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Error Propagation in Gossip-Based Distributed
Particle Filters

Syamantak Datta Gupta, Mark Coates, Senior Member, IEEE, and Michael Rabbat, Senior Member, IEEE

Abstract—This paper examines the impact of the gossip pro-
cedure on distributed particle filters that employ averaging to
estimate the global likelihood function. We consider a model where
a gossip-driven algorithm leads to the use of a slightly distorted
version of the likelihood function, in lieu of its true value. Under
standard regularity conditions, and a mild assumption on the true
likelihood function, we derive a time-uniform bound on the weak-
sense L, error of the filter. Furthermore, we present an associated
exponential inequality for the large deviations of the filter. These
bounds capture the combined effects of sampling and consensus-
based approximation. The results allow us to evaluate the impact
of such approximations on the overall performance of the dis-
tributed particle filter, and analyze its stability. Finally, through
numerical experiments, we demonstrate the practical implications
of these results and explore the relationship of the performance of
the filter with these theoretical error bounds.

Index Terms—Communication overhead,
tributed nonlinear filtering,
algorithms, stability.

consensus, dis-
Feynman-Kac models, gossip

I. INTRODUCTION

ARTICLE filters [1]-[3] are extensively used as an effi-

cient tool for addressing challenging problems of target
tracking. In such problems, the requirement is to accurately
estimate the probability distribution of the state of the system
(e.g., position and/or velocity of a moving target), using a
set of noisy observations. The problem can be represented
by discrete time hidden Markov models when the present
state of the system is assumed to evolve as a function of its
state at the preceding time instant. Both the state evolution
dynamics and the observation model are often substantially
non-linear and non-Gaussian, which makes tracking difficult.
In the particle filter approach, a set of point mass samples,
known as “particles”, are maintained at every time-step, each
of which are candidate hypotheses of the state of the variable
of interest. Particles are assigned weights based on how well
they correspond with the observed measurements and system
dynamics. The weight of a particle depends on the likelihood
function associated with it, and these weights are updated
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at every time step, as new observations are available. The
posterior probability distribution of the state is approximately
represented by this “cloud” of weighted particles.

We consider a wireless sensor network setting where mul-
tiple sensor nodes make measurements at each time-step. In
gossip-based distributed particle filter algorithms [4]-[17], each
node runs an individual particle filter and approximately eval-
uates a global statistic through consensus. In some of these
algorithms [4]-[7] each node samples from the same set of
particles and maintains an identical particle representation of
the previous global posterior by approximating the likelihood
function. Under an assumption of conditional independence,
the global likelihood function is equal to the product of the indi-
vidual sensor likelihood functions [18], and so these algorithms
strive to construct an approximate global log-likelihood at each
node by summing the local log-likelihoods. When this sum-
mation is computed using a finite number of gossip iterations,
there will be an error in the likelihood calculation since gossip
algorithms converge asymptotically. In this paper, we analyze
the error propagation in this class of algorithms, where the
sensor nodes are synchronized. The overall computational com-
plexity of the synchronized distributed particle filter increases
compared to the centralized filter, but the focus is on reduced
communication overhead, because communication can often
be the dominant consumer of energy in a distributed sensing
system.

In centralized particle filters, the sampling procedures at each
time-step lead to discrepancies between the particle representa-
tion and the true posterior filtering distribution. Consequently,
it is of interest to identify sufficient conditions that allow this
error to remain bounded over time, so that the particle filter
remains stable. Analysis of the stability of these filters has gen-
erated significant interest over the years, and bounds have been
derived that characterize the stability of particle filters and how
the sampling errors propagate [1], [19]-[25]. A more detailed
discussion of these results is presented in Section VII.

In a distributed particle filter approach that approximates
the likelihood function through consensus, the discrepancy
between the true distribution of the state variables and that rep-
resented by the particle cloud is further aggravated due to the
use of an approximate version of the log-likelihood function.
In [26], a convergence result was presented for a specific dis-
tributed particle filter algorithm. However, there are not many
results available in the literature on the propagation of error
in distributed particle filters, especially for those using gossip
algorithms.

In this paper, we quantify the extent to which the additional
error arising from the likelihood approximation in distributed
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particle filters has an impact on the performance bounds.
We consider a model where the gossip-based approxima-
tion distorts the likelihood function by an exponent that lies
between (1 + ¢) and (1 — ), where § is a small positive frac-
tion. Following the framework presented in [22], we use a
Feynman-Kac model to analyze the problem.

The main contributions of this paper are as follows. We
present a time-uniform bound on the weak-sense L, error
induced by the combined effects of sampling and an approxi-
mate evaluation of the likelihood function. We also present an
exponential estimate of the large deviations of the filter. Our
results show that for the class of consensus algorithms consid-
ered, the performance of the distributed particle filter remains
stable over time.

A. Paper Organization

The rest of this paper is organized as follows. Basic notation
is introduced in Subsection I-B. A detailed description of the
problem is provided in Section II, along with an introduction
of the mathematical tools used in the analysis. In Section III,
we present a time-uniform bound on the error propagation and
a large deviation result for consensus-based distributed particle
filters. The relationship between the number of gossip iterations
performed and the accuracy of the likelihood approximations
is analyzed in Section IV. The proofs of the main results are
provided in Section V. Section VI describes numerical experi-
ments that illustrate the practical implications of the theoretical
bounds derived in this paper. Section VII gives a detailed dis-
cussion of related work. Finally, Section VIII concludes with
a summary of the contributions and comments on possible
extensions of this work.

B. Notation

For any measurable space E and a function h : £ — R, let

def
|hlco = sup |h(z))|
z€E

denote the supremum norm, and let B, (F) be the Banach space
of bounded functions with respect to the supremum norm. Let
osc(h) be the oscillation of a function h € By,(E):

f

ose(h)E sup |h(x) — h(y)|-

x,yer

Let £ be the Borel g-algebra on F, and let E;, t € Z, be
a sequence of measurable spaces associated with the Borel

.t

o-algebras &;. Define the product space Emdg [I E;. Let
j=i

Il - || denote the Euclidean norm and || - ||,y denote the total

variation norm. Let P(FE) be the set of all probability mea-

sures defined on E. For a measure P € P(E), letEp{-} denote

the expectation with respect to P, and with a slight abuse

of notation, let us denote the action of P on a test function

h € By(E) by P(h) EEp{h(X)} = [, h(z)P(dz). Finally,

we write X.; as shorthand for the sequence (X1, Xo, ..., X}).

II. BACKGROUND AND PROBLEM FORMULATION
A. The Filtering Problem and a Feynman-Kac Model

We strive to derive bounds for sensor networks that address
a discrete-time non-linear filtering task. We use the follow-
ing non-homogeneous Markov state-space model to capture the
target dynamics and observations:

Xi = fi(Xi—1, 00) (D
Y: = g:(Xe, Go)- ()

Here X, € E} is the target state vector, Y; € F} are the obser-
vations and p; and (; are system excitation noise and measure-
ment noise respectively, at time ¢. The non-linear function f;
expresses the target dynamics and the non-linear measurement
map g, relates the state to the measurements.

Typically, we are interested in finding an estimate of the
expected value of a function h;(X;) of the state, conditioned
on a series of observed realizations y1.; of Y74,

E{ht(Xt)‘ylzt}:/E hy()dPy (24 |y1:e),

where P;(X;|y1.) is the conditional distribution of X}, given
Y1.¢ = y1.1, induced by the measurement noise (; through the
observation model (2). For example, in a tracking problem the
function h¢(-) could be the displacement, velocity, distance, or
angular position of the target. When a conditional probability
density function exists, this expectation is given by:

E{ht<Xt)|ylzt}:/E hi () pe (e yr:e)da,.

