Update Gbest:
21: if F (Obest,m) > F (Gbest) then

Gbest ← Obest,m

22: end if
23: end if
24: (Note: Continued on the next page.)
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25: (Note: Continued from the previous page.)
26: Update parameters:

ωt = µωt−1, rt1 = Rand(), rt2 = Rand()

27: ∆m = |F (Xt
m)− F (Xt−1

m )|
28: end for
29: if max{∆m|m = 1, . . . , S} < ϵ then Break
30: end if
31: end for
32: Assign global best position Gbest as the final output for the power allocation:

X∗ = Gbest

33: return X∗

Alternative Problem Approach

To ease the difficulty posed by non-concavity in (4.15), we can formulate an alternative

objective which also represents, in some sense, the average success probability at the user

terminals. Instead of directly averaging over ρi, we can average over ρ1/Ki , i.e.:

ρ′ave =
1

N

N∑
i=1

ρ
1
K
i (4.20)

Since each number ρ1/Ki still provides an indication of the success probability at Ui, ρ′ave

can also be used to characterize the the average reception reliability of the system. That

is, we can alternatively formulate the problem as:

max
P1,··· ,PK

1

N

N∑
i=1

[
K∏
j=1

1

2

(
1 + erf(

√
Pjr

(i)
jj /σ)

)] 1
K

(4.21a)

s.t. :
K∑
j=1

Pj ≤ PT , Pj ≥ 0. (4.21b)

Proposition 1. The cost function in (4.21a) is concave in the closed and convex feasible region in

(4.21b).
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Proof. Define the function

g
(i)
j (Pj) = 1 + erf(

√
Pjr

(i)
jj /σ) (4.22)

The second order partial derivative of (4.22) with respect to (w.r.t.) Pj is non-positive, i.e.:

∂2g
(i)
j (Pj)

∂2Pj

= −
r
(i)
jj√
πσ

[
(r

(i)
jj )

2

σ2
√
Pj

+
1

2
P

− 3
2

j

]
e−

Pj(r
(i)
jj

)2

σ2 ≤ 0 (4.23)

since e−Pj(r
(i)
jj )2 ≥ 0 and Pj ≥ 0. The Hessian of the function:

wi(P1, . . . , PK) = ρ
1
K
i =

1

2

[
K∏
j=1

g
(i)
j (Pj)

] 1
K

(4.24)

is accordingly given by

∇2wi = −
1

2K2

(
K∏
j=1

g
(i)
j (Pj)

) 1
K [

Kdiag (d)− qqT
]
, (4.25)

where d, q ∈ RK×1 with respective entries:

ql =
1

g
(i)
l (Pl)

∂g
(i)
l (Pl)

∂Pl

, dl = q2l −
1

g
(i)
l (Pl)

∂2g
(i)
l (Pl)

∂2Pl

(4.26)

For any vector v ∈ RK×1, we have:

vT∇2wiv = − 1

2K2

(
K∏
j=1

g
(i)
j (Pj)

) 1
K
[
K

K∑
j=1

(
1

g
(i)
j (Pj)

∂g
(i)
j (Pj)

∂Pj

)2

v2j

−K
K∑
j=1

1

g
(i)
j (Pj)

∂2g
(i)
j (Pj)

∂2Pj

v2j −

(
K∑
j=1

1

g
(i)
j (Pj)

∂g
(i)
j (Pj)

∂Pj

vj

)2 ]
.

(4.27)
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Considering (4.23) and Cauchy-Schwarz inequality [118] (aTa)(bTb)− (aTb)2 ≥ 0, where

we set

a = 1K×1, bj =
1

g
(i)
j (Pj)

∂g
(i)
j (Pj)

∂Pj

vj, (4.28)

we can show that vT∇2wiv ≤ 0 for all v ∈ RK×1, i.e.,∇2wi ⪯ 0. The function in (4.24) is

thus concave. Since the concavity is preserved by non-negative weighted sum operations,

the cost function in (4.21) is also concave.

4.3.2 Overall Success Probability (Geometric Mean)

Another possible design goal of the design is to enhance the system’s overall reception

capability, especially, when the integrity of all the network chains received by all user ter-

minals is critical. To achieve this, an optimization problem can be formulated to maximize

the geometric mean of the success probabilities at all user terminals, i.e.:

ρall =

(
N∏
i=1

ρi

) 1
N

=

(
N∏
i=1

[
K∏
j=1

1

2

(
1 + erf(

√
Pjr

(i)
jj /σ)

)]) 1
N

. (4.29)

To maximize ρall is equivalent to maximizing its logarithmic form, which is:

log ρall =
1

N

N∑
i=1

[
K∑
j=1

log
1

2

(
1 + erf(

√
Pjr

(i)
jj /σ)

)]
. (4.30)

We can then formulate an optimization problem to maximize (4.30), i.e.:

max
P1,··· ,PK

1

N

N∑
i=1

[
K∑
j=1

log
1

2

(
1 + erf(

√
Pjr

(i)
jj /σ)

)]
(4.31a)

s.t. :
K∑
j=1

Pj ≤ PT , Pj ≥ 0. (4.31b)
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Proposition 2. The cost function

f(P1, . . . , PK) =
1

N

N∑
i=1

[
K∑
j=1

log
1

2

(
1 + erf(

√
Pjr

(i)
jj /σ)

)]
(4.32)

is concave in the closed and convex feasible region in (4.31b).

