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Department of Electrical and Computer Engineering, McGill University
3480 University St, Montreal, QC, Canada

{Guangran.Zhu, Boris.Oreshkin, Emily.Porter}@mail.mcgill.ca
{Mark.Coates, Milica.Popovich}@mcgill.ca

Abstract—This paper presents the development of numerical
human breast models suitable for commercial finite-difference
time-domain (FDTD) simulators. The geometry of the breast
models is derived from images obtained from Magnetic Reso-
nance Imaging (MRI) scans. To avoid assigning tissue properties
to every voxel, we apply the regression tree analysis to partition
the breast tissue region into cuboid regions (cells) that exhibit
similar pixel intensity (and hence have similar tissue structure).
The local spatial averaging performed by the analysis addresses
the MRI-inherent noise. Secondly, we use dielectric and Debye
material to model the heterogeneity and dispersiveness of breast
tissue. We find that Debye material offers higher attenuation
in the high frequency region than dielectric material. We also
confirm that assuming a fixed relaxation time constant in Debye
material does not significantly affect the field.

I. INTRODUCTION

Microwave radar breast imaging exploits the contrast in
the dielectric properties between malignant and healthy breast
tissues. Numerical simulation, using the finite-difference time-
domain (FDTD) technique, remains a critical tool for the fur-
ther development of imaging methodologies. Early numerical
breast models possess over-simplified geometries, rendering
the results unreliable. More complicated models with fine-
grained structural resolution, e.g. [1], increase the computa-
tional complexity to a level that requires custom software.
Integrating complex antennas become very difficult, so simu-
lations adopt a plane-wave or point-source excitation.

In this paper, we design a model that retains all important
dielectric structure, but intelligently granularizes the resolution
of the breast tissue region to reduce the number of dielectric
solids that must be simulated. We use regression tree analy-
sis [2] to process MRI images, simultaneously reducing MRI
noise by local spatial averaging and identifying the important
structural features of the tissue. The regression tree analysis
identifies a set of cuboid solids (‘cells’) to pad the tissue region
of breasts.

We also investigate three tissue mapping strategies. The
dielectric map and Debye map are from [1]. Zastrow assumes
a fixed relaxation time constant when calculating the Debye
parameters. We lift this constraint and devise a similar map-
ping strategy. We apply these three strategies to the breast
model and find that 1) Using Debye materials incur larger
attenuation than dielectric materials in the high frequency
region of signals. 3) The assumption of a fixed relaxation time

Fig. 1. A slice of the original MRI image and the segmentation stage of the
model construction. The skin, outlined in solid black, and the tissue region
are segmented from the black background of the original MRI slice.

constant in the Debye model has little effect on the computed
field.

In the next section, we illustrate the process of developing
the breast model and explain the tissue mapping strategies.
Then we present an example in Section III, and discuss the
effect of cell padding and dielectric versus Debye approxima-
tion in Section IV. Section V concludes this paper.

II. INTRODUCTION

The breast model development is a three-stage process. The
first stage involves segmenting the MRI images; the second
stage consists of regression tree analysis to partition the tissue
region into non-uniform solids (cells); and the third stage
involves tissue property assignment to the cells.

Stage 1: MRI Image Segmentation: The allocation of tissue
in our breast model is derived from a set of MRI images.
The initial processing involves manual identification of the
breast region and its separation from the background. We
then segment the skin and tissue regions. The resulting skin
and tissue boundaries are triangularly meshed and imported
into SEMCAD. Fig. 1 shows a sample of the segmented MRI
images.

Stage 2: Regression Tree Analysis: Direct mapping of pixel
intensities onto an FDTD grid leads to many tissue solids
(approximately 300,000 for our example). Incorporating ex-
isting microwave radar antenna designs into an FDTD model
with this many solids leads to a vast number of grid points
and renders commercial FDTD software unusable. It is highly
desirable to reduce the number of solids by developing a much



simpler model that preserves the electrical response to within
some small approximation error.

Moreover, it is questionable whether the individual pixel
intensity measurements accurately reflect the underlying tissue
properties. There is significant noise in the MRI measure-
ments, so the true pixel intensities can differ significantly from
the measured values. We can form better estimates of the
true intensities by exploiting the local spatial smoothness that
should be present in the MRI — the MRI response should not
change drastically throughout the breast except where there
are structural discontinuities, e.g., transitions from muscular
to adipose tissue.

We adopt a regression methodology to estimate the under-
lying true intensities. Our regression strategy involves par-
titioning the MRI volume in a tree-structured fashion, and
then constructing an estimator f̂ to fit the data in each cell
of the partition. Such a tree decomposition has been used
before in MRI analysis, both for the identification of activity
regions in fMRI [3] and in multi-resolution analysis for MRI
denoising [4], [5].