In the particle filter approach, this expectation is approximated
by summing over a finite collection of weighted particles which
each can be interpreted as a candidate value for the target state.

The error propagation results presented in this paper build on
bounds developed by Del Moral [22], who models the evolution
of distributions in a particle filter as a particle approxima-
tion of a Feynman-Kac model. In this approach, the predictive
posterior conditional density p:(z¢|y1.+—1) is represented by
a measure 7;, and the updated posterior conditional density
pe(2¢|y1.¢) is represented by a measure Wy (7);).

The Markov chain transitions from F;_; to E; according to
an integral operator, M;(x;_1,dz;), which captures the evo-
lution of the signal diffusion in (1). M;(-,-) is the Markov
transition kernel, and it is related to the state evolution as
follows:

Mt(xtfl,dxt)dgp{Xt €day| Xpo1 =241},

where P{X; € dx¢|X;_1 = 2;_1} is the distribution induced
by the excitation noise g, through the dynamic model (1). When
the state transition density exists, M;(-, -) can be expressed as

Mt(l’t—l, dl’t) = pt(xt |It—1)dl’t-

The likelihood function p;(y:|z;) is modeled by a poten-
tial function Gy : E; — (0, 1], such that Gy(x;) o pe(ye|xy).

We have Gi(2¢) = [[;cs, Gjt(xt), where G ¢(z¢) is the local
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potential function corresponding to the measurements made at
sensor j, and S; is the set of sensors that make measurements at
time ¢. For the purpose of analysis, we assume that appropriate
normalization can be conducted so that the potential functions
take values in (0, 1].

For any h; € B,(FE;) we can define a measure 1, € P(Ey):

1e(he) € v (he) [ (1)
with . (he) Ky, (m(xt)f[GT(XT))-

7=0

Based on the potential function, define the Boltzmann-Gibbs
transformation operator W;(-)(dxz;) that acts on any measure
S P(Et)

def

Wy (v)(dry) = Gi(ze)v(dzy). 3

1
v(Gy)
The operator W (n;)(dx;) generates the normalized posterior
distribution. The prediction step of the filter can be formulated

by combining the Markov diffusion operator with W, to define
an operator:

By () (dae) & [E Uy () (darey) My (e, day).
4

This generates the normalized predictive posterior distribution
ne(dze) = Pe(ne—1)(day).

A direct analogy between the Feynman-Kac model and the
predict-update Bayesian recursion framework is apparent. The
diffusion step defined in (4) corresponds to the prediction stage
of the Bayesian model, since

pt($t|y1:t—1) =/ pt—l($t—1|y1:t—1)pt($t|$t—1)d9€t—1-
Ef 1

The Boltzmann-Gibbs transformation W () in (3) corresponds
to the update stage of the Bayesian filter, as

pe(Ye|ze)pe(e|y1e—1)
fEt Pe(Yelze)pe(@e|yre—1)dwe

pt(xt|y1:t) =

B. Particle Approximations

A particle filter can be defined by developing an /N-particle
approximation to the Feynman-Kac model, consisting of N

path particles:
{eF}o<ict € Egy k€l,...,N.

The posterior distribution is represented by the particle approx-
imation of the prediction Feynman-Kac model as:

1 N

N def

= 5 D Ok
k=1

where J is the Dirac delta function.
Let the N-tuple & denote the configuration at time ¢ of IV
particles {&F}2_,. Thus {¢F}| is an element in the product

space E}. The particle filter can be represented by a two-step
updating process:

selection =
5 t € EtN

mutation
— f t E N

— &1 € Et+1

In the selection stage of each time-step, N particles {5,{}{3;1
are randomly selected from the particle cloud. This random
selection is achieved by setting, with probablhty Gy (EF),
?t‘ = &F; otherwise a random particle §t is chosen with distri-

bution SN el %

small positive parameter that controls the selection procedure. It
determines how often particles are retained and how often they
are replaced by random selection from the population. During
the mutation stage, each particle ?t“ evolves according to the
Markov transition M, .

For any function h € B,(FE), let the sampling operator S* :
P(E) — P(EYN) be defined as:

der, and we set ft = f, Here o is a

1 &
where (£1,...,&V) is an ii.d. sample of particle locations
from 7. With this notation, the standard particle filter can be

expressed using the recursion 7Y = SN (®,(nl¥ ).

C. Consensus-induced error

When we run a consensus algorithm in an attempt to evalu-
ate the global likelihood function, there is an estimation error.
If there are |S;| sensors that take measurements at time ¢, a
common strategy is to perform consensus over the normalized
log-likelihoods, evaluated at each particle value, and then multi-
ply by |S;|. In the situation where the communication network
topology is fixed and an average consensus algorithm is exe-
cuted for a fixed number of iterations, the evaluated global
likelihood (or potential) function is a deterministic function of
the particle representations £F. We can thus identify a poten-
tial function, @t, that corresponds to the estimated likelihood
at time t. If a randomized gossip algorithm is used, then the
error is random and dependent on the sequence of nodes that are
selected to perform gossip operations. If we denote this random
sequence by ¥, then the (random) potential function associated
with the estimated likelihood can be denoted by Gt x- In the
following discussion, we focus on Gt, but note that equivalent
relationships can be specified for Gt X~

With the potential function Gt in hand, we can construct a
Feynman-Kac model for the distributed particle filter. Let us
define an operator W:

1 ~
7/\Gt(l’

~ def
U, (v)(dzy) = )

t ) 174 (dJZ + ) .

Here @t is the potential function corresponding to the esti-
mated likelihood at time ¢. Using this, we can define an operator
®y(n;—1) = Wy_1 (1) M;, and consequently express the par-
ticle approximation to the Feynman-Kac model associated with
the potential functions G as

= SN (@, (Y 4). )
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III. BOUNDS ON THE PROPAGATED ERROR FOR A GOSSIP
BASED DISTRIBUTED PARTICLE FILTER

In this section, we present two theorems on the error prop-
agation in a distributed particle filter using a gossip-driven
algorithm. The first theorem provides a time-uniform bound
on the weak-sense mean L,, error, while the second gives an
associated exponential inequality. We begin by stating a few
conditions imposed on the system.

A. Regularity Conditions and Assumptions

The performance bounds we build upon, as derived in [22],
are expressed in terms of regularity and mixing conditions on
the Markov operator A/, and the potential function G;. In par-
ticular, Del Moral specifies the following condition in [22,
Section 3.5.2].

e Condition (M)(™): Given m > 0, there exists a strictly
positive number €y, € (0, 1) such that for any ¢ > 0 and
x4,y € By,

def
Mt,t+m($t> ) = Mt+1Mt+2 s Mt+m(l‘t, )
> EMMt,t+m(yt7 )

Condition (M)(™) implies that the Markov chain associated
with state evolution undergoes sufficient mixing within a finite
number of time steps. Additionally, we make the following
assumption on the potential function.

e Condition (G): The potential function G is bounded
away from zero, and appropriately normalized, so that
there exists some e > 0 such that for any ¢ and for all
Ty € Et:

€q S Gt(.’L‘t) S 1.
It follows immediately from Condition (), that for any ¢
and x4,y € Ey,

Gi(zy) > eaGi(yr). (6)

Del Moral [22, Section 3.5.2] uses (6) as a regularity condition
to analyze error propagation in particle filters. Since the poten-
tial function is proportional to the likelihood function py (v |z+),
condition (G) implies that p:(y:|z:) > 0 for all ¢, z; € E,
yr € Fy, i.e., the likelihood function is sufficiently flat over
its range. This is a reasonable assumption when the space of
observations F} is bounded.

e Condition (h): The test function h; is such that ||kt ||oo <

1 forallt > 0.
The above condition implies that

sup  |he(x)| < 1. In

¢ €E:,t>0
existing literature on the asymptotic properties of the prop-

agated error in particle filters, eg, [22], [27], the test func-
tion h; is typically chosen such that h; € Oscy(FE;), where
Oscy(E:) C By(E;) denotes the set of £;-measurable test func-
tions with oscillations at most unity,

Oscl(E,g)déf {h € By(E}) : osc(h) < 1}.