Proof. The first order partial derivative of f w.r.t. Pj is:

∂f(P1, . . . , PK)

∂Pj

=
1

N

N∑
i=1

r
(i)
jj e

−Pj(r
(i)
jj )2/σ2

ln 2
√
πσ(1 + erf(

√
Pj(r

(i)
jj )/σ))

√
Pj

. (4.33)

The second order partial derivative w.r.t. Pj is:

∂2f(P1, . . . , PK)

∂2Pj

=
r
(i)
jj

N ln 2
√
πσ(1 + erf(

√
Pj(r

(i)
jj )/σ))

2[
−
r
(i)
jj e

−Pj(r
(i)
jj )2/0.5σ2

√
πσPj

−
P−1.5
j e−Pj(r

(i)
jj )2/σ2

2
−

(r
(i)
jj )

2e−Pj(r
(i)
jj )2/σ2

σ2
√
Pj

]
≤ 0.

(4.34)

The second order partial derivative w.r.t. Pj and Pk, where k ̸= j, is:

∂2f(P1, . . . , PK)

∂Pj∂Pk

= 0. (4.35)

Hence, the Hessian matrix∇2f(P1, . . . , PK) is negative semi-definite. The concavity of the

cost function is proved.

4.3.3 Minimal Success Probability (Maximin)

The goal of the optimization problem can be set on maximizing the minimal success prob-

ability of all users. By doing this, the worst case scenario of the reception capability in the



4.3 Proposed methods 78

user groups will be improved. That is to say, the problem can be formulated as:

max
P1,··· ,PK

min
i

K∑
j=1

log
1

2

(
1 + erf(

√
Pjr

(i)
jj /σ)

)
(4.36a)

s.t. :
K∑
j=1

Pj ≤ PT , Pj ≥ 0, i = 1 . . . , N. (4.36b)

Proposition 3. The cost function

f(P1, . . . , PK) = min
i=1,··· ,N

K∑
j=1

log
1

2

(
1 + erf(

√
Pjr

(i)
jj /σ)

)
(4.37)

is concave in the closed and convex feasible region in (4.36b).

Proof. Similarly to the proof in 4.3.2, it is easy to find that for each user i, the function

u(i)(P1, . . . , PK) =
K∑
j=1

log
1

2

(
1 + erf(

√
Pjr

(i)
jj /σ)

)
(4.38)

is concave. Pick any x1,x2 ∈ dom(f), λ ∈ [0, 1], and for some m ∈ {1, . . . , N}, we have

f(λx1 + (1− λ)x2) = u(m)(λx1 + (1− λ)x2)

≥ λu(m)(x1) + (1− λ)u(m)(x2)

≥ λ min
i=1,...,N

u(i)(x1) + (1− λ) min
i=1,...,N

u(i)(x2)

= λf(x1) + (1− λ)f(x2).

(4.39)

The concavity of the cost function is thus proved.

Based on the concavities of the cost functions, the global optima to problem (4.21),

(4.31), and (4.36) hence can be found by using numerical programming tools respectively.
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4.4 Simulation Results

This section presents simulation results of the proposed power allocation schemes for

PNC in MWRC.

4.4.1 Methodology

Unless otherwise specified, the experiment environment is configured as follows. BPSK

signaling is adopted at both the relay and the user terminals, whose maximum trans-

mitting power is normalized to PT = 1. The network has 1 relay and 4 user terminals,

both equipped with 6 antennas, i.e., M = K = 6. We assume the various radio links to

be Rayleigh fading, i.e., the entries of the channel matrix H are modeled as independent

complex circular Gaussian random variables with zero mean and unit variance. The noise

variance at receiving antennas is adjusted to obtain the desired SNR level. To simplify the

discussion and minimize the effects of indirect factors in the performance comparison

among the different estimation schemes, we consider uncoded systems as in, e.g., [99].

Six power allocation schemes are implemented for comparison in the following exper-

iments, i.e.:

• Arithmetic mean with PSO solution as in (4.15);

• Arithmetic mean with alternative solution as in (4.21);

• Geometric mean as in (4.31);

• Maximin as in (4.36);

• Conventional channel capacity as in (4.13);

• Equal power allocation where the total transmitting power is equally distributed to

all signals.
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Fig. 4.2: Convergence speed of PSO algorithm regarding different swarm size.
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Fig. 4.3: Convergence speed of PSO algorithm regarding damping ratio µ.
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4.4.2 PSO Solution Analysis

We first present a series of experiment results to validate our choices over the PSO param-

eters for Alg. 4 and discuss the corresponding effects on the solution to problem (4.15).

Swarm size

Fig. 4.2 shows the effect of swarm size S on the convergence speed of Alg. 2. We examine

the number of iterations needed for the swarm to converge to the maximum average

success probability in (4.14) with different swarm size, i.e., S = {20, 40, 60, 80, 100, 120}.

