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Abstract

Network-based radio frequency (RF) localization has gained considerable attention in the

past decade due to the tremendous number of applications where location information

is required while conventional localization systems, such as the global positioning system

(GPS), can not be employed. Positioning in harsh propagation environments such as dense

urban areas, indoor places and underground areas, where the GPS satellites are not visible

to the receiver and the GPS signal is attenuated, are among such applications. Network-

based RF localization, where instead of satellites, a set of fixed reference nodes transmit

and/or receive signal to/from a wireless device (target) can overcome the limitations of the

GPS. These reference nodes could be base stations (BSs) in a cellular network, or anchors in

a wireless sensor network (WSN). Since the number of reference nodes is limited and might

not be sufficient for unambiguous localization, it becomes necessary and beneficial for the

targets to make pairwise measurements and exchange information with their neighbours;

consequently cooperative localization has gained much attention. Nevertheless, localization

in harsh propagation environments is challenging and can lead to large errors due to the

multipaths and non-line of sight (NLOS) propagation. The problem of multipaths can be

overcome using high resolution ultra wide-band (UWB) timing pulses so that accurate time

of arrival (TOA) measurements can be obtained. However, the NLOS problem, in which

the range measurements become positively biased, still remains the main challenge.

The first contribution of this thesis focuses on mobile localization in NLOS using TOA

measurements, where a constrained square-root unscented Kalman filter (CSRUKF) is

developed. While the proposed filter is based on a constrained unscented Kalman filter

(UKF) with sigma point projection, its efficiency and numerical stability are improved by

using the idea of square-root unscented Kalman filter (SRUKF). The proposed filter is also

extended to a cooperative localization scenario where a centralized CSRUKF is employed

for multi-target tracking in NLOS scenarios. The simulation results illustrate that the

proposed filter can yield a good localization accuracy in severe NLOS situations and is also

robust against false alarm (FA) in NLOS identification.

The centralized techniques have limitation in computations and are not scalable with

the size of the network. Therefore, distributed localization techniques are preferred in

many applications and this is the second contribution of this thesis. To this end, a two-

stage robust distributed algorithm is proposed for cooperative sensor network localization



ii

using TOA data without prior NLOS identification. In the first stage, to overcome the

effect of outliers, a convex relaxation of the Huber loss function is applied so that by

using iterative optimization techniques, coarse estimates of the true sensor locations can

be obtained. In the second stage, the original (non-relaxed) Huber cost function is further

minimized to obtain refined location estimates based on the estimated positions obtained

in the first stage. Through simulations and real data analysis, it is shown that the proposed

algorithm can achieve a lower root mean squared error (RMSE) compared to other existing

algorithms, and can achieve a performance close to that of an idealized approach which

assumes a priori knowledge of the NLOS links.

The third contribution of this thesis is to study a geometric problem in WSNs, where

the TOA measurements are positively biased, thus every target is restricted to lie inside

the intersection of several disks, forming a convex hull. To quantify the size of these

convex hulls, iterative techniques based on the sum-product algorithm over wireless network

(SPAWN) have been developed in the literature, where a crucial step in the algorithm is

to find a tight ellipsoidal outer approximation (OA) of the intersection of ellipses. There

exist sub-optimal convex optimization techniques in the literature to solve this problem,

however they are not always tight. To overcome this limitation, two novel techniques are

developed and studied to find tighter OAs in 2-dimensional space. Through simulations, it

is shown that SPAWN using the proposed ellipsoidal OA converges to some limit rapidly

and offers a tighter estimate of the convex hulls as compared to the case when conventional

ellipsoidal OA is used.

The new localization algorithms developed in this thesis are well suited to the next

generation of cellular and WSN positioning systems, where efficient distributed techniques

that are robust against NLOS propagation will be needed to support various applications.
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Sommaire

La localisation par fréquence radio (RF) dans les réseaux sans fil a attiré une attention

considérable dans la dernière décennie en raison de grand nombre d’applications qui ont

besoin d’information de localisation, tandis que les systèmes de localisation classiques tels

que le système mondial de localisation (GPS) ne peuvent pas être utilisés. Parmi ces appli-

cations, nous notons le positionnement dans les environnements avec conditions de propa-

gation radio d’afordables, tels que les zones urbaines denses ainsi que les lieux intérieurs et

souterrains où les satellites GPS ne sont pas visibles au récepteur et où le signal GPS est

considérablement atténué. La localisation RF basée sur les réseau terrestriels, qui au lieu

de stellites, utilise un ensemble de points de référence radio fixes pour transmettre et/ou re-

cevoir des signaux vers/à partir d’un appareil sans fil (cible) peut surmonter les limitations

du GPS. Les points de référence pouvent être des stations de base (BSs) dans un réseau

cellulaire, ou des ancres dans un réseau de capteurs sans fil (WSN). Puisque le nombre de

points de référence est limité et pourrait ne pas être suffisant pour la localisation sans am-

bigüité, il serait nécessaire et bénéfique que les cibles de localisation prennent des mesures

par paires et échangent de l’information avec leurs voisins; par conséquent, la localisation

coopérative a attiré beaucoup d’attention au cours des dernières année. Néanmoins, la

localisation dans des environnements avec propagation difficile est problématique et peut

mener à des erreurs importantes en raison de propagation multi-trajet et sans ligne de

vue (NLOS). Le problème de propagation multi-trajet peut être surmonté en utilisant des

impulsions de synchronisation haute résolution à ultra large bande (UWB), de telle sorte

que des mesures exactes des temps d’arrivé (TOA) peuvent être obtenues. Cependant, le

problème de locailsation NLOS, dans lequel les mesures de la distance deviennent positive-

ment biasées, reste toujours le défi principal.

La première contribution de cette thèse met l’accent sur la localisation mobile NLOS

en utilisant des mesures TOA, où un nouveau filtre de Kalman, de type racine-carrè sans

parfum (unscented) avec contrainte (CSRUKF) est développé. Alors que le filtre proposé

est basé sur le filtre contraint de Kalman sans parfum (UKF) avec projection des points

sigma, son efficacité et sa stabilité numérique sont améliorées en utilisant l’idée de filtre de

Kalman sans parfum à racine carrée (SRUKF). Le filtre proposé est ensuite utilisé dans

un scénario de localisation coopérative où un CSRUKF centralisé est utilisé pour le suivi

multi-cibles dans les scénarios NLOS. Les résultats des simulations démontrent que le filtre
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proposé peut donner une bonne précision de localisation dans les situations NLOS sévères

et est également robuste contre les fausses alarmes (FA) aux identifications NLOS.

Les techniques centralisées souffrent de la complexité calculs et ne sont pas extensibles

en proportion à la taille du réseau. Par conséquent, les techniques de localisation distribuées

sont préférables dans de nombreuses applications, et elle constituent la deuxième contribu-

tion de cette thèse. Plus particulièrement, un algorithme robuste distribué en deux étapes

est proposé pour la localisation coopérative avec réseau de capteurs en utilisant les données

TOA sans identification préalable NLOS. Dans la premiére étape, pour surmonter l’effet

des donnés extrèmes, une relaxation convexe de la fonction de perte Huber est appliquée

de telle sorte que, en utilisant des techniques d’optimisation itérative, des estimés approx-

imatifs des vrais emplacements de capteurs soient obtenues. Dans la deuxiéme étape, la

fonction d’origine de coût Huber (non relaxée) est minimisée afin d’obtenir des meilleurs

estimés de localisation par rapport à ceux obtenus dans la premiére étape. Par des simula-

tions et l’analyse de données réelle, il est démontré que l’algorithme proposé peut atteindre

une racine de l’erreur quadratique moyenne (RMSE) plus faible que celle des algorithmes

existants, et ainsi atteindre une performance se rapprochant du cas idéal dans lequel la

connaissance a priori des liens NLOS est disponible.

La troisième contribution de cette thèse porte sur l’analyse d’un problème géométrique

dans les réseaux de capteurs où les mesures de TOA sont biaisées positivement en raison

d’une condition NLOS. Ainsi, la position de chacune des cibles est contrainte de se trouver

à l’intérieur de l’intersection de plusieurs disques, formant une coque convexe. Pour quan-

tifier la taille de ces enveloppes convexes, des techniques itératives basées sur l’algorithme

somme-produit sur le réseau sans fil (SPAWN) ont été développées dans la littérature.

Un élément crucial de cet algorithme est de trouver un rapprochement extérieur (outer

approximation ou OA) ellipsöıdal serré de l’intersection de plusieurs ellipses. Il existe

des techniques sous-optimales d’optimisation convexe dans la littérature pour résoudre ce

problème, mais les solutions ne sont pas toujours serrées. Pour surmonter cette limitation,

deux nouvelles techniques sont développées et étudiées pour trouver des OAs plus serrées

dans lespace à deux dimensions. Les simulations démontrent que l’algorithme SPAWN qui

utilise ces nouvelles techniques OA ellipsöıdales converge rapidement vers une limite et offre

une estimation plus serrée des enveloppes convexes par rapport au cas où OA ellipsöıdale

classique est utilisée.

Les nouveaux algorithmes de localisation développés dans cette thèse sont bien adaptés
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à la prochaine génération de systèmes de positionnement cellulaires et WSN, où des tech-

niques distribuées efficaces qui sont robustes contre la propagation NLOS seront nécessaires

afin de soutenir diverses applications.
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Chapter 1

Introduction

In this chapter, a general overview of the network-based radio frequency (RF) localization

problem and a literature review of the available techniques are given in Section 1.1 and

Section 1.2, respectively. We then explain the objectives and contributions of this thesis in

Section 1.3 and finally summarize its organization in Section 1.4.

1.1 Wireless Positioning

The global-positioning-system (GPS) is a conventional satellite based system, for RF local-

ization or positioning. In spite of being extensively employed in different applications, the

GPS system fails to operate efficiently in indoor places or dense urban areas due to the weak

received GPS signal and the multipath fading. Moreover, the size and the high energy con-

sumption of the GPS-based devices are other disadvantages. Therefore, a network-based

positioning system is preferred as a replacement for GPS in indoor places and dense urban

areas.

Network-based Radio Frequency (RF) positioning or localization refers to finding the

coordinates of a target in a network, based on radio signals received or sent by some

reference nodes (usually fixed) with known positions. In cellular network positioning, the

base stations (BS) are used as reference nodes while the mobile terminal (MT) is the target

whose location needs to be estimated. The localization of mobile phones has become

important since, due to an order by the Federal Communications Commission (FCC) in

1996, wireless positioning is supposed to be a mandatory public safety feature of all cellular

systems by 2020 [3]. It is therefore important for service providers to be able to deliver an

2015/08/14
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accurate position of a mobile user, who calls 911, to the public safety access points [3]. In

addition to the cellular application, localization can be done for a specific wireless sensor

network (WSN) system in which the positions of anchors, which are the reference nodes,

are known, while the positions of the sensors are to be estimated [4]. Network-based

localization has many applications in healthcare, surveillance, military systems, and public

safety.

The scheme of a range-based cellular network positioning system is illustrated in Fig.

1.1, where the circles represent the measured ranges between the MT (target) and BSs.

Under the assumption of error-free range measurements, by intersecting three circles, the

position of the MT can be obtained in 2-dimensional (2-D) space. In the presence of mea-

surement noise and other sources of error in the measured RF signals, such as shadowing,

multipath fading and non-line-of-sight (NLOS), the localization problem becomes more dif-

ficult. Improved and more robust algorithms therefore need to be developed for this task,

which is the main topic of this thesis.

Fig. 1.1 Network-based localization using a cellular network. Figure from:
http://www.e-cartouche.ch

1.2 Literature Review on Network-based RF Localization

Network-based RF localization can be done by making RF measurements between the

target nodes and the fixed reference nodes, based on which the unknown positions of the

targets can be estimated using different techniques [3]. In order to find the position of
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the targets in a network, different types of RF measurements can be employed, including:

received-signal-strength (RSS), time-of-arrival (TOA), and angle-of-arrival (AOA). In many

works, it has been assumed that the radio measurement among the nodes are obtained

under a line of sight (LOS) condition, in which the direct view between the transmitter

and the receiver is not blocked and hence the obtained signal comes from a direct path.

A great number of localization techniques and algorithms have been developed under this

assumption. However, having access to LOS propagation at all times is unrealistic for

indoor places and dense urban areas and therefore, in the past decade, many techniques

have been developed by considering the NLOS measurements as well. The NLOS refers

to a situation where the direct sight between the transmitter and the receiver is blocked,

which typically occurs in two different cases. In the first case, the direct path (i.e., LOS)

signal is attenuated such that the receiver can not distinguish it from the background noise;

instead the copies of the signal, which are bounced off through the wall and other objects

surrounding the transmitter and the receiver, are detected first. Thus, the receiver, which

tries to detect the first distinguishable arriving path, wrongly selects one of the reflected

signals as the first detectable path. This is known as a hard NLOS situation [26]. In the

second case, known as soft NLOS, the signal passes through the walls or other objects

blocking the way. The speed of the wave propagation inside different materials is lower

than that in the air, hence an extra delay is observed in the detected signal. Therefore,

for any of the aforementioned cases, the modelling of the received NLOS signal has to be

different that that of the LOS one.

On the above basis, we can separate the literature survey into two main parts, cor-

responding to localization techniques developed for LOS and NLOS scenarios, described

below.

1.2.1 Network-Based RF Localization under LOS Condition

In traditional localization techniques, it is assumed that the measurements are obtained

in LOS situation. In RSS-based methods, the distance between the transmitter and the

receiver is estimated by considering a mathematical model for the received signal power at

the receiver. In a 2-D plane, three range measurements are needed to locate the target by

the trilateration method without ambiguity. However, the RSS methods are not accurate in

a dense multipath environment, due to a lack of an accurate model to relate the measured
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RSS to the position of the target. In AOA-based methods, the direction of arrival of the

received signal at each reference node is estimated by employing smart antenna arrays

along with AOA estimation methods such as MUSIC [5] or ESPRIT [6]. In a 2-D space,

the target position can then be estimated by having access to the angles at two receivers.

Using antenna arrays increases the cost of the system and therefore the AOA-based methods

need a more expensive infrastructure. In TOA-based methods, the range between the

transmitter and the receiver is found by measuring the travel time of the signal between

them. The position is then estimated using the trilateration or nonlinear least squares

(NLS) techniques. To estimate the TOA at the receiver side, the transmitter and the

receiver need to be accurately synchronized in time, which is a major challenge for TOA-

based localization. The synchronization is usually done at the network layer, however the

need for a precise synchronization can be avoided by using a two-way ranging (TWR)

protocol, in which the signal is received and sent back to the transmitter and by adding the

two measurements and having the knowledge of the internal delays of the receiver, most of

the clock error terms will be removed [7]. In several applications, it may be difficult and

costly to maintain the synchronization between the target and the anchors, and the target

may not be capable of obtaining the TWR measurements. In this case, a time-difference-

of-arrival (TDOA) measurement can be found by computing the difference between the

TOA measurements obtained at a receiver and a reference receiver (usually the home BS

in cellular networks). If all the receivers are synchronized with one another, then the

clock error of the transmitting target will be omitted and then a hyperbolic localization

technique can be applied to estimate the target position if at least four receivers exist [8].

However, the TDOA-based methods require one more anchor for localization compared to

the trilateration method, as well as a reliable LOS reference node which is not guaranteed

all the times. It is worth mentioning that under certain conditions, the joint localization

and synchronization can be performed using the TOA data [9–12]. If the synchronization

can be done accurately, either jointly with localization or separately, then the TOA-based

methods are generally preferred to the TDOA-based ones in many applications.

There are several RF technologies in the market that can be exploited for sensor network

localization, e.g., infra-red, Bluetooth, Wi-Fi, and ultra-wideband (UWB) [4]. Among

these, the UWB technology is proven to be the best option especially for indoor localization

due to its fine timing resolution and robustness against multipath and fading [4]. The

Cramer-Rao lower bound (CRLB) analysis of the TOA measurements in UWB systems
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shows that the variance of the estimation error can be reduced by increasing the bandwidth

and the SNR of the system. Therefore, the TOA estimates in a UWB system have a good

resolution due to the high bandwidth of the short transmitted pulses. Since the resolution

of the TOA data is not very high for narrowband systems, AOA information can help in

determining the position. On the contrary, in wideband systems like UWB, the timing

resolution is high while the angle measurement is challenging and inaccurate due to the

large number of rays. In a dense and scattered environment, the number of propagation

paths might be very large [13]. The UWB channel can not be considered as a flat fading

channel any more and there are many different models that can be considered instead. For

a detailed survey on UWB channel modelling see in [14]. In addition to the narrow-band

assumption which is missing in UWB array processing, in indoor applications, the far field

approximation may not hold true such that the rays arriving at each antenna cannot be

regarded as parallel planar wave-fronts. Therefore, due to the challenges mentioned above,

the angle measurement in UWB system has to be studied with more care. To obtain the

angular measurements, different methods have been proposed in the literature for the joint

estimation of the TOA and AOA of UWB signals with an antenna array [15–19]. The

assumption of having access to both TOA and AOA is therefore reasonable and using both

measurements can improve the localization accuracy in LOS scenarios.

While in traditional localization the aim is to localize a single wireless device, in co-

operative localization the sensors (targets) exchange measurements and information with

each other and they can be localized either through a centralized system or in a distributed

manner throughout the network. This can be very useful when the number of reference

nodes is limited and the targets can not be localized by only relying on these nodes. For

a general survey on cooperative localization, see also [20–22]. The cooperative localization

techniques can be classified into two main categories, namely: probabilistic and determin-

istic [22]. In the deterministic case, the localization is done by solving an NLS problem,

which can often be relaxed to a convex cost function (with constraints) and is thus easier

to solve with good accuracy. The probabilistic methods make use of the probability distri-

bution of the measurement error and then by estimating the posterior PDF of the sensors

positions given the measurements, the localization can be done.

In the deterministic approaches, the aim is to solve an optimization problem to mini-

mize a selected performance criterion such as the mean squared error, which typically leads

to an NLS problem. Cooperative localization problem, formulated as an NLS problem,
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which amounts to minimizing the 2-norm of the error between the true ranges and mea-

sured ranges, is NP-hard and may not be solved efficiently. Therefore, relaxation techniques

have been proposed to formulate the problem as a convex optimization problem, which is

easier to solve. For instance, in [23], the localization problem is relaxed to a semi-definite

programming (SDP). However, the formulated SDP may only be solved in a centralized

manner and therefore, it may not be scalable with the size of the WSN, and faces limi-

tations in practice. In [24] the localization problem is formulated as a second order cone

programming (SOCP) which is a looser form of relaxation compared to SDP in [23], and

hence its localization performance is in general worse. There have been some efforts to

implement the proposed SOCP technique in a distributed manner over the network in [25],

however, the proposed SOCP can not be implemented optimally in a distributed man-

ner and the estimates are not in general the same as the ones obtained by the centralized

SOCP technique. The SOCP relaxation is similar to the idea of projection onto convex sets

(POCS) where the estimate of sensor’s position is projected onto the disks obtained from

the range measurements whenever the current estimate is outside the corresponding disk,

while otherwise no projection is done. The cooperative version of POCS is considered in [2].

While this method converges to a local minimum, since it is based on an approximation, its

performance may not be good at all times. Another relaxation which is conceptually simi-

lar to POCS and SOCP is considered in [26] where by using iterative gradient techniques,

it is observed that the solution to the relaxed minimization problem can be obtained in a

distributed manner over the network. Since the proposed technique might not offer a very

accurate estimate, after converging to some stationary points, the original NLS problem

is minimized iteratively using gradient-descent technique in a distributed manner. If the

initialization is good, then this proposed 2-stage technique can offer a solution close to

the maximum likelihood (ML) estimate. In fact, the iterative parallel projection method

(IPPM) considered in [27], where the projection of the estimates onto the disk boundaries

is done at all times, is based on minimizing the original NLS problem. The estimate ob-

tained by IPPM may converge to a local minimum, which is not necessarily near the global

minimum. However, if properly initialized by techniques such as cooperative POCS, then

IPPM can yield a better result than POCS. Since these iterative techniques are based on

the gradient descent optimization approach, the convergence speed is low and hence faster

iterative techniques may need to be developed.

In probabilistic approaches, information about the probability distribution of measure-
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ment error is employed instead of directly solving a deterministic optimization problem.

One of the popular techniques is the so-called belief propagation (BP) which is a dis-

tributed algorithm for factorizing the posterior distribution of the sensor positions given

the measurements, using a graphical model. In BP, each sensor keeps the knowledge about

its own position in terms of a probability distribution, which is known as belief. Then it

can update its own belief by using the messages obtained from the neighbouring sensors.

Calculation of both messages and belief at each node requires multi-dimensional integra-

tions which in general are implemented using Monte Carlo techniques. In non-parametric

versions of BP [28], kernel density estimates (KDE) are used and thus the robustness of

BP algorithm against probability distribution mismatch and outliers is improved. The BP

algorithm may not be efficient enough for the particular problem of network-based local-

ization as the information that is transmitted over the network is very large, which makes

it almost intractable for low-cost and low-power sensor network localization. By assuming

symmetric range measurements between each pair of neighbouring nodes, in [21], by intro-

ducing the so-called sum-product algorithm over wireless network (SPAWN), the authors

improve the efficiency of BP algorithm such that every sensor needs only to transmit the

belief information in terms of the mean and covariance matrix of the positioning error,

and there is no need to transmit the message information as the messages are computed

at the receiving sensor; therefore, the data traffic over the network is reduced significantly.

Still, the convergence of the BP algorithm or SPAWN for localization applications is not

in general proved analytically and remains an open problem.

1.2.2 Network-based RF Localization in NLOS

There are several challenges for localization in dense environments and indoor places in-

cluding multipath propagation, multiple access interference (MAI), and NLOS [13]. The

multipath propagation problem can be resolved by exploiting a high resolution timing sys-

tem, e.g., UWB. The MAI problem can be overcome by time multiplexing as implemented

for example in IEEE 802.15.3 PAN [13], but in general, this remains an open issue. One

of the most serious impairments in indoor geo-location is known as the NLOS problem, in

which the direct sight between the transmitter and receiver is blocked by an object. As

explained earlier, due to the blockage of the direct view, either soft or hard NLOS cases

might occur. While the distribution of range measurement errors in hard and soft NLOS
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situations are different, in both cases, the errors would be positively biased and the posi-

tion estimate would be severely degraded. Therefore, the NLOS problem has to be studied

with great care in order to provide a good location estimate for a mobile node. In dealing

with the NLOS problem, there are two consecutive steps that have to be taken in order

to achieve accurate localization, namely: NLOS identification and NLOS mitigation [8],

where the latter is dependent on the result of the former.

In the NLOS identification techniques, the aim is to detect the fixed anchors which

are in NLOS situation. It has been shown in [29] that the CRLB on the positioning error

depends only on LOS anchors if no information about the statistics of the NLOS error is

available. This means that it is usually preferred to discard the NLOS measurements as it

degrades the performance of the other reference nodes that are in LOS condition. There

are different techniques for NLOS identification using TOA data, e.g., based on the residual

test algorithm [30], or based on features of the UWB channel, such as root mean squared

(RMS) delay spread or mean delay spread [31–34]. Other approaches that exploit TDOA

data [35] or TDOA-AOA measurements [36] have also been proposed. For a more detailed

description of the NLOS identification techniques, see [8] and the references therein.

In some scenarios, the number of LOS links is less than the minimum required number

for unambiguous localization, or in the worst case, all of the links are facing a NLOS situa-

tion. In this case, the system needs to use the NLOS measurements, while mitigating their

effect to obtain a more accurate location estimate. If the LOS/NLOS identification can be

done accurately, then the NLOS measurements are generally given less weight compared

to the LOS ones [37]. However, there are always probabilities of false alarm (FA) and

missed-detection (MD) in NLOS identification. Motivated by such considerations, signifi-

cant research has been recently undertaken in the area of NLOS mitigation techniques, as

described below.

Several localization methods are available in the literature which use TOA measure-

ments of synchronized nodes and consider mixed LOS/NLOS conditions. In these works,

it is assumed that due to the NLOS, the estimated range is always greater than the exact

range, and thus, the target has to be located inside a disk (or a ball in 3-D space) with

the NLOS anchor at its center. The uncertainty region around each anchor forms a closed

convex feasible region, in which the target is located with a high likelihood. In [38] the

uncertainty region formed by the intersection of biased NLOS measurements is formed and

then the position is estimated through a quadratic programming approach by solving a
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constrained least squares problem with nonlinear quadratic constraints. Since the nonlin-

ear constraints increase the computational cost, a relaxation of the constraints into linear

form along with a linear programming approach has been proposed in [39, 40]. Another

geometry-constrained localization approach is given in [41] which uses a two step ML algo-

rithm. In [42], an interior-point minimization method for solving a constrained non-linear

least squares problem is proposed for treating the bias. The accuracy of the method de-

pends on a good selection of the upper bound for the bias of the range measurement of

each receiver in NLOS. In [43], a constrained minimization technique using the sequential

quadratic programming (SQP) is proposed to estimate the bias and the position simulta-

neously. It is shown that the method in [43] outperforms the method in [42]. A survey on

these methods has been given in [44].