For h; € Oscy(F;), for any ay € Ey, t >0, hy(xy) can be
expressed as

he(x) = hy + he(e),

where h, = ing hy(x;) is constant for a given ¢, and izt(xt) €
xrEeby

[0,1]. The only variability in h¢(z;), in that case, arises from
the bounded oscillations h, (x¢), and therefore the part h, has no
impact on the estimation error. Consequently, Condition (/) is
a reasonable extension of the condition h; € Oscy(F;), where
we set the constant part i, to zero. Conversely, it is easy to see
that when Condition (1) is satisfied, osc(h;) < 2.

Finally, the following assumption restricts the extent to
which the approximate potential function deviates from its true
value.

Assumption 1: The gossip or consensus algorithm can
achieve an accuracy such that for any ¢ and for all x; € E;:

|log Ge(w) — log Gu(aa)| _

7
logGelz)] = @

where 6 < 1 is a small non-negative constant.
The main results are presented below. The proofs of both
theorems are given in Section V.

B. Main Results

Theorem 1: Suppose Conditions (M )(™) and (G) hold and
Assumption 1 holds, and h; satisfies Condition (h). Then for
p > 1 and for any N € N, we have a time uniform estimate

1
~ 1/p 2¢(p)»
iggE{I[ntN —nJ(h)P} " < e < s Tolleseal |
where the constant ¢ is given by:
2m
€0 = (o1 @)
65]»,\/[6(sz71)

and ¢(p) is a constant depending only on p.

This result indicates that a distributed particle filter based on
a consensus algorithm does not induce instability in terms of
error propagation, and the error remains bounded over time. It
is observed that the propagated error depends on the parameter
0, bounding the relative amount of distortion in the potential
function approximation, and e, the lowest value assumed by
the potential function. It follows that the term €0 log || gives
an upper bound of the L,, norm of the propagated error, as the
number of particles N — oo.

It is instructive to compare this bound with that corre-
sponding to a centralized particle filter. When the effect of
approximation of the potential function due to gossip is absent,
the corresponding bound for the propagated error is given by:

=

s (|l = nlrp) " < 200

A derivation of this result is presented in Subsection V-B. A
similar result appears in [22, Theorem 7.4.4]. This gives a

)
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bound on the weak-sense L, error for the centralized particle
filter, which arises solely due to sampling.

The next result provides the exponential estimate for the
probability of large deviations of the approximate Feynman-
Kac model associated with the gossip-based distributed particle
filter.

Theorem 2: Suppose Conditions (M)(™) and (G) hold and
Assumption 1 holds, and let h; satisfy Condition (k). Then, for
any number of samples N € N, and for any € > 0, we have

sup P{|[7}"
t>0

(5| log ez |)2e2N
< (1—|—\/271'N510g|ec|e) e E .

—m)(he)] > (1 + €)eod|logec |}

where ¢ is defined in Theorem 1.

Theorem 2 gives an estimate of the probability that the
L; estimation error exceeds the bound given by Theorem 1
by a small amount. This probability depends on the param-
eter of distortion § and €¢, the lower bound of the potential
function.

Both theorems rely on Assumption 1. Recall that for the k-th
particle £F, the potential function G4 (£F) (corresponding to the
observatlon Y; = y,) is approximated by the sensor j € S;, as

Gj.1(EF), where S, is the set of sensor nodes active at time ¢.
The final potential function is estimated as

=TI Giu(eh).
JES:

For (A;t(ét’“) to satisfy Assumption 1, we must have

(1+0) log(Gy(€F)) < log(Gu(€F)) < (1 — 6) log(G(€F)),

which implies that

(1+6)log(G+(&F))

<Y log(Gial€l))

JES:
< (1 - 0)log(Gy(&F)).

Therefore, a sufficient condition for Assumption 1 to hold is

1+9 1-96

09 1ogcan(el)) < 10g(@a(6) < L= Drog(cutet),
St |St]

forallk =1,..., N and forall j € S;. The next section studies

how this condition can be satisfied when gossip iterations are
used for distributed (approximate) calculation of the joint log-
likelihood.

IV. Gossip COMMUNICATION OVERHEAD
AND ERROR BOUNDS

The particle filter error bounds stated in the previous section
depend on the accuracy 0 < ¢ < 1 of the approximate log-
potential values used. In gossip-based distributed particle filters
[28], the accuracy § can be related to the number of gossip
iterations and the particular sort of likelihood approximation
used. To illustrate this relationship we consider a simple method
which uses gossip-based synchronous distributed averaging

iterations to fuse the potential (weight) values associated with
each particle.

Let S denote the set of all sensors (including those that
do not gather a measurement at time ¢), and let z;(0) denote
the initial value at sensor j. Synchronous gossip [29]-[32] for
distributed averaging is a message passing implementation of
linear iterations: sensor j updates

0= a2 —1),

Jj'eS

(10)

where £ = 1,2, ..., is the gossip iteration index. Suppose that
there are n = |S| sensors. Let A denote the n x n matrix with
aj; ;o as its (j,7')’th element. We assume that a; ; > 0 for all
j € S and that for j # j', a; ;» > 0 if and only if sensors j and
j’ communicate directly. We assume that communication rela-
tionships are symmetric: a; ; > 0 implies that a; ; > 0. We
also assume that the network is connected. Finally, we assume
that the matrix A is doubly-stochastic: its has row-sums and
column-sums equal to 1. These assumptions, which are stan-
dard in the literature [31], [32], are made here for convenience,
although they can be relaxed in many situations [33] without
significantly changing the results.

Under the assumptions mentioned above, it is well-known
that A can be viewed as the probability transition matrix of an
ergodic Markov chain, and the stationary distribution is uni-
form over the state-space S. It follows that for all sensors j € S,
the value z;(¢) asymptotically converges to the average of the
initial values across the network: lim,_,  2;(¢) = Z, where

g5 0

JES

It is also well-known that the rate of convergence depends
on the connectivity of the communication network, as cap-
tured by spectral properties of the matrix A. We express such
a convergence result in the following lemma, which follows
from arguments similar to those used in the proof of [33,
Corollary 5.2].

Lemma 1: Let A be doubly-stochastic and correspond to a
connected communication network. Let 1 = Ay > Ay > --- >
A, denote the eigenvalues of A sorted in descending order, and
let pa = max{|Xz2|, |\,|} denote the second largest eigenvalue
in modulus. For all initial conditions {2;(0)},cs and for 0 <
C < 1, it holds that

_3Fl<C. . —z
max |2;(£) — 2| < € - max|z;(0) — |

if the number of gossip iterations ¢ satisfies

(3/2)log(n) +log(1/C)
T )

In the context of distributed particle filtering, the sensors
execute N instances of gossip-based distributed averaging in
parallel, one instance for each particle. For the k-th particle ¥
at time step ¢, k =1,..., N, sensor j € § initializes a gossip
value to

an

0 otherwise,

£(0) = {|8| log (G.4(&F)) ifj € S,
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where S; is the set of sensors that take a measurement at time
step ¢. Then the limiting gossip value is

Z 1og gt ff = log (Gt (55)) )

JES:

the exact log-potential value for the particle £

The following lemma characterizes how large the initial rela-
tive error may be, given that the initial values at each sensor are
bounded and non-positive.