From the results, it is obvious that the convergence speed increases. However, when the

swarm size increases to a certain level, e.g., S = 100, the improvement on the convergence

speed (i.e., number of iterations to get within say 0.1) becomes relatively insignificant. In

addition, a larger swarm size usually requires larger memory space and computational

complexity. In the sequel, in light of this observation, we set a swarm size S = 100.

Damping ratio

Fig. 4.3 shows the effect of damping ratio µ in (4.19). We evaluate the number of iterations

needed for the algorithm to converge to the best value of the average success probabil-

ity for several different damping ratio µ = {0.8, 0.9, 0.95, 0.97, 0.98, 1}. With µ = 1, i.e.:

no damping, the swarm converges to a slightly smaller value than the best achievable

value (0.94854 as compared to 0.9492). This observation indicates that the damped iner-

tia weight improves the local exploitation of the swarm. However, we also notice that

with µ = 0.8, i.e.: more damping, the algorithm converges more slowly than those with

less damping. The result indicates that the global exploration of the swarm will be ham-

pered if excessive damping is imposed on ω. Based on the result in Fig. 4.3, we find that

when damping ratio is around µ = 0.95, the algorithm reaches a balanced point for the

exploitation and exploration that leads to a relatively fast speed of convergence.
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Fig. 4.4: Performance comparison between PSO approach and alternative problem ap-

proach to problem (4.15) regarding SNR.
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4.4.3 PSO and Alternative problem solutions
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Fig. 4.5: Performance comparison between PSO approach and alternative problem ap-

proach to problem (4.15) regarding different number of users.

Fig. 4.4 and Fig. 4.5 compare the results of the PSO approach and the alternative

problem approach regarding the SNR and the number of users respectively. Since the

alternative problem approach does not directly solve problem (4.15), to maintain a fair

comparison, we allocate the power according to the results from both approaches to our

systems and compute the average success probability using Monte Carlo method. Fig.

4.4 demonstrates the effectiveness of both approaches in a varying channel environment.

With SNR rising from 0 dB to 25 dB the results of both approaches remain relatively close.

The alternative problem approach has a slight disadvantage over the PSO approach but

the disadvantage is vanishing with the channel condition improves. Fig. 4.5 accordingly

demonstrates the effectiveness of both approaches for different number of users with SNR

being fixed at 20 dB. In this experiment, both approaches also maintain a close result but
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there exhibits a slight and constant disadvantage of the alternative problem approach

over the PSO approach.

4.4.4 Comparison Among Different Design Goals

We also present a series of experiments to compare the performance of power allocation

schemes based on different design goals.

Average Success Probabilities

In Fig. 4.6, we present the test result of the proposed power allocation scheme of (4.21).

The experiment evaluates the average probability ρ′ave among all user terminals, indi-

cating the system’s average reliability of successfully receiving the network codes in the

downlink phase. Fig. 4.6 compares the complementary values of the arithmetic mean of

the success probability at all terminals under six power allocation schemes. Based on the

result, we see that the proposed arithmetic mean scheme has the best performance among

all in this case. The geometric mean scheme has a slight disadvantage to the arithmetic

mean scheme. The maximin, the equal power allocation, and conventional channel capac-

ity schemes have obvious disadvantages in such a scenario. The result herein shows the

effectiveness of the proposed arithmetic mean scheme in improving the average reception

capability of the system.

Overall Success Probabilities

In Fig. 4.7, we present the test result of the proposed power allocation scheme of (4.31).

This experiment evaluates the overall success probability of all user terminals, indicating

the system’s capability of correctly receiving every network code at every user terminal in

the downlink phase. Fig. 4.7 compares the complementary values of the geometric mean

of the success probability when all six power allocation schemes are implemented. From

the result, we observe that the proposed geometric mean scheme has a slight advantage

over the arithmetic mean scheme while both schemes have obvious advantage over the
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Fig. 4.6: Complementary values (1− ρ′ave) of the arithmetic mean of the success probabil-

ities.
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rest schemes. The proposed geometric mean scheme hence improves the overall reception

capability.

Minimal Success Probabilities
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Fig. 4.8: Complementary values (1− ρmin) of the minimal success probability.

In Fig. 4.8, we present the test result of the proposed power allocation scheme of (4.36).