In some other approaches, additional measurements, especially the angular information,

are exploited along with the TOA data. In [45], it is assumed that the angles at both the

target and the anchors, i.e., the angle of departure (AOD) and AOA, respectively, are

available. Then, a geometric scatterer-based approach is proposed to estimate the position

of the scatterers and the location of the target using the AOA and AOD information. The

joint estimation of the angles at both sides using a multiple-input multiple-output (MIMO)

system is proposed in [46]. However, it is usually impractical to have antenna arrays or

directional antennas on the MT, e.g., the hand-held devices, due to the cost, size, or effect

of the human body on the radio propagation [47]. In [47], the authors assume that the

AOD measurement at the mobile node is unknown and instead, consider that it is moving

with a certain speed for which the Doppler frequency can be measured. Using the measured

Doppler frequency, the TOA, and the AOA at the anchors, the effect of the NLOS can be

reduced. A method for joint estimation of TOA, AOA, AOD, and Doppler frequency is

proposed in [48]. However, this method might not be useful for slowly moving targets or

targets moving along an unpredictable trajectory, since in such cases, it becomes intractable

to measure a well-defined Doppler frequency. In [49], a constrained minimization technique

is proposed for the case that three BSs measure the TOAs and at least one of them (the

home BS) measures the AOA while all of them are in NLOS situation. The method is

based on a constrained optimization technique, which due to being nonlinear and non-

convex might not be solvable efficiently. Some other approaches have also been proposed

that exploit the hybrid TDOA-AOA measurements to mitigate the NLOS effect [50, 51].

While the above techniques make a one-shot estimate of the position of the target, for



1 Introduction 10

a mobile target with available dynamic model, filtering techniques are preferred and can

result in a smoother trajectory estimate. This is especially the case when data from inertial

measurements units (IMU) are used in parallel with range information for tracking purposes

[52], [53]. Some methods apply Kalman filter preprocessing on measured TOAs to smooth

out the effect of the variances of the NLOS biases, while scaling the covariance matrix in an

extended Kalman filter (EKF) to further mitigate the effect of their means [50], [51], [54].

However, these approaches can only achieve a moderate performance for large NLOS biases.

In [55, 56], it is assumed that the mean and variance of the NLOS biases are known; in

practice, however, this information is not available accurately beforehand unless prior field

measurements are obtained. Some other approaches regard the NLOS bias as a nuisance

parameter and try to estimate its distribution using KDE techniques. In [57], a robust

semi-parametric EKF is proposed for NLOS mitigation of a mobile node. The performance

of this technique is improved by employing the interacting multiple model (IMM) algorithm

in [58]. These semi-parametric techniques are also suitable when AOA, RSS or a mixture

of these measurements is employed. However, in addition to a high computational cost, the

performance of KDE still depends on how well it can model the PDF of the NLOS biases.

It is claimed that for cellular applications, the performance is only satisfactory when the

ratio of NLOS to LOS measurements is less than a half and a higher ratio might result in

divergence of KDE algorithms [58]. In some other techniques, the random NLOS biases

are considered as parameters in the state vector, to be jointly estimated with other state

parameters [59–62], where the NLOS bias variation over time is modelled as a random

walk. The technique in [59] uses EKF, while [60] and [61] use particle filters (PFs) that

generally have a high computational cost. Although the above techniques can mitigate the

effect of NLOS biases to some extent, their performance might not be good due to the

mismatch between the random walk model and the physical reality, which is unavoidable

considering the unpredictable nature of the biases. Furthermore, by including the biases

in the state vector, the computational cost of the filter grows noticeably [57]. Therefore,

there is still a potential for improving tracking of a mobile node with dynamic equation in

NLOS scenarios.

In the above works, it has been assumed that only fixed reference points help in es-

timating the location of a single sensor. However, when there are multiple sensors and

there is a possibility of communication among them, the localization can be done in a co-

operative manner. In cooperative localization, if a sensor has enough LOS anchors around
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itself, it is able to help localizing another sensor which does not have access to enough LOS

anchors. In this case, first the former sensor is regarded as a pseudo-anchor and together

with the other anchors, a location estimate is made for the second sensor. Although many

works have addressed cooperative localization in LOS, the works that consider the NLOS

problem are relatively recent. Basically, the NLOS errors result in positively biased range

measurements and this information has to be incorporated into the cooperative localization

framework. In [63] and [64], centralized techniques based on SDP are proposed for local-

ization in NLOS. In [2], [27], distributed iterative techniques for localization in NLOS are

considered by using the idea of projection. Probabilistic techniques such as BP or SPAWN

can not be easily applied to NLOS localization problem as the distribution of NLOS bias

is generally unknown.

However, by assuming that the bias is positive, each sensor is restricted to the in-

tersection of multiple balls (a convex set) corresponding to the range measurements of

neighbouring nodes. By outer-approximation of each convex set, an estimation of each sen-

sor’s position uncertainty can be obtained. Since the position of sensors are unknown, the

balls corresponding to them have unknown locations, thus finding an outer-approximation

of each convex set is not straightforward. To overcome this limitation, a distributed algo-

rithm, which is an approximation of SPAWN algorithm was proposed in [65], to find tight

ellipsoidal outer-approximation of each convex set. In this distributed algorithm, each sen-

sor calculates the messages of its neighbouring anchors or sensors, which are approximated

to be uniformly distributed on a ball or an extended ellipsoid, respectively. Then the belief

will be uniformly distributed on the intersection of several balls or ellipsoid, where conven-

tional techniques for finding the tightest ellipsoid containing such an intersection region can

be used [66]. However, these techniques may not always provide a tight ellipsoidal outer-

approximation of the intersection of several balls and ellipsoids, and thus tighter results

need to be developed, especially for 2-D space, in order to improve the performance of the

proposed distributed algorithm for localization purposes. The proposed algorithm can be

used as a pre-processing step in a SPAWN algorithm which employs the LOS measurement

only thus computational cost of SPAWN can be reduced significantly.
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1.3 Thesis Objectives and Contributions

This Ph.D. thesis addresses several key problems related to the practical application of

network-based RF localization in harsh propagation environments, such as dense urban

areas, indoor places and underground, where the range measurements become positively

biased due to the NLOS condition. Our contributions cover considerable ground, including

the development of new Bayesian tracking schemes, robust cooperative localization meth-

ods and geometrical techniques for bounding of uncertainty regions in WSNs. The main

objectives of the research work underlying this Ph.D. thesis can be stated as follows:

1. To develop an efficient filtering technique for tracking a single or multiple mobile

targets under NLOS conditions.

2. To develop a robust distributed technique for estimation of sensors locations in a

WSN in which the NLOS links are not identified.

3. To propose a novel technique in 2-D for tight outer-approximation of the intersection

of multiple ellipses, and then apply it to a distributed algorithm based on SPAWN

for outer-approximation of convex sets in WSNs under NLOS conditions.

Below, we summarize the main contributions of the thesis as they relate to these objectives:

The first objective is focused on localization in NLOS scenarios using efficient Kalman

filter-type techniques. To address this problem, an efficient square root unscented Kalman

filter (SRUKF) with convex inequality constraints for mobile localization is proposed. First,

a non-cooperative scenario is considered for localization of a single mobile node in NLOS

scenarios. The proposed constrained SRUKF (CSRUKF) is based on a combination of

the SRUKF in [67] for unconstrained problems and the constrained UKF in [68]. In our

proposed algorithm, similar to some memoryless approaches, the NLOS measurements are

removed from the observation vector and are employed instead to form a closed convex

constraint region [44]. At each time step, we use a SRUKF to estimate the state vector and

compute the Cholesky factor of the error covariance matrix. To impose the constraints onto

the estimated quantities, as proposed in [68], the sigma points of the unscented transfor-

mation may need to be projected onto the feasible region by solving a convex quadratically

constrained quadratic program (QCQP). However, we show that the projection can be

done in a more efficient and numerically stable way by solving a QCQP with reduced size,
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in which the cost function depends on the Cholesky factor of the a posteriori error co-

variance matrix, readily obtained from the SRUKF. Through simulations, our proposed

algorithm is shown to achieve a good localization performance under different NLOS sce-

narios. In particular, in severe NLOS conditions and with small measurement noises, our

method achieves a superior performance compared to other benchmark approaches. An-

other salient advantage is its robustness to false alarm (FA) errors in NLOS identification,

which makes it suitable for practical applications where such errors may be inevitable. In

this work, FA refers to the erroneous identification of an LOS link as being NLOS, while a

missed detection (MD) refers to the opposite situation. These findings have been reported

and published in (J-1), as listed in the section “Preface and Contribution of the Authors”.

Subsequently, the proposed centralized CSRUKF is extended to a cooperative localization

scenario where multiple mobile nodes are tracked by combining the information at a fusion

center. Although the proposed filter is centralized, due to the independence of the QCQP

optimization problems, the computations may be done in parallel at several processors.

Through simulations, it is shown that the proposed CSRUKF can perform well even in

severe NLOS situations. The results of this study are published in (C-4).

Towards the second objective, a robust distributed cooperative localization technique

is proposed for static networks to overcome the scalability issue faced with the centralized

technique described above as well as the issue of making an error in identification of LOS

links from NLOS ones. This technique consists of two-stages based on Huber M-estimation

for distributed cooperative localization in the presence of unidentified NLOS links. In the

first stage, a similar convex relaxation, as considered in [26], is applied to the Huber cost

function, so that relatively decent sensor locations are iteratively estimated. Since the

performance may not necessarily be good under a situation with low ratio of NLOS to LOS

links, in the second stage, the original Huber cost function is minimized iteratively with a

suitable choice of tuning parameter, and using the estimates obtained in the previous stage

as initial values. For iterative optimization in both stages, we use a simple gradient descent

technique since it can be easily implemented in a distributed manner. Through simulations,

we first show that the proposed convex relaxation gives a reliable estimate in different

NLOS scenarios. Furthermore, we show that the position estimates are generally improved

in the second stage as we minimize the original Huber cost function. The robustness of our

algorithm to outliers is also evaluated by using real sensor measurement sets, as obtained

by measurement campaign in [69]. The results appear in the conference paper (C-3).
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Towards the final objective of this thesis, we consider a specific problem in WSNs under

NLOS conditions, where the sensor positions are restricted to be within the intersection of

several disks, which form a closed convex set. The goal is to outer-approximate each convex

set by an ellipse. These outer-approximations can be used as constraints of the sensor

locations in conventional cooperative localization algorithms. The considered algorithm for

this purpose is an approximation of sum-product algorithm for wireless network (SPAWN),

considered as well in [65]. In this algorithm, each node finds an estimate of its convex

set in the form of an ellipse. An intermediate step in this algorithm is to find the tightest

ellipse which contains the intersection of several (a finite number of) ellipses. While different

algorithms exist in the literature for this problem [66], herein, we develop a novel method to

find tighter outer-approximating ellipses in 2-dimensional (2-D) space. Through numerical

analysis we show that the proposed outer-approximation is tighter than the ones obtained

by state-of-the-art algorithms. By applying the proposed technique along with SPAWN for

the distributed cooperative outer-approximation of convex sets in WSNs, more accurate

results can be obtained. The results of this study appear in (J-1), (J-2), and (L-1).

1.4 Thesis Overview and Notations

A general overview of network-based RF localization techniques, with consideration of non-

cooperative and cooperative approaches in both LOS and NLOS scenarios, is presented in

Chapter 2. The proposed CSRUKF algorithm for both non-cooperative and cooperative

Bayesian tracking is presented in Chapter 3. In Chapter 4, a deterministic and distributed

cooperative localization technique based on Huber M-estimation is proposed for robust po-

sitioning without NLOS identification. In Chapter 5, distributed outer-approximation of

uncertainty regions in WSNs under NLOS conditions is considered where a novel method

for finding a tight ellipse containing the intersection of multiple ellipses is proposed and

evaluated. The conclusion of our studies and potential avenues for future works are pre-

sented in Chapter 6.

Notation: Lower-case and upper-case bold letters represent vectors and matrices, re-

spectively. The vector 2-norm operation is denoted by ‖ · ‖, while (·)T and (·)−1 stand

for matrix transpose and inverse operations, respectively. A diagonal matrix with entries

x1, . . . , xM on the main diagonal is denoted by diag(x1, . . . , xM). For i ≤ j, q(i :j) denotes

a vector of size j − i+ 1 obtained by extracting the i-th to j-th entries of vector q, inclu-
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sively. The symbol I denotes an identity matrix of appropriate dimension. For a positive

semi-definite symmetric matrix A, A1/2 denotes its unique positive semi-definite square

root matrix, i.e. such that A1/2A1/2 = A [70]. The inner product of two matrices A and

B is denoted by A • B which is equivalent to Trace(ATB). We use N (μ, σ2) to denote

the normal probability distribution with mean μ and variance σ2.
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Chapter 2

Background on Network-based

Localization

In this chapter, we present background material needed for understanding the new local-

ization techniques presented in this thesis. We first consider the case of LOS scenarios in

Section 2.1 where different approaches are reviewed. We then consider the case of NLOS

scenarios in Section 2.2 and how to identify and mitigate the NLOS effect. For each one of

the LOS and NLOS scenarios, we present both non-cooperative and cooperative localization

techniques.

2.1 Localization in LOS Scenarios

In this section, different radio localization approaches based on TOA, TDOA, AOA, RSS,

and hybrid of the aforementioned measurements, under LOS conditions are reviewed. In the

end, the cooperative localization scenarios and related popular techniques are presented.

2.1.1 Time of Arrival

In TOA-based methods, the travel times of a signal between a sensor (target) and multiple

anchors (reference nodes) have to be measured, from which the corresponding range can

be computed. The target sends a timing signal to the anchors, followed by another signal

which carries the information of the time-stamp observed on its internal clock. Each anchor

detects the signal and records the reading of its own clock and then subtracts the difference
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between the two time-stamps to get the TOA measurement.

Let us assume that the time shown by the clock of the target is given by C(t):

C(t) = α(t)t + θ(0) (2.1)

where θ(0) is the clock offset (bias) of the target at time t = 0, and α(t) is the clock skew of

the target at time t. The measurements of the clock skew show that it should be regarded

as a random process rather than a constant [71]. However, for a short period of time during

which the localization is performed and under constant temperature conditions, it can be

assumed that the clock skew remains constant. Therefore, throughout this section, the

superscript is removed for the sake of simplicity and the skews are regarded as constant.

The clock reading of the i-th anchor at absolute time t can also be modelled as Ci(t), where

Ci(t) = αit + θi, (2.2)

where αi and θi are the clock skew and offset of the i-th anchor, respectively. Using the

above model, in the absence of noise, the TOA measured at the i-th anchor, is therefore

τ
(1)
i = αiti + θi − (αts + θ) (2.3)

where ts is the absolute time at which the signal is sent and ti is the absolute time at which

the signal is received by the i-th anchor. Equivalently, (2.3) can be expressed as

τ
(1)
i = αi(ti − ts) + (αi − α)ts + (θi − θ) (2.4)

where the term ti − ts is the exact travel time of the signal from the target to the i-th

anchor, which is related to the exact range di as

ti − ts =
di
c

(2.5)

where c is the speed of the radio waves in the air.
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TOA with Prior Synchronization

For the aim of accurate TOA estimation, the target and the anchors have to be precisely

synchronized, i.e., the clock parameters need to be equal, or accurately estimated and their

effects mitigated. If the target and anchors are synchronized then the clock skews and

offsets are equal, i.e., αi = α and θi = θ for all measurements, and thus the second and

third terms in (2.4) can be omitted.

In general, if the target has the hardware capability of receiving signals as well, then

a two-way ranging (TWR) protocol can be exploited, as will be described below. Let us

assume that the anchors send a timing signal back to the target, δt seconds after receiving

the signal from the latter, where δt is small enough such that clock skew remains constant

and the target movement is negligible. So, assume that the signal is received by the target

at absolute time tir, which is read by its clock as αtir + θ. By subtracting the received

time-stamp and the sent time-stamp, the time of flight of the signal from the anchors to

the target will be expressed as

τ
(2)
i = αtir + θ − (αi(ti + δt) + θi). (2.6)

In this case, by adding the two measurements from the target to i-th anchor in (2.3) with

the one from the latter to the former in (2.6), some of the clock terms in (2.4) can be

cancelled from the measurements as

τ
(1)
i + τ

(2)
i = α(tir − ts)− αiδt = α(2(ti − ts) + δt)− αiδt (2.7)

where in the above we have replaced the true round trip time (RTT), i.e., tir − ts with its

equivalent 2(ti − ts) + δt. Finally, (2.7) can be expressed as

τ
(1)
i + τ

(2)
i = 2α(ti − ts) + (α− αi)δt. (2.8)

Since it is easy to keep the anchors synchronized through a network synchronization protocol

[7] and by means of wires, we can assume that they are synchronized, which amounts to

setting αi = 1 for all i. By assuming that the error in clock skew of the target is small,

i.e., α ≈ 1, the second term in (2.8) will be small compared to the first term since δt is set

to be a small value. Also, with α ≈ 1 the first term is approximately equal to 2(ti − ts).
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Therefore, by means of TWR the effect of clock parameters will be negligible and thus

accurate ranging may be obtained. However, if the target clock is very erroneous, the first

term will be noticeably different than 2(ti − ts) and the second term may not be simply

neglected, hence their effects can cause large localization errors [7]. In this case, α should

also be estimated together with position of the target. Note that we can assume that the

parameter δt is known by the target, which can be done by transmitting this information

from the anchors to the target through the communication links.

Suppose that the mobile target, at time step k, is located at position x[k] = [x[k], y[k]]T ∈
R

2 and the known position of the i-th anchor is pi = [Xi, Yi]
T ∈ R

2 for i = 1, ...,M . By

assuming that the target and the anchors are synchronized, the clock skews and biases are

known and can be cancelled out from the TOA measurements, thus the range measurements

can be expressed as

zi[k] = (ti − ts)c+ ni[k] = ‖pi − x[k]‖+ ni[k] (2.9)

where the relation (2.5) between the true TOA and the true range is used in the second

equality, and ni[k] is the measurement noise. In practice, this error is often modelled as a

white Gaussian noise with zero-mean as ni[k] ∼ N (0, σ2
i ), where σ2

i is the corresponding

variance. Although the above measurements are nonlinear with respect to x[k], they can

be linearised by a technique known as trilateration [8], which is explained below. Note that

in a 2-D space at least three range measurements are needed for localization using the tri-

lateration approach. Alternatively one may also use Taylor series expansion to linearise the

equations and then, by having two linear equations, the target location can be estimated.

However, using Taylor series requires an accurate initial position estimate to guarantee a

good localization performance therefore, trilatertion approach may be preferred in many

applications. In trilateration approach, after squaring the range measurements in (2.9) and

by using the first anchor as the reference for subtraction, the measurement equations can

be restated as (see, e.g., in [8])

Hx[k] = q +ψ[k] (2.10)
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where

H =

⎡
⎢⎢⎣
X2 −X1 Y2 − Y1

...
...

XM −X1 YM − Y1

⎤
⎥⎥⎦ , (2.11)

q =
1

2

⎡
⎢⎢⎣

z21 [k]− z22 [k] +X2
2 + Y 2

2 − (X2
1 + Y 2

1 )
...

z21 [k]− z2M [k] +X2
M + Y 2

M − (X2
1 + Y 2

1 )

⎤
⎥⎥⎦ (2.12)

and ψ[k] can be assumed to be zero-mean; however, it does not follow a Gaussian distri-

bution [72]. Then, the least squares (LS) estimate of x[k] (which may not be the optimum

estimator in the mean square sense since the noise no longer follows a Gaussian distribution)

can be expressed as

x̂[k] = (HTH)−1HTq (2.13)

where it is assumed that H has full column rank, which requires that at least three anchors

are not co-linear on the plane. Note that if the noise variances of the different measurements

are not equal, then a weighted least squares (WLS) method should be applied.

Joint TOA-based Synchronization and Localization

In the above approach, it is assumed that the target and the anchors are precisely syn-

chronized, or that the fixed clock parameters are cancelled out by means of the TWR

algorithm. Although the TWR protocol can provide accurate range estimates in LOS sce-

narios, in several applications the target is only a small wireless device that is only capable

of transmitting a signal, thus TWR can not be done.

One solution is to use techniques that model the clock parameters using a random pro-

cess and track its changes by a multi-model EKF, e.g., [71], [73]. However, these techniques

can not be employed by a small target due to the power and space limitations. In the liter-

ature, there are alternative approaches that combine the localization and synchronization

together [9, 11, 12]. In these methods, the clock parameters and the location of the target

are unknown and they have to be estimated jointly for each time instant. Furthermore,

different alternatives to the TWR protocol have been proposed in [10]. In the above joint

synchronization and localization methods, only the LOS scenario is considered. The reason

is that by including NLOS bias parameters into the joint localization and synchronization,
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the estimation becomes difficult to handle.

2.1.2 Time Difference of Arrival

Another localization technique is based on using the differences between the range mea-

surements corresponding to different anchors. If the anchors make the range measurements

as in (2.6), then each of the measurements should be subtracted from a similar measure-

ment of a reference anchor. While if the target makes the range measurements, then (2.3)

should be subtracted from a similar measurement corresponding to a reference anchor.

Usually TDOA-based localization is used for the case that the target transmit the sig-

nal and the anchor nodes aim at tracking it. Therefore, in this case, by subtracting the

range measurements in (2.6) from the one corresponding to a reference anchor, the term

αts+θ will be cancelled and by assuming perfect synchronization among the anchors, there

will be no clock error term in the resulting equations. Hence, the location of the target

can be found through the hyperbolic localization where one of the anchors, let us say the

first one is considered as the reference node. By defining the extended location vector

xr[k] = [x[k], y[k], d1[k]]
T , where d1[k] = ‖x[k]− p1‖, it can be verified that

Hxr[k] = q +ψ[k] (2.14)

where

H =

⎡
⎢⎢⎣
X2 −X1 Y2 − Y1 z2[k]− z1[k]

...
...

XM −X1 YM − Y1 zM [k]− z1[k]

⎤
⎥⎥⎦ ,

q =
1

2

⎡
⎢⎢⎣

X2
2 + Y 2

2 − (X2
1 + Y 2

1 )− (z2[k]− z1[k])
2

...

X2
M + Y 2

M − (X2
1 + Y 2

1 )− (zM [k]− z1[k])
2

⎤
⎥⎥⎦ . (2.15)

A solution can be obtained using a weighted least squares (WLS) given by

x̂r[k] = (HTQH)−1HTQq (2.16)
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where Q is the covariance matrix of the noises in the linearised equations as given by

Q =

⎡
⎢⎢⎣
σ2
n1

+ σ2
n2

. . . σ2
n1

...
. . .

...

σ2
n1

. . . σ2
n1

+ σ2
nM

⎤
⎥⎥⎦ . (2.17)

and σ2
ni
is the variance of the measurement error of the i-th anchor. Due to the linearisation

of the equations in (2.14), the solution in (2.16) is still biased; to overcome this problem,

a bias reduction approach has been given in [74]. For a better performance the relation

between d1[k] and x[k] can be considered as an equality constraint and then a constrained

LS problem can be solved instead of (2.16), as done in [75, 76].

2.1.3 Angle of Arrival

In LOS situation, location of a target can also be determined if the angle of arrival (AOA)

of the signal emitted from the target can be measured at two or more receivers, using smart

antenna arrays or directional antennas. For narrowband signals, the AOA measurements

can be achieved using the high resolution techniques like MUSIC [5] and ESPIRIT [77].

However, for signals with a wide bandwidth like in UWB systems, the narrowband assump-

tion is no longer satisfied. Therefore, different methods have been proposed in the literature

for the joint estimation of the TOA and AOA with the UWB antenna arrays [15–19]. A

disadvantage of the AOA-based methods is the extra cost due to the antenna arrays, while

their main advantages are the reduced number of anchors and removing the need for syn-

chronization.

With only two angle measurements, one can find the location of a target in a 2D area

using a triangulation technique as follows. Assuming that the AOA of the signal at each

anchor is measured with respect to a common reference axis, thus we can write

θi[k] = arctan
(x[k]−Xi

y[k]− Yi

)
+ nθ,i[k] (2.18)

where nθ,i is the measurement error modelled as zero-mean Gaussian noise for LOS mea-

surements. Then it is easy to see that

(Xi − x[k]) sin(θi[k]) = (Yi − y[k]) cos(θi[k]) + ψi[k], (2.19)
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where ψi[k] has a nonlinear relation with nθ[k], and in matrix form it follows that

Hx[k] = q +ψ[k] (2.20)

where ψ[k] is the vector including the ψi[k]s and

H =

⎡
⎢⎢⎣
− sin(θ1[k]) cos(θ1[k])

...
...

− sin(θM [k]) cos(θM [k])

⎤
⎥⎥⎦ , (2.21)

q =

⎡
⎢⎢⎣

Y1 sin(θ1[k])−X1 cos(θ1[k])
...

YM sin(θM [k])−XM cos(θM [k])

⎤
⎥⎥⎦ . (2.22)

One way to find an estimate of x[k] is to use LS method as

x̂[k] = (HTH)−1HTq (2.23)

although it is not necessarily the optimum in the mean square sense since ψ[k] is not a

zero-mean Gaussian process. One may use the obtained estimate as initialization in a

nonlinear least-squares (NLS) problem which is formed based on (2.18), however, there is

no guarantee for convergence and improvements in performance due to non-convexity.

2.1.4 Received Signal Strength

The RSS is a measure of the power of the received signal at the receiver. The power of

a signal is attenuated by different factors. A constant attenuation is due the propagation

path loss which is dependent on the distance between the transmitter and the receiver.

Other propagation effects such as shadowing, multipath, scattering and diffraction will also

affect the signal attenuation [37]. RSS measurements can be employed in two different ways

for localization purposes as will be discussed in the sequel.
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RSS with Known Anchor Position

By measuring the power of the received signal, and considering a path-loss model, the

range between the target and each anchor is estimated and the location of the former

can be computed based on the trilateration method discussed in Section 2.1.1. In many

situations, the transmit power may not be known to the receivers and needs to be estimated.