We employ a version of the CART (classification and re-
gression trees) algorithm [2]. CART involves a growing phase,
in which the input domain is partitioned into successively finer
cells, to construct an initial tree that provides a very good, and
perhaps perfect, match to the data. Although this excellent
match may seem desirable, it is indicative of overfitting;
we are building a model that fits the noise inherent in the
measurements, rather than revealing the true function lurking
beneath the noise. For this reason, the second phase of CART
involves pruning, where cells are successively merged. CART
then selects the tree that minimizes

C(T ) = L̂n(T ) + α|T |,

where L̂(T ) is the empirical risk (error measure between the
model and the data), |T | is the cardinality of the tree (number
of leaf cells), α is a complexity constant that controls the
trade-off between fidelity to the data and the complexity of
the regression model, and n is the number of data points. The
empirical risk we adopt is the mean-squared error,

L̂(T ) =
1
n

n∑
i=1

(f̂T (xi)− yi)2.

In our case, yi is the original intensity measurement at pixel
location xi, and f̂(T )(xi) is the estimator. The estimator we
employ is a constant in each cell of the partition, with the
constant being set to the mean of all pixel values contained
within the cell.

Choosing an appropriate complexity constant α is a chal-
lenging task. The intuitive goal is to construct a model
that is as simple as possible but still provides a sufficiently
accurate description of the data. Usually in regression the
goal is to minimize the true risk, which is the mean squared
error between the underlying MRI intensity function and our
estimate. This true risk can not be directly evaluated because
the underlying function is unknown. But if a good model for
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Fig. 2. Pruning the regression tree: the influence of the complexity penalty
α on the number of leaf cells in the pruned tree and the corresponding
normalized squared error (the sum of the squared differences between the
original pixel intensities and the approximations by the cell means, normalized
by the variance of the original pixel intensities). Each point in the plot
corresponds to a specific pruned regression tree; the labels next to each point
are the α-values. When the normalized squared error is 0, the number cells
is 205,190, correponding to α = 0.

the image noise is available, it is possible to identify a penalty
that ensures the true risk is upper-bounded (see [6] for an
example).

The primary goal in our work is not really to minimize
the mean squared error. Our task is to ensure we build the
simplest model that sufficiently captures the structural and
dielectric complexity. We have achieved this is the electric
fields measured in numerical simulations using the identified
model are equivalent to those that arise from more complicated
models. In our setting, equivalent means that the discrepancy
between the signals (the model noise) is very small relative
to the energy of signals we might strive to detect (responses
from a tumour, for example). We explore this discrepancy in
Section **, which allows us to develop guidelines indicating
how many cells should be incorporated in the breast model.
This, in turn, identifies a suitable range of α values.

Fig. 2 demonstrates the relationship between the number of
cells included in the model and α. Cells are larger where tissue
is homogeneous; near transitions from fatty to fibroglandular
tissue, there are many small cells to capture accurately the
structural complexity.

Stage 3: Assignment of Tissue Properties: Recently, Lazeb-
nik et al. reported experimental characterization of the dielec-
tric properties of normal breast tissue [7]. They classify the
normal tissue into three groups based on their adipose content:
Group 1 (0-30%), Group 2 (31-%85), and Group 3(86-100%)
and they publish the data of the 25th, 50th, and 75th percentile
of each group. Zastrow et al. use a 2-component Gaussian
mixture model to approximate the distribution of the pixel
intensity as shown in Fig. 3. They calculate the pixel intensities
that correspond to the 25th, 50th, and 75th percentile of each
Gaussian component.

Breast tissue has been commonly described by the Debye



model, which is

εr = ε∞ +
∆ε

1 + ωτ
+

σs
jωεo

(1)

where ε∞,∆ε, τ, σs are the tissue-dependent Debye param-
eters. Breast tissue can also be described by the simple
dielectric material, which is

εr = ε′ − jε′′ = ε′ − j σ

ωεo
. (2)

Three strategies to map pixel intensities to the tissue prop-
erty are investigated in this paper using dielectric and Debye
material. Zastrow et al. has proposed two strategies to map
the pixel intensity to the material parameters. In the Debye
map, they assume a fixed τ in (1) and interpolate Lazebnik’s
data of 25th, 50th and 75th percentile of Group 1 and Group 3
using one-pole Debye model. The pixel intensities found at the
25th, 50th and, 75th percentile of Group 1 and Group 3 and
the Debye parameters ε∞,∆ε, σs as a result of interpolation
are one-to-one mapped. This defines 7 intervals, in which
pixel intensities in between are linearly mapped to the Debye
parameters.