In this experiment, the scenario is considered for a system where the worst user reception

capability is critical, e.g., a collaborative file sharing process where the worst node in the

network slows down the overall progress. Fig. 4.8 shows the complementary values of

the lowest success probability of the terminal in the user group under six power allocation

schemes. Comparing to all other schemes, we observe that the maximin scheme provides

the best success probability for the worst user terminal in this case. This demonstrates the

effectiveness of the proposed maximin scheme in helping enhancing the worst reception

capability of the user terminals in the system.
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4.5 Chapter Summary

In this chapter, we proposed a novel power allocation scheme for PNC in downlink

MWRC. The power allocation is formulated as a constrained optimization problem, where

the aim is to maximize the success probability under a total power constraint when using

Babai estimation for signal detection. Optimizing over this metric allows us to maximize

the probability of successfully decoding a chain of network codes, which is of crucial im-

portance in downlink multi-way PNC. To meet the different requirements for transmis-

sion quality in applications, we consider different aggregate measures of success proba-

bility over the participating user terminals, i.e., the arithmetic mean, the geometric mean,

and the maximin. For each measure, we formulate a constrained optimization and solve

the problem accordingly based on their concavity. We use an evolutionary PSO algo-

rithm to solve the problem with a non-concave objective while we obtain a solution to

the concave problems via efficient iterative means by demonstrating the concavity of the

corresponding objective. The proposed power allocation schemes for downlink PNC in

MWRC are evaluated using computer simulations over Rayleigh fading channels. The

results demonstrate the effectiveness of the proposed schemes in improving the success

probability in the reception of a chain of network codes.
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CHAPTER 5

Optimal Power Allocation Based on Success
Probability of SIC Detection in MWRC PNC

In this chapter, we propose a novel power allocation scheme for PNC in uplink MWRC.

The power allocation is formulated as a constrained optimization problem under the

transmitting power constraint of user terminals, aiming at maximizing the success prob-

ability of the SIC detection at the relay. Optimizing over such a metric maximizes the

probability of correctly detecting all user signals, which is critical to the network code

generation at the relay. Specifically, we first develop a generalized expression for the

closed-form success probability for the SIC detection of PAM signals at the relay. We then

formulate a constraint optimization to maximize this probability subject to the power

constraints at the user terminals. We conceive an evolutionary PSO algorithm to solve the

problem whose cost function is complex and not necessarily concave. The simulation re-

sults confirm the validity of the newly derived expression for the success probability and

also demonstrate the effectiveness of the proposed power allocation scheme in improving

the relay’s ability to extract network codes from the superimposed signals.
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Fig. 5.1: Illustration of the PNC in MWRC.

5.1 System model

As illustrated in Fig. 5.1, we consider a half-duplex multiway relay network where N

users share information with each other through a common relay R. User terminals are

equipped with a single antenna while the relay is equipped with K < N antennas. We

assume that there is no direct link among users, i.e., information exchange between two

users needs to go through the relay. We consider radio transmission over narrow-band,

i.e., frequency flat, slow fading channels. We assume perfect channel estimation and time

synchronization are available for any node in the network.

The superimposed signals received at the relay can be given as:

ỹ = H̃As+ ñ, (5.1)
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where s ∈ RN×1 is the user signal vector whose i-th entry si is an Mi-PAM signal that is

independently and uniformly distributed over a real set Bi = {b(1)i , . . . , b
(Mi)
i } with b

(1)
i <

· · · < b
(Mi)
i ∈ R, y ∈ CK×1 is a received signal vector, H̃ = [h̃1, . . . , h̃N ] ∈ CK×N is the

channel matrix, A = diag(
√
P1, . . . ,

√
PN) with Pi being the power allocated to si, and ñ ∈

CK is the noise vector with each ñi being independently distributed following CN (0, σ̃2).

For simplicity, we assume the distance between any two consecutive elements in each Bi

is constant and denote it by 2di, where

di =
b
(Mi)
i − b(1)i

2(Mi − 1)
,

Since s has real-valued constellations, the estimation solely depends on the real do-

main. We can transform the system in to a real-valued system model, i.e.:

y = HAs+ n, (5.2)

where y = R(ỹ), H = R(H̃), and n = R(ñ).

5.2 The proposed method

In this section, we first present the derivation of a generalized closed-form success prob-

ability of the SIC detection on the PAM signaling. We then formulate a constrained op-

timization over this metric subject to the transmitting power constraint of user terminals

and implement a particle swarm optimization algorithm to solve the problem.

5.2.1 Success Probability of the SIC Detection

Assuming that the successive process goes from column N to column 1 and for the ith

iteration, an estimator ssdi of si can be obtained after the removal of the previously de-

tected signals ssdj , j = i + 1, . . . , N , from y. Suppose that ssdj has been obtained for
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j = N,N − 1, . . . , i+ 1 and we define:

y(i) = y −
N∑

j=i+1

wjs
sd
j . (5.3)

where W = HA = [w1, . . . ,wN ] ∈ RK×N , wi =
√
P ihi. Then we solve:

min
si∈Bi

∥y(i) −wisi∥2. (5.4)

The solution ssdi can then be obtained by:

ci =
wH

i y
(i)

∥wi∥22
, ssdi = ⌊ci⌉Bi

. (5.5)

where ⌊ci⌉Bi
denotes the nearest element to ci in Bi. From (5.5), (5.3) and (5.2), we obtain:

ci =
wH

i y
(i)

∥wi∥22
=

i−1∑
j=1

wH
i wjsj
∥wi∥22

+ si +
N∑

j=i+1

wH
i wj(sj − ssdj )

∥wi∥22
+

wH
i n

∥wi∥22
. (5.6)

When ssdi+1:N = si+1:N , from (5.6) we obtain:

ci =
wH

i y
(i)