In [78], an approach is considered by approximating the underlying ML estimation problem

by a convex optimization problem formulated in turn as a standard SDP. In [79], a minimax

SDP is employed which is shown to achieve the CRLB for sufficiently large SNRs. In many

applications, such as dense urban areas or indoor places, the path-loss exponent which

relates the received and transmit powers of the signal, is not fixed and its exact value is

unknown. Therefore, in [80], a technique is proposed for RSS-based localization under

unknown channel parameters such as path-loss exponent and transmit power.

In general, the RSS-based methods exhibit a poor performance when the RSS data is

converted to range information. This is because there is no accurate model that can relate

the location of the target to the RSS, especially due to changes in the environment. Also,

the received RSS measurements are very noisy and accurate range information may not be

easily extracted from them. Besides, in certain applications, e.g., Wi-Fi based localization,

the exact location of the wifi access points (APs) might not be available. However, there

is another way to exploit the RSS measurements as will be described below.

RSS with Fingerprinting

To overcome the aforementioned limitations, the fingerprinting approach has been proposed

for the aim of localization where a database of signal patterns is stored in the system

beforehand [81,82]. This is known as the training phase, where the RSS measurements are

made at N different locations distributed over the area under consideration. This training

data, known as a radio map, is saved in a database and represented as

R = {(p̃i,F (p̃i))|i = 1 . . . N} (2.24)

where p̃i is the coordinate of the i-th point in the area, F (p̃i) = [zi(1), . . . , zi(ñ)] is a

fingerprint matrix and ñ is the number of training samples that could be obtained at
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location p̃i.
1 The vector zi(t) = [z1i (t), . . . , z

M
i (t)]T consists of the RSS measurements

obtained at M different APs [83]. This database has to be updated later on as the channel

conditions change over time due to the change of environment. In the second phase, known

as the positioning phase, the RSS measurements are made by the target and stored in

another vector. Then by minimizing the euclidean distance between the measured and

already stored vectors in the database, the location of the target is estimated. Among the

advantages of fingerprinting, we note that it does not require hardware modification and

synchronization among the stations. It is quite useful for applications like Wi-Fi where the

location of the APs may not be known and only the fingerprint data is essential. However,

the main disadvantage of fingerprinting is the need for a database, which also needs to be

updated due to changes in the environment. In addition, different target positions may

result in similar power profiles across the APs, so that the mapping from location to RSS

measurement is not invertible. Finally, the movement of people surrounding the target

Wi-Fi device, change in the location of objects such as walls, corridors and partitions

in the environment, and the possibility of facing unpredictable blockages make the RSS

characteristics different from those obtained in the training phase [83]. Therefore, Wi-Fi

fingerprinting might result in large estimation errors. To overcome this issue, the estimate

obtained by fingerprinting is used as a measurement vector in a Kalman or particle filter.

The measurement model will thus be linear but modelling the distribution of the error is

challenging [83]. With the use of long tailed distributions in the PF, the estimated positions

will be more robust against model mismatch. Therefore, with the help of PF, and using the

indoor map as well, a smoother track and more accurate position can be estimated for the

target compared to the case that Wi-Fi fingerprinting is used alone. Since Wi-Fi is already

commercialized and widely used, it seems to be a leading technology for assisted GPS

(AGPS) or non-GPS aided localization systems. Therefore, the fingerprinting techniques

are promising for mobile positioning in Wi-Fi networks.

2.1.5 Hybrid Approaches

By combining two or more of the above techniques, a hybrid localization approach is ob-

tained where the localization performance can be improved [8]. For instance, in an LOS

scenario, TDOA and AOA measurements can be used jointly, where a hybrid form of hy-

1To simplify the presentation, we assume that this number is the same for every location.
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perbolic localization and trilateration can be achieved by combining the equations in (2.14)

with (2.20). This can be formulated as

Hxa[k] = q +ψ[k]. (2.25)

where the extended vector xa[k] = [x[k], y[k], d1[k]]
T , with d1[k] = ‖x[k]− pi‖, and

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X2 −X1 Y2 − Y1 z2[k]− z1[k]
...

...
...

XM −X1 YM − Y1 zM [k]− z1[k]

− sin(θ1[k]) − cos(θ1[k]) 0
...

...
...

− sin(θM [k]) − cos(θM [k]) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.26)

q =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K2 −K1 − (z2[k]− z1[k])
2

...

KM −K1 − (zM [k]− z1[k])
2

2Y1 sin(θ1[k])− 2X1 cos(θ1[k])
...

2YM sin(θM [k])− 2XM cos(θM [k])

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.27)

with Ki = X2
i + Y 2

i and ψ[k] is the vector including the measurement errors. In the

following we show an almost optimum solution for the localization problem as described

in [84]. Before doing that, the vector ψ[k] and its covariance matrix should be derived

as will be described below. By replacing the equivalent value of the range differences and

AOA measurements in H and q, it follows that

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X2 −X1 Y2 − Y1 d2[k]− d1[k] + n21[k]
...

...
...

XM −X1 YM − Y1 dM [k]− d1[k] + nM1[k]

− sin(θ01[k] + nθ,1[k]) − cos(θ01[k] + nθ,1[k]) 0
...

...
...

− sin(θ0M [k] + nθ,M [k]) − cos(θ0M [k] + nθ,M [k]) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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q =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K2 −K1 − (d2[k]− d1[k] + n21[k])
2

...

KM −K1 − (dM [k]− d1[k] + nM1[k])
2

2Y1 sin(θ
0
1[k] + nθ,1[k])− 2X1 cos(θ

0
1[k] + nθ,1[k])

...

2YM sin(θ0M + nθ,M [k])− 2XM cos(θ0M + nθ,M [k])

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and where θ0i [k] is the true angle and ni,1 is the TDOA measurement noise for i-th anchor.

The terms that do not include the noise terms cancel each other and by using the assumption

that the noise of the AOA measurement is small, it follows that sin(nθ[k]) ≈ nθ,i[k] and

cos(nθ,i[k]) ≈ 1. Therefore, with a good approximation it follows that

ψ[k] ≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(d2[k]− d1[k])n21[k] +
1
2
n2
21[k] + d1[k]n21[k]

...

(dM [k]− d1[k])nL1[k] +
1
2
n2
M1[k] + d1[k]nM1[k]

nθ,1[k][(x[k]−X1) cos(θ
0
1[k]) + (y[k]− Y1) sin(θ

0
1[k])]

...

nθ,M [k][(x[k] −XM) cos(θ0M [k]) + (y[k]− YM) sin(θ0M [k])]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d2[k]n21[k] +
1
2
n2
21[k]

...

dM [k]nM1[k] +
1
2
n2
M1[k]

nθ,1[k]d1[k]
...

nθ,1[k]dM [k]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.28)

Since in practice |ni1[k]| � di[k] is satisfied, by ignoring the terms n2
i1[k] in (2.28) it follows

approximately that

ψ ≈ Bn (2.29)
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where

B = diag{d2[k], . . . , dM [k], d1[k], . . . , dM [k]} ∈ R
2M−1×2M−1

n = [n21[k], n31[k], . . . , nM1[k], nθ,1[k], . . . , nθ,M [k]]T .

and we have omitted the time dependence in k to simplify the notations.

Thus, ψ can be assumed to be approximately Gaussian [72] with covariance matrix

Ψ = E[ψψT ] = BQBT (2.30)

and Q, the covariance matrix of the measurement equation, is given by

Q =

[
Qr Qrθ

QT
rθ Qθ

]
(2.31)

where

Qr =

⎡
⎢⎢⎣
σ2
n1

+ σ2
n2

. . . σ2
n1

...
. . .

...

σ2
n1

. . . σ2
n1

+ σ2
nM

⎤
⎥⎥⎦ ,Qθ =

⎡
⎢⎢⎣
σ2
θ,1 . . . 0
...

. . .
...

0 . . . σ2
θ,M

⎤
⎥⎥⎦ (2.32)

Qrθ =

⎡
⎢⎢⎢⎢⎣
α1σ1σθ,1 0 0 . . . 0

0 α2σ2σθ,2 0 . . . 0
...

...
. . .

...
...

0 0 0 . . . αMσMσθ,M

⎤
⎥⎥⎥⎥⎦ (2.33)

with αi being a parameter (known experimentally) showing the amount of cross-correlation

between the angular and range measurements at the i-th anchor. The variance of each link

is calculated as discussed in the previous section. In [84], the correlation between the AOA

and TDOA measurements is not considered; however, we consider them herein for more

generality.

In order to calculate B, the exact value of ranges di[k] are needed, however, one can

first find a rough position estimate by TDOA or AOA method and then have an estimate

of d1[k], say d̃[k]. Then as di[k] ≈ zi[k] − z1[k] + d1[k], replace di[k] in matrix B with its

approximate value d̃i[k] = zi[k] − z1[k] + d̃1[k] to get an approximation as B̃. Then an
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approximate value of Ψ is obtained as

Ψ̃ = B̃QB̃
T
. (2.34)

The solution to the unknown vector xa is then given by solving the following constrained

optimization problem

min
xa[k]

(Hxa[k]− q)T Ψ̃
−1
(Hxa[k]− q)

s.t. (xa[k]− p1)
TΣa(xa[k]− p1) = 0 (2.35)

where Σa = diag(1, 1,−1). Note that the equality constraint in (2.35) is the matrix for-

mulation of (x[k] − X1)
2 + (y[k] − Y1)

2 = d21[k]. Once an estimate of xa[k] is obtained,

then a more accurate d1[k] can be estimated from which the matrices B̃ and then Ψ̃ can

be updated and the optimization problem in (2.35) can be solved again. This process can

continue iteratively until convergence.

Other hybrid combinations of the measurements may also be considered, for which the

readers are referred to [84].

2.1.6 Localization with Available Dynamic Equation

In the above techniques, only the measurements which correspond to the geometric relation

between the sensor and anchors are used for the aim of localization. However, for mobile

targets, these memoryless techniques may not offer a smooth estimate of the trajectory

and sometimes large spikes are observed in the positioning error. In case the motion of the

target can be accurately modelled by a dynamic equation, filtering techniques are usually

preferred. For general nonlinear dynamic systems, state vector at the (k+1)-th time instant

s[k + 1] is related to the state at the k-th time instant s[k] as

s[k + 1] = f(s[k]) +w[k], (2.36)

where f is a nonlinear function of the state vector and w[k] is the process noise with

covariance matrix Q. The measurements at the k-th time instant, z[k] can be expressed

in general form as

z[k] = h(s[k]) + n[k] (2.37)
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where h is a nonlinear function of the state vector and n[k] is the measurement noise with

covariance matrix R.

One of the most popular filtering techniques to estimate the state vector and its uncer-

tainty in the form of a covariance matrix is the extended Kalman filter (EKF), which is

based on the first order Taylor series approximation. Due to the poor performance of EKF

for highly nonlinear problems, unscented Kalman filter (UKF) which can offer accuracy of

the linearisation at least up to the second order Taylor series term is proposed [85]. The

performances of these Kalman-based filters are only good if the measurement and process

noises are normally distributed. For the case of non-Gaussian errors, the particle filters

(PFs), which are Monte Carlo techniques for estimation of the posterior PDF using parti-

cles and weights assigned to them, may be employed [86]. In general, PFs suffer from high

computational cost for moderately large state vectors, thus their computational cost is a

limiting factor in low-power and low-cost sensor networks.

Considering nonlinear filtering techniques for tracking has been done during the last

decades and there are numerous works available. The readers are referred to [8] and the

references therein for further explanations.

2.1.7 Cooperative Localization Techniques in LOS

The cooperative techniques have received great attention in ad-hoc and sensor networks

where each sensor can communicate with its neighbours in order to do self-localization. In

a wireless sensor network, the localization can be done in a cooperative fashion so that

the neighbouring targets help each other in finding their coordinates. The cooperative

techniques can be classified into different categories. For example, the problem formula-

tion can be categorised in two ways: probabilistic and non-probabilistic. In probabilistic

methods, the localization is referred to as a probabilistic inference problem where the belief

in the position of each target is computed and sent to other targets. Alternatively, the

non-probabilistic approaches provide a deterministic estimate of the location of each target

based on the measurements. The probabilistic methods provide a reliable result and are

suitable for distributed implementations but with the downside that they generally have a

higher computational cost compared to deterministic approaches.

Another classification of the cooperative techniques can be done based on the computa-

tion center as centralized or distributed techniques. The centralized approaches suffer from
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the high computational cost when the network grows in size, therefore, these approaches

are not scalable. On the other hand, in distributed sensor network localization, the com-

putations are distributed over the nodes in the network and the nodes only need the local

information of their neighbours in order to estimate their own location. In distributed im-

plementation, the localization can be done sequentially or in parallel for every sensor . In

the sequential methods, first, all nodes estimate their range to all neighbouring nodes and

anchors. Then all the nodes with three or more LOS anchors determine their position and

are regarded as virtual anchors afterwards. The virtual anchors together with the anchors

help the nodes that do not have enough LOS measurements to localize themselves. This

process continues until the position of all the nodes are updated. In parallel techniques,

every node updates its position at every time instant and sends this information to the

neighbouring nodes. Based on the updated location information, the next iteration is done

for every node until some convergence is achieved for every node.

Deterministic Approaches

In deterministic localization, the problem is formulated in order to minimize the mean

squared error (MSE). For example, consider a cooperative network with N sensor nodes for

which the position matrix X = [x1,x2, . . . ,xN ] ∈ R
2×N is unknown (the extension to 3-D

positioning is straightforward), together with M anchor nodes with known position pk, for

k ∈ {N + 1, . . .N +M}. All the neighbouring sensors and the anchors measure the range

among each other as

zkj = ‖pk − xj‖+ nkj, ∀(k, j) ∈ Na

zij = ‖xi − xj‖+ nij , ∀(i, j) ∈ Nx

(2.38)

where Na and Nx are the sets of pairwise indices of neighbour anchor-sensor and neighbour

sensor-sensor nodes, respectively. The aim is to find the position matrix X by minimizing

the mean squared errors as

min
X

( ∑
(k,j)∈Na

(‖xj − pk‖ − zkj)
2 +

∑
(i,j)∈Nx

(‖xi − xj‖ − zij)
2
)

(2.39)

which is a non-linear and non-convex optimization problem and NP hard. There are several

relaxation techniques to modify the cost function, such that the global optimum of the
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modified function can be obtained, which might be close to the true global minimum.

Below we discuss two of the most popular techniques, one uses semi-definite program-

ming (SDP) and the other is based on another relaxation which makes the computations

easily implementable in a distributed manner.

SDP Approach: The optimization problem in (2.39) is in general non-convex, however, it

can be relaxed and reformulated as an SDP problem, which is convex and can be solved more

efficiently in polynomial time [23,87]. The SDP has received great attention in cooperative

and large scale WSN and wireless ad-hoc networks, due to the great computational cost

of finding the location of all the unknown positions with standard optimization techniques

[23, 87, 88]. Herein, we consider the noise-free measurements and try to solve the problem

of finding the location of sensors, given the true distances between neighbouring nodes.

This problem is also NP-hard and finding the exact solution can not be done in polynomial

time. First consider for all (i, j) ∈ Nx, i < j:

‖xi − xj‖2 = eT
ijX

TXeij (2.40)

and for all (k, j) ∈ Na:

‖pk − xj‖2 =
[
pT
k −eT

j

] [ IT
d

XT

] [
Id X

] [ pk

−ej

]
(2.41)

where ej ∈ R
n is a vector of entry 1 at the j-th row and all zeros elsewhere; eij ∈ R

n is

a vector which is 1 at the i-th row, -1 at the j-th row and zero elsewhere. Therefore, we

should find a symmetric matrix Y ∈ R
n×n and a matrix X ∈ R

d×n such that

eT
ijY eij = z2ij ∀(i, j) ∈ Nx (2.42)[

pT
k −eT

j

] [ Id X

XT Y

][
pk

−ej

]
= z2kj ∀(k, j) ∈ Na (2.43)

Y = XTX (2.44)

where Id ∈ R
d×d is an identity matrix. In the SDP relaxation tecnique, the constraint
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Y = XTX is relaxed to Y 	 XTX [88] 2, or equivalently the following matrix inequality

W =

[
Id X

XT Y

]
	 0, (2.45)

where W ∈ R
(d+n)×(d+n). In the end, the problem can be formulated as an SDP problem

(see [88]):

max
W

0

s.t. W 1:d,1:d = Id (2.46)([ 0

eij

] [
0T eT

ij

] )
•W = z2ij ∀(i, j) ∈ Nx (2.47)

([ pk

−ej

] [
pT
k − eT

j

] )
•W = z2kj ∀(k, j) ∈ Na (2.48)

W 	 0 (2.49)

where the operator • represents the inner product, as defined in Section 1.4. Once a matrix

W is found, the matrix X can also be calculated, which contains the estimated positions

of the sensors.

Extension of this SDP approach for the case with noisy range measurements has been

considered in [23], in which the NLS problem for finding the location of the sensors by

minimizing the 2-norm of the error is relaxed to an SDP. Although the proposed SPD

technique performs relatively accurate localization in polynomial time, it is based on the

fact that all the information about the sensors is collected at a fusion center, which makes it

a centralized approach. The centralized techniques suffer from high computational cost at

the fusion center and network overload. Furthermore, the centralized techniques may not be

scalable with the size of the network, therefore, distributed techniques are preferred. There

exist some sub-optimal implementations of the proposed SDP relaxation in a distributed

manner, however, their performances may not be good and convergence to the centralized

SDP solution may not be guaranteed, therefore, it is still an open problem.

In the sequel, other techniques are described where they are mostly suitable for dis-

2The notation A 	 B means A−B 	 0, i.e., A−B is positive semidefinite.
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tributed implementation over the network.

Other Relaxations: Another convex relaxation technique which can be useful for dis-

tributed localization has been proposed in [26]. This convex relaxation modifies the original

cost function in (2.39) as

∑
(i,j)∈Nx

(
(‖xj − xi‖ − zij)+

)2
+
∑

(j,k)∈Na

(
(‖xj − pk‖ − zkj)+

)2
(2.50)

where for a real value u,

u+ =

⎧⎨
⎩ u u ≥ 0

0 otherwise
(2.51)

Further explanation about the convexity of this cost function is given in [89]. The concept

of this relaxation is similar to POCS proposed first in [90] and considered for cooperative

sensor network localization in [2]. By implementing the gradient descent algorithm on

the convex cost function, it will be observed that the calculation of the gradients can

be done locally at each sensor node. Therefore, each sensor iteratively minimizes the

modified local cost function and then transmits the estimate of its own location to its

neighbours to be used in the next iteration. Therefore, the global minimum of the convex

cost function will be reached after enough iterations. This relaxation is weaker than the

SDP relaxation mentioned earlier, in the sense that the sensor estimates are generally less

accurate. However, the computational cost for solving the SOCP is less than that of the

SDP problem therefore it is preferred in that sense.

Projection onto Convex Sets : The idea of POCS was first proposed in [90], and has

been applied to target localization problem in [91]. For the j-th target, the convex set is

∩i∈N (j)Dij, where N (j) is the index set of neighbouring nodes of j-th sensor, and

Dij = {x ∈ R2 : ‖x− xi‖ ≤ zij} (2.52)

is the disc with centre xi and radius zij, which contains the j-th sensor. The POCS method

is an iterative algorithm for projecting the parameters onto a convex set where at the l-th

iteration, the position of a single target j is updated as

x
(l+1)
j = x

(l)
j + λ

(l)
j

∑
i∈N (j)

wij(PDij
(x

(l)
j )− x

(l)
j ) (2.53)
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where PDij
(x

(l)
j ) is a projection operation, ε1 < λ

(l)
j < 2−ε2 for arbitrary small and positive

ε1 and ε2, and the weights wi are such that

∑
i∈N (j)

wij = 1, wij > 0 (2.54)

and the optimum value of the projection onto a disc is

PDij
(x

(l)
j ) =

⎧⎪⎨
⎪⎩
xi +

x
(l)
j −xi

‖x
(l)
j −xi‖

zij , ‖x(l)
j − xi‖ ≥ zij

x
(l)
j , ‖x(l)

j − xi‖ ≤ zij

(2.55)

with xi being the centre of a disc Dij. If i-th nodes is a sensor and hence xi is unknown

then its estimate at the l-th iteration, i.e., x
(l)
i is used in (2.55).

The POCS can provide a relatively reliable solution with any initialization. However,

the POCS method might face a situation that there exist disks such that ∩i∈N (j)Dij =

∅. Therefore the POCS will never converge to a feasible solution as there is no feasible

solution in this scenario [2]. Furthermore, cooperative POCS is suitable when most of

the measurements are positively biased, i.e., are in NLOS. In the presence of zero-mean

measurement noises, a disk may not contain the position of the corresponding sensor, and

the solution obtained by POCS is far from optimal. Therefore, a better solution can be

obtained by minimizing the original cost function. A method known as iterative parallel

projection method (IPPM) for distributed cooperative localization is proposed in [27] that

will be described below.

Iterative Parallel Projection Method (IPPM): The idea behind the IPPM is developed

from the modified parallel projection method (MPPM) as explained in [27] and the refer-

ences therein. In MPPM, the feasibility problem is formulated as a weighted LS problem

when there exists no solution satisfying all convex feasibility sets. The methods such as

POCS are examples of the methods which suffer from the inconsistency in the intersection

of feasibility sets. While the MPPM is developed for the non-collaborative localization,

however, a modification is made in IPPM for the collaborative scenario. Basically, in the

IPPM, each node uses the MPPM to update its position estimated using the range mea-

surements of the neighbouring nodes. If the i-th and j-th nodes are neighbours, with

estimated positions at l-th iteration x̂
(l)
i and x̂

(l)
j , respectively, the projection of x̂

(l)
i onto
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the feasibility set given by the range measurement zij is

Pcol
ij (x̂

(l)
i ) = x̂

(l)
j + zij

x̂
(l)
i − x̂

(l)
j

‖x̂(l)
i − x̂

(l)
j ‖

(2.56)

where “col” stands for collaborative, and the residual is defined as

Φcol(x̂
(l)
i ) =

1

|N (i)|
∑

j∈N (i)

(zij − ‖x̂(l)
i − x̂

(l)
j ‖)2 (2.57)

where |.| denotes the cardinality. Let the indexes i = 1, . . . , N be for the sensors and the

indexes i = N + 1, . . . , N + M be for the anchors. The IPPM algorithm is summarized

in Algorithm 1 where Φncl is the non-collaborative residual computed by averaging the

residuals corresponding to the neighbouring anchors of node i only.

Algorithm 1 IPPM

Initialization:
Use tri-lateration of anchors to initialize [x̂1, . . . , x̂N ].
Set l = 0, Φl = Φncl(x̂), K as the maximum number of iterations, and δ as a small
positive number. Let Fi = 0 and Wi = 0 for i = 1, 2, . . . , N .
While (any Fi = 0) {
for i = 1, 2, . . . , N do
if Fi = 0 then
x̂i =

1
|N (i)|

∑
j∈N (i) P

col
ij (x̂i),Φi,l+1 = Φ col (x̂i)

if |Φi,l − Φi,l+1| < δ then
Let Wi = Wi + 1; If Wi ≥ K set Fi = 1

else
Let Wi = 0 ;

end if
end if

end for
l = l + 1;
}

In Algorithm 1, when Fi = 1 the i-th node is considered as localized. The iteration for

each node stops when the number of iterations passes the parameter K or the difference

between the values of Φ is smaller than the considered threshold δ.
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Probabilistic Approaches

Many problems in signal processing and coding might be solved using a so-called be-

lief/probability propagation algorithm, which is based on marginalization of the posterior

PDF using a facto-graph [21]. Specific examples of such algorithms include Kalman filter-

ing and smoothing, the forward backward algorithm for hidden Markov models, probability

propagation in Bayesian networks, decoding algorithms for error correcting codes such as

the Viterbi algorithm, the BCJR algorithm, and the iterative decoding of turbo codes,

low-density parity check codes, and similar codes [21].

The aim of belief propagation technique is to approximately marginalize the posterior

PDF f(x|z), where in the localization context x = [xT
1 , . . . ,x

T
N ]

T and z is defined by

stacking all the range measurements zij . Therefore, the beliefs can be computed through

iterative message passing on the facto graph corresponding to f(x|z). In a belief propa-

gation (BP) algorithm, the belief (probabilistic knowledge) of node i about its location at

the l-th iteration is

b
(l)
i (xi) ∝ p(xi)

∏
j∈N (i)

μ
(l)
j→i(xi) (2.58)

where p(xi) is prior belief (PDF) of node i about xi and for node j, which is a neighbouring

node of node i, μ
(l)
j→i(xi) is the so-called message of j-th node to i-th node, defined as

μ
(l)
j→i(xi) ∝

∫
p(zij |xi,xj)

b
(l−1)
j (xj)

μ
(l−1)
i→j (xj)

dxj. (2.59)

The initial values are set to be μ
(0)
i→j(xj) = 1 and b

(0)
j (xj) = p(xi). In BP algorithm, in

order for node i to calculate the belief b
(l)
i (xi), the messages of all neighbour nodes j ∈ N (i)

needs to be transmitted to it. Since in general, the message is represented approximately

by a large set of discrete samples, the communication load in the network will hence be

high and thus this method will be difficult to implement for low-cost sensor networks.

Another variation of BP known as non-parametric BP, which is suitable when the noise is

multi-modal has been proposed in [28], however, it also suffers from high computational

cost.