Lemma 2: Suppose that there exists a positive constant a
such that the initial values are in the interval —a < zj(O) <0

for all j = 1,...,n, and suppose that the average of the initial
values is equal to Z € [—a, 0]. Then
. 0 — >
ma M <(n—1).
j=1,...n |Z|

Let § € [0,1) be given, and suppose that the approximate
log-potential values log G, (¢*) are obtained by running / iter-
ations of distributed averaging, followed by a max-gossip
procedure to ensure that the values at all sensors are identi-
cal. Then taking C'=6/(n — 1) in Lemma 1, combined with
Lemma 2, we obtain that the condition from Assumption 1,

log (Gu(€)) — tog (Gu(e") | _

[log (G+(£%))] o

, = (3/2)log(m) +log(25Y) ( log(n/5) )
- log(1/pa) log(1/pa)
gossip iterations are performed at each time step of the dis-
tributed particle filter. This directly illustrates the connection
between the number of gossip iterations ¢ required to obtain
a desired accuracy ¢ as a function of the network size n and
topology (as captured by p4).

To conclude this section we remark that a similar approach as
that used in this section could be used to analyze more sophis-
ticated gossip-based distributed particle filters, such as those
described in [4], [5], [15], [17], [34]. The derivations above are
for a naive distributed particle filter which runs one instance of
gossip on the weight associated with each particle. The methods
described in [4], [5], [15], [17], [34] introduce more sophis-
ticated approaches to reduce the communication overhead by
incorporating additional approximations (e.g., gossiping more
on particles with the largest weights). To obtain similar bounds
for these algorithms using the steps outlined above requires
characterizing and controlling the additional error introduced
by these approximations, which is beyond the scope of this
work.

holds as long as

V. ANALYSIS

The proof of Theorem 1 builds upon the framework devel-
oped in [22], where the role of the sampling operation and the
propagation of the discrepancies between the true and estimated
distributions is characterized using a Feynman-Kac model. In
this section, we present the derivations, after reviewing some
fundamental results from [22], [27] and [35] that are relevant to
our analysis.

A. Preliminary Results

Recall the operators Wy(-) and ®;(-) defined in (3) and
(4) respectively. The repeated application of the operator
Dy (n4—1), t > 1, results in the operators ®;.¢, ¢ < ¢, that gov-
ern the evolution of the predictive posterior distribution 7 from
time 4 to time ¢:

def

(I)i:t = (I)t o CI)t71 ©...0 (PZ'+1.

We relate the operator ®;., to a composite potential function,
G+, and to a Markov kernel, P;.;, that specifies the transition
from F; to E;. The composite potential function G;.; : E; —
(0, 00) is defined as

Gi:t(l‘z‘)

-1
def/ HG )M (x, deivr) .. My(zp—q,dxy).

1+1tj 3

The Markov kernel P;.; : P(E;) — P(E;) is defined as:

PZ t(ht) def
sz+1 it

fEHr“ T_I Gj(w;) M1 (i, dzigr) ..

z+1($u d$z+1) Mt(-rtfh dﬂft)

t(zt) H Gj(z;)

Mt(mtfla dxt)

By introducing the composite operator W;.(n)(h;) =
N(Gy.thi)/n(Gi.t), we can write ®;..(n) = ¥;.+(n)P;.+. These
composite operators describe the evolution of the Feynman-Kac
model over time, from 7 to t.

The Dobrushin contraction coefficient [22], also known as
the Dobrushin ergodic coefficient, is defined as follows:

B(Pyt) € sup{ || P (2, -) —

Pyt (Yis )l xi, yi € Ei},
where || - || denotes the total variation norm. The Dobrushin
coefficient lies between 0 and 1, and can be interpreted as a dis-
tance between the transition probability measures at the points
z; and y;. It plays an important role in the analysis of asymp-
totic behaviour of Markov chains. Furthermore, if Conditions
(M)(™) and (G) hold, then according to [22, Proposition 4.3.3]
we have the following estimate for the Dobrushin contraction
coefficient:

me1)\ L(t=9)/m]
B(P;t) < (1 — eMe(G 1)) .

The following proposition from Del Moral [22, Proposition
4.3.7] underpins our analysis of the stability of the semi-
groups D;.;.

Proposition 1: For any 0 <i<t, v; € P(E;), and h; €
By (E:) with [|ht]|eo < 1, there exists a function h; in By (F;)

with [|;]|s < 1 such that for any n; € P(E;),

2||G

it (v3)](he)| < 7i(Gi:t)

(zt)

[ @i (i) — |(ni — vi)(hi)-
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This result describes the propagation of the one-step approx-
imation error through the non-linear operator ®;.,. It reveals
the link between the initial error at time ¢ and the propagated
error at time ¢ through the properties of the composite potential
function G;.; and the Dobrushin contraction coefficient 3(P;.;).

According to Proposition 4.3.3 of [22], the oscillations of the
composite potential functions can be bounded as follows under
conditions ()™ and (G):

|G

nz(Gz t)

With this bound, Proposition 1 implies that under the regular-
ity assumptions (G) and (M )™, the error propagation in the
sequential Feynman-Kac filter can be characterized as follows:

—1 —m
GM G -

[ @ice (mi) = Pzt (p43)] (Pr)|
L(t—i)/m]
2(1- e V)
< |(77 _Z/z)( z)| (12)
EMEG
For a set of N particles {¢¥} € EN, i=1,...,N and a

function h; € By(E;), such that uy, < h;(€F) < vy, deﬁne

N
def
hi) = E or, — ug)”
k:

Clearly, o(h;) < osc(h;). The following result from [27]

bounds the weak-sense L, error induced by the sampling
operator for functions with finite oscillations.

Lemma 3 ([27]): Suppose P € P(E), then for any p > 1

and an £-measurable function A with finite oscillations we have

_gN P %M

E{|[P — SN (P)|(h)["}» < c(p) TN

where ¢(p) is defined as follows:

() 1 ifp=1
C =
PI= N ovi2pr(p/2) ifp>1

and I'(+) is the Gamma function.

Lemma 4: Let Condition (G) and Assumption 1 hold, and
let h; : E; — R be ameasurable function such that ||h; oo < 1.
Then, (®;(7;% 1) — ®i(7;1)) (hi) < 0] logec|.

The lemma is similar to one presented in [36], and the proof
uses a similar argument.

Proof: Tt follows from Assumption 1 and Condition (G)
that for all 7,

sup | log G;(z;) — log G ()|
T, €F;
<0 sup |log(G;(z;))| = d|logeg|. (13)
r,€E;
For h; € B(E;), let up, denote the conditional expectation of

hi (,TZ) given Ti—1,

,uhi(fciq)dg/ hi(a:) M;(z;—1, dx;).
E

3

(14)
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Since ||hiloc <1 and M;(x;—1,dz;) is a Markov kernel,
|tn; |loo < 1. For any X € [0, 1], define the measure

éa(dz;)

def 1 N
= =~ Gx(@i—1)n; - (dri—1) M (25-1,dx;), (15
| oGy G )Mtz dn), (15)

where
log Gz (z) = (1

Then ¢o = ®; (7Y ) and ¢, = ©;(7 ). Furthermore, define
the probability measure ) on F;_; as

— M) log Gi_1(z) + Mog Gi_1 ().

defG)\(xz 1)771 1(dxz 1)
M1 (Gy)

(de’Z 1) (]6)

Let Ag(z) = log Gi_1 ()

log G ()

—log G;—1(x). Then, we can write

=logG;—1(x) + NAg(x). (17)

Differentiating both sides of (17) with respect to A, and rear-
ranging, we obtain

dG,\(l‘)
dA
Using (16) and (18), for any f defined over E;_; we have,
dmx(f) _ NN (G Ag DY 1 (Gr) =Y (G )N 1 (GaAg)
dA {01 (G}
mA(Agf) = mA(f)ma(Ag)
=m({Ag — T (Ag)}f).