In Zastrow’s dielectric map, the ε′ and σ of dielectric
materials for the aforementioned 6 percentiles are obtained
by evaluating the Debye model at 6 GHz. They then they are
one-to-one mapped to the pixel intensities.

We develop a third tissue map strategy, similar to Zas-
trow’s Debye map. We interpolate Lazebnik’s data without
any constraint on τ in the Debye model. Therefore, The
pixel intensities are mapped to all four of Debye parameters,
ε∞,∆ε, σs, τ . We refer it as the piecewise-linear (PWL) map
in this paper.

Since we have replaced the pixels with cells in the breast
tissue region, the mapping is executed from the average pixel
intensities of the cells to the material parameters. These cells
are imported into SEMCAD and solids are generated by taking
the intersection of the cells with the identified tissue boundary.
SEMCAD’s automatic gridder generates FDTD voxels to
model the resultant model.

III. AN EXAMPLE

The MRI image we analyze is that of a 49-year pa-
tient. The tissue volume of the breast is approximately
70mm×70mm×60mm. The parameters of the MRI system
were as follows: the static magnetic field strength was 1.5
T; a gradient-echo pulse sequence was used, with a pulse flip
angle of 25◦ and a repetition time of 8.816 ms. The 68 MRI
slices, each of 512 × 512 pixels, were acquired in the (x-y)
planes perpendicular to the main body (z-) axis (axial run).
This results in a spatial resolution of 0.7mm×0.7mm×2mm.

Fig. 4 presents the comparison of the tissue profile of the
sagittal cross-section of the breast model shown in Fig. 1 with
and without cell approximation.
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Fig. 3. Two-component Gaussian Mixture Model to fit the distribution of
the pixel intensity of a patient’s MRI images using Expectation Maximization
algorithm. The the 25th, 50th, i.e. mean, and 75th percentile of each
component are labeled.
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Fig. 4. Sagittal cross-section showing the tissue profile obtained by evaluating
the Debye model at 6 GHz using Zastrow’s Debye map. (a) and (b) are ε′
and σ mapped directly from the pixels of MRI images. (c) and (d) show ε′

and σ when we approximate the tissue with 2194 cells and α = 1e5.

IV. EFFECTS OF CELL PADDING AND DIELECTRIC VS.
DEBYE MODEL

We first investigate the validity of using cells to approximate
the heterogenous breast tissue. Fig. 5 and 5(b) illustrate the
simulation scenario. We attach a skin layer, a fat layer, and
a muscle layer to sandwitch the tissue, which is padded
with different number of cells. The Debye parameters of
skin, fat, and muscle are obtained from [8]. The breast is
surround by four Travelling-Wave Tapered-Line Transmission-
Line (TWTLTL) antennas proposed in [Kanj], which offers
wideband behavior between 1 to 30 GHz. As labelled in
Fig. 5(b), Antenna A transmits a gaussian modulated sinusoid
with a bandwidth of 10 GHz centered at 6 GHz. The other
three antennas receive and the four field sensors from A to D
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Fig. 5. The simulation scenario constructed inside SEMCAD. a) The top
layer is 5-mm thick muscle followed by 3-mm thick fat tissue. The tissue
is approximated by the cells illustrated in the previous section. The skin
layer around the tissue is obtained from segmenting the MRI images with
an average thickness of 1.5 mm. The skin below the fat slab is 1.5 mm thick.
(b) The top view of the simulation scenario. The breast is surrounded by four
antennas [Kanj] positioned 20 mm below the skin layer and at (0, -70), (-
70,0),(0,70),(70,0). Four field sensors indicated by (�) are placed 20 mm in
front of the antennas to record the electric field.

record the electric field.
The wave radidate from Antenna A is polarized in the x-

direction. We extracted the Ex component of the field and
computed the Mean Squared Error (MSE) according to

e2i =
∫

(Exi − Ex2194)2dt∫
E2
x2194

dt
(3)

where Exi is the Ex component of Sensor C when the tissue is
padded with i number of cells. Ex2194 , the reference, is when
the tissue is padded with 2194 cells, the maximum cells gener-
ated for this experiment. Fig. 6 shows the MSE as we increase
the number of cells. The seemly convergence behavior in the
recorded signals with respect to the increase of the number
of cells confirm the effectiveness of our regression-tree-based
approximation with all three tissue mapping strategies. We also
notice that the heterogeneity of dielectric material can be more
effectively approximated than Debye material given the same
number of cells.