A more efficient implementation of BP, especially suitable for distributed localization,

is known as sum-product algorithm over wireless network (SPAWN) [21]. In SPAWN, each

node i computes the belief about its own variable xi defined the same way as (2.58). The
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message of node j to i is defined in SPAWN as

μ
(l)
j→i(xi) ∝

∫
p(zij |xi,xj)b

(l−1)
j (xj)dxj . (2.60)

In SPAWN, each node only transmits its belief information (e.g., mean and covariance for

Gaussian beliefs) to its neighbours and the messages in (2.60) are computed at the desti-

nation node analytically or through numerical integration. Calculating the belief in (2.58)

requires multiplication of multiple messages calculated earlier, which can be done using

a parametric representation for known error distributions. The probabilistic approaches

are accurate for distributed localization, if the distribution of measurement error is known.

However, the knowledge of the error distribution might be limited in some scenarios. An-

other important disadvantage of these techniques is the high computational cost that might

not be tolerated for low cost sensor networks.
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2.2 Localization in NLOS Scenarios

In this section, the NLOS problem is first introduced. To deal with NLOS situations, the

NLOS links need to identified, and then their effects need to be mitigated, which will be

described in this section, sequentially. Finally, cooperative localization in NLOS situations

is introduced.

2.2.1 NLOS Problem

One of the main challenges in the localization is the NLOS problem, i.e., when the di-

rect path between the transmitter and the receiver is blocked. In this case, the regular

approaches like tri-lateration, triangulation, and other approaches designed for LOS situa-

tions yield poor estimate due to the additive bias term in the measurements. The NLOS

bias of TOA measurements is a positive random variable with a large variance, thus making

the measurements imprecise. The large variance of NLOS measurements compared to LOS

ones have been observed through real experiments in [8,14,37]. Since the NLOS errors can

significantly deteriorate the localization accuracy, the effect of the NLOS bias should be

mitigated.

Let us assume that the TOA measurement is done through the common technique, and

that the range between the transmitter and the receiver is computed. Let us assume that

the nodes are synchronized with each other, so that the clock parameters do not appear in

the range measurement equations. The mobile target, at time step k, is located at position

x[k] = [x[k], y[k]]T ∈ R
2. The known position of the i-th anchor is pi = [Xi, Yi]

T ∈ R
2 for

i = 1, ...,M . Let us consider the first MN anchors (MN ≤ M) to be the ones facing NLOS

and the remaining L = M − MN anchors as the ones in LOS situation. Let the range

measurements at time instant k be denoted by zi[k] where

zi[k] =

⎧⎨
⎩di[k] + bi[k] + ni[k], i = 1, . . . ,MN

di[k] + ni[k], i = MN + 1, . . . ,M

where di[k] = ‖x[k]−pi‖, ni[k] is a white Gaussian noise modelled as ni[k] ∼ N (0, σ2
i ), and

bi[k] is the positive bias due to the NLOS with mean bi[k] and variance σ2
bi
[k]. Different

distributions have been considered for bi[k], e.g., exponential, Gaussian, Gamma, etc. [14].

The CRLB derivation of the TOA-based localization based on the range measurements
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shows that when the statistics of bi are not available, the CRLB is dependent only on the

LOS measurements [29]. This means that the best localization performance can be achieved

if the NLOS anchors are identified perfectly and then the corresponding set of measurements

are discarded from the total set of measurements. This has also been verified for localization

methods based on TDOA, AOA, RSS, and hybrid thereof. Discarding can be done if there

would be enough LOS fixed anchors for unambiguous localization. For a 2-D TOA-based

localization, at least three anchors are required. Therefore, in many applications like in

cellular systems, the discarding technique might make it almost impossible to estimate

the mobile position without ambiguity. Moreover, in [29], it is shown that if prior NLOS

statistical information is available then the generalized CRLB (G-CRLB) is also dependent

on the NLOS anchors. In the case that the PDF of the NLOS bias pb(b) is available, the

G-CRLB can be asymptotically achieved by the maximum a-posteriori (MAP) estimator

without discarding any NLOS measurement. The performance can be guaranteed when σ2
b

is small enough (although it is usually not satisfied) and when b is in the neighbourhood

of a local maximum of pb(b).

Therefore, for a good position estimation technique, it is essential that the NLOS an-

chors be first identified and that some prior knowledge about the NLOS bias be also avail-

able. The prior knowledge could include only the variance, but in the best case the PDF

is also desired. The distribution of the NLOS is location dependent and when the target

moves inside a room, the distribution is varying. Therefore, the methods that consider

a prior distribution are of limited practical interest. However, the variance of the range

measurements could be estimated by statistical information about the range measurements

over time. A smooth cubic regression technique for variance estimation is presented in [92].

The variance calculation might be accurate for localization of a fixed node, however, for

mobile nodes, it might not be done with good accuracy.

Below, some popular NLOS identification techniques are first illustrated and then we

move forward with the NLOS mitigation techniques.

2.2.2 NLOS Identification

The NLOS identification is the initial phase in dealing with an NLOS situation in order

to improve the performance of the localization. If the identification of the NLOS anchors
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is done with a high precision, then the localization error can be reduced to some extent.

Below, we describe identification techniques using TOA and other sets of measurements.

Identification Using TOA Data

In this part, we summarize some of the popular identification techniques using TOA mea-

surements.

Residual Test Algorithm: In this approach [30], one considers different combinations of

at least three out of M total fixed anchors, the number of such combinations will be

S0 =

M∑
i=3

(
M

i

)
(2.61)

For each combination, different location coordinates x̂k and ŷk are estimated using the

approximate maximum likelihood algorithm, where k ∈ {1, 2, . . . , S0}. For each location

estimate, the square of the normalized residuals are computed as

χ2
x(k) =

(x̂k − x̂S0)
2

Ix(k)
, χ2

y(k) =
(ŷk − ŷS0)

2

Iy(k)
(2.62)

where x̂S0 and ŷS0 are the coordinate estimates using all the anchors, and Ix(k) and Iy(k)

are the approximation of CRLBs for the estimation errors in x and y coordinates, using

the k-th combination, respectively [44]. If all the anchors in the k-th combination are LOS

then the residuals χ2
x(k) and χ2

y(k) have Chi-square distributions with one degree of free-

dom, otherwise, they have non-centralized Chi-distributions with non-centrality parameter

depending on the NLOS bias. In the case that the distribution happens to be non-central

Chi-square, there is at least one NLOS anchor. Then the algorithm forms combinations

with M − 1 anchors in each set. If the distribution is a centralized Chi-square then those

M − 1 anchors are selected as LOS, otherwise the algorithm continues until there are at

least three LOS anchors available for localization.

Statistical Methods in UWB NLOS Identification: In [32], the multipath channel statis-

tics are used for NLOS identification of UWB links. It is shown that for TOA data, there is

a correlation between the NLOS bias and different channel characteristics of the signal, e.g.,

energy and maximum amplitude of the received signal, root mean squared (RMS) delay

spread, mean delay spread, kurtosis, and rise time. Therefore, using a likelihood ratio test,
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the NLOS/LOS identification can be done.

In [33], a NLOS identification technique using real UWB data is proposed. By exploiting

the aforementioned feature of the UWB channel and with the aid of machine learning

techniques, the UWB data which are in a NLOS situation are identified. In [34], it is

shown that the highest correlation between the TOA measurements and the UWB data

features are in the RMS delay spread, mean delay spread, and maximum amplitude of the

signal. After identification, it is further shown that, using an iterative technique the NLOS

biases can be estimated and subtracted from the measurements. Other UWB measurement

campaigns for NLOS identification are also given in the literature [31], [32].

The results obtained for UWB NLOS identification shows that a good performance may

be achieved in general with a low chance of wrong classification of a LOS or NLOS link.

Therefore, the assumption that the NLOS links are identified accurately may be justified.

Identification Using Other Sets of Data

In wireless networks, there are other types of measurements available such as TDOA, AOA,

and RSS. In this part, some of the popular cases are briefly described.

Identification using TDOA: In [35], a localization technique using TDOA data is pro-

posed. The TDOA residual is defined as the norm of the difference between the measured

TDOA and calculated TDOA using the initial location estimate.

Identification Using TDOA/AOA: By having access to the AOA of the home BS, the

authors in [35] have extended their work and improved it in [36]. The residual is defined in

a different way to take into account the variance of each measurement and the sign of the

difference between the measured TDOA and the calculated TDOA. The method is based

on the conditional probability of the TDOA measurements assuming the LOS condition,

which follows a Gaussian distribution. In this algorithm, first, all the TDOA measurements

together with the AOA from the home BS are used to obtain an initial position. Using the

initial point, the residual from the conditional PDF of the TDOA data, which equates to

the PDF of the TDOA measurement noise, is computed. If the residual is above a threshold

then the BS is detected as NLOS. Thus, the higher the difference between the measured

TDOAs and the computed range differences using the estimated position, the more likely

the BS is in NLOS. By this method, the BSs which are in more severe NLOS situation will

be detected as they have larger residuals.
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2.2.3 NLOS Mitigation Using Non-cooperative Techniques

After detecting which anchors are facing LOS and which ones are in NLOS, the next step

is to reduce the effect of the biased NLOS measurements.

NLOS Mitigation Using TOA

As the UWB technology has great timing resolution, many localization networks are based

on the use of the TOA data. When the direct view of the mobile terminal and a fixed

station is blocked, the direct path signal is attenuated such that it can not be detected at

the receiver. However, the earliest detectable signal arriving at the receiver is due to the

reflection from the surrounding objects. The reflected signal has travelled a longer distance

compared to the direct path, hence its travel time is positively biased. Moreover, due to

the absorption and reflection from the objects, the noise variance of the received signal is

generally higher than that in the LOS case.

ML Based Algorithm with Known NLOS Bias Distribution: In the ML-based approach

proposed in [8], the distribution of the NLOS bias is assumed to be known. For example

as considered in [8], the NLOS bias corresponding to the i-th anchor is exponentially

distributed with parameter λi. Since the additive noise in the range measurements is

assumed to be Gaussian, the exact distribution results from the convolution of a zero mean

Gaussian distribution and a non-zero mean exponential distribution, with the resulting

PDF given by

P (z) = λi exp(−λi(z − λiσ
2
i /2))Q(λiσ − z/σi) (2.63)

where Q(.) is the Gaussian Q-function [8]. Thus, the exact ML solution is given by

x̂ML = argmin
x

( ∑
i∈NN

λi(zi − ‖x− pi‖ − λiσ
2
i /2)−

∑
i∈NN

log[Q(λiσi − zi − ‖x− pi‖
σi

)]

(2.64)

+
∑
i∈NL

(zi − ‖x− pi‖)2
2σ2

i

)

where zi is the measured range corresponding to the i-th anchor with location ai, and NN
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and NL are the sets which include the indices of the NLOS and LOS links, respectively.

Since the ML approach is computationally expensive, an approximate ML (AML) solu-

tion can be expressed by means of weighted nonlinear least squares (WNLS) with weights

inversely proportional to the variance of the noise, as in [8]

x̂AML = argmin
x

{
∑
i∈NN

(zi − ‖x− pi‖ − λi)
2

λ2
i

+
∑
i∈NL

(zi − ‖x− pi‖)2
σ2
i

} (2.65)

Localization Using the Feasible Region Constraints : In this approach the NLOS anchors

are not discarded but they are used together with the LOS measurements to construct

a feasible region. If there are more NLOS anchors, then the feasible region becomes the

intersection of more discs, thus it is generally smaller. If the NLOS bias is always larger than

the zero-mean measurement noise, i.e., bi + ni ≥ 0 with probability 1, then the noise can

be neglected in the NLOS measurements. This is usually satisfied for NLOS measurements

as the NLOS bias is a very large positive random variable. Under this assumption, for the

i-th anchor which is identified to be in NLOS, we have

‖x− pi‖ ≤ zi. (2.66)

In a network with fixed reference nodes facing NLOS situation a closed feasible set will be

achieved as shown in Fig. 2.1.

Since the constraints in (2.66) are nonlinear, using them directly in an optimization

problem increases the computation time noticeably. For reduced computational cost, the

inequalities are relaxed to the rectangular constraints:

Xi − zi ≤ x ≤ zi +Xi (2.67)

Yi − zi ≤ y ≤ zi + Yi. (2.68)

After finding the approximate feasible region, only the LOS anchors are exploited to find

the position. To this aim, the LOS measurement equations are linearised, therefore, the

problem changes to a linear program which can be solved with low computational cost

[39, 40].

A Constrained Bias Estimation Technique with Taylor Series Approximation: In this

technique [42], the nonlinear equations are first linearised using the Taylor series, so the
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Fig. 2.1 The constraint region made by the disks defined in (2.66)

NLOS measurements can be expressed as

y ≈ H0x+ b+ n, (2.69)

where H0 is the Jacobian matrix of the measurement equations with respect to currently

estimated location coordinates, b is the vector of NLOS biases, and n is the vector of

measurement noises. If the bias vector is known then the bias-free position estimate is

x̂ = x̃+ V b, (2.70)

where

x̃ = −V y, (2.71)

and V is the matrix:

V = −(HT
0R

−1H0)
−1HT

0R
−1, (2.72)

in which R is the covariance matrix of the measurement noise vector n. Since in practice

the bias is unknown, the following quantity can be defined

u = y −H0x̃ = (I +H0V )b+H0(x− x̂) + n = Sb+w, (2.73)
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wherew = H0(x−x̂)+n is an error with covariance matrixQw = H0(H0R
−1HT

0 )
−1HT

0 +

R. Then the bias is estimated by solving the following constrained optimization problem

using interior point methods

b̂ =argmin
b
(u− Sb)TQ−1

w (u− Sb) (2.74)

s.t. li ≤ bi ≤ ui, i ∈ NN

where the lower bounds li are usually set to zero and the upper bounds ui can be selected

as in [42]. The tighter the bounds, the better the estimation of bi. Using the estimated

biases, the position can be computed from (2.70) and this process continues iteratively until

convergence.

NLOS Mitigation using Hybrid Approaches

Unlike the above methods which only exploit the TOA data for localization, several tech-

niques are proposed which exploit a hybrid of AOA, angle of departure (AOD), RSS, TOA,

or Doppler spread.

AOA/AOD Measurements : In the hybrid scheme in [45], the anchors and target have

to be equipped with directional antennas or smart antenna arrays. Using the fact that the

scatterer, from which the strongest signal reaches the receiver, has to be located on the

intersection of the line passing by the anchor with direction defined by the AOA, and the

line passing by the target with direction defined by the AOD, one linear equation can be

formed. By having another AOA and AOD measurements from another anchor the linear

equations can be combined to give a location estimate.

TOA/AOA/Doppler Spread Measurements : The above approach requires the mobile

node to be equipped with directional antennas. This is not practical and increases the

cost and size of the sensor. Therefore, in [47], the Doppler spread of the moving node is

also assumed to be estimated. The joint estimation of TOA/AOA/Doppler spread is given

in [48]. Using the information of the Doppler spread, the AOD of the emitted wave can be

estimated and then the position of the target can be found as in [45].

TOA/AOA Measurements : In many applications, the Doppler spread is not tractable

and cannot be estimated. In this case only the TOA and AOA can be exploited as reliable

data. If the TOA and AOA data are available then the location of the target can be
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estimated using only one anchor in LOS scenario. Since there is a great chance that

at least one LOS anchor is available in the network, having access to TOA and AOA

data is preferred in several applications. An ESPRIT-based joint estimation of TOA and

AOA using a narrowband signalling scheme is given in [93]. As the UWB has a large

bandwidth, the regular techniques proposed earlier cannot yield good estimates. Therefore,

several techniques have been proposed to provide the AOA information for large bandwidth

signals. In [18, 94], a joint TOA-AOA estimation technique for IR-UWB is proposed.

A more accurate frequency domain method is also given in [16]. In [49], a constrained

optimization technique is proposed where the location of the scatterers and the target are

jointly estimated. The equality and inequality constraints are non-linear and nonconvex

and the approach may not be efficient. A grid-search-based technique, suited for cellular

network, has been proposed in [95], where the constraints are modified. The technique

in [95] outperforms the one in [49] in terms of localization performance.

TDOA/AOA Measurements : In several applications, it is difficult to synchronize the

nodes and the two way communication might not be done. Therefore, the TDOA methods

are preferred and exploiting the AOA information would further improve the performance

in NLOS. A NLOS mitigating technique using the hybrid TDOA-AOA technique has been

proposed in [36].

NLOS Localization with Known Dynamic Model

If the target is moving and its movement can be modelled by a dynamic equation, then fil-

tering techniques are preferred as they can track the trajectory of the target more smoothly.

In addition to the aforementioned measurements, data from inertial measurements units

(IMU) can be used in parallel with range information for tracking purposes [52], [53]. Some

methods apply Kalman filter preprocessing on measured TOAs to smooth out the effect

of the variances of the NLOS biases, while scaling the covariance matrix in an extended

Kalman filter (EKF) to further mitigate the effect of their means [50], [51], [54]. However,

these approaches can only achieve a moderate performance for large NLOS biases. In

[55, 56], it is assumed that the mean and variance of the NLOS biases are known; in

practice, however, this information is not available accurately beforehand unless prior field

measurements are obtained.

Some other approaches regard the NLOS bias as a nuisance parameter and try to esti-
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mate its distribution using Kernel density estimation (KDE) techniques. In [57], a robust

semi-parametric EKF is proposed for NLOS mitigation of a mobile target. The perfor-

mance of this technique is improved by the interacting multiple model (IMM) algorithm

in [58]. Although considered for TOA measurements, these techniques are also suitable

when AOA, RSS or a hybrid of these are employed. However, in addition to high computa-

tional cost, the performance of KDE still depends on how well it can model the distribution

of the NLOS biases. It is claimed that for cellular applications, the performance is only

satisfactory when the ratio of NLOS to LOS measurements is less than a half and a higher

ratio might result in divergence of KDE algorithms [58].

In some other techniques, the random NLOS biases are considered as parameters in

the state vector, that is, s[k] is augmented with all the biases. The biases are then jointly

estimated with other state parameters [59–62], while the NLOS bias variation over time is

modelled as a random walk as

bi[k + 1] = bi[k] + wb[k], i ∈ NN (2.75)

where wb[k] is a process noise considered to model the variation of the NLOS bias over time

and NN is the set including the indices of NLOS links. As an example let the unknown state

vector, which includes the biases, be defined as s[k] = [x[k], y[k], vx[k], vy[k], b1[k], . . . , b|NN |[k]]
T .

The state equation is given by

s[k + 1] = Aas[k] +Bawa[k], (2.76)

where

Aa =

[
A 0

0 IN

]
, Ba =

[
B 0

0 IN

]
, wa[k] =

[
w[k]

wb[k]

]
,

A =

⎡
⎢⎢⎢⎢⎣
1 0 δt 0

0 1 0 δt

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣
0.5δt2 0

0 0.5δt2

δt 0

0 δt

⎤
⎥⎥⎥⎥⎦ ,

w[k] is normally distributed with zero mean and covariance matrix diag(σ2
x, σ

2
y), wb[k],

which is uncorrelated with w[k], has a uniform distribution with zero mean and covariance

matrix σ2
wb
IN , and δt is the time step duration. The aim is to find the position and
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velocity vectors of the target at the k-th time instant, i.e., x[k] = [x[k], y[k]]T and v[k] =

[vx[k], vy[k]]
T , and maybe the biases, based on all the past and current measurements z[j]

for time instants j ∈ {1, . . . , k}.
The technique in [59] uses EKF, while [60] and [61] use particle filters (PFs) that

generally have a high computational cost. Although the above techniques can mitigate the

effect of NLOS biases to some extent, their performance might not be good due to the

mismatch between the random walk model and the physical reality, which is unavoidable

considering the unpredictable nature of the biases. Furthermore, by including the biases in

the state vector, the computational cost of the filter grows noticeably [57].

Instead of the above models, one may impose constraints on the biases to be positive

or with good approximation imposes geometrical constraints on the position coordinates,

as done in (2.66). Then, there will be a need to use constrained Bayesian estimation tech-

niques such as constrained EKF, constrained UKF, and constrained PFs. For a survey on

constrained Bayesian techniques see in [96] and the references therein. In constrained EKF,

the estimated state vector is projected onto the feasible region by solving an optimization

problem but usually for applying the constraints on the error covariance, approximations

need to be used. In [68], a constrained UKF technique has been proposed in which the

sigma points of the UKF violating the constraints are projected onto the feasible region.

In this way, both the a-posteriori state estimate and the corresponding error covariance

matrix are modified according to the constraints. Constrained PFs have also been consid-

ered in the tracking community for instance assuming that a car is moving on a road or a

robot moving inside a corridor in a building. There are different particle filters (PFs) that

can take constraints on the state vector into account, e.g., either by rejecting every particle

that falls outside the feasible region, or by continuing to sample until the particle satisfies

the constraints. However, the former might result in lack of enough particles to model the

posterior distribution while the latter might increase the computation time and makes the

PF inefficient. Another technique is to give a zero weight to every particle that violates the

constraints but in the NLOS localization problem there might be no particle left in the fea-

sible region to be given noticeable weight. Although there are other PFs in the literature,

based on solving an optimization problem for every particle violating the constraints, they

still suffer from high computational cost and are thus intractable for practical applications.

Therefore, the current PFs available in the literature which deal with constrained state

space models may not be a suitable option for the NLOS localization problem.
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2.2.4 NLOS Mitigation Using Cooperative Localization Techniques

When there is a possibility of collaboration between the sensor nodes and the number

of LOS anchors is limited, the sensors can help each other in improving their location

estimate. Although the main idea of cooperative localization is to overcome the problem

of NLOS and outliers, still the NLOS is an issue and has to be considered with great care.

The cooperative localization techniques can again be categorized in different ways. In the

sequel we divide them into two categories as deterministic or probabilistic, then within each

category the possibility of distributed implementation of each technique is discussed.

Deterministic Cooperative Localization in NLOS

Similar to LOS scenarios, in NLOS scenarios, the relaxation techniques can be employed

by giving the NLOS measurements less weight or using them as constraints. In the sequel

we discuss some of the techniques already proposed.

SDP Approaches in NLOS : In order to make the cooperative localization applicable to

NLOS scenarios, in [64], the NLOS measurements are regarded as constraints as in (2.66).

These constraints are then substituted into the SDP framework that was considered for

LOS measurements. Another technique has also been proposed in [63], where the nodes

to be localized are assumed to be inside two circular discs. Furthermore, more efficient

versions of SDP relaxation, known as edge SDP (ESDP) are considered, which are shown

to perform well with lower computational complexity.

Still the SDP relaxation can not be accurately implemented in a distributed manner.

Below, we explain other techniques that are suitable for distributed implementation.

Cooperative POCS in NLOS: The cooperative POCS discussed earlier performs reason-

ably well in the presence of high NLOS contamination ratio as the NLOS measurements are

positively biased. It also does not require prior identification of NLOS links and therefore

it is advantageous in that sense. However, if the NLOS links can be identified accurately,

then it will be often better to reject the NLOS measurements or use them as constraints

and minimize the original cost function. In that case, the cooperative POCS can be used

as a step to provide the sensor with reliable initial estimates [2].

IPPM in NLOS: The IPPM presented earlier works well when it is well initialized, e.g.,

using cooperative POCS, and when the range measurements have zero-mean errors, i.e.,

there exists no NLOS links. This is not practical since in indoor places there are often nodes
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that have no direct sight of their neighbouring nodes. Therefore, the IPPM for NLOS has

been considered in [27]. In this technique, the set of nodes around the un-localized i-th

node is divided into two categories: NL(i) and NN(i) which correspond to the neighbouring

nodes of i-th node which obtain pairwise LOS or NLOS measurement from it, respectively.

Then the set of the nodes exploited for localization of the i-th node is defined as

NA
x̂i
(i) = NL(i) ∪ {j|j ∈ NN(i), ‖x̂i − x̂j‖ ≥ zij}. (2.77)

where x̂i is the estimated position of i-th node in the previous iteration and zij is the

pairwise range measurement between i-th and j-th nodes. The algorithm is almost the

same as IPPM considered for LOS scenario described earlier, except that only the set

NA
x̂i
(i) is exploited for the aim of localization instead of N (i) used earlier.

Probabilistic Techniques for Cooperative Localization in NLOS

Although the belief propagation has been applied to cooperative sensor localization in LOS,

in [97] by assuming a-priori known distribution of the NLOS, its extension to NLOS has

been considered. Other works such as [98], only provide comparisons about which message

passing algorithm works better in NLOS situation.

When the distribution of the NLOS is not known, applying probabilistic approaches

seems irrelevant. However, by assuming that the NLOS measurements are identified and

the measurement errors are positively biased, it can be assumed that the target is uniformly

distributed inside a ball with its neighbour node at the centre and with radius equal to

the pairwise range measurement. Therefore, in [65], by assuming that the measurements

are positively biased and each sensor is inside the intersection of several balls, forming a

convex set, the authors try to outer approximate each convex set by an ellipsoid. The main

concept of the considered algorithm is based on SPAWN with the assumption that each

sensor is uniformly distributed inside the intersection of the balls of its neighbour nodes.

Therefore, each sensor iteratively finds an ellipsoid, and sends the parameters of its ellipse

to its neighbours. In the end, each sensor obtains an ellipsoid which bounds the convex hull.

In this algorithm the intersection of multiple ellipsoids needs to be outer approximated by

the tightest ellipsoid, which is an NP-complete problem and there exist only sub-optimal

solutions to solve it, to the best of our knowledge. In [65], the authors use one of the

conventional techniques in [99] where first the maximum volume ellipsoid inscribed by the
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intersection of ellipsoids is found and then, by expanding it with the dimension of the space,

an ellipsoid containing the intersection region is obtained. However, this technique may

not always yield a tight outer-approximation, therefore, there is a possibility of improving

the tightness especially in 2-D by resorting to geometrical techniques.