= Ag(2)Ga(a). (18)

Substituting  f(-) = M;(-,dz;), we have 3
mx({Ag — ma(Ag) } M; (-, dz;)). Recalling the definition of the
action of a measure 7 (-) on a function M(-,dx;) introduced
in Sec. I-B and using this relationship gives

dga(h; d
Pa(hi) _ d)\/E hi(mi)/Ei_lWA(dIi—l)Mi(JUi—ladaii)

d\
d
= /Ei hi(xi)aWA(Mi('vdxi))

dTK‘,\(M/L'(-,dZEi)) —
d

- /E i) ma({Dg — ma(Ag)} My day)).

i

Using linearity of measures and rearranging the order of inte-
gration (which is justified via Fubini’s theorem, since all the
measures considered here are finite), we obtain

dox(hs)
dA

Il
\

ma(dei—1)Ag(zi—1)M;(xi—1,dx;)

(d[)ﬁifl)
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(d:z:, 1)Ag(1‘i_1)/ hi(lii)Mi(Ii_l,diEi)

o,

/ diUz 1 / WA(dwifl)Ag(xifl)
Ei_1 E; 1

X hi(x
E;

= mA({Ag — 7 (Ag) Hun,),

i(ziz1,dz;)

where the last equality uses the definition of yp,.

We would like to bound ¢q(h;) — ¢o(h;) = fol déyx(h
Since ||pn,||co < 1, applying Holder’s inequality and using that
Ll(Ei,h 7T)\) C LQ(Eifl, 7T)\> giVGS

1
o1(hs) — do(hi) = / ma({Ag — ma(Dg) b, )dA
< / 73 (|Ag — mr(Ag)[)dA

g/ {mr (1Ag — m(Ag)P)}%dN.
0

Moreover, since the second moment is an upper-bound for the
variance and Ag is bounded [see (13)], we get

b1(hi) — do(h / {mx (10 — mx(Ag))[2) }/2dA

< / {mx (1Ag/2)}/2ax
0
1

< / | AgllacdA
0
1 o~

= [ 105Gt — 08 Gioa ot
0

< 0| logeg|,

where the last step follows from (13). |

B. Proof of Theorem 1

We observe that ®q(7Y;) = ng. Furthermore, for all i €

{0, 1, t} @u(2i(]Y 1)) = Picrae (Y1)
Then 7Y —n; can be expressed as a telescopic sum of
operators as below:

T == et ) — Lot (Lo (77 1))

— Z[(I)i;t(ﬁiv) — Dy (D4(M11))]

(@54 (TY) — ®10(D5 (TN )]

t

) [ @0 (Bi (Y ) — i (Ri (G 4)))-

=0

I
o
-l
o

(=)

1=

19)

E{|[m"

By applying Minkowski’s inequality to (19) fort > 0,p > 1,
and || ht |0 < 1, we obtain

1
— ) (he)|P} v

D (i 7)) ()| 17

< Y Ef|[@u (i) -
i=0

(1) = R (@@ )]ho)| Y7 20)

"‘ZE{’ it (

In the right-hand side of the above inequality, the first sum
corresponds to the error introduced due to sampling (cf., equa-
tion (5), whereas the second corresponds to that due to the use
of an approximate potential function. To prove the theorem, we
shall now obtain bounds for the two sums appearing in (20).
For the first sum, applying Proposition 1, (12), and Lemma 3
we have

t

Z {E{‘ s () — q’lt(‘/ﬁz(ﬁf\il))](ht) p}l/p]

I}
o

[(t—3)/m]
m—1
6M (G )>

6]\/162}

< E{|@Y — @) )Py @D
t {2 (1 - el 1))L(H‘)/mJ
- ; EMEG
x B{|(SN(®:(A]1)) — @i (1)) (i) [P}/
(22)
L(t—i)/m]
2 (1= e ) Lo (h)
<2 P W) e
dm  c(p)? (24)

S T amtD o
Eijegm_l) \/N

where the last inequality is obtained by noting that when
1hilloo < 1, 0(h;) < osc(h;) < 2, and moreover

t .
L(t=i)/m] m
Z (1 - 6M€G )) < m (25)
€2

i=0 MEa
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Next, using Proposition 1, (12) and Lemma 4 on the second
sum in (20), we have
Z {2

1)) = B (BT )] (k) |}

L(t—1)/m]
m—1
|2 (1= el )
<>
i=0 MG
< B{|(®:(0 1) — (0N 1) (ha)[PYP | (26)
2
< mn 5| log ec|. (27)
3 ((2m—1)
MEea
Finally, combining (24) and (27) in (20), we get
1
Up 2m 2¢c(p)?
E{| —ne)( ht)|p} om—1 < + 0| logeql|,
6M (G "\ VN
(28)

For a centralized particle filter, where the effect of approx-
imation of the potential function due to gossip is absent,
the global approximation error between the true filtering dis-
tribution and its N-particle approximation, 1" — 7, can be
related to the sequence of local approximation errors 7)Y —
®;(nN,),i=0,...,t,[22, equation 7.24]:

t

Z [(I)i:t(nfv) - (I)i:t((bi(ni]\il))] .

=0

nt —n = (29)

The corresponding bound (9) for the propagated error can be
derived using equations (12), (29) and Lemma 3, following the
same methodology used to obtain (24).

C. Proof of Theorem 2
Using the triangle inequality in (19), we obtain

Y = me)(he)| < Z1 + Zs, (30)
where
Zy = [ @ia(@Y) = @i o (iR )] (he)|
=0
Zy =Y (@i (@Y 1)) — @i e (@i (G )] (he)]| -
1=0

Let (1 + €)egd|log eg| = k. Then, P{|[nV
be expressed as

P{|[7) — ned(he)| > 6} <P{Zy + Z5 > K},

—n¢)(ht)| > K} can

3D

For a pair of random variables Z1, Zo, if Z1 + Z5 > k then for
any choice of k1, kg, such that k1 + ko = K, either Z; > kq or
Zo > ko, and therefore

supP{Z1 + Zy > k} <supP{Z; > K1} + supP{Z5 > ko}.
>0 >0 >0
(32)

It follows from Markov’s inequality, that if ¢ () is a strictly
monotonically increasing non-negative valued function, then
for any random variable Z, and real number x, we have

E{y(2)}
e(k)

Let 7 > 0, 79 > 0. Following Chernoff’s method, choosing
¥1(Zy) = e % and ¥9(Z5) = e™?2, from (32), we obtain

P{Z > k) < (33)

SupP{HﬁtN = nel(he)| = K}

< supe TME{eT 1) 4 supe TRz T2 %2
>0

Let us now consider the exponential series expansion

n
]E6T1Z1 = 1 + Z %]EZ{L

n>1

(34)

Observe that, using Minkowski’s inequality and (24), for any
n > 1, we have
n } 1/n

t

P CIRCANEE SICHUARI ()

=0

E{ZMY" =K {

(35)
t N ~ N ny1l/n
<> E{|@n@) - @i @@ )] )|}
i=0
(36)
am  e(n)w
, (37)
2m—1
}D)WE(G ' VN
and therefore,
2m ! c(n)
E{Z]'} < 2" | — . (38)
e (L E) i

Using (34), noting that m = €, and recalling the

3

definition of ¢(n) in Lemma 3 we get

(2€0)™c(n)

—T1K T Z —T1K 7—1
eTTME{eT A1)} < TR 1+Z ez | 69
n>1
I 2607’1 2607’1 77,/2)
(it s il ten).

n>2

Using a power series expansion of the error function Erf(+), we
obtain the following identity for any real o

I'(n/2
5 o L0/2

(=1 = aﬁea2/4 [1 + Erf (%)} .

(41)

n>1
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Then,

(n/2)
(n—1)!