∥wi∥22
=

i−1∑
j=1

wH
i wj

∥wi∥22
sj + si +

wH
i n

∥wi∥22
, (5.7)

where wH
i n follows a normal distribution with

E[wH
i n] = wHE[n] = 0,

Var[wH
i n] = wH

i Cov[n]wi = σ2∥wi∥22,

where σ =
√
2
2
σ̃. Thus, when ssdi+1:N = si+1:N , from (5.7) it follows that:

1

σ

(
∥wi∥2(ci − si)−

i−1∑
j=1

wH
i wj

∥wi∥2
sj

)
∼ N (0, 1), (5.8)
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Our goal is to derive a formula for Pr(ssd = s). Note that by the chain rule,

Pr(ssd = s) =
N∏
i=1

Pr(ssdi = si|ssdi+1:N = si+1:N). (5.9)

Since events (si = b
(1)
i ), (b(1)i < si < b

(Mi)
i ), and (si = b

(Mi)
i ) are mutually exclusive,

Pr(ssdi = si | ssdi+1:N = si+1:N)

= Pr(si = b
(1)
i , ci ≤ b

(1)
i + di | ssdi+1:N = si+1:N)︸ ︷︷ ︸
Pi,l

+ Pr(b
(1)
i < si < b

(Mi)
i , si − di < ci < si + di | ssdi+1:N = si+1:N)︸ ︷︷ ︸

Pi,m

+ Pr(si = b
(Mi)
i , ci ≥ b

(Mi)
i − di | ssdi+1:N = si+1:N)︸ ︷︷ ︸
Pi,u

.

(5.10)

In the derivation, we need to use the error function:

erf(ζ) =
2√
π

∫ ζ

0

exp(−t2)dt. (5.11)

Given l and u with l ≤ u, if x ∼ N (0, 1), then

Pr(x ≤ l) =
1√
2π

∫ l

−∞
e−

t2

2 dt =
1

2

(
1 + erf

(
l√
2

))
, (5.12)

Pr(x ≥ u) =
1√
2π

∫ ∞

u

e−
t2

2 dt =
1

2

(
1− erf

(
u√
2

))
, (5.13)

Pr(l ≤ x ≤ u) =
1

2

(
erf
(
u√
2

)
− erf

(
l√
2

))
. (5.14)

In addition, for notational convenience, we label b(1)t , . . . , b
(Mt)
t in Bt by 0, 1, . . . ,Mt − 1,

respectively. Specifically, we define the bijection βt : {b(1)t , . . . , b
(Mt)
t } → {0, . . . ,Mt−1}. Let

s
(ki)
1:i = [s

(ki)
1 , . . . , s

(ki)
i ]T be the ki-th possible instance of s1:i, where the index ki is defined



5.2 The proposed method 93

by

ki = 1 +
i∑

t=1

(
βt(st)

i∏
j=t+1

Mj

)
. (5.15)

For example, given B1 = {−1, 1},B2 = {−3,−2, 0},B3 = {2, 3, 4, 6, 7},B4 = {−1, 0, 1, 2},

s
(99)
1:4 = [−1,−2, 7, 1]T represents the 99th instance of s1:4 where ki is computed as:

ki = 1 + 1× (3× 5× 4) + 1× (5× 4) + 4× (4) + 2× (1) = 99. (5.16)

Note that ki = 1, 2, . . . ,
∏i

t=1Mt and s1:i has a total ofMi =
∏i

t=1Mt instances. Since si is

independently uniformly distributed over Bi for i = 1, . . . , N ,

Pr(s1:i = s
(ki)
1:i ) =

1

Mi

. (5.17)

Derivation of Pi,l According to Bayes’s theorem, we have:

Pi,l = Pr(si = b
(1)
i ) Pr(ci ≤ b

(1)
i + di | si = b

(1)
i , ssdi+1:N = si+1:N)

= Pr(si = b
(1)
i )

Mi−1∑
ki−1=1

Pr
(
s1:i−1 = s

(ki−1)
1:i−1

)
Pr
(
ci ≤ b

(1)
i + di | si = b

(1)
i , ssdi+1:N = si+1:N , s1:i−1 = s

(ki−1)
1:i−1

)
(5.18)

We plug (5.17) into (5.18) and obtain:

Pi,l =
1

Mi

Mi−1∑
ki−1=1

1

Mi−1

Pr
(
ci ≤ b

(1)
i + di | si = b

(1)
i ,

ssdi+1:N = si+1:N , s1:i−1 = s
(ki−1)
1:i−1

)
(5.19a)

=
1

Mi

Mi−1∑
ki−1=1

Pr
(
ci ≤ b

(1)
i + di | si

= b
(1)
i , ssdi+1:N = si+1:N , s1:i−1 = s

(ki−1)
1:i−1

)
(5.19b)
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Now we find a formula for the probability in (5.19b). Note that when si = b
(1)
i and s1:i−1 =

s
(ki−1)
1:i−1 , the inequality ci ≤ b

(1)
i + di is equivalent to

1

σ

(
∥wi∥2(ci − si)−

i−1∑
j=1

wH
i wj

∥wi∥2
s
(ki−1)
j

)
≤ 1

σ

(
∥wi∥2di −

i−1∑
j=1

wH
i wj

∥wi∥2
s
(ki−1)
j

)
.