2.3 Chapter Summary

In this chapter, we provided a brief survey of conventional localization methods for both

LOS and NLOS situations. The cooperative localization scenarios were also explained in

each section separately. The localization techniques in LOS scenarios have been considered

for several decades and there is not much room left for investigation. Localization tech-

niques in NLOS scenarios have also been considered in mobile positioning in urban areas

and indoor places during the recent decades. Although several works have been proposed

for localization in NLOS situations, there is still a potential for developing more novel

methods with a better localization performance and lower computational cost. Therefore,

in the following chapters, we focus on different aspects of localization techniques under

NLOS scenarios.
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Chapter 3

Constrained Kalman Filter for

Mobile Localization in NLOS

In this chapter, a constrained square-root unscented Kalman filter (CSRUKF) is proposed

for mobile localization in NLOS. In Section 3.2, a non-cooperative scenario is considered

where a single target is tracked using the proposed filter. In Section 3.3, the proposed

CSRUKF is extended to a cooperative scenario where multiple mobile targets are tracked.

Numerical simulation results, characterizing the performance of the proposed filter for both

non-cooperative and cooperative scenarios are presented in Section 3.4. Finally, Section

3.5 concludes this chapter.1

3.1 Introduction

There are numerous works focusing on NLOS mitigation for the localization of stationary

nodes, which are mostly based on (memoryless) constrained optimization techniques, e.g.

[40], [41]. In these approaches, the position of the mobile node (MN) is constrained to be

within the convex hull formed by the intersection of multiple discs, each disc being centered

at one of the NLOS RNs and with a radius equal to the corresponding measured range.

By restricting the MN position in this way and by employing the LOS measurements in

the cost function to be minimized, the unknown location can be found through solving a

constrained optimization problem. For a survey on TOA-based memoryless localization in

1Part of this chapter has been published in journal paper (J-1) and conference paper (C-4).



3 Constrained Kalman Filter for Mobile Localization in NLOS 54

NLOS scenarios, see [44] and the references therein.

When the motion of the MN can be described by state equations, filtering techniques

are preferred as they can provide smooth estimates of the target trajectory. As mentioned

in Chapter 2, several techniques have been proposed for filtering techniques in NLOS sce-

narios. However, they are either not accurate and robust in every NLOS scenario, or

computationally demanding and cannot be implemented in real time. Furthermore, using

constrained Bayesian estimation techniques for tracking an MN with its location restricted

to be inside the intersection of the disks corresponding to NLOS measurements has not

been done before.

In this chapter, we propose an efficient square root unscented Kalman filter (SRUKF)

with convex inequality constraints for localization of an MN in NLOS situations. The pro-

posed constrained SRUKF (CSRUKF) is based on a combination of the SRUKF in [67]

for unconstrained problems and the constrained UKF in [68]. In our proposed algorithm,

similar to some memoryless approaches, the NLOS measurements are removed from the

observation vector and are employed instead to form a closed convex constraint region [44].

At each time step, we use a SRUKF to estimate the state vector and compute the Cholesky

factor of the error covariance matrix. To impose the constraints onto the estimated quanti-

ties, as proposed in [68], the sigma points of the unscented transformation may need to be

projected onto the feasible region by solving a convex quadratically constrained quadratic

program (QCQP). However, we show that the projection can be done in a more efficient

and numerically stable way by solving a QCQP with reduced size, in which the cost func-

tion depends on the Cholesky factor of the a posteriori error covariance matrix, readily

obtained from the SRUKF.

Through simulations, our proposed algorithm is shown to achieve a good localization

performance under different NLOS scenarios. In particular, in severe NLOS conditions and

with small measurement noises, our method achieves a superior performance compared to

other benchmark approaches. Another salient advantage is its robustness to false alarm

(FA) errors2 in NLOS identification, which makes it suitable for practical applications where

such errors may be inevitable.

2In this work, a false alarm refers to the erroneous identification of an LOS link as being NLOS, while
a missed detection (MD) refers to the opposite situation.
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3.2 Centralized Non-cooperative Constrained Kalman Filter

The organization of this section is as follows: In Section 3.2.1, the system model is described

and the problem formulation is presented. The proposed constrained SRUKF algorithm is

developed in Section 3.2.2, along with a discussion of computational complexity.

3.2.1 Problem Formulation of Non-Cooperative Scenario

System Model

Consider a network of M fixed RNs and one MN, distributed on a 2-dimensional (2D)

plane and exchanging timing signals via wireless links. With reference to a Cartesian

coordinate system in this plane, let ai ∈ R
2 denote the known position vector of the i-th

RN, where i ∈ {1, . . . ,M}, while xk ∈ R
2 and vk ∈ R

2 denote the unknown position and

velocity vectors of the MN at discrete time instant k, respectively. Let the state vector be

sk = [xT
k , v

T
k ]

T ∈ R
4, which includes the position and velocity components of the MN. The

motion model is assumed to be a random acceleration model as

sk = Fsk−1 +Gwk−1, (3.1)

where the matrices F and G are

F =

⎡
⎢⎢⎢⎢⎣
1 0 δt 0

0 1 0 δt

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ , G =

⎡
⎢⎢⎢⎢⎣

δt2

2
0

0 δt2

2

δt 0

0 δt

⎤
⎥⎥⎥⎥⎦ , (3.2)

and δt is the time step duration. The vector wk−1 ∈ R
2 in (3.1) is a zero-mean white

Gaussian noise process (acceleration) with diagonal covariance matrix Q = σ2
wI.

In this work, we consider TOA-based localization, in which the range between the MN

and each RN is obtained by multiplying the time of flight of the radio wave by the speed of

light. If the MN and RNs are accurately synchronized, then a one-way ranging scheme can

be used; otherwise, a two-way ranging protocol may be employed where the relative clock

offsets are removed from the TOA measurements [7]. Let Lk and Nk denote the index sets

of the RNs that are identified as LOS and NLOS nodes at time instant k, respectively. The
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range measurements can thus be represented by vector rk ∈ R
M with components

rik =

⎧⎨
⎩hi(sk) + ni

k, i ∈ Lk,

hi(sk) + bik + ni
k, i ∈ Nk,

(3.3)

where hi(sk) = ‖xk − ai‖, ni
k is the measurement noise and bik is a positive random

NLOS bias, which is usually considered independent from ni
k. The noise terms ni

k, for

i ∈ {1, . . . ,M}, are modelled as independent white Gaussian processes, with zero-mean

and known variance σ2
n. The probability distributions of the biases bik are time-varying due

to the movement of the MN and other objects in the area. In the literature, different dis-

tributions have been considered for the biases, for instance: exponential [14], [43], shifted

Gaussian [56], and uniform [100] are widely employed. However, having a priori knowledge

about the distributions of the NLOS biases requires preliminary field measurements, which

may not be possible in practical applications. Therefore, in this work, we do not make any

specific assumption about the distributions of the NLOS biases, although we suppose that

the NLOS links are identified at every time instant.3

The processing of range measurements for NLOS identification and mitigation can either

be done at the MN or at a fusion center connected to the RNs. The former is used in the MN

self-localization applications, while the latter is of interest to target tracking applications.

Problem Formulation

The state vector sk and the NLOS biases bik for i ∈ Nk are the unknown parameters in the

above model. Representing the NLOS biases by a simple dynamic model such as a random

walk might be justified for certain environments as considered in [60], [61], but in general

environments this may only be considered an approximation. The optimal choice for the

variance of the random walk increment is also intractable as discussed in [101]. Including

the biases bik in the state vector also increases the computational complexity of the Kalman

filter, therefore, it may not be computationally efficient as well.

Since the random walk model may not be an accurate approximation for the evolution

3We assume that for every time instant, an NLOS identification technique has been applied on the
measured ranges before employing our proposed filter. There are numerous techniques which identify the
NLOS link using the variance test [50], [51], [54]. For UWB applications, the features of the received TOA
signal can also be employed for NLOS identifications as proposed in [32, 33, 100].
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of bik over time, we avoid using this model and estimating the biases. To simplify the

problem and reduce the number of unknowns, we eliminate the NLOS measurements from

the observation vector rk, and instead use the information carried out by the biases to

restrict the position of the MN within a certain range. For instance, in many applications,

it can be assumed that the TOA measurement noise ni
k is small compared to bik (especially

in high SNRs), which implies that bik + ni
k ≥ 0 [44]. In light of (3.3), this assumption is

equivalent to

‖xk − ai‖ ≤ rik, i ∈ Nk, (3.4)

which is obviously a convex constraint as in [87]. If the small noise assumption cannot

be made, e.g., in narrowband systems where TOA-based ranging measurement errors are

relatively large, the constraints in (3.4) may not be satisfied. To avoid this limitation, we

can generalize the latter inequality as

‖xk − ai‖ ≤ rik + εσn, i ∈ Nk, (3.5)

where ε ≥ 0 is a small number to ensure that the MN is located inside a disc with radius

rik + εσn. Note that even if the bias is zero for a given link (i.e., LOS situation), it is more

likely that the MN satisfies the constraint in (3.5) as compared to (3.4). Therefore, we

propose to use the constraint in (3.5) throughout this work due to its robustness against

measurement noise and FA error in NLOS identification. In the sequel, the feasible region,

denoted by Dk refers to the convex set formed by the intersection of the discs in (3.5);

hence

Dk =
{
x : ‖x− ai‖ ≤ rik + εσn, ∀i ∈ Nk

}
. (3.6)

At every time instant k, let us remove the NLOS measurements from the observations

in (3.3) and only keep the LOS measurements, i.e., rik for all i ∈ Lk. The remaining LOS

range measurements can be represented by the vector zk ∈ R
|Lk|. Note that in the worst

case, where all the measurements are identified as NLOS, the vector zk is empty. The state

space model and constraints can thus be expressed as

zk = h(sk) + nk, (3.7a)

sk = Fsk−1 +Gwk−1, (3.7b)

‖xk − ai‖ ≤ rik + εσn, i ∈ Nk, (3.7c)
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where h(sk) and nk are vectors whose entries are hi(sk) and ni
k for i ∈ Lk, respectively.

Under our previous assumptions on the measurement noise ni
k in (3.3), the covariance

matrix of nk is positive-definite diagonal, i.e. R = E[nkn
T
k ] = σ2

nI ∈ R
|Lk|×|Lk|. The

constraints in (3.7c) are only on the first two elements of the state vector, i.e., xk, as we

have a 2D positioning scenario herein. Note that if the constraints in (3.7c) are removed

from the state model, then an ordinary nonlinear filtering technique such as EKF can be

used. This approach is also known as EKF with outlier rejection [60] since the NLOS

measurements are regarded as outliers and therefore discarded.

In minimum mean square error (MMSE) estimation, e.g., Kalman-type filters, one tries

to find the conditional mean and covariance matrix of the state vector sk given the mea-

surements up to current time instant k, as characterized by the conditional probability

density function (PDF) f(sk|z1, . . . , zk). However, when extra information about the state

vector is available in the form of inequality constraints, the probability that the MN is

outside the feasible region should be zero. Hence a truncated or constrained conditional

PDF, fc(.|.), can be defined as

fc(sk|z1, . . . , zk) =

⎧⎨
⎩

1
β
f(sk|z1, . . . , zk), if xk ∈ Dk,

0, otherwise,
(3.8)

where β �
∫
xk∈Dk

f(sk|z1, . . . , zk)dsk is a normalization constant. Therefore, one can

estimate the state vector by finding the conditional mean of sk with truncated PDF as

ŝk =

∫
xk∈Dk

skfc(sk|z1, . . . , zk)dsk, (3.9)

and the covariance matrix of the constrained state estimate can be found through

Σ̂k =

∫
xk∈Dk

(sk − ŝk)(sk − ŝk)
Tfc(sk|z1, . . . , zk)dsk. (3.10)

This idea is known as PDF truncation, where the distribution of the state vector given the

measurements is forced to be zero outside the feasible region [96]. For a linear dynamic

model with zero-mean Gaussian measurement and process noises, where the state vector is

subject to linear inequality constraints, closed form expressions for ŝk and Σ̂k in (3.9)-(3.10)

have been obtained using PDF truncation along with the Gaussian assumption [102]. For
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nonlinear inequality constraints, it is proposed in [102] to do a Taylor series linearization

of the constraints around the current state estimate and then apply the aforementioned

method; however, this approach may not be accurate due to the linearization error [103].

In general cases with nonlinear inequality constraints, PDF truncation requires multidi-

mensional Monte Carlo integration which becomes computationally expensive as the size

of the state vector grows. Therefore, these computationally demanding techniques may not

be suitable to solve our problem.

In the following section, we show how we can efficiently approximate ŝk and Σ̂k using

an alternative approach that combines the SRUKF [21] for unconstrained problems with

the projection-based constrained UKF in [22].

3.2.2 Non-cooperative Constrained Nonlinear Filter

Another family of methods for imposing inequality constraints on the state vector are the

projection-based techniques, in which the unconstrained state estimate, obtained through a

Kalman-type filter, is projected onto the feasible region by solving an optimization problem

[96]. However, by this approach, one cannot estimate the constrained error covariance

matrix of the state, i.e., Σ̂k, accurately. Therefore, in addition to the unconstrained state

estimate, some representative sample points of the conditional PDF f(sk|z1, . . . , zk) need

to be projected onto the feasible region. For instance, the sigma points of the unscented

transformation (UT) can give good statistical information about the mean and the error

covariance matrix of the state estimate [85]. Based on this idea, in [68], a constrained

UKF technique has been proposed in which the sigma points of the UKF violating the

constraints are projected onto the feasible region. However, due to the dependence of the

projection function on the inverse of the a posteriori error covariance matrix, the method

in [68] may become numerically unstable [103]. In the following subsections, to improve the

numerical stability and make the filter more efficient, we use a variation of the square root

version of the UKF, known as SRUKF. The proposed variation of the SRUKF is better

suited to our specific problem. Then, to overcome the above mentioned numerical issue,

we design a more efficient and numerically reliable method for projecting the sigma points

generated from the a posteriori estimates, onto the feasible region. Finally, we summarize

our algorithm and comment on its numerical complexity.
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Unconstrained SRUKF Algorithm

The proposed algorithm in this part is based on the SRUKF presented in [67] with slight

modification such that the algorithm is more efficient and numerically reliable. Let sk−1|k−1

be the estimated state and Σk−1|k−1 be the estimated error covariance matrix of the state,

based on the available measurements up to current time instant k−1. Let U k−1|k−1 be the

upper triangular Cholesky factor of Σk−1|k−1, i.e., Σk−1|k−1 = UT
k−1|k−1U k−1|k−1. Then, for

the next time instant, the a priori estimate of the state vector and the corresponding error

covariance matrix, denoted as sk|k−1 and Σk|k−1, respectively, can be obtained through

prediction as

sk|k−1 = Fsk−1|k−1, (3.11)

Σk|k−1 = FΣk−1|k−1F
T +GQGT . (3.12)

Alternatively, the computation of (3.12) can be avoided as only the Cholesky factor of the

a priori covariance matrix, denoted by U k|k−1 is required [67]. To this aim, let us rewrite

(3.12) as

Σk|k−1 =
[
FUT

k−1|k−1 GQ
1
2

] [U k−1|k−1F
T

Q
1
2GT

]
, (3.13)

If we compute the QR factorization of the second matrix on the right hand side of (3.13),

we obtain U k|k−1:

U k|k−1 = qr

{[
U k−1|k−1F

T

Q
1
2GT

]}
, (3.14)

where by definition, the function qr{.} returns the upper triangular factor of the QR fac-

torization of its matrix argument.

With the help of U k|k−1, the sigma points of the SRUKF are generated as proposed

in [67], i.e.:

s
(j)
k|k−1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
sk|k−1, j = 0,

sk|k−1+
√
ηα(U

T
k|k−1)j, j = 1, . . . , 4,

sk|k−1−√
ηα(U

T
k|k−1)j−4, j = 5, . . . , 8,

(3.15)

(UT
k|k−1)j denotes the j-th column of matrix UT

k|k−1, and ηα is a tuning parameter which

controls the spread of the sigma points. To better understand the geometric meaning
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of parameter ηα, we can assume that sk|k−1 and Σk|k−1 obtained through the proposed

filter are approximately equal to the mean and covariance matrix of the conditional PDF

f(sk|z1, . . . , zk−1). Define random variable ηk = (sk − sk|k−1)
TΣ−1

k|k−1(sk − sk|k−1), which

is the weighted squared distance between sk and sk|k−1. Suppose that the parameter ηα in

(3.15) is chosen such that Pr(ηk ≤ ηα) = α, where 0 < α < 1 represents a desired confidence

level. Then, the region of R4 defined by ηk ≤ ηα represents a confidence ellipsoid, on the

boundary of which the sigma points in (3.15) (except s
(0)
k|k−1) fall. For example, if α = 0.9,

the probability for sk to lie inside the ellipsoid delimited by the sigma points with the

corresponding ηα is 90%. If we assume that f(sk|z1, . . . , zk−1) is approximately Gaussian,

then the random variable η has a Chi-square distribution with 4 degrees of freedom and

it becomes easy to find a value for ηα corresponding to a certain ellipsoid with confidence

level α.4

The generated sigma points are transformed through the nonlinear measurement func-

tion as

z
(j)
k|k−1 = h(s

(j)
k|k−1), j = 0, . . . , 8. (3.16)

Then, the mean, cross-covariance matrix, and error covariance matrix of the transformed

sigma points can be estimated by means of weighted sums as in [104]:

ẑk|k−1 =
8∑

j=0

w(j)z
(j)
k|k−1, (3.17)

Σs,z
k|k−1 =

8∑
j=0

w(j)(s
(j)
k|k−1 − sk|k−1)(z

(j)
k|k−1 − ẑk|k−1)

T , (3.18)

P z
k|k−1 =

8∑
j=0

w(j)(z
(j)
k|k−1 − ẑk|k−1)(z

(j)
k|k−1 − ẑk|k−1)

T +R, (3.19)

where R is the covariance matrix of the measurement noise nk in (3.7a) and the weights

w(j) appearing in these expressions are defined in a similar way as in [105]:

w(j) =

⎧⎨
⎩1− 4

ηα
, j = 0,

1
2ηα

, j = 1, . . . , 8,
(3.20)

4The Matlab built-in function chi2inv(α, 4) can be used for this purpose.
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and therefore satisfy
∑8

j=0w
(j) = 1.

If the weight w(0) in (3.20) is negative, it is possible that the covariance matrix obtained

through (3.19) becomes indefinite (i.e., with negative eigenvalues). However, by choosing

a sufficiently large value of α, we can guarantee that ηα ≥ 4; in turn, this implies that

w(0) ≥ 0 and the covariance matrix (3.19) then becomes positive definite. In this work,

we are interested in projecting the sigma points that are far away from the mean and it is

therefore legitimate to consider ellipsoids with larger confidence levels, so that the above

issue can be naturally avoided.5 In our dynamic model, with state vector of dimension 4

and based on the Chi-square assumption for ηk, it follows that if α > 0.6, then ηα > 4 and

the positive definiteness of (3.19) is guaranteed.

For numerical stability, instead of forming P z
k|k−1 explicitly, its Cholesky factor is cal-

culated. Specifically, if we let

e(j)z =
√
w(j)(z

(j)
k|k−1 − ẑk|k−1), j = 0, . . . , 8, (3.21)

then the upper triangular Cholesky factor of P z
k|k−1, denoted by Uzk

is obtained through

Uzk
= qr

{[
e(0)z , e(1)z , . . . , e(8)z ,R

1
2

]T}
. (3.22)

It is proposed in [67] to first compute the Kalman gain

Kk = Σs,z
k|k−1(P

z
k|k−1)

−1 = Σs,z
k|k−1U

−1
zk
U−T

zk
, (3.23)

and then, the a posteriori state estimate and the Cholesky factor of the error covariance

matrix can be updated through

sk|k = sk|k−1 +Kk(zk − ẑk|k−1), (3.24)

U k|k = cholupdate{U k|k−1,KkU
T
zk
,−1}, (3.25)

5In [85], a scaled version of the unscented transformation has been proposed to capture higher moments
of the nonlinear measurement function, where the generated sigma points are located in the vicinity of each
other. This method also guarantees positive definiteness of the covariance matrix. However, our problem
is not highly nonlinear and we are interested to generate sigma points that might be far away from one
another, therefore, our parameter selection is different from [85] and [67].
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where cholupdate{Uk|k−1,KkU
T
zk
,−1} is the consecutive downdates6 of the Cholesky factor

of UT
k|k−1U k|k−1 using the columns of KkU

T
zk
. Note that (3.25) follows from the covariance

matrix update

Σk|k � UT
k|kU k|k = UT

k|k−1U k|k−1 −KkU
T
zk
U zkK

T
k . (3.26)

Herein, however, we propose a more efficient and numerically reliable way to compute

sk|k and U k|k. Instead of the Kalman gain Kk, we compute

T k = Σs,z
k|k−1U

−1
zk
, (3.27)

which can be obtained by solving multiple triangular linear systems T kU z,k = Σs,z
k|k−1.

Then, it follows from (3.23) that Kk = T kU
−T
zk

. Substituting this expression into (3.24)

we obtain

sk|k = sk|k−1 + T kU
−T
zk

(zk − ẑk|k−1), (3.28)

where the vector yk � U−T
zk

(zk − ẑk|k−1) can be obtained by solving the triangular linear

system

UT
zk
yk = zk − ẑk|k−1. (3.29)

From (3.25) and (3.27), it follows that the covariance matrix can be updated as

Σk|k = UT
k|k−1U k|k−1 − T kT

T
k , (3.30)

hence the Cholesky factor of Σk|k can be computed as

U k|k = cholupdate{U k|k−1,T k,−1}. (3.31)

Compared to the algorithm in [67], this modified algorithm for the estimation of sk|k and

U k|k saves about 2L|Nk|2 flops at each time step k. It is also more numerically reliable as

it avoids solving some linear systems, which could be ill-conditioned, and computing some

matrix-matrix multiplications.

Note that if all the measurements at time instant k are in NLOS, then the measurement

vector zk is empty. Hence we will use the predicted state in (3.11) and the Cholesky factor

of the predicted covariance matrix in (3.14) to replace the a posteriori state vector in (3.28)

6In Matlab, the built-in function cholupdate can be employed to do rank-1 Cholesky update or down-
date, indicated by the third argument of the function.
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and Cholesky factor of the error covariance matrix in (3.31), respectively.

Fig. 3.1 Left: Unconstrained state estimate and the uncertainty ellipsoid of
sigma points. Right: The projected sigma points and the shrunk uncertainty
ellipsoid.

Imposing the Constraints on the Estimates

Up to this point, the a posteriori state estimate and the Cholesky factor of the a posteriori

error covariance matrix have been obtained using a SRUKF without taking the constraints

(3.7c) into account. To impose the constraints on the estimated state and error covariance

matrix, similar to [68], a new set of sigma points are generated according to

s
(j)
k|k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
sk|k, j = 0,

sk|k +
√
ηα(U

T
k|k)j , j = 1, . . . , 4,

sk|k −√
ηα(U

T
k|k)j−4, j = 5, . . . , 8.

(3.32)

The generated sigma points (except s
(0)
k|k) form an uncertainty ellipsoid with sk|k at its

centre as illustrated in Fig. 3.1 for the case that the state vector is of size 2, i.e., no

velocity components exist. After the generation of sigma points s
(j)
k|k with desired confidence

ellipsoid, those which violate the constraints are projected onto the convex feasible region
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through

P(s
(j)
k|k) = argmin

q

{
(q − s

(j)
k|k)

TW k(q − s
(j)
k|k)
}
,

s.t.
∥∥q(1 :2)− ai

∥∥ ≤ rik + εσn, i ∈ Nk,
(3.33)

where W k is a symmetric positive definite (SPD) weighting matrix [103], [104]. One rea-

sonable choice is W k = Σ−1
k|k which takes into account the uncertainty in sk|k, and gives

the smallest estimation error covariance matrix when a linear KF is applied to a system

with linear dynamic equations and with zero-mean Gaussian observation and excitation

noises [106]. In the state space model under consideration, since the non-linearity is not

too high, and the noises are Gaussian, using the inverse of the covariance matrix as W k

might still give a solution that is close to optimal. Therefore, this weighting matrix is used

for the projection operation.

The optimization problem in (3.33) is a quadratically constrained quadratic program

(QCQP), which is convex since W k is SPD and the constraints are convex [99, p.153]. As

the constraints are only on the first two elements of the state vector, it is possible to reduce

the size of the QCQP problem. A conventional way to do so is as follows. Suppose that

q(1 : 2) is fixed, then we can find the optimal q(3 : 4), which is a function of q(1 : 2). By

substituting the optimal q(3 : 4) into the cost function, we obtain a QCQP, which only

involves the unknown q(1 :2).

However, in the above approach, we first need to find the matrix W k through an inverse

operation which is both unnecessarily costly and numerically unstable if the covariance

matrix Σk|k is ill-conditioned. To avoid these shortcomings, we propose to use an idea from

[107] in order to reformulate and reduce the size of the convex QCQP problem in (3.33) such

that it can be solved in a more numerically reliable way. Recalling that Σk|k = UT
k|kU k|k,

the objective function in (3.33) can be expressed as (q − s
(j)
k|k)

TU−1
k|kU

−T
k|k (q − s

(j)
k|k). To get

around the inverse operation, we define

u = U−T
k|k (s

(j)
k|k − q), (3.34)

from which it follows that

q = s
(j)
k|k −UT

k|ku. (3.35)
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It is convenient to partition the lower triangular matrix UT
k|k as follows:

UT
k|k =

[
L11 0

L21 L22

]
, (3.36)

where L11 ∈ R
2×2 and L22 ∈ R

2×2 are lower triangular. Then it follows from (3.35) that

q(1 :2) = s
(j)
k|k(1 :2)− L11u(1 :2). (3.37)

Using (3.34) and (3.37), we can reformulate the QCQP problem (3.33) as

min
u

{
uT (1 :2)u(1 :2) + uT (3 :4)u(3 :4)

}
, (3.38)

s.t.
∥∥L11u(1 :2)− (s

(j)
k|k(1 :2)− ai)

∥∥ ≤ rik + εσn, i ∈ Nk.