2607’1

\/>

—T1R1

€

7] G

2607’1 2607’1ﬁ

YN T VN

" T (n/2)
(n—1)!

- (1 n 26071 2e0T1\/T
VN V2N

1 20TV e/ om) [1 + Erf< con >D

2607’1
+> [ \/ﬁ} 42)

n>1

V2N V2N
(43)

Finally, noting that sup, Erf () = 1 and 1 — y/7/2 < 0, from
(42) we obtain
efrlmlE{enZl} < <1 19 /727T 607'1> eegrf/(ZN)fnl‘rl. (44)
B VN
Applying Markov’s inequality for the second term in (32), we
obtain
P{Zs > ra} < supe E{e™72} (45)
t>0

=supe 2™ [ 1+ Z T E{Z2 }

t>0 n>1

(46)

< supe EEELCH NS
>

(e0d|logec|)™

n>1
47
— e~ T2h2gT2c08| logec| (48)
— em2(€od|logeg|—r2) (49)

The inequalities in (44) and (45) hold for any x; > 0, ko > 0
such that k1 + k2 = k = (1 + €)€pd| log e |. We choose k1 =
€0d|logecle/2 and ko = €pd|logeq|(1 + €/2). The proof is

completed by choosing 7 = “;ZN and letting 79 — oo. For
0

these choices of k1, k9, 71 and 79, tl2le2 bound in (44) becomes
(1 + V271 Ndlog |eg\e) B*M, and the bound in
(45) becomes 0.

The value of 7; is chosen to obtain a simple expression for
the bound. The bound obtained above can be made tighter by
optimally choosing the parameters x1, ko and 7.

Note that Z5 quantifies the error due to the mismatch between
the true and approximate log-likelihood functions. As this mis-
match is bounded by Assumption 1, the moments of Z5 are
bounded by a geometric series, as shown in (26); and con-
sequently, the probability P{Z5 > ko} goes to zero when ko
exceeds the threshold €yd]log ei|. The term Z;, on the other
hand, represents the impact of sampling, and approaches 0 as
N goes to infinity. However, it is also worth noting that split-
ting the error term into Z; and Z5 does not decouple the impact

of sampling and that of using an approximate log-likelihood
function, as the final bound is still dependent on the parameter
of distortion .

The condition sup h < 1 is specifically required when we
apply Proposition 1 from [22]. It may be possible to relax con-
dition (h) tosup h < K}, < oo where K, is any real number, in
which case the bound established in Lemma 4 would be scaled
by a factor of K}, and Proposition 1 would have to be extended
to bounded functions. The bounds in Theorem 1 and 2 would
be modified accordingly.

VI. NUMERICAL RESULTS

In this section, we present results of numerical experiments
where the particle filter uses an approximate version of the
potential function, obtained through a gossip-based algorithm.
These results provide an insight into how the use of an approx-
imate potential function affects the performance of the filter in
a practical tracking problem. They also allow us to compare the
weak-sense L,, error evaluated during the experiment with its
theoretical bound set by Theorem 1.

The following model of state evolution and information
acquisition is adopted. The variable of interest is X, the posi-
tion of the target that moves in a two dimensional space F; =
[~k, k] x [k, k], k > 0. The target starts at X; = [0,0] " and
the state of X; evolves dynamically according to the following
equation:

Xy = X1+ A+ vy,

where A is a deterministic step taken towards a fixed direc-
tion by the target at every time instant, and vy ~ N(0,3) is
a process noise that distorts the otherwise linear trajectory of
the target, with covariance matrix >; = 0%[ . To ensure that
the target remains within the space F, the simulation scheme
is devised such that X, is reflected back whenever it hits the
boundaries of F;. For the present simulations, the following
values are used k = 100, A = [0.5,0.5] ", and 0? = 0.64. The
dynamics of X, are simulated over T' = 50 time steps.

The observations Y; are assumed to be a linear function
HX, of X, (H € R**?), contaminated with noise. For the
simulations, we choose H = [1,2;2, 1].

We recall that for Theorem 1 to hold, the potential func-
tion G¢(x¢) o pt(y¢|x+) must satisfy Condition (G). Here we
assume the constant of proportionality to be 1. The bounds on
G (x¢) impose additional conditions on the measurement equa-
tion which are implemented as follows. For all ¢, let the range
space of Y; be given by F; = [—3k, 3k] x [—3k, 3k]. This is the
range of Y; when Y; = H X; and X; € E}. The likelihood func-
tion p; (y¢|x4) is taken to be a mixture of a Gaussian distribution
and a uniform distribution: for all t > 0,

= Cnfn(ye, Hxy, X2) + Cu fu(Fy), (50

pie(yelwe)
where fy(Hxt,Yo) is the density function of a Gaussian
random variable with mean Hx; and covariance matrix o,
while fy(F}) is that of a uniformly distributed random variable
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defined over F;. Then fy(F;) = ﬁ and fn(Hzg, o) =

((yt—Hwt)TE“(yt—H‘”)).] Let X9 = U%I'

— 1 .
2m|Ng|1/2

To satisfy the conditions on the extreme values of p;(y;|x¢)
given by Condition (G), it is required that

1 1 1
=1 _— =
Cn 23 +Cu (6k)? » Cu (6k)2 e

and finally, to ensure that p; (y¢|2+) is a valid probability density
function, we require that for all z; € E;, Cy + Cy = 1.
The values satisfying the constraints above are given by

Cu = eq(6k)?, Cn =1—eq(6k)?,
1 /11— k)?

and 02 = — 1—ec(6k) )
2w 1—e€q

For the simulations, we set e = %, which ensures that
on average, 10% of the observations are generated from the
uniform part of the distribution and the rest from the Gaussian
part.

For the chosen value of £ = 100, the above parameters have
the following values: e = 2.7778 x 1077, Cy =0.9, Cy =
0.1, and U% = 0.1432. The measurements are generated from
the density given by (50) at each time step ¢, for¢t € {1,...,T}.

The above model is carefully constructed so that the per-
formance of the filter can be analyzed in detail in the light of
Theorem 1, while having control over the parameter . We
note that our results from Section III remain valid for more
general settings as well.

The target trajectory is estimated using a centralized boot-
strap particle filter, with an approximate version of the potential
function being used in lieu of its true value, to simulate the
performance of a consensus-based distributed particle filter. A
scenario involving N particle trajectories is considered. Recall
that §f is the state of the k-th particle at time ¢, for k =
1,..., N. The “correct” potential function corresponding to the
k-th particle at time ¢ is given by G (£F) = py(y¢|€F).

In the bootstrap particle filter algorithm, the potential func-
tion associated with a particle indicates its weight at the resam-
pling step. An increase in the value of the potential function
will increase the probability of a particle to be sampled, and
vice versa. For the model discussed in this paper, G;(£F) can

be between (G (ﬁf))H& and (G, (ff))k&, with 6 > 0, which

means that the numerical value of @t (€F) may be greater or less
than the corresponding true potential function G4(£F). Thus,
for a given value of §, the performance of the filter will depend
on exactly how the potential function is approximated for the
individual particle trajectories.