Then, by (5.8) and (5.12) we have:

Pr
(
ci ≤ b

(1)
i + di | si = b

(1)
i , ssdi+1:N = si+1:N , s1:i−1 = s

(ki−1)
1:i−1

)
=

1

2

(
1 + erf

(
1

σ

(
∥wi∥2di −

i−1∑
j=1

wH
i wj

∥wi∥2
s
(ki−1)
j

)))
.

(5.20)

Therefore, from (5.19b) and (5.20), we obtain:

Pi,l =
1

2Mi

Mi−1∑
ki−1=1

{
1 + erf

(
1

σ

(
∥wi∥2di −

i−1∑
j=1

wH
i wj

∥wi∥2
s
(ki−1)
j

))}
. (5.21)

Derivation of Pi,m and Pi,u Similarly to the derivation of (5.21), we have:

Pi,m =
Mi − 2

Mi

Mi−1∑
ki−1=1

{
erf

(
1

σ

(
∥wi∥2di −

i−1∑
j=1

wH
i wj

∥wi∥2
s
(ki−1)
j

))

−erf
(
1

σ

(
− ∥wi∥2di −

i−1∑
j=1

wH
i wj

∥wi∥2
s
(ki−1)
j

))}
.

(5.22)

Pi,u =
1

2Mi

Mi−1∑
ki−1=1

{
1− erf

(
1

σ

(
− ∥wi∥2di −

i−1∑
j=1

wH
i wj

∥wi∥2
s
(ki−1)
j

))}
. (5.23)



5.2 The proposed method 95

Eventually, we plug (5.21), (5.22), and (5.23) into (5.10) and then into (5.9). The success

probability Pr(ssd = s) is thus given as:

Pr(ssd = s) =
N∏
i=1

{Pi,l + Pi,m + Pi,u}

=
N∏
i=1

{
1

Mi

+
Mi − 1

2Mi

Mi−1∑
ki−1=1[

erf

(
1

σ

(
∥wi∥2di −

i−1∑
j=1

wH
i wj

∥wi∥2
s
(ki−1)
j

))

+ erf

(
1

σ

(
∥wi∥2di +

i−1∑
j=1

wH
i wj

∥wi∥2
s
(ki−1)
j

))]}
(5.24)

5.2.2 Problem Formulation

We formulate an optimization problem based on (5.24) subject to the transmitting power

constraint PT of user terminals to maximize the success probability of SIC detection at the

relay side, i.e.:

max
P1,··· ,PN

Pr(ssd = s) (5.25a)

s.t. : 0 ≤ Pj ≤ PT , for j=1,. . . , N. (5.25b)

However, the function in (5.24) is not necessarily concave with respect to Pj , and the

corresponding proof is difficult to obtain due to the complication of its form. We will use

a numerical computing method to solve such a problem in (5.25).

5.2.3 PSO Solution

The PSO algorithm starts with random initializations of a swarm of individuals, called

particles, within the problem feasible region [109]. Then each particle iteratively ap-

proaches better and better approximations to the optimal solution with moving directions
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and step length that are coordinated by the entire swarm’s motion. A detailed process is

given in Algorithm 5.

Velocity and position At iteration t ∈ N, each particle in a swarm of size S is charac-

terized by its position vector Xt
m = [P t

m1, . . . , P
t
mK ]

T ∈ RK
+ and a velocity vector Vt

m =

[vtm1, . . . , v
t
mK ]

T , where m ∈ {1, . . . , S} is the particle index, P t
mj is the particle m’s current

solution to power Pj , and vtmj is the jth velocity component, j ∈ {1, . . . , K}. Each particle

adjusts its trajectory towards its own previous best position, called Obest, and towards a

global best position attained by any member within the swarm, called Gbest. Obest and Gbest

are determined by evaluating the cost function f(Xt
m) ≡ Pr(ssd = s) in (5.25a) during the

particle’s motion.

Penalized cost function In order to confine the particles’ motion within the feasible

region, we incorporate a penalty function to the cost function f , i.e.:

F (Xt
m) = f(Xt

m)− Ωmax{0, P t
m1 − PT , . . . , P

t
mN − PT ,−Xt

m}, (5.26)

where Ω is a penalty factor with a large positive value. Once a particle motion violates the

constraints, F (Xt
m) deteriorates dramatically to a small value. The result of this motion

will thus be discarded.