Since the constraints do not include u(3 : 4), the optimal choice is obviously u(3 : 4) = 0

and the optimization problem (3.38) becomes

min
u(1:2)

{
uT (1 :2)u(1 :2)

}
, (3.39)

s.t.
∥∥L11u(1 :2)− (s

(j)
k|k(1 :2)− ai)

∥∥ ≤ rik + εσn, i ∈ Nk.

This 2D convex QCQP problem can now be solved efficiently using iterative techniques [99].

After finding the optimal u(1 : 2), we can compute the optimal q using (3.35) and the

fact that the optimal u(3 :4) = 0 as follows:

P(s
(j)
k|k) � q = s

(j)
k|k −

[
L11

L21

]
u(1 :2). (3.40)

The above approach for reducing the size of the QCQP problem (3.33) not only avoids

a matrix inverse computation, which may cause numerical instability (see [107]), but it

is also computationally efficient. This approach is even more suitable when a SRUKF is

employed since the Cholesky factor U k|k of Σk|k is readily provided in (3.31). We note that

in some particular scenarios, especially under FA in NLOS identification, it is possible that

the feasible region Dk in (3.6) becomes empty and consequently, (3.39) has no solution. In

this case, which might rarely happen, we simply propose to increase ε until Dk becomes
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non-empty.

After finding the projected sigma points through (3.40), the mean and covariance matrix

may be estimated through weighted averaging

sPk|k =
8∑

j=0

w(j)P(s
(j)
k|k), (3.41)

ΣP
k|k =

8∑
j=0

w(j)(P(s
(j)
k|k)− sPk|k)(P(s

(j)
k|k)− sPk|k)

T . (3.42)

As before, instead of (3.42) we compute the Cholesky factor UP
k|k of ΣP

k|k:

e
(j)
P =

√
w(j)(P(s

(j)
k|k)− sPk|k)), j = 0, . . . , 4,

UP
k|k = qr

{
[e

(0)
P , e

(1)
P , . . . , e

(8)
P ]T
}
. (3.43)

As illustrated in Fig. 3.1, the projected sigma points have a different mean and covariance

matrix. The weighted average of the sigma points achieved through this technique lies

inside the feasible region since the average of selected points in a convex feasible region

must lie in it [108]. Furthermore, the covariance matrix of the error is generally reduced as

the sigma points have moved closer to each other.

Finally, in the next iteration of the unconstrained SRUKF, the constrained a posteriori

state estimate sPk|k and the Cholesky factor of the corresponding error covariance matrix

UP
k|k replace sk|k and U k|k, respectively as

sk|k = sPk|k, (3.44)

U k|k = UP
k|k. (3.45)

3.2.3 Non-cooperative CSRUKF Summary

The proposed CSRUKF algorithm, which is summarized below, consists of two main stages:

modified version of SRUKF and projection of sigma points, which are discussed in more

details below.

The SRUKF is more efficient and numerically stable than UKF and the computational

complexity analysis has also been presented in [67], in which it is shown that this algorithm
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Algorithm 2 CSRUKF

1: Initialize s0|0 and set Σ0|0 to a large SPD diagonal matrix.
2: Set ηα and ε
3: for k = 1, . . . , K do
4: Prediction of sk|k−1 using (3.11), and U k|k−1 using (3.14).
5: if |Lk| = 0 then
6: Set sk|k = sk|k−1 and U k|k = U k|k−1.
7: else
8: Find the predicted measurement through (3.16).
9: Calculate the predicted mean (3.17) and implement qr{.} in (3.22).
10: Estimate the cross-covariance in (3.18).
11: Solve (3.27) to find T k.
12: Estimate the a posteriori mean sk|k using (3.28) and Cholesky factor of a posteriori

covariance matrix U k|k using (3.31).
13: end if
14: Generate the sigma points using (3.32).
15: For every sigma point whose first two elements fall outside Dk solve (3.39) and find

the projected point (3.40).
16: Estimate sPk|k using (3.41) and UP

k|k using (3.43).

17: Replace sPk|k and UP
k|k as the a posteriori estimates, i.e., (3.44) and (3.45).

18: end for



3 Constrained Kalman Filter for Mobile Localization in NLOS 69

requires at each time step O(D3
s), where Ds is the dimension of the state vector. Since

the dimension of the state vector is small and fixed, the computational cost of the first

stage of our algorithm is generally small compared to the cost of the second stage where

the projection operations are done.

The QCQP in (3.39) is a convex optimization problem and can be solved in polynomial

time using an extended optimization package in Matlab such as Sedumi [109]. Since u(1 :

2) ∈ R
2, the optimization problem can be solved with moderate cost for 9 sigma points

at most. In addition, these calculations can be performed in parallel and independently

of each other; hence our technique is suitable for parallel processing. The computational

cost of the algorithm depends on the number of sigma points in (3.32) that fall inside

the feasible region, as the projection operation needs not to be applied on them. By

tuning the parameter α we can achieve a trade-off between accuracy and computational

cost. On the one hand, if α is small, then it is more likely that many sigma points will

fall inside the feasible region, resulting in a lower computational cost. However, selecting

a small α may degrade the localization performance as the estimated quantities remain

unchanged after applying the constraints. On the other hand, selecting a large α increases

the computational cost but at the same time may result in sampling many of the non-local

points, and thus the linearisation of h(sk) might be inaccurate [85]. In our simulations,

it is observed that selecting 0.65 ≤ α ≤ 0.85 can offer a reasonable trade-off in terms of

accuracy and computational cost.

3.3 Centralized Cooperative Constrained Kalman Filter

In this section, we extend the centralized CSRUKF proposed in the previous section to the

cooperative localization scenario where the areN target to be tracked and there are pairwise

sensor-sensor measurements in addition to sensor-anchor measurements. The variables used

throughout this section are different from the ones used for non-cooperative case in Section

3.2, unless it is stated explicitly. The organization of the this section is as follows. The

system model and problem formulation are presented in Subsection 3.3.1. The proposed

algorithm is developed in Subsection 3.3.2 and summarized in Subsection 3.3.3.
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3.3.1 Problem Statement of Cooperative Localization

We consider a 2D WSN (the extension to 3D is straightforward) comprised of N MNs with

unknown locations xi
k ∈ R

2 and unknown speeds vi
k ∈ R

2 for i = {1, . . . , N} at discrete time

instant k, and of M anchors with known and fixed locations ai for i = {N+1, . . . , N+M}.
We assume that each MN moves independently according to a random acceleration model

as

xi
k+1 = xi

k + vi
kδt+wi

k

δt2

2
, i = 1, . . . , N (3.46)

where δt is the time step duration and wi
k ∈ R

2 is a zero-mean white Gaussian random

process.

Pairwise range measurements between neighbouring nodes, obtained either by one way

ranging and prior network synchronization or through TWR, are modelled as

rijk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

‖xi
k − aj‖+ nij

k , (i, j) ∈ La

‖xi
k − x

j
k‖+ nij

k , (i, j) ∈ Ls

‖xi
k − aj‖+ bijk + nij

k , (i, j) ∈ Na

‖xi
k − x

j
k‖+ bijk + nij

k , (i, j) ∈ Ns

(3.47)

where

La : {(i, j) : LOS link between i-th sensor and j-th anchor}
Ls : {(i, j) : LOS link between i-th and j-th sensors}
Na : {(i, j) : NLOS link between i-th sensor and j-th anchor}
Ns : {(i, j) : NLOS link between i-th and j-th sensors}

In (3.47), nij
k is a zero-mean Gaussian noise with known variance σ2

n, and bijk is the NLOS

bias which is a positive random variable.

The NLOS biases are large random variables and for some systems with high SNR it

can be assumed that bijk + nij
k ≥ 0, which is equivalent to stating that for all the NLOS
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measurements

‖xi
k − aj‖ ≤ rijk , (i, j) ∈ Na (3.48)

‖xi
k − x

j
k‖ ≤ rijk , (i, j) ∈ Ns (3.49)

In order to increase the robustness against large noise samples we use the following con-

straints instead

‖xi
k − aj‖ ≤ rijk + εσn, (i, j) ∈ Na (3.50)

‖xi
k − x

j
k‖ ≤ rijk + εσn, (i, j) ∈ Ns (3.51)

where ε ≥ 0 is a tuning parameter which increases the chance that the inequalities hold true.

Note that the new inequalities in (3.50)-(3.51) might also hold true for LOS measurements;

therefore, if a link is LOS but wrongly identified as being NLOS, the inequalities in (3.50)-

(3.51) have a higher chance to be satisfied compared to the ones in (3.48)-(3.49).

In some works, the NLOS biases have been modelled by the random walk model, and

therefore, they are included in the state vector and estimated together with other unknowns

[60], [62]. However, random walk approximately models the relationship between bijk and

bijk+1, and selecting a suitable variance for the increment of the random walk is not easy

for dynamic environments. We therefore, avoid including them in the state vector and

estimating them, however, we remove the NLOS measurements from the observation vector

and instead use these measurements to impose the constraints in (3.50) and (3.51) on the

positions of sensors. The measurement vector zk is obtained by stacking together all the

LOS measurements rijk for (i, j) ∈ La∪Ls. The state of all the sensors can also be expressed

in a vector form as sk = [x1
k,x

2
k, . . . ,x

N
k , ẋ

1
k, ẋ

2
k, . . . , ẋ

N
k ]

T ∈ R
4N . We can finally formulate

the constrained state space model as

zk = h(sk) + nk (3.52)

sk = Fsk−1 +Gwk (3.53)

s.t. ‖xi
k − aj‖ ≤ rijk + εσn, (i, j) ∈ Na (3.54)

‖xi
k − x

j
k‖ ≤ rijk + εσn, (i, j) ∈ Ns (3.55)

where h(sk) is the vector of true ranges, nk is the vector of measurement errors with zero-
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mean and covariance matrix R = σ2
nI, wk = [(w1

k)
T , (w2

k)
T , . . . , (wN

k )
T ]T is a zero-mean

Gaussian vector with covariance matrix Q and

F =

[
I2N δtI2N

02N I2N

]
∈ R

4N×4N , G =

[
δt2

2
I2N

δtI2N

]
∈ R

4N×2N (3.56)

In the following, we show how to estimate sk based on the history of the range mea-

surements and the constraints.

3.3.2 Centralized Cooperative CSRUKF

In this section, the proposed CSRUKF for non-cooperative scenario is extended to coopera-

tive case. The first stage, i.e., an unconstrained SRUKF [67], is almost the same as the one

presented for non-cooperative case. The second stage varies slightly as the optimization

problem and the constraints have changed due to the extra sensor-sensor measurements

and the increased dimension of the state vector.

Unconstrained SRUKF

If there are no constraints on the state vector, then a nonlinear Kalman filter can be used

for the a-posteriori estimation of state and the Cholesky factor of the corresponding error

covariance matrix, i.e., sk|k ∈ R
4N and U k|k ∈ R

4N×4N , respectively, where UT
k|kU k|k =

Σk|k. We use a SRUKF for this aim, as proposed in [67], and find sk|k and the U k|k, as

described in Subsection 3.2.2, where the size of the state vector is now 4N . A detailed

explanation about selection of parameters ηα and ε and their relation with the weights w(l)

can be found in Section 3.2.

Projection of Sigma Points

Assume that the a posteriori state estimate and the Cholesky factor of the a posteriori

error covariance matrix have been obtained using a SRUKF without taking the constraints

into account. To impose the constraints on the estimated state and error covariance matrix,
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similar to [68], a new set of sigma points are generated according to

s
(l)
k|k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
sk|k, l = 0,

sk|k +
√
ηα(U

T
k|k)l, l = 1, . . . , 4N,

sk|k −√
ηα(U

T
k|k)l−4N , l = 4N + 1, . . . , 8N.

(3.57)

After the generation of sigma points s
(l)
k|k, those which violate the constraints are projected

onto the convex feasible region through

P(s
(l)
k|k) = argmin

q

{
(q − s

(l)
k|k)

TW k(q − s
(l)
k|k)
}
, (3.58)

s.t. ‖q(2i− 1:2i)− aj
∥∥ ≤ rijk + εσn, (i, j) ∈ Na

‖q(2i− 1:2i)− q(2j − 1:2j)
∥∥ ≤ rijk + εσn, (i, j) ∈ Ns

where W k = Σ−1
k|k is chosen as done for non-cooperative case.

As the constraints are only on the first 2N elements of the state vector, i.e., the po-

sition coordinates, it is possible to reduce the size of the QCQP problem similar to be-

fore. Recalling that Σk|k = UT
k|kU k|k, the objective function in (3.58) can be expressed as

(q − s
(l)
k|k)

TU−1
k|kU

−T
k|k (q − s

(l)
k|k). To avoid the inverse operation, we define

u = U−T
k|k (s

(l)
k|k − q). (3.59)

Then it follows that

q = s
(l)
k|k −UT

k|ku. (3.60)

We partition the lower triangular matrix UT
k|k as follows:

UT
k|k =

[
L11 0

L21 L22

]
, (3.61)

where L11 ∈ R
2N×2N and L22 ∈ R

2N×2N are lower triangular. Then from (3.60) we have

q(1 :2N) = s
(l)
k|k(1 :2N)−L11u(1 :2N). (3.62)

Using (3.60) and (3.62), and noting that the optimal u(2N + 1 : 4N) = 0 (since the
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constraints only depend on u(1 : 2N)) we can reformulate the QCQP problem (3.58) as

(3.63).

min
u(1:2N)

{
uT (1 :2N)u(1 :2N)

}
(3.63)

s.t.
∥∥s(l)k|k(2i− 1:2i)−L11(2i− 1 : 2i)u(1 : 2N)− aj

∥∥ ≤ rijk + εσn, (i, j) ∈ Na∥∥s(l)k|k(2i− 1:2i)− L11(2i− 1 : 2i)u(1 : 2N)

− s
(l)
k|k(2j − 1:2j) +L11(2j − 1 : 2j)u(1 : 2N)

∥∥ ≤ rijk + εσn, (i, j) ∈ Ns

This convex QCQP problem can now be solved efficiently using iterative techniques [99].

After finding the optimal u(1 : 2N), we compute the optimal q using (3.60) and the fact

that the optimal u(2N + 1:4N) = 0 as follows:

P(s
(l)
k|k) � q = s

(l)
k|k −

[
L11

L21

]
u(1 :2N). (3.64)

After finding the projected sigma points through (3.64), the state and the Cholesky fac-

tor of the error covariance matrix may be estimated through weighted averaging and QR

factorization, respectively as

sPk|k =

8N∑
l=0

w(l)P(s
(l)
k|k), (3.65)

UP
k|k = qr

{
[e

(0)
P , e

(1)
P , . . . , e

(8N)
P ]T

}
, (3.66)

where

e
(l)
P =

√
w(l)(P(s

(l)
k|k)− sPk|k)), l = 0, . . . , 8N.

Finally, in the next iteration of the unconstrained SRUKF, the constrained a posteriori

state estimate sPk|k and the Cholesky factor of the corresponding error covariance matrix

UP
k|k replace sk|k and U k|k, respectively as

sk|k = sPk|k, (3.67)

U k|k = UP
k|k. (3.68)
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3.3.3 Centralized Algorithm Summary

The proposed two stage centralized CSRUKF for the cooperative scenario is summarized

in Algorithm 3. By setting N = 1 in this algorithm and removing the sensor-sensor

measurements, the filter changes to non-cooperative CSRUKF proposed in Section 3.2 for

tracking a single target.

Algorithm 3 CSRUKF

Initialize s0|0 and set Σ0|0 to a large SPD diagonal matrix
Set ηα and ε
for k = 1, . . . , K do
Estimate sk|k and U k|k using a conventional SRUKF as described in [67].
Generate the sigma points using (3.57).
For every sigma point whose first two elements fall outside the feasible region solve
(3.63) and find the projected point (3.64).
Estimate sPk|k using (3.65) and UP

k|k using (3.66).

Update the a posteriori estimates, i.e., (3.67) and (3.68).
end for

3.4 Simulation Results

3.4.1 Non-cooperative Case

The simulations are implemented in Matlab 2010b on a 64-bit computer with Intel i7-2600

3.4GHz processor and 12GB of RAM. We consider a 2-D area with M = 5 fixed RNs

located at known positions a1 = [0, 0], a2 = [2000, 0]T , a3 = [0, 2000]T , a4 = [−2000, 0]T ,

a5 = [0,−2000]T , where the units are in meters. An MN moves on this 2-D plane according

to the motion model considered earlier in (3.1) with noise covariance matrix Q = 0.04I2

and the time step duration is set to δt = 0.2s for K = 1000 time instants. The initial MN

state vector, including the position and velocity components, is normally distributed with

zero mean and covariance matrix diag([104, 104, 102, 102]).

To model the range measurement, the true distance between each RN and MN is per-

turbed with an additive zero-mean Gaussian noise. We consider two different measurement

noise scenarios: large noise with standard deviation σn = 150m and small noise with

σn = 15m, where in our algorithm, we assume that these values are known7. The large

7In practice, knowledge about σn can be obtained by means of preliminary calibration experiments in
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noise assumption can model general applications like narrowband cellular mobile position-

ing as considered in [57], [110], while the small noise assumption is suitable for localization

applications with more accurate ranging and higher SNRs. We also perturb some of the

measurements by NLOS biases which are modelled as exponential random variables with

parameter γ = 500m [58]8.

To consider the possible transition of an RN from LOS to NLOS and vice versa, we

assume that the status of each RN can change with a certain probability after every 250

time instants. This assumption is reasonable and in line with [111], [54] as the channel

conditions might not change drastically for an MN moving with moderate speed. We

consider three different scenarios as follows where the transition from LOS to NLOS and

vice versa is done with probability of 0.5:

• Scenario I: There are 4 NLOS RNs all the time, while the other RN (the one in the

center of the plane) can change between LOS and NLOS.

• Scenario II: There are 3 NLOS RNs all the time, while the other 2 RNs can transit

between LOS and NLOS.

• Scenario III: There are 2 NLOS RNs all the time, while the other 3 RNs can change

between LOS and NLOS.

For the proposed CSRUKF we consider ε = 3 and α = 70%, which corresponds to

ηα = 4.8784 under the Gaussian posterior PDF assumption. Note that for the CSRUKF,

all the sigma points violating the constraints are projected onto the feasible region. For

solving the QCQP problem, we use the optimization toolbox Yalmip [112] and Sedumi

solver [109].

In order to see if projecting all the sigma points is necessary to achieve a good result

in NLOS scenarios, we first consider the common projection technique where only the a

posteriori state estimate of a KF is projected onto the feasible region [106]. Therefore, sk|k

obtained through the SRUKF is projected onto the feasible region, thus the new a posteriori

state estimate satisfies the constraints, however, the a posteriori covariance matrix is not

changed and remains the same as the unconstrained case. This approach has in general

a lower computational cost compared to the proposed CSRUKF algorithm since at most

a given environment, or through on-line calculation based on path-loss model for radio propagation.
8Our algorithm can still work well with a range dependent NLOS bias model as considered in [43].
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one projection operation needs to be done at each iteration. We denote this approach by

projection Kalman filter (PKF) and for solving the optimization problem we follow the

similar procedure as done for CSRUKF.

For comparison purposes, we consider the conventional techniques proposed in [51],

[111], [113], in which the range measurements are processed using a KF and then the

smoothed range measurements are used in an EKF where the diagonal elements of the co-

variance matrix corresponding to the NLOS measurements are scaled for further mitigation

of NLOS bias. While these techniques differ slightly in terms of pre-processing and variance

calculation, we consider the simple one in [111] denoted by the smooth EKF (SEKF) with

scaling factor 1.5 and assume that the NLOS identification and variance calculation are

done without error.

The Cramer-Rao lower bound (CRLB) analysis in NLOS shows that if no prior statis-

tics about the distribution of the NLOS bias is available then the optimal strategy is to

discard the NLOS measurements and only use LOS ones [29]. If prior statistics are avail-

able then the NLOS measurements should also be used to achieve a lower MSE. However,

this bound can only be practical if there are enough LOS measurements for unambiguous

localization; hence, for a small number of LOS links it may not be useful. Even though

the posterior Cramer-Rao bound (PCRB) on positioning RMSE has been derived approxi-

mately in [114,115], these derivations are based on the assumption that the NLOS bias has

a Gaussian distribution with known mean and variance. Evaluating the PCRB for other

NLOS distributions such as exponential is even more challenging. Since in this paper, there

is no information about the distribution of the NLOS biases, except that they are positive,

the mentioned lower bound is still loose and cannot accurately show the lowest possible

error in estimating the state vector.

Due to these limitations in finding a lower bound on the positioning RMSE, we consider

a semi-ideal situation where the mean and variance of the NLOS bias of each link is known.

To apply a KF to this case, the mean of the bias is subtracted from each NLOS measure-

ment, and the error covariance matrix Rr of the measurement vector rk = [r1k, r
2
k, . . . , r

M
k ]T

is scaled according to the variance of the corresponding NLOS bias. Then we apply an

unconstrained SRUKF to a dynamic system with the same state motion model as in (3.1)

and with unbiased set of measurements. For instance if i ∈ Nk, then Rr(i, i) = σ2
n + σ2

b ,

where σ2
b is the variance of the NLOS bias. Note that after subtracting the mean of the

NLOS bias from each NLOS range measurement, the remaining error is a combination of a
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shifted exponentially distributed variable with zero mean and a zero-mean Gaussian noise.

Therefore, if the error is dominated by the measurement noise, i.e., σ2
n � σ2

b , then non-

linear Kalman filters give nearly MMSE estimation performance for moderately nonlinear

systems. However, if the error is dominated by the NLOS bias, i.e., σ2
b � σ2

n, these filters

are unlikely to give nearly optimal performance in the MMSE sense. Although this ap-

proach, which is denoted by bias-aware SRUKF (BSRUKF), is not optimal in the MMSE

sense and may not be even a performance lower bound for our technique when the mean

and variance of the NLOS bias are known, it can be regarded as a useful benchmark for

comparison with our method.

To evaluate the performance of the algorithms in different scenarios, we perform T = 100

Monte Carlo (MC) trials for each scenario and consider different trajectories at each trial.

Let xt
k and xt

k|k denote the true MN position and its estimated vectors at the k-th time step

of the trajectory over the t-th Monte Carlo trial, respectively. The performance metrics

are the cumulative distribution function (CDF) of the positioning error ek, expressed as

CDF(ek) = P

[
‖xt

k − xt
k|k‖ ≤ ek

]
, (3.69)

and the root mean square error (RMSE) of the position estimates at time step k, defined

as

ēk =

√
E

[
(xt

k − xt
k|k)

T (xt
k − xt

k|k)
]
, (3.70)

where P and E, which are the probability function and expectation operator, respectively,

are evaluated approximately using MC trials.

In the following, we compare the effect of measurement noise and NLOS bias on the

performance of different techniques in each considered scenario. We assume that the initial

estimate s0|0 is normally distributed with mean equal to the true state s0 and covariance

matrix Σ0|0 = diag([9× 104, 9× 104, 103, 103]).

Large Measurement Noise

In the first scenario, we consider the case of a narrowband ranging application where the

noise variance is relatively high, i.e., σn = 150m is considered. The RMSE versus time

step is illustrated in Fig. 3.2 for scenarios I, II, and III. The corresponding CDF of the

positioning error is also plotted for each scenario in Fig. 3.3.

We can observe that for scenario I and II, the CSRUKF performs almost similar to
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Fig. 3.2 From top to bottom: RMSE for scenarios I, II, and III.
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Fig. 3.3 From top to bottom: CDF for scenarios I, II, and III.
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SEKF, while the RMSE of the PKF is relatively high. This shows that in order to obtain

a decent localization performance, the projection of all the sigma points in CSRUKF is

necessary as compared to projecting only the mean as done in PKF. The RMSE of all the

techniques are lower bounded by the RMSE of BSRUKF, which uses more prior information

about the NLOS biases. The RMSE and CDF of scenario III indicate that the performance

of the CSRUKF is better than those of PKF and SEKF noticeably.

Small Measurement Noise

For further verification of our algorithm, we consider a case where the noise variance is

relatively small, i.e., σn = 15m, which can model errors in ranging applications with high

SNR. The RMSE and CDF of the estimation error are illustrated in Fig. 3.4, and Fig. 3.5,

respectively, for the scenarios I, II, and III.

As observed in Fig. 3.4 and Fig. 3.5, in all the scenarios, the proposed CSRUKF

performs better than all the other methods, especially the BSRUKF. There are several

reasons why CSRUKF can outperform the BSRUKF to this extent for small measurement

noise: First, the BSRUKF cannot necessarily provide a performance lower bound, since

after removing the mean of the bias from the NLOS range measurements, the remaining

error term does not follow a Gaussian distribution; hence, applying a Kalman filter to this

problem is not the optimum MMSE estimation technique. In small noise scenarios, the

NLOS bias dominates over the measurement noise, and therefore the distribution of the

error in the BSRUKF is far from the Gaussian distribution. For large measurement noise

scenarios in Fig. 3.2 and Fig. 3.3, where the NLOS bias is not significantly larger than the

measurement noise, the error distribution was closer to a Gaussian one, which was one of

the reasons that BSRUKF was performing better than CSRUKF. Second, when σn is large,

the feasible region Dk becomes larger compared to the case that σn is small. Therefore,

it is more likely that most of the sigma points lie inside Dk and no projection is done, so

the second stage of our algorithm does not improve the a posteriori estimate. Note that

by restricting the sigma points to be within a smaller feasible region, a better location

estimate may be obtained.