The weak-sense L,, error will approach the bound given by
Theorem 1 only under a worst case scenario. In order to com-
pare the errors observed in the numerical experiments to the
error bound of Theorem 1, we therefore artificially construct
a setting where filter estimation is deliberately deteriorated as

'Ideally, the Gaussian part of the distribution should be truncated to ensure
that Y does not assume a value beyond its domain Fy. However, for this exper-
iment, due to the choice of A and 0%, X¢ remains sufficiently away from its
boundaries, and therefore almost all of the mass of fx (y:, Hx¢, X2) remains
within F}.

follows. For each individual particle, the distortion of the poten-
tial function is defined such that the further a particle £ is from
x; the larger is the magnification of the corresponding @t(ff),
and the closer it is to x¢, the larger the reduction of the weight.
This means that the weights of “poor” trajectories are increased
and those of “good” trajectories are reduced. For every £F, we
define

A ek 1+AFS
Gulel) = (Gu(ery) ) 1)
where \F = (1 -2 £ et llo —ming |7 2 ) and || - ||
t maxy, [[€F —a¢ ||z —miny, [€F —¢]|2 2

denotes the Euclidean norm. Clearly, thus defined, when ||£F —
x¢||2 = ming ||€F — z¢||> and the particle is closest to the

true state at time ¢, Gy(&F) = (Gt(«ff))Hé and the weight
is reduced to the largest extent. On the contrary, when
e — wella = maxy, € — @ill2. Gr(€l) = (Ge(€l))' ™" and
the weight is increased to the largest extent. This is one of many
possible ways to guarantee that the weights are distorted in such
a way as to inflate the weight of the worst particle to the greatest
extent and deflate that of the best particle to the greatest extent.

The target is tracked using N = 500 particles at each step.
We are interested in evaluating the performance of this dis-
torted particle filter in terms of the weak-sense L,, error defined
in Theorem 1. The requirement, then, is to look at the differ-
ence between 7). (h¢(x)) and n;(he(x¢)) for a test function h;.
Here, 7;(hi(x¢)) is simply the particle filter estimate of h;(z;),
obtained by averaging the values of h;(£F) over the distribu-
tion represented by the particle cloud. The quantity n; (h¢(x)),
on the other hand, is the expected value of h;(x;) over the true
distribution of x;. In our simulations, the true distribution is
estimated by a robust Kalman filter.

The Kalman filter estimate is obtained by ignoring the uni-
form distribution present in the measurement dynamics and
assuming the measurement noise to be Gaussian, i.e., by assum-
ing pe(ye|ze) = fn(ye, Hre, o). Whenever the innovation or
measurement residual (y; — Hxy ;1) is higher than a certain
threshold, it is inferred that the corresponding observation is
generated from the uniform part of the distribution. In those
cases the filter ignores the observation and continues with the a
priori state estimate. Since € is small, this estimation approach
does not lead to significant discrepancies.

Sample trajectories of the target, along with those esti-
mated by the simulated distributed particle filter and the robust
Kalman filter for a small and large value of § are presented in
Fig. 1. The target trajectory is indicated by the blue line, and the
robust Kalman filter estimate is indicated by the red line. The
green line represents the estimated trajectory by a distributed
particle filter under the worst case scenario described by (51)
for § = 0.02, while the magenta line indicates that for 6 = 0.3.
It is seen that for the same trajectory, for the smaller value
of ¢, the performance of the consensus-based distributed parti-
cle filter remains stable and close to the approximately optimal
solution provided by the robust Kalman filter. For a significantly
high value of 4, on the other hand, the distributed particle filter
tends to perform poorly. For § = 0.3, the position estimated by
the particle filter is observed to have deviated significantly from
the true position of the target. Nonetheless, even under this high
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Fig. 1. A sample trajectory of the target and its estimates.

level of distortion, the filter remains stable, and the estimated
trajectory repeatedly returns to the true trajectory of the target.

Recall that for any test function i (X ), Theorem 1 provides
a time uniform bound for the following error:

E @Y —nl(h)P})".

=y = sup
t=1,...,T

In order to obtain estimates for E {|[7}" — n:](h.)|? }1/p, we
generate M = 1500 realizations of X;, and approximate the
expected value by averaging over these realizations,

1/p

—
—

t =

M
12 N
e - m h’ P
t:Sll,l..P,T Mm:l{Hnt?m " ]( t)| }

where ﬁi\fm, 7¢,m represent the measures corresponding to the
estimated distributions for the m-th realization of X;.

To make an exact comparison of the errors measured in
experiment with the expression of error derived in Theorem 1,
we need to know the parameter ¢, from Condition (M )(™)
which is difficult to estimate. Instead, here we analyze the ratio
of the upper bound of the weak-sense Lo error incurred using
a distorted version of the potential function, to that correspond-
ing to the case when the true potential function is used (6 = 0).
Recall that by Theorem 1, this is given by

20(2)2 2€0c(2) 2
60< N +510geg|>/<\/ﬁ>

N
= (1 + Céﬂogeg) .

Fig. 2 plots the ratio of the weak-sense L error for the worst
case scenario defined in (51) to that for the undistorted particle
filter (0 = 0), for each of the test functions:

h{V(X;) = W X, (1),
WP (X;) = P X, (2),
and hy(X,) = C (X7 (1) + X2(2)) ,

N
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Fig. 2. Ratio of the weak-sense Lo errors for the distributed and centralized
particle filters, for different values of §.

where X; = [X;(1)X;(2)]" and C(V), C® and C' are scal-
ing constants chosen to ensure that hil), h§2) and h; sat-
isfy Condition (h), so that the requirements of Theorem 1
are fulfilled. For each of the test functions, the ratio of the
errors remain well within that of the corresponding theoreti-
cal bounds. For low values of § (6 < 0.04), the effect of using
a distorted version of the potential function remains insignifi-
cant, since the uncertainty in observations dominates the error
in likelihood evaluation. As ¢ increases, the impact of distor-
tion becomes more prominent and the ratio of the errors grows
monotonically.

In summary, the numerical experiments in this section indi-
cate that when a consensus-based approximation leads to the
use of slightly distorted potential function, then as long as
the distortion is within a reasonable range, the performance of
the distributed filter remains stable and comparable to a cen-
tralized filter, even under a worst case scenario. These results
complement the theoretical findings of Section III.

VII. DISCUSSION AND RELATED WORK

For several decades, the analysis of the error propagation and
its role in the stability of non-linear Markov filters has garnered
a considerable amount of research interest, and continues to be
an active area of research. In [37], Kunita analyzed the asymp-
totic behaviour of the error and stability of the filter that has
an ergodic signal transition semigroup with respect to the ini-
tial distribution. The stability of linear filters in the context of a
non-Gaussian initial condition was explored in [38], along with
an analysis of the stability of non-linear filters in the case where
the signal diffusion is convergent. It was shown that a stable
signal diffusion with respect to its initial condition is sufficient
to guarantee the stability of the optimal filter with respect to
the same initial condition. While the results presented in [37]
and [38] are important they mainly address an optimal filtering
scenario, and not approximate methods like the particle filter.

Several interesting results concerning the stability of parti-
cle filters have been developed over the past decade [20]-[25],
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[39]. Del Moral [22] presented a detailed analysis of the various
properties of particle filters using a Feynman-Kac semigroup
approach. The methodology and results developed in the book
[22] form the foundation of the analysis presented in our paper.
In [20]-[22] Del Moral, Miclo and Guionnet analyzed the
stability of particle filters using a general non-linear Feynman-
Kac semigroup approach. In [40], uniform convergence results,
functional central limit theorems, and exponential concentra-
tion estimates were derived for a new algorithm for particle
filters. A lognormal central limit theorem for the normalizing
constants involved in the approximations associated with par-
ticle filters was presented in [41]. Similar convergence results
related to various particle filter algorithms were presented in
[42], [43] and [44].

Among recent works, in [45], Handel derives a uniform,
time-average convergence result for bounded continuous func-
tions, under assumptions of tightness and ergodicity. A uniform
convergence result for a class of particle filters is proved by
Heine and Crisan in [46] under certain restrictions on the
dynamic and measurement models and noise distributions, but
without mixing assumptions. Time-average uniform conver-
gence results for distributed particle filters could be derived by
incorporating the methodology of [45] to our model. The ideas
developed in [46] may provide avenues to relax the regular-
ity assumption M (™) and extend our results to a more general
framework, although this may come at the cost of additional
assumptions on system dynamics.