Motion updates Velocity Vt+1
m directs the particle to the next new position. Its compo-

nent on dimension j is given as:

vt+1
mj = ωtvtmj + c1r

t
1(Obest,mj − P t

mj) + c2r
t
2(Gbest,mj − P t

mj), (5.27)

where ωt is an inertia weight, c1 and c2 are the constant cognitive and social parameters

respectively, and rt1 and rt2 are the randomly generated numbers. The new position on
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dimension j is accordingly given as:

P t+1
mj = P t

mj + vt+1
mj , (5.28)

Convergence and termination The algorithm eventually comes to a stop when the mo-

tion of swarm stalls. This occurs when the largest change in the objective value for the

swarm, i.e.: max{∆m = |F (Xt
m) − F (F t−1

m )|,m = 1, . . . , S}, is less than a certain small

value ϵ. In addition, based on our experience, the algorithm can always solve problem

(5.25) within a certain number of iterations for a specific swarm size. Thus, we set a maxi-

mum number of iterations Tmax as an additional stopping criterion for the algorithm. The

eventual Gbest is thus considered as the solution to the power allocation problem in (5.25).

Algorithm 5 PSO algorithm to solve problem (5.25)

1: Step 1: Input swarm size S; number of max iterations Tmax; penalized cost function
F (·); stopping criteria ϵ.

2: Step 2: Initialize parameters c1, c2, r01, r02.
3: Step 3:: For each particle m = 1 to S, initialize random particle positions X0

m in the
feasible region and velocity V0

m = 0. Set particle best known position Obest,m = X0
m

and valuate each particle’s cost F (X0
m).

4: Step 4: Initialize swarm’s best known position Gbest, where F (Gbest) =
max{F (X0

m)|m = 1, . . . , S}.
5: Step 5: Initialize t=0.
6: Step 6: t = t+ 1.
7: Step 7: Update the velocity of particles according to (5.27) and the position of particles

according to (5.28).
8: Step 8: Evaluate F (Xt

m) for m = 1, . . . , S and determine Obest,m, where F (Obest,m) =
max{F (Xi

m)|i = 1, . . . , t}.
9: Step 9: Update Gbest, where F (Gbest)= max{F (Obest,m)|m = 1, . . . , S}.

10: Step 10: Randomize parameter rt1 and rt2.
11: Step 11: If t ≤ Tmax or max{∆m = |F (X t

m) − F (X t−1
m )|,m = 1, . . . , S} > ϵ, return to

Step 6. Otherwise, stop the iteration and output Gbest.

5.3 Simulation Results

In this section, numerical results are provided to demonstrate the performance of the pro-

posed success-probability-based power allocation scheme for SIC detection. We assume
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the MWRC PNC consists of N = 4 user terminals, and the relay has K = 3 antennas with

transmitting power constraint PT = 1. We assume the various radio links to be Rayleigh

fading, i.e., the entries of the channel matrix H̃ are modeled as independent complex cir-

cular Gaussian random variables with zero mean and unit variance. The noise variance

at receiving antennas is adjusted accordingly to obtain the desired SNR level.

We first validate the derivation of (5.24) by comparing the theoretical analysis with the

numerical results from Monte Carlo experiments in Fig. 5.2. In order to have a straight-

forward comparison and eliminate any potential distraction from optimization process,

we simply allocate equal power to the transmitting user terminals with 3 groups of differ-

ent PAM modulations, i.e., 2-PAM s ∈ {−1,+1}, 4-PAM s ∈ {−3,−1,+1,+3}, and 6-PAM

s ∈ {1, 2, 3, 4, 5, 6}. Based on the results of all three groups of comparison, we can observe

that the numerical results are in accordance with their respective theoretical values.

We then demonstrate the effect of the power allocation strategy on the rate of correctly

generated network code chains. In this experiment, we compare the proposed success-

probability-based strategy with a conventional sum-rate-based strategy that maximizes

user signals’ minimal SINR. The equal power allocation strategy is also provided as a

reference. The sequential coding strategy as in [104] is adopted at the relay for the code

chain generation. We transmit 10, 000 signals with 4-PAM signaling from each user and

compare the generated code chains to their expected results at the relay. The rate of correct

code chain (CC) generation at relay thus can be used to evaluate the efficacy of relay

detection, which is defined as:

rate of correct CC generation =
number of correctly generated CC

total number of generated CC
(5.29)

In Fig. 5.3, we present the comparison among the proposed strategy (indicated by ’SP’),

the conventional strategy (indicated by ’SINR’), and the equal power allocation strategy

(indicated by ’Eq’). From the result, we can see that the proposed method effectively

improves the rate of correct CC generation with an advantage of around 5dB over the
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conventional sum-rate based method. Hence, the result demonstrates the effectiveness of

the proposed in improving the relay’s ability to extract network codes from the superim-

posed signals.
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Fig. 5.2: Comparison of success probability vs SNR between theoretical analysis and sim-

ulation results.

5.4 Chapter Summary

In this chapter, we proposed a novel power allocation scheme for PNC in uplink MWRC.

The power allocation was formulated as a constrained optimization problem under the

user terminal transmit power constraint, with the aim of maximizing the success prob-

ability of the SIC detection at the relay. Optimization of such a metric maximizes the

probability of correctly detecting all user signals, which is crucial for network code gen-

eration at the relay. Specifically, we first developed a generalized closed-form expression

for the success probability of the SIC detection of the PAM signals. We then formulated a

constraint optimization of this probability subject to the user terminal power constraints.
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Fig. 5.3: Comparison of the rate of correct code chain generation between the effect of

power allocation strategy.