Robustness to Errors in NLOS Identification

In this part, we analyse the performance of our proposed technique in the presence of NLOS

identification errors, i.e., FA and MD, which are inevitable in some applications.
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Fig. 3.4 From top to bottom: RMSE for scenarios I, II, and III.
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Fig. 3.5 From top to bottom: CDF for scenarios I, II, and III.
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To see the effect of FA on the proposed CSRUKF, we assume that we have one LOS

and four NLOS RNs. However, due to the FA, the LOS link is also wrongly detected

as being NLOS. Therefore, CSRUKF, and PKF wrongly remove the LOS measurements

from the measurement vector and employ the wrongly detected measurement to impose

a constraint on the state vector. Since the use of a larger ε can increase the chance that

a LOS measurement also satisfies the constraint in (3.5), it is expected that FA does not

severely degrade the performance of our proposed technique. The simulation results are

shown in Fig. 3.6, where it is observed that CSRUKF is robust against FA error in NLOS

identification and outperforms the SEKF. Note that the BSRUKF algorithm is evaluated

under perfect NLOS identification, while its performance is still worse than our proposed

technique.

If the NLOS links are regarded as LOS ones, i.e., in the presence of NLOS MD error, all

the Kalman-type filters have to use a biased measurement in their observation vector, and

thus it is not surprising that their performances are degraded. We have avoided showing

the simulation results for this scenario. As a remark, we note that for our algorithm to

perform well most of the times, the threshold used for NLOS identification should change

such that the probability of MD becomes very small.

Computation Time

The average computation time of each algorithm is calculated for each scenario and is

shown in Table 3.4.1. Due to the use of optimization packages in Matlab, which use

iterative methods, it may not be possible to express the computation time of the proposed

CSRUKF in terms of the number of flops. Therefore, we compare the CPU time required

for running each algorithm instead. The SEKF has a very small computation time, because

it is essentially an ordinary Kalman filter. The computation time of PKF, where only the

state vector needs to be projected onto the feasible region, is obviously lower than CSRUKF

because only one QCQP problem might need to be solved at every time step. The most

computationally demanding part of CSRUKF is the projection of the sigma points, which

might be implemented in parallel form. However, in the simulation we have done these

projections sequentially, and therefore the total elapsed time is larger for CSRUKF. Still,

the highest computation time of CSRUKF is lower than the total elapsed time for the

entire trajectory (200 seconds), meaning that with the computer used here, the algorithm
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can be applied for online tracking. Note that the computational cost of many other popular

methods such as KDE or particle filters is also much higher than ordinary EKF or SRUKF

and therefore, our algorithm remains competitive in terms of computation time.

Table 3.1 Average running time (in seconds) of each algorithm in each sce-
nario evaluated for the entire trajectory (200s)

Scenario I Scenario II Scenario III
SEKF 0.38 0.41 0.45
PKF 25.72 10.5935 1.9141
CSRUKF 64.03 31.4485 8.3804

3.4.2 Cooperative Case

To evaluate the performance of the proposed technique, we consider a 2D area with M = 4

anchors and N = 5 mobile sensors. The sensors are initially placed uniformly on the plane,

and move independently according to the considered motion model in (3.46) with δt = 0.2

for 100 time steps. The anchors are located at positions a6 = [0, 0], a7 = [0, 10], a8 = [10, 0],

and a9 = [10, 10]. We assume that if the true distance between the nodes is less than

10m then they are regarded as neighbours and they obtain pairwise range measurements.

Although the communication range decreases if the link between two nodes is NLOS, we

assume that the communication range is the same for all the links due to simplicity. The

true range between neighbouring nodes is disturbed with a Gaussian noise with zero-mean

and standard deviation σn = 0.1m in order to model the range measurement. Ranging

with centimetres accuracy is in accordance with IEEE 802.15.4a in indoor environments

with LOS connection [14]. For the NLOS links, a positive exponential random variable

with mean and standard deviation of 5m is also added to the obtained ranges. The tuning

parameters in CSRUKF are set as ε = 3 and ηα = 0.8. The convex QCQP problems are

solved using Sedumi solver [109] and Yalmip optimization package [112].

To test the algorithm, we consider three different NLOS scenarios where the probability

of a link being NLOS, denoted as PN varies from a low to a high value, as follows:

• Small ratio of NLOS to LOS links: PN = 0.05

• Moderate ratio of NLOS to LOS links: PN = 0.5
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• Large ratio of NLOS to LOS links: PN = 0.95

For comparison purposes, we consider an unconstrained SRUKF with rejection of NLOS

links, denoted by “SRUKF Outlier Rejection”. If there are enough LOS measurements

available for each node, then outlier rejection is the right strategy, but in the absence

of enough LOS nodes the performance of this method might be severely degraded. As a

performance metric, the cumulative distribution function (CDF) of the network positioning

error, defined as

CDF(ek) = Pr
{ 1

N

N∑
i=1

‖sk|k(2i− 1:2i)− sk(2i− 1:2i)‖ ≤ ek

}

is evaluated empirically for different values of PN .

As observed in Fig. 3.7, for low ratio of NLOS to LOS links, the SRUKF with outlier

rejection performs almost the same as our proposed CSRUKF. This confirms that using a

few NLOS links as constraints might not improve the localization performance. However,

for PN = 0.5, the performance of Kalman filtering with outlier rejection is degraded notice-

ably (it sometimes even diverges) while that of the proposed CSRUKF is less than 1m with

90% chance. For large ratios of NLOS to LOS links, the outlier rejection technique diverges

because it essentially uses the prediction step of the SRUKF (the measurement vector zk

is empty most of the times), while the proposed technique has a decent performance.

3.5 Conclusion and Future Work

A constrained square-root unscented Kalman filter (CSRUKF) with projection technique

was proposed in this chapter for the aim of TOA-based localization of MNs in NLOS

scenarios. The CSRUKF algorithm was first developed for tracking a single MN but was

then extended to cooperative scenario where multiple MNs, which exchange information

with each other, are tracked centrally by the filter. In these filters, the NLOS measurements

were removed from the measurement vector and instead, they were employed to impose

quadratic constraints onto the position coordinates of the MN. The sigma points of the UKF

which violated the constraints were projected on the feasible region by solving a convex

quadratically constrained quadratic program (QCQP). As compared to other constrained

UKF techniques, we considered a square root filter and avoided computing the inverse
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Fig. 3.7 CDFs of the network positioning error in different scenarios: (a)
PN = 0.05; (b) PN = 0.5; (c) PN = 0.95.
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of the state covariance matrix both in the Kalman filter and in the optimization steps;

consequently our approach has better numerical stability and lower computational cost. In

the simulation experiments, the proposed CSRUKF performed better than other approaches

in different NLOS scenarios. In particular, CSRUKF performance was excellent when a

small measurement noise variance was considered, suggesting that it is particularly suitable

for accurate TOA-based localization systems with high SNR. The computational cost of the

proposed filter was relatively high especially for cooperative MN scenario due to the large

number of optimization problems that needed to be solved for projecting the sigma points.

However, the computation issue seems to be less of a problem for a cellular network with

limited number of MNs and with the help of parallel processing on the servers, that are

capable of doing large computations. Another advantage of our technique is its robustness

to FA errors in NLOS identification. The proposed CSRUKF can be extended to the

situations where the information of an IMU is fused with range measurements for more

accurate mobile localization.
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Chapter 4

Robust Distributed Cooperative

Localization in WSN

In this chapter, we propose a two-stage algorithm based on Huber M-estimation for dis-

tributed cooperative WSN localization in the presence of unidentified NLOS links. In

Section 4.1, an introduction to the topic and state of the art is given. In Section 4.2 the

system model is described and the problem is formulated. The proposed algorithm is de-

scribed in Section 4.3. The numerical comparison with other methods is given in Section

4.4. Finally, Section 4.5 concludes this chapter.

4.1 Introduction

The WSN localization based on different measurements can be carried out for the entire

network in a centralized or distributed fashion. Among the popular centralized algorithms

are semi-definite programming (SDP) [23] and second-order cone programming (SOCP) [24]

convex relaxations. Distributed algorithms have also been proposed, including distributed

SOCP [25], the iterative parallel projection method (IPPM) [27] and other localization

approaches that alternate between convex and non convex optimization problems [26] [89].

However, these approaches only consider the case where the pairwise range measure-

ments are made under line of sight (LOS) condition. In practice, LOS measurements are

limited and many links will face a non-line of sight (NLOS) condition. Due to the NLOS,

the TOA measurements become positively biased [44] and consequently, the aforementioned

techniques perform unsatisfactorily if the NLOS effects are not mitigated properly.
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Many methods have been proposed for identification of NLOS links for non-cooperative

networks (see in [44] and the references therein). Furthermore, many NLOS identification

methods have been proposed especially for UWB systems [33], [100]. After detecting the

NLOS measurements, the NLOS effect can be mitigated using different optimization tech-

niques. A summary of the non-cooperative TOA-based NLOS localization methods is given

in [44]. For cooperative localization, extension of the centralized SDP relaxation and the

distributed IPPM for NLOS scenarios are considered in [64] and [1], respectively.

NLOS identification is however challenging for a large WSN with several pairwise mea-

surements. Therefore, in many WSN applications, it is impractical to assume that all the

NLOS links are identified accurately. In [116], a SDP relaxation is considered for non-

cooperative localization in NLOS without prior detection of NLOS links. Although the

SDP relaxation is a reliable centralized technique, it can not scale with the size of the

network. Extension of SDP relaxation to a distributed manner needs to be further studied.

In [2], a distributed cooperative POCS is employed to estimate the location of sensors, and

is shown to be robust against NLOS errors. However, if only a portion of the measurements

are affected by NLOS errors, the performance of POCS is far from being optimal. Another

technique for robust estimation against outliers without prior outlier detection is to use

Huber loss function, which is a trade-off between l1 and l2 norm minimizations [117]. In

contrast to POCS, localization based on Huber cost function can achieve a good result

only if it is well initialized and if a moderate or small portion of the measurements are

contaminated by large errors, otherwise it may not necessarily give a good estimate.

In this chapter, we propose a two-stage algorithm based on Huber M-estimation for

distributed cooperative localization in the presence of unidentified NLOS links. In the first

stage, similar convex relaxation considered in [26] is applied on the Huber cost function,

hence accurate sensor locations are iteratively estimated. Since the performance may not

necessarily be good in low ratio of NLOS to LOS links, in the second stage, the original

Huber cost function is minimized iteratively with a suitable choice of parameter. For

iterative optimization in both stages, we use a simple gradient descent technique since it

can be easily implemented in a distributed manner. Through simulations, we first show

that the proposed convex relaxation gives a reliable estimate in different NLOS scenarios.

Furthermore, we show that the position estimates are generally improved in the second

stage as we minimize the original Huber cost function. The robustness of our algorithm to

outliers is also evaluated by using real sensor measurement set obtained by measurement
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campaign in [69].

4.2 System Model and Problem Formulation

4.2.1 System Model

We consider a sensor network, consisting of N sensor nodes with unknown locations denoted

by xi ∈ R
2, for i = 1, . . . , N , and M anchors with known locations xi ∈ R

2, for i =

N +1, . . . , N +M . We define S as the set of all indices (i, j) of all the neighbouring nodes

that can communicate with each other and we assume i < j to avoid repetition. We also

define Si as the set of indices of all the neighbouring nodes of xi. We assume that range

measurement is obtained between each two pairs of neighbouring nodes with (i, j) ∈ S.
For accurate ranging, either the nodes have to be accurately synchronized or the two-way

ranging (TWR) protocol can be exploited to remove the effect of clock parameters in the

TOA measurements [7]. The range measurement model is represented as

rij =

⎧⎨
⎩dij + nij, (i, j) ∈ L
dij + bij + nij, (i, j) ∈ N

(4.1)

where dij = ‖xi − xj‖, the sets are defined as

L = {(i, j) ∈ S : LOS link between i-th and j-th node}
N = {(i, j) ∈ S : NLOS link between i-th and j-th node}

hence it is followed that S = L∪N . The measurement noise nij is a zero mean independent

and identically distributed Gaussian random variable with known variance σ2
n, and bij is the

NLOS bias between i-th and j-th nodes, which has been modelled differently depending on

the environment and wireless channel, e.g., exponential [33] or uniform [100] distributions

are generally used. However, in this work, we assume that we do not know a priori if a

link is NLOS or not. Furthermore, we do not have any knowledge about the statistics of

the NLOS biases, e.g., the mean and variance of bij .
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Fig. 4.1 Illustration of two nodes and their pairwise range measurement.
The regions where l1 and l2 norm minimization are implemented. Top: Orig-
inal Huber cost function. Bottom: Proposed convex cost function.
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4.2.2 Problem Formulation

The aim is to find the locations of the N sensor nodes, represented by the matrix X =

[x1,x2, . . . ,xN ] ∈ R
2×N . To this end, we wish to minimize the average root mean square

error (RMSE) in estimation of positions defined as

Ω =

√√√√ 1

N

N∑
i=1

‖x̂i − xi‖2 (4.2)

where x̂i is our estimate of xi. If there are no NLOS biases, due to the zero-mean Gaussian

noises, the maximum likelihood estimation (MLE) is equivalent to the l2 norm minimiza-

tion, so the cost function to be minimized is

f(X) =
∑

(i,j)∈S

(
‖xj − xi‖ − rij

)2
(4.3)

which is a non-convex nonlinear least squares (NLS) problem with respect to X as dis-

cussed in [23, 26]. Since the NLOS biases exist in some measurements but can not be

identified, using l2 norm minimization might not yield robust estimates. In the presence of

outliers, Huber cost function provides a suitable replacement for l2 norm minimization, by

interpolating between l2 and l1 norm minimizations. Therefore, instead of (4.3) one wishes

to minimize

g(X) =
∑

(i,j)∈S

ρ
(
rij − ‖xi − xj‖

)
(4.4)

where ρ(·) is the continuous and differentiable Huber function with parameter uij = rij −
‖xi − xj‖, defined as

ρ(uij) =

⎧⎨
⎩u2

ij, |uij| < K

2K|uij| −K2, |uij| ≥ K
(4.5)

where K is a fixed parameter which is chosen to be proportional to σn, e.g., K = ασn and

1.5 ≤ α ≤ 2.

Although the Huber cost function is convex with respect to its argument, similar to the

case of NLS, it is easy to show that it is not always convex with respect to the position

coordinates X. Therefore, if not initialized well, the estimates obtained by Huber estima-

tion technique might not converge to stationary points close to the global minimum of the
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Huber loss function. Furthermore, the Huber M-estimation can perform well if only a small

portion of the measurements are outliers, otherwise it may not achieve a good estimation

result. Therefore, in the following we propose a two-stage algorithm that is robust in any

NLOS scenario.

4.3 Robust Distributed Algorithm

In this section, we first propose a convex relaxation of the Huber cost function. After

converging to some stationary points, we then try to minimize the Huber cost function

using iterative techniques.

4.3.1 Stage I: Convex Relaxation

A convex relaxation of the nonlinear least square problem in (4.3) has been proposed in [26].

This relaxation modifies the original cost function f(X) as

f̃(X) =
∑

(i,j)∈S

(
(‖xj − xi‖ − rij)+

)2
(4.6)

where

(‖xj − xi‖ − rij)+ =

⎧⎨
⎩0, ‖xj − xi‖ ≤ rij

‖xj − xi‖ − rij, ‖xj − xi‖ > rij

Further explanation about the convexity of this cost function is given in [89]. The concept

of this relaxation is similar to POCS proposed first in [90] and considered for cooperative

sensor network localization in [2]. However, we instead propose to do a convex relaxation

of Huber cost function as

g̃(X) =
∑

(i,j)∈S

ρ̃
(
rij − ‖xi − xj‖

)
(4.7)
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where ρ̃(·) is the convex relaxation of Huber function with respect to X defined as

ρ̃(uij) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
2K1uij −K2

1 , ‖xi − xj‖ ≥ rij +K1

u2
ij, rij < ‖xi − xj‖ < rij +K1

0, ‖xi − xj‖ ≤ rij

(4.8)

where K1 = α1σn is the parameter of the Huber loss function. The illustration of the

original and proposed Huber cost functions are expressed in Fig. 4.1 for the area between

two nodes. The simulation result shows that, in many cases, this convex relaxation is

more robust against large negative errors as well and gives a lower MSE for the network

compared to the one in (4.6) or cooperative POCS [2].

The iterative gradient descent method for updating the position estimates can be stated

at each node as

x
(l+1)
i = x

(l)
i − μ1

∑
(i,j)∈S

∂ρ̃(uij)

∂x
(l)
i

, i = 1, . . . , N (4.9)

where μ1 is a suitable step size and for every j ∈ Si

∂ρ̃(uij)

∂x
(l)
i

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2K1
x
(l)
i −x

(l)
j

‖x
(l)
i −x

(l)
j ‖

, ‖x(l)
i − x

(l)
j ‖ ≥ rij +K1

u
(l)
ij

x
(l)
i −x

(l)
j

‖x
(l)
i −x

(l)
j ‖

, rij < ‖x(l)
i − x

(l)
j ‖ < rij +K1

0, ‖x(l)
i − x

(l)
j ‖ ≤ rij

After every sensor estimates its position, in the next time instant, it sends this estimate to

its neighbours. Therefore, every sensor uses the current estimate about its own position, the

known position of its neighbouring anchors, and the updated position of its neighbouring

sensors to find a new estimate of its position. After a number of iterations, if the difference

between the estimated positions of each sensor at two consecutive iterations is less than

a predefined threshold, then the algorithm has reached near the global minimum of the

relaxed Huber cost function in (4.7). The position estimates obtained at this stage may

be in the proximity of the true sensor positions. However, as these position estimates are

not the solution of the original problem in (4.4), we need to do further refinement of these

estimates.
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4.3.2 Stage II: Position Refinement

At this stage, we try to minimize the original Huber cost function in (4.4). The iterative

gradient decent steps at each sensor node xi is

x
(l+1)
i = x

(l)
i − μ2

∑
j∈Si

∂ρ(uij)

∂x
(l)
i

, i = 1, . . . , N (4.10)

where μ2 is a suitable step size and for every j ∈ Si

∂ρ(uij)

∂x
(l)
i

=

⎧⎪⎨
⎪⎩

x
(l)
i −x

(l)
j

‖x
(l)
i

−x
(l)
j

‖
u
(l)
ij , |‖x(l)

i − x
(l)
j ‖ − rij| < K2

2K2
x
(l)
i −x

(l)
j

‖x
(l)
i −x

(l)
j ‖

, |‖x(l)
i − x

(l)
j ‖ − rij | ≥ K2

(4.11)

and K2 = α2σn is the parameter of the Huber function, which is different from K1. The

algorithm continues iteratively for a limited number of iterations or until the difference

between the estimates of each sensor’s position at two consecutive iterations is less than a

threshold.

Selecting a suitable K2 is very important at this stage and can give a trade off between

robustness and accuracy. If the ratio of NLOS to LOS links is high, then selecting K2

as done usually for Huber M-estimation, i.e., 1.5σn ≤ K2 ≤ 2σn, might even result in

deterioration of the position estimates. Thus, in this scenario, it is preferred to keep α2

very small, so the second phase does not change the position estimates obtained in the

first stage. On the other hand, if the ratio of the NLOS measurements is low compared to

LOS ones, then the second stage can improve the positioning performance noticeably by

selecting 1.5 ≤ α2 ≤ 2. The performance is still improved if a small value of α2 is chosen.

Therefore, if in the network, we have an a priori estimate of the ratio of the NLOS to LOS

measurements or the probability of a link being NLOS, then we can select K2 according to

the discussion above. However, if such information is not available, then we select α2 to be

small, e.g., α2 = 0.1, to achieve robust estimation result in all scenarios.
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4.4 Test and Validation

4.4.1 Simulation Results

In this part, the performance of the proposed method is evaluated through simulations.

We consider a network of M = 4 anchors and N = 50 sensors located on a 2D space.

The sensors are randomly distributed on the plane while the anchors are at fixed locations

xN+1 = [0, 0]T , xN+2 = [10, 0]T , xN+3 = [10, 10]T , and xN+4 = [0, 10]T , where the units

are in meters. The range measurements were generated according to the model in (4.1)

with σn = 0.5m and the NLOS bias is modelled as an exponential random variable with

parameter γ = 10m. The Monte Carlo (MC) simulations are done under 500 runs.

We first consider the proposed convex relaxation and run this algorithm for 50 iterations

with μ1 = 0.04 and K = 2σn. We compare the proposed technique with the relaxation of

the NLS in [26] with similar parameters and the same number of iterations, denoted by

Relaxation NLS. We also apply the mentioned iterative technique with the same parameters

and iteration number on the original Huber cost function and denote it by Huber. Also we

consider the cooperative POCS with parameter λl = 0, thus it becomes almost similar to

the IPPM in [27], except that the projection is only implemented when ‖xi − xj‖ ≥ rij .

The initial sensor positions for all algorithms are selected to have a Gaussian distribution

with mean equal to the true sensor positions and standard deviation of 10 meters. We

define PN as the probability of a link being NLOS. We now consider three scenarios where

the probability that a link is in NLOS is chosen to be PN = 0.9, PN = 0.5, and PN = 0.1.

In Fig. 4.2, the CDF of positioning error for different algorithms under various NLOS

contamination level is shown. As observed in Fig. 4.2, the relaxation of Huber cost function

is slightly better than the relaxation of NLS, and it has almost the same performance as

POCS. The original Huber cost function does not achieve a good result due to the lack of

convexity and poor initialization.

To do further position refinement, we also simulate the second phase of our algorithm

for 50 iterations with μ2 = 0.01 and K2 = 0.1σn. For the initialization, we use the position

estimates obtained at the first stage by our proposed algorithm using convex relaxation

of Huber cost function. To have a lower bound on the performance of our algorithm, we

implement the IPPM proposed in [1] with the knowledge of perfect NLOS identification

and denote it by IPPM NLOS. Since the IPPM algorithm may not necessarily converge

to a good solution because of lack of convexity, we use the position estimates obtained by
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Fig. 4.2 CDF of different algorithms from top to bottom: PN = 0.9; PN =
0.5; PN = 0.1.
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Fig. 4.4 Top: localization performance for large PN . left, cooperative POCS
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cooperative POCS as initial points. The CDF of the error for our two-stage algorithm is

illustrated in Fig. 4.3 along with the IPPM with prior NLOS identification. The CDF of

the error of the proposed convex relaxation shown in Fig. 4.2 is also plotted in Fig. 4.3.

The results show that when the ratio of the NLOS is high compared to LOS ones, the

second stage of the algorithm may not improve the position estimates. However, when the

ratio of the NLOS starts to decrease, the second stage can improve the estimates obtained

in the first stage distinguishably. The performance of the proposed 2-stage algorithm is

close to IPPM NLOS, which is based on perfect NLOS identification.

The performance of different methods are compared as a function of iteration number

in Fig. 4.5 by averaging over all the sensors. For the first 50 iterations the first stage of

our algorithm (Proposed 1-st stage) is shown along with the cooperative POCS. For the

next 50 iterations, the second stage of our algorithm (Proposed 2-nd stage) is illustrated

together with IPPM NLOS, where the latter is initialized using the estimates obtained by

Cooperative POCS. As mentioned earlier, for large ratios of NLOS to LOS links, the relaxed

problems yield decent solutions as they are suited for scenarios with positive measurement

errors. The second stage of our algorithm may not necessarily improve the localization

performance for large PN and the improvement might be minor. In moderate ratios of

NLOS to LOS links, however, the second stage can definitely improve the localization

performance as it is based on Huber estimation technique. The 2-nd stage becomes even

more useful when PN is small and only a portion of links are outliers. Although here we

used fixed number of iterations, it might be better to check the convergence rate of all the

nodes and stop when the estimates can not be changed further. In this way, the efficiency

of the proposed algorithm can be improved.

4.4.2 Experimental Results

In this part, we consider localization of sensors using real data obtained by the measurement

campaign reported in [69]. The environment was an indoor office and there were 44 node

locations where the transmitter and receiver were used at each location and pairwise range

measurements were obtained. We consider four nodes in the corner as anchor nodes with

perfect location information and the other 40 nodes as the sensors with unknown locations.

Due to the scatterers and NLOS in the office, almost all of the measurements are affected

by large positive errors as mentioned in [69]. It is mentioned that the average amount
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of error is also calculated for these measurements, therefore, by subtracting that quantity

from the measurements, a less unbiased set of measurement is obtained. To evaluate the

performance of our algorithm in different conditions we consider these scenarios:

• The raw measurements are considered, hence many of the measurements have positive

errors, i.e., PN is large.

• The positive bias is subtracted from half of the measurements randomly, hence PN is

moderate.

• The average bias is subtracted from all the raw measurements, thus PN is small.

Using the unbiased measurements, the standard deviation of measurement noise is esti-

mated roughly to be σn = 1m. By applying the iterative gradient descent technique on

the proposed convex Huber cost function with μ1 = 0.04 and K1 = 2σn, an estimate of

the positions of sensors are obtained iteratively for 50 iterations. The position estimates

are also refined in the second stage with K2 = 0.1σn and μ2 = 0.01 for 50 iterations. The

final estimates at the end of each stage of our algorithm and the estimates obtained by

cooperative POCS are shown along with the true sensor positions in Fig. 4.4. The CDF of

the positioning error in different NLOS scenarios are also illustrated in Fig. 4.6 by running

500 MC trials.

The results show that in general the relaxed Huber function achieves a better result

compared to the other approaches. Moreover, the second stage of the algorithm noticeably

improves the position estimates obtained in the first stage, especially when PN is small.