We have investigated the effect of using dielectric materials
and Debye materials in the breast model. In dielectric materi-
als, the attenuation (δ) (dB/m) is

δ = 20 log10 e
ω/coIm{

√
εr} (4)
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Fig. 6. Mean-squared error of theEx-field obtained at Sensor C with different
number of padding cells with respect to the Ex-field at Sensor C when the
number of padding cells is 2194.

where εr is given in (2) The lower bound of (4) can be shown
as

δ′ = 20 log10 e
−1
2co

σ√
ε′εo . (5)

when we assume σ
ωεo

< 0. We notice that the attenuation is
independent of frequency in (5). Similarly, the lower bound of
antenuation of Debye material is

δ′ = 20 log10 e
−1
2co

ω2τ∆ε+σs/εo√
ε∞+∆ε (6)

We notice that the attenution increases as frequency increases.
Fig. 7 shows the unit attenuation inside dielectric and Debye
materials for the 25th, 50th, and 75th percentile of Group 1
and Group 3 tissue reported in [7] and their lower bound.
It informs us that using Debye material in the breast model,
the high-freuqency field components scattered by small tumors
will be suppressed. We take the Ex component at Sensor A and
Sensor C when the number of cells is 2194 and compute the
attenuation along the path between these two points with three
tissue mapping strategies. The result is shown in Fig. 8. We
notice that, roughly above 6 GHz, using Zastrow’s dielectric
mapping indeed yields less attenuation than using the two
Debye strageties. This implies that using Debye material will
create a more difficult problem than using dielectric material
since the high frequency components contain information
on the geometry of small tumors. Fig. 8 also shows that
using either Zastrow’s Debye map or our PWL map gives
very similar Ex component. Since the only difference is that
Zastrow has assumed a constant τ , we conclude that this
assumption has minimal effect on the field distortion inside
the tissue.

V. CONCLUSIONS

This paper has presented the development of numerical
breast models suitable for commerical FDTD simulators. The
model retains the salient features of the tissue structure but
minimizes complexity by dramatically reducing the number
of tissue solids. This enables the simultions of complex
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Fig. 7. The dash-dash blue curve shows the attenuation due to the dielectric
constant evaluated at 6 GHz of the 6 Debye materials: 25th, 50th, and 75th

percentile of Group 1 (0-30% adipose) and 25th, 50th, 75th percentile of
Group 3 (85-100% adipose). The solid red curve shows the attenuation of the
corresponding Debye materials. The dash-dot and dotted lines are the lower
bounds of the attenuation dervied from Taylor’s series expansion.
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Fig. 8. Attenuation in the Ex-component between Sensor A and Sensor
C E-field when the number of padding cells is 2194, under one dielectric
material model and two debye material models.

antenna structures together with the anatomically realistic
breast model. This paper has also reported the effect of using
dielectric map and Debye map to model the heterogeity and
dispersiveness of breast model. We find that Debye materials
attenuate more in the high frequency component. This poses
a more challenging problem for microwave radar imaging to
detect geometrically small tumors.
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APPENDIX A
BUILDING AND PRUNING A REGRESSION TREE

Consider a simple one-dimensional example, a row vector,
t = [p1...pN ] with mean, µ(t). The mean-squared error (MSE)
of this vector is

ξ(t) =
1
N

N∑
i=1

(pi − µ(t))2. (7)

We define the left and right subvectors:tL = [p1...pS ] and
tR = [pS+1...pN ] where S is the split index. We seek the best
split S∗ to maximize the change in the MSE, that is

max
S ∆ξ(S, t) = ξ(t)− ξ(tL)− ξ(tR). (8)

We continously apply (8) to tL and replace tL and tR with the
subvectors of tL. This process terminates when the subvector
contains only equal-value elements. As a result, we have a
binary tree, in which the nodes correspond to the vectors and
the branches are denoted by the split index of the parent nodes.
The sum of the leaf nodes of this tree represents the root node
that corresponds to the input vector.

The resulting regression tree may have many leaf nodes. We
want to systematically reduce the number of the leaf nodes.
An error complexity measure ξα(t) is introduced as

ξα(t) = ξtL + ξtR + 2α, (9)

where α is the complexity penalty that controls the trade-off
between approximation error and the number of leaf nodes in
the pruned tree. We prune the tree according to the rule: if
ξα(t) > ξ(t) + α, prune the child nodes at the current node
t and check the parent node of t. Otherwise, stop pruning at
the current node and check the next leaf node.

The level of pruning is controlled by α. If α is large, we
tolerate the error due to the merge of two child nodes to their
parents. There are less leaf nodes and the tree is greatly pruned.
If we reduce α, we are less tolerate with the merge error. Few
leaf nodes are eliminated and the tree is less pruned. In the
two extreme cases, if α = 0, no leaf nodes will be merged to
their parents. If α > ξ(tROOT ), the entire tree is pruned and
left with only the root node.
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