We conceived an evolutionary PSO algorithm to solve the problem whose cost function

is complex and not necessarily concave. The numerical results validated the probabil-

ity derivation and also demonstrated the effectiveness of the proposed power allocation

scheme in improving the relay’s ability to extract network codes from the superimposed

signals.
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CHAPTER 6

Conclusion

In this chapter, we summarize the thesis and provide a plan for potential future work.

6.1 Summary

This thesis focuses on the application of PNC in MWRC, where multiple users share in-

formation through a single relay station. In the previous chapters, we have presented in

detail the main works, i.e., the development of new uplink and downlink schemes for

PNC in MWRC regarding signal detection and power allocation. Here, we present the

summary of all contributions.

Chapter 3 proposed a novel scheme for PNC in MWRC, aiming to address these chal-

lenges from a different perspective, i.e., sequential MUD. The benefits of doing so are

twofold: 1) we still treat the MWRC as a natural encoder within the wireless medium,

which is consistent with the inherent idea of PNC; 2) the use of MUD offers a power-

ful framework for extracting the network codes with relatively low complexity. To be

specific, we considered an uplink MWRC scenario where N users, each equipped with

a single antenna, simultaneously transmit signals to a relay equipped with K antennas,

emphasizing the case K < N . In contrast to existing approaches that seek to directly ob-

tain the network codes from the superimposed user signals at the relay, we formulated
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this problem as an under-determined linear system in terms of the user symbols (from

which the network codes can be easily obtained). To solve this problem with low de-

coding complexity, the proposed method combines SIC with Babai estimation [119] for

regularized ILS. Specifically, SIC decoding was first employed to estimate a selected sub-

set of stronger user signals and remove their interfering effects. Babai estimation was

then applied to provide a solution to an ILS problem with reduced dimension, allowing

the extraction of the remaining weaker user signals. We developed a power allocation

scheme to enhance both the SIC and ILS detection steps and discuss the optimal user

pairing strategy based on the average decoding error probability. Through simulations,

it was shown that the proposed method could lead to notable performance improvement

in the extraction of network codes from superimposed user signals in MWRC.

In Chapter 4, we proposed a novel power allocation scheme for PNC in downlink

MWRC. The power allocation is formulated as a constrained optimization problem, where

the aim is to maximize the success probability under a total power constraint when using

Babai estimation for signal detection. Optimizing over this metric allows us to maximize

the probability of successfully decoding a chain of network codes. To meet diverse re-

quirements for transmission quality in applications, we considered different aggregate

measures of success probability over the participating user terminals, namely: the arith-

metic mean, the geometric mean, and the maximin. We first used an evolutionary particle

swarm optimization (PSO) algorithm to solve the problem for the arithmetic mean, which

is non-concave. We then formulate an alternative concave problem for this measure and

find the solution via iterative methods. We obtained the solutions of the other two prob-

lems for the geometric mean and maximin, which are shown to be concave, via efficient

iterative search methods. The proposed power allocation schemes for downlink PNC in

MWRC were evaluated using computer simulations over Rayleigh fading channels. The

results demonstrated the effectiveness of the proposed schemes in improving the success

probability in the reception of a chain of network codes.
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In Chapter 5, we proposed a novel power allocation scheme for PNC in uplink MWRC.

The power allocation was formulated as a constrained optimization problem under the

user terminal transmit power constraint, with the aim of maximizing the success prob-

ability of the SIC detection at the relay. Optimization of such a metric maximizes the

probability of correctly detecting all user signals, which is crucial for network code gen-

eration at the relay. Specifically, we first developed a generalized closed-form expression

for the success probability of the SIC detection of the PAM signals. We then formulated a

constraint optimization of this probability subject to the user terminal power constraints.

We conceived an evolutionary PSO algorithm to solve the problem whose cost function

is complex and not necessarily concave. The numerical results validated the probabil-

ity derivation and also demonstrated the effectiveness of the proposed power allocation

scheme in improving the relay’s ability to extract network codes from the superimposed

signals.

6.2 Potential future works

In this section, we present and discuss some potential work related to this thesis.

In Chapter 3, we propose an optimal pairing strategy for relay stations and study its

impact on the performance of network coding in MWRC. We formulate the problem as a

discrete optimization problem in which the solution is searched for by brute-force over all

spanning trees of a simple undirected connected graph with N vertices. Although feasi-

ble, the approach is not cost effective and often becomes time consuming, especially when

the system size is huge. Therefore, a potential future work could emphasize improving

the efficiency of solving this optimization problem.

In Chapter 4, we assume that the relay has successfully received all user signals in the

MA phase, which implies a success probability of 100% for uplink transmission. How-

ever, in reality, errors in the uplink will inevitably propagate in the downlink phase,

which will also affect the success probability of the transmission and network code re-
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covery at the user terminals. Therefore, possible future work could emphasize combining

the work in Chapters 4 and 5 to jointly consider the uplink and downlink phases in the

design of power allocation based on the success probability.
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