4.5 Conclusion

A robust distributed cooperative localization technique has been proposed in this chapter.

We first applied a convex relaxation on the Huber cost function and preliminary position

estimates were obtained iteratively. In the second stage of our algorithm, by iteratively

minimizing the Huber loss function, it was shown that further position refinement could

be generally obtained. For iterative optimization in each stage, a gradient descent method

was used. By testing on real data set, the superiority of our algorithm was verified. We

conclude that our two-stage algorithm performs robustly against outliers; in particular it

significantly outperforms other distributed techniques when the ratio of NLOS to LOS
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measurements is small. One issue with the distributed algorithms compared to centralized

ones for localization is that a lot of communication needs to be done among the nodes

until the positions can be estimated. This might take time and the communication load

might be very high for the WSN. This is one of the disadvantages of distributed techniques

compared to centralized ones. Therefore, faster iterative techniques based on Newton or

Gauss-Newton methods are preferred to gradient descent technique. Implementing a dis-

tributed Gauss-Newton method has recently gained attention and seems to be an interesting

idea worth consideration. Therefore, further improvements of the distributed localization

algorithms might be possible in the near future.
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Chapter 5

Distributed Outer-Approximation of

Feasible Sets in WSNs under NLOS

In this chapter, a distributed technique based on SPAWN is applied to WSNs with positively

biased range measurements to outer-approximate the convex hulls by ellipses. Our main

contribution is to develop a novel method for outer-approximation of the intersection of

ellipses using an ellipse in 2-dimensional space. This chapter is organized as follows: An

introduction to the topic is given in Section 5.1. The system model and background are

presented in Section 5.2. The distributed algorithm is presented in Section 5.3.1 and the

proposed ellipse outer-approximation method is given in Section 5.3.2. The simulation

results are given in Section 5.4. Finally, Section 5.5 concludes this chapter.

5.1 Introduction

Localization of sensor nodes in a wireless sensor network (WSN) is of great interest in many

public safety and commercial applications [3]. In particular, cooperative localization has

received special attention since it can improve localization accuracy and coverage [21]. In

contrast to non-cooperative WSN, in which only measurements between the sensors being

localized and anchors with known positions are performed, cooperative WSNs also use

sensor-to-sensor measurements.

Localization in indoor places and dense urban areas is more challenging due to multipath

propagation and non-line of sight (NLOS) conditions, which result in positively biased range

measurements [44, 118, 119]. In these situations, the unknown location of each sensor is

2015/08/14
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restricted to the intersection of multiple balls (or discs in 2-dimensional (2-D) space), with

centres corresponding to the locations of neighbouring nodes, e.g., anchors and sensors, and

with radii equal to biased range measurements. The intersection of these balls is a convex

feasible set, which can serve as a rough approximation of the uncertainty in the sensor’s

position. In many applications it is therefore desired to quantify the size of each feasible

set. However, since the feasible set is complex and can not be generally described by a few

parameters, outer-approximating it by a simple shape, e.g., a ball or an ellipsoid, is needed.

In cooperative WSNs, finding outer-approximations of these feasible sets is not straight-

forward as the centres of the balls corresponding to the locations of the neighbouring sen-

sors are unknown. To address this issue, a distributed iterative algorithm was proposed

in [2], where a ball is used for an outer-approximation of a feasible set. The algorithm has

been improved in [65] by using ellipsoids instead of balls, on the basis that an ellipsoid

can generally capture a complex convex set more tightly due to its additional degrees of

freedom. In this algorithm, during the first iteration, each sensor finds a tight ellipsoidal

outer-approximation of the intersection of the balls corresponding to its neighbouring an-

chors. Then at each sensor, the ellipsoids of neighbouring sensors are expanded along the

semi-axes with the pairwise measured ranges between the former and the latter. Each

sensor then needs to find an ellipsoid to outer-approximate the intersection of multiple

balls and expanded ellipsoids, with centres corresponding to its neighbouring anchors and

sensors, respectively. The tighter the obtained ellipsoid, the more accurate will be the

outer-approximation of the feasible set containing each sensor.

Finding the tightest ellipsoidal outer-approximation of the intersection of multiple ellip-

soids (and/or balls) is NP-hard [66], and to the best of our knowledge, there is no algorithm

to find the optimal solution. However, there are several sub-optimal solutions, including

methods considering two ellipsoids [120–123], as well as standard convex optimization meth-

ods for a larger number of ellipsoids [99, p.414], [66, p.44]. In [65], the method from [99] has

been employed. As the methods from [66,99] are sub-optimal, and localization problem can

usually be considered in a 2-D space (unknown latitude and longitude), there is a special

interest in developing geometrical methods in a 2-D space that can find tighter ellipses.

In this letter, we propose a novel method for tight outer-approximation of the intersec-

tion of a number of ellipses in 2-D space. In this method, we first efficiently determine a

tight polygon containing the intersection of ellipses, and then solve a convex optimization

problem to obtain the tightest ellipse covering the vertices of the polygon. We employ the
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proposed method in the distributed algorithms considered in [65] for outer-approximations

of 2-D feasible sets in cooperative WSNs and show that it offers significant improvements in

tightness with similar computational cost, compared to the case that the method from [99]

is employed.

5.2 System Model and Background

5.2.1 System Model

We consider a 2-D WSN with N sensor nodes at unknown locations denoted by xi ∈ R
2 for

i = {1, . . . , N}, and M anchors with known locations ai ∈ R
2, for i = {N +1, . . . , N +M}.

Two nodes are regarded as neighbours if they are within communication range, i.e., they are

within the given distance Rmax of each other. For each sensor node j we define two sets Aj

and Sj which include the indices of all the neighbouring anchors and sensors, respectively.

The range measurements of j-th sensor are modelled as

rij = ‖ai − xj‖+ bij + nij , i ∈ Aj (5.1)

rij = ‖xi − xj‖+ bij + nij , i ∈ Sj (5.2)

where we assume that nij are independent identically distributed measurement errors hav-

ing zero-mean, and bij > 0 represent the biases due to the NLOS, while for LOS measure-

ments bij = 0. The noise is often assumed to have a Gaussian distribution with zero-mean

and variance σ2
n, while the bias term bij has been modelled as an exponential [33], or a uni-

formly distributed random variable [100]. We assume that (5.1) and (5.2) correspond to the

NLOS measurements only, which can be identified from LOS ones using NLOS identifica-

tion techniques, as done in [31,33,100].1 Furthermore, to make our algorithm more robust,

no knowledge is assumed about the distribution of nij and bij . In many applications, the

bias dominates over the measurement noise [44], i.e., bij + nij ≥ 0. Hence it follows that

1The LOS measurements can later be used in conventional localization algorithms by taking benefit of
the bounds obtained in this work.
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each sensor xj is restricted to be inside the intersection area of multiple discs,2 defined as

DA
ij ={x ∈ R

2 : ‖x− ai‖ ≤ rij}, i ∈ Aj (5.3)

DS
ij ={x ∈ R

2 : ‖x− xi‖ ≤ rij}, i ∈ Sj (5.4)

Therefore, xj ∈ Dj where

Dj =
( ⋂

i∈Aj

DA
ij

)⋂( ⋂
i∈Sj

DS
ij

)
. (5.5)

Our objective is to determine an outer-approximation of the convex feasible set Dj for

every sensor xj through a distributed approach.3 Note that each DA
ij is available to sensor

j, while each DS
ij is not a-priori available since xi is unknown. Therefore, the solution is

not straightforward.

5.2.2 Notes on the Definition of Ellipsoids

An ellipsoid ξi in ν-dimensional space R
ν can be defined in many different ways [99],

including:

(i) The image of the unit ball under an affine transformation:

ξi =
{
x = P iy + xc,i : ‖y‖ ≤ 1,y ∈ R

ν
}
, (5.6)

where xc,i is the centre of the ellipsoid, and without loss of generality4 P i ∈ S
ν
++, where

S
ν
++ denotes the set of all symmetric positive definite matrices of size ν × ν.

(ii) A quadratic form:

ξi =
{
x ∈ R

ν : ‖Bix+ di‖ ≤ 1
}
, (5.7)

where Bi ∈ S
ν
++ and di ∈ R

ν is a translation vector. When Bi = P−1
i and di = P−1

i xc,i,

the two ellipsoids in (5.6) and (5.7) are identical.

2If bij + nij ≥ 0 can not be guaranteed (e.g., due to large σn), a constant can be added to each rij in
the right hand side of (5.3) and (5.4) to ensure that the position of each sensor is restricted to the discs
with neighbouring nodes as centres.

3We assume that for every sensor j, there is at least one neighbouring node with pairwise measurement
rij such that Dj is not empty.

4Note that we can always represent an ellipsoid by a symmetric positive definite matrix P i [124, p.208].
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5.3 Distributed Outer-approximation of Feasible Sets for

Positioning

5.3.1 Distributed Outer-approximation for Positioning

The sum-product algorithm over a wireless network (SPAWN) is a distributed positioning

technique, whereby each sensor iteratively determines and refines the statistical knowledge

regarding its position [21]. This knowledge is described through a so-called belief, which

is proportional to a probability density function (PDF). At each iteration, each sensor

receives beliefs from neighbouring nodes. A received belief is combined with the ranging

likelihood function to determine a so-called message. A message is a function describing the

distribution of the receiving sensor’s position, based solely on the belief of the transmitting

node and the pairwise measured range between the two nodes. Multiplying the messages

from the neighbouring nodes with the prior belief of sensor’s position leads to the updated

belief. In this section we will apply SPAWN for the model described in Section II and show

how it is related to the distributed outer-approximating algorithm proposed in [65]. The

initial belief of each node is either a Dirac delta function (for anchors) or a uniform PDF

over a large selected area in the 2-D plane (for sensors).

Message Computation

Since in this work we assume bij + nij ≥ 0, we can approximate the ranging likelihood by

a uniform PDF on a disc with centre at the transmitting node and radius equal to the

measured range rij . When the transmitting node is an anchor with known position ai, its

belief about its position is a Dirac delta function. Based on the definition of the message

in [21], the message from the i-th anchor to the j-th sensor will be a uniform PDF on a

disc given by {
x : ‖x− ai‖ ≤ rij, i ∈ Aj

}
. (5.8)

In contrast, when the transmitting node is another sensor, its position xi is uncertain and

this affects the form of the message. Assume that the belief of i-th sensor is approximated

to be a uniform PDF on an ellipse as

{
x : ‖Bix+ di‖ ≤ 1

}
(5.9)
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whereBi ∈ S
2
++. Therefore, it follows that the message of the i-th sensor to the j-th sensor5

is uniform on an ellipse obtained by expansion of each semi-axis of the ellipse in (5.9) by rij .

The semi-axes of the i-th ellipse in (5.9) are the eigenvalues of P i = B−1
i . Let P i = V iΓiV

T
i

be the eigendecomposition of P i where Γi = diag(λ1,i, λ2,i). In order to expand the ellipse

by rij, we replace P i by P̃ ij = V iΓ̃ijV
T
i where Γ̃ij = diag(λ1,i, λ2,i) + rijI2. Then the

expanded ellipse is {
x : ‖B̃ijx+ d̃i‖ ≤ 1, i ∈ Sj

}
, (5.10)

where B̃ij = P̃
−1

ij and d̃i = P̃
−1

ij P idi.

Belief Update

To update the belief of sensor j, the messages corresponding to its neighbouring nodes

and its prior belief (which are uniform functions herein) are multiplied. Therefore, the

updated belief will also be uniform on the intersection region of (i) multiple discs as in

(5.8), (ii) multiple ellipses as in (5.10) and (iii) a large 2-D area (due to the prior belief).

The entire procedure continues until convergence or a predefined number of iterations.

This intersection region, denoted by Ej is a complex convex set6, and since describing it

explicitly using a simple geometric shape is in general impossible, sensor j will need to

outer-approximate it, e.g., by an ellipse.

In [65], first the largest volume ellipsoid contained in the intersection of Me ellipsoids

is determined by solving a convex optimization problem as mentioned in [99, p.414] as

max
P 0,xc0 ,τ1,...,τMe

log detP 0

subject to P 0 � 0,

τi ≥ 0,

⎡
⎢⎣
−τi − ci + bTi A

−1
i bi 0 (xc0 +A−1

i bi)
T

0 τiID P 0

xc0 +A−1
i bi P 0 A−1

i

⎤
⎥⎦ 	 0, i = 1, . . . ,Me (5.11)

which is a convex SDP optimization problem and can be solved efficiently. Then by ex-

panding the obtained ellipsoid with the dimension of the space ν, an ellipsoid that covers

5In SPAWN, unlike traditional belief propagation algorithm, sensor j computes the messages of all its
neighbour nodes [21].

6Note that Ej should not be mistaken with Dj , as the former is available to sensor j and contains the
latter.
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the intersection region can be found.

When ν = 2, i.e., in a 2-D space we will show that in general a tighter approximation

can be obtained using a geometrical approach.

5.3.2 Tight Outer-approximation of the Intersection of Ellipses

For each sensor j, we show how it is possible to efficiently find a polygon, represented by

m̃ vertices w(l) for l = 1, . . . , m̃, which covers Ej. The smallest area ellipse that contains

these vertices (and hence contains Ej) is found by solving the following convex optimization

problem [99, 125]:

min
Bj ,dj

log det(B−1
j )

subject to ‖Bjw
(l) + dj‖ ≤ 1, l = 1, . . . , m̃, (5.12)

where det(B−1
j ) is proportional to the area of the ellipse. Since each inequality in (5.12)

can be written as a linear matrix inequality, this optimization problem can be formulated

as a standard semi-definite programming (SDP) problem. For the ellipse to tightly bound

Ej, the polygon which bounds Ej has to be tight. Hence, the problem reverts to the

determination of a polygon that covers Ej tightly. We propose below a method with three

steps to achieve this:

Step 1 (generating discrete points)

We first generate a number of discrete points on the boundary of Ej. One way to do so is

to generate a fixed number of points on the boundary of each intersecting ellipse and then

reject those that do not lie on Ej . Harnessing the fact that an ellipse is an image of the

unit disc under an affine transformation, we first generate m points y(l) for l = {1, . . . , m},
uniformly on a unit circle and then map these points onto the desired ellipse ξi as defined

in (5.6), through the transformation z
(l)
i = P iy

(l) + xc,i. After rejecting the points not on

Ej, we denote the remaining points by z̃(l) for l = {1, . . . , m̃} and the associated ellipse

index for each point by i(l).
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Step 2 (generating half planes)

Utilizing the form (5.7), the tangent lines to the i-th ellipse at the points z̃(l) can be

obtained, and hence the half planes are formed

(Bi(l)z̃
(l) + di(l))

T (Bi(l)x+ di(l)) ≤ 1, l = 1 . . . , m̃. (5.13)

Step 3 (determining the vertices of a polygon)

For a sufficient number of points z̃(l), the intersection of these half planes forms a closed

polygon covering Ej. One way to find this polygon is to obtain the intersection point of

every pair of tangent lines (by solving m̃(m̃ − 1)/2 linear systems of equations) and to

verify if this point is inside the intersection region of all the remaining half-planes, i.e., if

it satisfies all the remaining m̃− 2 affine inequalities. The complexity of such a procedure

scales as O(m̃3). Hence, this procedure is intractable when m is large. Herein, we make

use of the fact that ν = 2 to develop a more efficient approach.

• Step 3a: Given the points z̃(l) for l = {1, . . . , m̃}, we first compute the average

zmean = 1
m̃

∑m̃
l=1 z̃

(l) ∈ Ej. The vectors v(l) = z̃(l) − zmean connecting zmean to

the points z̃(l) are sorted according to the angles α(l) ∈ [0, 2π) with respect to the

horizontal axis. This sorting imposes an order to the points z̃(l).

• Step 3b: Given two sequential points z̃(l) in the ordering, we determine the inter-

section point of the corresponding tangent lines. The obtained intersection points,

w(l) for l = {1, . . . , m̃} form the vertices of the polygon and are used as an input to

(5.12).

In terms of complexity, in Step 3, the proposed technique requires solving m̃ linear

systems of equations to find the polygon, hence the computational cost is reduced from

O(m̃3) to O(m̃).

A closed polygon covering Ej obtained through the proposed method is illustrated in

Fig. 5.1. However, we note that some degenerate cases can occur in Step 3b: (i) the

intersection of the tangent lines of neighbouring points does not exist when the lines are

parallel; (ii) it exists but does not satisfy other inequalities in (5.13). These two cases are

illustrated in Fig. 5.2. In these cases, a closed convex polygon that covers the intersection
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Fig. 5.1 The diagram of the intersecting ellipses and the half-planes forming
a closed convex polygon. The white, blue, and red points correspond to z̃(l),
zmean, and w(l), respectively.

of ellipses cannot be obtained. This problem can be easily avoided by selecting the number

of discrete points m to be large enough.

The complete distributed bounding algorithm, which continues until convergence or

when a predefined number of iterations K is reached, is summarized in Algorithm 1.

5.4 Numerical Performance Evaluation

We consider 4 anchors located on the four corners of a 10 m × 10 m 2-D area. We consider

three scenarios where there are 10, 20, and 50 sensors, distributed uniformly on this 2-D

area. The communication range is set to Rmax = 12 m and the measurement between

each pair of neighbouring nodes is obtained by adding to the true range an exponentially

distributed positive error with mean equal to 1 m. For solving the optimization problems

we use Sedumi [109] and the CVX toolbox [126] in Matlab. In the proposed technique, we

set m = 128, and the performance is evaluated in terms of the average area of the ellipses

in each iteration, quantified by det(B−1
j ). As a benchmark, we use the method from [65].

In Fig. 5.3, we show the average area of the covering ellipses versus the iteration number

for different number of sensorsN . The results show that the distributed algorithm converges

rapidly for both outer-approximation methods, although our proposed method converges

to outer-approximating ellipses with almost half the area.

In Table I, we compare the computation time of each algorithm for the three scenarios
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Algorithm 4 Distributed Outer-approximating Algorithm

1: for k = 1 until convergence (or predefined K) do
2: for j = 1, . . . , N in parallel do
3: if k = 1 then
4: for all i ∈ Aj do

5: Generate m points z
(l)
i on the discs in (5.8).

6: end for
7: Reject z

(l)
i outside Ej, i.e., the intersection of (5.8).

8: else
9: for each i ∈ Sj do
10: Exchange the updated Bi and di.
11: Expand the i-th ellipse in (5.9) to obtain (5.10).

12: Generate m points z
(l)
i on the ellipses in (5.10).

13: end for
14: Reject the points outside Ej, i.e., the intersection of (5.8) and (5.10).
15: end if
16: Find the half planes tangent to Ej at z̃(l), i.e., (5.13).
17: Calculate zmean, v

(l), and α(l) for l = {1, . . . , m̃}.
18: Sort the vectors v(l) according to the angles α(l).
19: Intersect the tangent lines of every two neighbouring points to obtain the polygon

vertices w(l).
20: Update Bj and dj by solving (5.12).
21: end for
22: end for
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Fig. 5.2 Degenerate cases happening in finding a tight polygon. Left: par-
allel tangent lines can not form a closed region. Right: The obtained polygon
does not contain the intersection of the ellipses.

after convergence, i.e., the CPU time required such that the difference between average

areas in two consecutive iterations is less than 0.01m2. Since the results are obtained

by processing the information centrally on a CPU, we divide the computation time by the

number of sensors N to have a better insight of the computation time in a distributed WSN.

The results show that the proposed method has similar computation time compared to the

one in [65]. Therefore, in terms of the trade-off between accuracy of outer-approximation

and computational cost, the proposed method is clearly preferred.

Table 5.1 Comparison of computation times per sensor.

Methods N = 10 N = 20 N = 50
Technique from [65] 2.8 s 4.3 s 11.3 s
Proposed 2.8 s 4.1 s 11.7 s

5.5 Conclusion and Future Work

In this chapter, we developed a tight outer-approximation of the intersection of ellipses

in 2-D space. The proposed method finds applications in control, parameter estimation,

and localization. It was used herein as part of a distributed bounding algorithm in a
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Fig. 5.3 Comparison of the average area of bounding ellipses as a function
of the iteration index k for different N .

cooperative WSN with positive range measurement errors for outer-approximation of the

convex sets containing the positions of the sensors. Through simulations, it was shown that

the proposed method results in a tighter approximation of the convex sets compared to

existing techniques. Improving the robustness of the proposed method against degeneracy

problems and making it more computationally efficient will be considered in future work.
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Chapter 6

Summary and Conclusion

In this chapter, we summarize the main contributions of this thesis and discuss some

possible research paths for future work.

6.1 Summary of the Thesis

Network-based RF localization has gained considerable attention in the past decades due

to the tremendous number of applications where location information is required, while

the conventional localization systems such as the global positioning system (GPS) can not

be employed due to its limitations. Positioning in harsh propagation environments such

as dense urban areas, indoor places and underground areas, where the GPS satellites are

not visible to the receiver and the GPS signal is attenuated, are among such applica-

tions. Network-based RF localization, where instead of satellites, a set of fixed reference

nodes transmit and/or receive signal to/from a wireless device (target) can overcome the

limitation of the GPS. Since the number of reference points is limited and might not be

sufficient for unambiguous localization, it becomes necessary and beneficial for the targets

to make pairwise measurements and exchange information with their neighbour targets;

consequently cooperative localization has gained attention.

Nevertheless, localization in harsh propagation environments is challenging and can lead

to large errors due to the multipaths and non-line of sight (NLOS) propagation. The prob-

lem of multipaths can be overcome using high resolution ultra wide-band (UWB) timing

pulses so that accurate time of arrival (TOA) measurements can be obtained. However, the

NLOS problem, in which the range measurements become positively biased still remain the

2015/08/14
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main challenge. In this thesis, the main goal was to develop efficient and reliable methods

for network-based localization in harsh propagation environments. In particular the prob-

lem of NLOS which is one of the main sources of error in indoor places and urban canyons

was considered.

In Chapter 3, a CSRUKF for tracking a mobile node in NLOS situation was proposed

where first a non-cooperative scenario was considered and then the method was extended

to a cooperative localization scenario. In this filter, the NLOS measurements were removed

from the measurement vector and instead, they were employed to impose quadratic con-

straints onto the position coordinates of the MN. The sigma points of the UKF which

violated the constraints were projected on the feasible region by solving a convex QCQP.

As compared to other constrained UKF techniques, we considered a square root filter and

avoided computing the inverse of the state covariance matrix both in the Kalman filter

and in the optimization steps; consequently our approach has better numerical stability

and lower computational cost. In the simulation experiments, the proposed CSRUKF per-

formed better than other approaches in different NLOS scenarios. In particular, CSRUKF

performance was significantly better when the measurement noise variance was small, sug-

gesting that it is particularly suitable for high resolution TOA-based UWB localization.

Another advantage of our technique is its robustness to FA errors in NLOS identification.

In Chapter 4, a 2-stage distributed cooperative localization method which is robust

against NLOS error was described. In the first stage, we applied a convex relaxation on

the Huber cost function and preliminary position estimates were obtained iteratively. In

the second stage of our algorithm, by iteratively minimizing the Huber loss function, it was

shown that further refinement of the position estimates could be generally obtained. For

iterative optimization in each stage, a gradient descent method was used. By testing our

algorithm with real data set, its superiority over other competing algorithms was verified.

The results showed that our two-stage algorithm performs robustly against outliers; in

particular it significantly outperforms other distributed techniques when the ratio of NLOS

to LOS measurements is low.

In Chapter 5, we focused on distributed localization techniques and outer-approximation

of feasible sets in NLOS scenarios. We considered the problem of outer-approximation of

convex sets, which can be formed as a result of positively biased range measurements in

a WSN. We applied a distributed localization algorithm, which is based on SPAWN, to

this problem, and developed a novel technique for outer approximation of the intersection
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of ellipses in 2-D, which could give a tighter ellipsoidal outer-approximation compared to

other benchmark approaches. The proposed outer-approximation method, when used in the

SPAWN algorithm, could improve the performance of the distributed outer-approximation

of convex sets in a WSN and could yield more accurate location estimates; it is thus of

practical interest for 2-D localization.

In conclusion, in addition to being novel in theory, the proposed techniques can be of

great importance in practice due to their performances and moderate computational costs.

6.2 Future Work

While the localization in a cellular network and a WSN has been considered for long

and the research area seems saturated, there are still several challenges for improving the

localization performance in practice. Some of these problems are briefly summarized below:

1. The effect of clock parameters on the localization performance under LOS condition

has been considered in several works. However, mitigating the effect of clock errors

on localization performance under NLOS conditions especially for cooperative WSNs

is a potential topic that has been rarely considered except in a few recent works.

2. As we have seen in many occasions in this thesis, radio localization under NLOS

conditions often leads to an NLS optimization problem with geometrical constraints.

Developing faster iterative distributed algorithms based on Gauss-Newton or Newton

methods for fast convergence to a local minimum of the cost function is still an open

problem and may be considered in the future.

3. It is required by FCC that by 2020, all wireless devices be localized with an accuracy

of less than 1 meter at all times in the next generation of cellular network 5G. There-

fore, developing robust and novel techniques suitable for the specification of the 5G

networks is of great importance. In addition to being accurate and robust, algorithms

that are compatible with 5G standard and do not violate the security of the wireless

devices, need to be developed. While developing novel algorithms for improving the

localization accuracy has several applications, location information can be employed

in different layers of wireless communication systems in 5G networks to reduce the

delay and improve the performance of communication. Although in many different
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algorithms, location information is assumed to be perfect, the effect of location esti-

mation error on the communication systems can be tested and more novel techniques

can be proposed to be robust against location errors. This is a promising research

topic especially in 5G networks and is therefore worth consideration [127].
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