Similar to our work, Jasra et al. [47] analyze the impact
of using an approximating version of the likelihood func-
tion, although the nature of approximation is different. In their
paper, the likelihood function is estimated through approximate
Bayesian computation using auxiliary data, and it is shown that
the propagated error remains bounded under certain regularity
assumptions. However, the result is derived under a Lipschitz
continuity assumption on the likelihood, and unlike our paper,
no large deviation results are provided that quantify the tight-
ness of the bound. The ideas developed in [47] could be used to
analyze error propagation in other distributed filtering schemes
where the approximation is more akin to that considered
in [47].

The convergence properties of the asymptotic variance asso-
ciated with the particle filter have garnered considerable interest
in recent years [48]-[50]. Favetto [48] proves results on the
tightness of asymptotic variances for bounded test functions,
while Douc ef al. [50] and Whitley [49] derive time-uniform
bounds. It would be interesting to incorporate these conver-
gence results into our model of gossip-based distributed particle
filters and explore the implications. Using the ideas of [48]-
[50], it may be possible to extend our results to quantify the
asymptotic variance of distributed particle filters.

Much of the existing literature imposes conditions on the
test function h; while analyzing the propagation of error. Hu,
Schon and Ljung [51], [52] have relaxed such conditions. In
[51] a bound for the mean L, error was derived for unbounded
real-valued functions under a general framework that incor-
porates several standard particle filter algorithms. This was
extended to an L, convergence result for an arbitrary p > 2 for
unbounded functions in [52], although additional restrictions

were imposed on the potential function. In [53], employing a
method slightly different from those that are standard in kernel
density estimation, Crisan and Miguez derive explicit bounds
for the supremum of the propagated error, and prove pointwise
and almost sure convergence results for unbounded test func-
tions, relying only on the integrability of the test function. Our
results may potentially be extended to generalized test functions
by combining the analysis presented here with the methods
employed in [53].

In this paper, we considered particle filters where resampling
is performed at every time step. Alternatively, the implemen-
tation of a particle filter may employ adaptive resampling,
where the resampling step is included not at each time step,
but only at those times when a certain criterion is satisfied. In
[54], under a regularity condition similar to (G) (6), Del Moral
et al. derived a non-asymptotic exponential concentration esti-
mate and an exponential coupling theorem associated with
a centralized particle filter with adaptive resampling. Using
these ideas, the results derived in our paper could be extended
to include distributed particle filter algorithms that employ
adaptive resampling.

Our results depend on the regularity conditions ()™
and (G). While assumptions such as these on the mixing and
ergodicity properties of the underlying Markov operator or the
potential function are standard in the literature, in some papers
the analysis has been carried out under slightly relaxed condi-
tions. In [24], [25], Le Gland and Oudjane studied the stability
and convergence rates for particle filters using the Hilbert pro-
jective metric. In [24], the signal mixing assumptions were
relaxed through the introduction of a specific, robust particle fil-
ter architecture with truncated likelihood functions. In [25], the
mixing assumption was applied directly to the non-negative ker-
nel that governs the evolution of the particle filter instead of the
Markov kernel M; (-, ) that governs signal diffusion. The kernel
introduced includes the effects of both the Markov transitions
and the likelihood potentials.

The Dobrushin contraction coefficient plays an important
role in the stability analysis presented in this paper, as well as in
those developed in many of the references discussed above. Del
Moral and Miclo [21] formulated the conditions for the expo-
nential asymptotic stability of the Feynman-Kac semigroup
and bounded the Lyapunov constant and Dobrushin coefficient.
A time-uniform upper bound on the propagated error in the
case of interacting particle systems can be derived using these
results.

The error incurred in a particle filter due to sampling depends
on the resampling scheme. Additional error could be con-
tributed by other sources. Vaswani et al. [39] analyzed the
stability of particle filters for the case where the model describ-
ing state evolution dynamics is incorrect. Using the same
assumptions as in [25], it was shown in their paper, that even
when the true Markov transition kernel is different from that
used to update the filter, as long as this mismatch persists for
a finite number of time-steps, the particle filter remains stable.
Our results in this paper complement their work, as we show
that the filter remains stable over time, when there is a mis-
match between the true potential function and that used by the
filter, as long as the mismatch is within a certain range.
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Most of the convergence results discussed above were
derived for centralized particle filters. Distributed particle fil-
ters, on the other hand, involve various heuristic algorithms and
approximations [28], and therefore, results for the centralized
filter are usually not directly applicable to them. Consequently,
there are only a few results available on the error propagation
in particle filters under a decentralized setting.

Orekshin and Coates [27], [35] analyzed the error propaga-
tion and stability of leader node particle filters for distributed
tracking in sensor networks. In this setting, one of the nodes,
known as the “leader node”, performs particle filtering by fus-
ing data recorded by the nodes in its vicinity, known as the
“satellite nodes”. When the leader node is changed, the commu-
nication cost of transmitting the required information is reduced
by approximation, either through subsampling or by training a
parametric model. The impact of such intermittent approxima-
tions was analyzed through the derivation of a time uniform
bound on the error and an exponential inequality.

In [26], Miguez considered a distributed particle filter algo-
rithm where the particles are grouped in several disjoint sets,
and each set is assigned to a processing element that per-
forms the task of particle filtering. These elements operate
independently of each other, except at certain intermittent steps
where they exchange subsets of particles and weights. For this
model, it was shown that the [; estimation error converges
uniformly over time. This result, however, is limited only to
the specific algorithm considered. The theorems presented in
this paper, on the other hand, are applicable to a large class of
consensus-based distributed particle filter algorithms.

In consensus-based distributed particle filters, all agents
simultaneously participate in filtering and maintain a local
approximate particle representation of the global posterior
distribution. This is achieved through a decentralized algo-
rithm that establishes consensus among certain global quanti-
ties across agents. Depending on the nature of the quantities
computed through consensus, these filters can be classified
as follows [28]: those computing particle weights through a
factorization of the global likelihood function [4]-[7], those
computing the posterior distribution through a parametric
approximation [8]-[13] and those computing parameters of the
global likelihood function [14]-[16]. The results presented in
our paper are applicable to the first class of algorithms, where
the sensor nodes are synchronized.

VIII. CONCLUDING REMARKS

In this paper we have presented analytical results on the
error propagation in gossip-based distributed particle filters. In
a consensus-based approach, through a finite number of gossip
iterations, the true potential function is replaced by an approx-
imated version of itself. Here, we have considered a model
where the approximation process distorts the potential func-
tion by an exponent that lies between the range (1 — §,1 + 9).
Under mild assumptions on the system, we have derived a time-
uniform upper bound on the expected value of the weak-sense
L, error associated with the filter.

The results indicate that even when a slightly distorted ver-
sion of the potential function is used, the error remains bounded

over time. As long as the parameter § is small, the error bounds
remain close to those corresponding to the centralized filter. A
distortion in the potential function can also result from a mis-
match in the model used by the filter. Our results are applicable
in that scenario as well.

The results presented in this paper are the first of their kind
for gossip-driven distributed particle filters. These results were
derived under some regularity assumptions on the Markov ker-
nel and the potential function, and under certain restrictions on
the function of interest, h;. As possible extensions of this work,
we would like to explore the behaviour of the error propaga-
tion under slightly relaxed conditions, and for more general test
functions h;. Ideas presented in some of the recent works [45]—
[50], [53] on the convergence of particle filters, discussed in
the preceding section, could be incorporated with those pre-
sented in this paper to analyze the performance of distributed
filters in more detail. It would also be interesting to charac-
terize the stability of distributed particle filters where different
consensus algorithms are used. Analyzing more sophisticated
gossip-based distributed particle filters within the framework
presented in this paper would also be an interesting direction
for future work.
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