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Abstract

Clustering algorithms strive to organize data into meaningful groups in an unsupervised fashion. For

some datasets, these algorithms can provide important insights into the structure of the data and

the relationships between the constituent items. Clustering analysis is applied in numerous fields,

e.g., biology, economics, and computer vision. If the structure of the data changes over time, we

need models and algorithms that can capture the time-varying characteristics and permit evolution

of the clustering. Additional complications arise when we do not have the entire dataset but instead

receive elements one-by-one. In the case of data streams, we would like to process the data online,

sequentially maintaining an up-to-date clustering. In this paper, we focus on Bayesian topic models;

although these were originally derived for processing collections of documents, they can be adapted to

many kinds of data. We provide a tutorial description and survey of dynamic topic models that are

suitable for online clustering algorithms, and introduce a novel algorithm that addresses the challenges

of time-dependent clustering of streaming data.
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1. Introduction

Clustering is an unsupervised learning technique, with the goal of finding a structure or pattern

in a collection of unlabeled samples. It strives to identify groups, or clusters, of similar objects.

The clusters may be distinct, in the sense that each object belongs to a single cluster, or they may

overlap. In an unfortunate terminology overload in the literature, the word “clustering” is used to

describe both the act of identifying the clusters (the algorithm) and the set of clusters identified by

the algorithm. Most clustering algorithms employ some notion of distance between objects, and also

have an explicit or implicit criterion defining what constitutes a “good” clustering. The algorithms

then optimize (often heuristically) this criterion to determine the clustering.

In this paper, we focus on the task of online clustering, which involves clustering a series of data

items that arrive sequentially. The goal is to provide a new clustering after the arrival of each data

item; generally we also want to ensure that the identified clusterings evolve smoothly over time. We

require that the clustering algorithm is capable of learning the number of clusters automatically, and

that the use of computational and memory resources remains bounded over time. The algorithm must

be capable of taking into account the order of the data arrivals; preferably the clustering should be

dependent on the actual generation or arrival times associated with each data item.

In mathematical form, the input is a sequence of data items {x1, x2, . . .}, which can either be a

data stream or a sequence of limited size, as long as items are received one-by-one. Each data item

xi is associated with a timestamp ti, whose value represents the time when the item was generated or

received. In most cases, we will assume that each data item xi is a set of a discrete elements that are

members of a predefined “vocabulary”, V, and we assume that each element of xi is essential to the

meaning of the item. Our goal is to infer a clustering label zi for each data item; we need to provide

the label for xi before data item xi+1 arrives.

We concentrate on clustering algorithms built upon probabilistic topic models. Although these

have some limitations in terms of the types of data they can represent efficiently, they have advantages
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over many other clustering approaches. In particular, they specify a generative probabilistic model

for the clustering, which permits application of principled inference procedures, including Bayesian

methods.

1.1. Probabilistic Topic Models

Probabilistic topic models were developed for the analysis of large collections of documents, with

the goal of identifying common themes and topics. Excellent introductions are provided in [1, 2]. One

of the earliest topic models was latent Dirichlet allocation (LDA) [3]. The key idea in LDA is that each

document addresses multiple topics, and the words comprising the document can thus be considered

as samples from common words employed when discussing these topics. Mathematically, each topic

is defined as a distribution over a fixed vocabulary. In the probabilistic LDA model, to generate each

document, a distribution over the topics is drawn from a Dirichlet distribution. To generate each of

the words that comprise the document, we first draw a topic from the topic distribution, and then

draw a word from the topic. The LDA generative model assumes a fixed number of topics and fixed

word probabilities within each topic.

There have been many extensions of the topic model employed in LDA. Of most interest to us

are (i) the extension to Dirichlet process mixture models, which allow the number of topics to be

learned from the data rather than requiring specification in the prior; and (ii) the incorporation of

time-dependency in the models. In Section 2 of the paper we provide an introduction to Dirichlet

distributions and processes, and Dirichlet process mixture models. In Section 3 we review some of

the techniques that have been proposed for injecting temporal dependency into probabilistic topic

models.

1.2. Dynamic/static and online/offline distinctions

Dynamic (as opposed to static) clustering incorporates the notion of time in the dataset. Data

items can either have a timestamp associated with their arrival in the dataset (e.g., a data stream),

or they can evolve dynamically (e.g., geographic position of mobile users over time). A dynamic

clustering algorithm then identifies clusterings that change over time.

A dynamic clustering algorithm can be either online or offline. Online clustering means that the

algorithm must provide a clustering for the data associated with timestamp t before seeing any data

with timestamp t′ > t [4]. There are two main uses for online algorithms. The first case corresponds

to data streams: we receive data items sequentially and we cannot afford to wait until we have all the

items to perform processing. The second arises when we have access to the entire dataset, but the

dataset is too big to be processed by offline methods, motivating sequential processing of elements or

batches of elements. In offline clustering, the algorithm takes as an input the entire data stream or

the complete history of the dataset.

When considering datasets where each data item is associated with a timestamp, we can ask

ourselves whether the temporal distance between two consecutive data items (i.e., the difference
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between their timestamps) of any importance for the analysis of the dataset. If not, then we can

replace the timestamp by the index of the item in the ordered dataset. This setting is useful when

the time difference between two consecutive items is always the same (for example when considering

articles published in a yearly journal) or if it has no impact on the dataset. An algorithm that

considers only the order of the data items, rather than the actual times, is called order-dependent. If

the algorithm explicitly takes into account the time difference between two consecutive data items,

we say that it is time-dependent.

Let us consider the example of clustering marathon runners by their performance in a race. An

order-dependent algorithm would only consider the order in which the runners finished. A time-

dependent algorithm, however, would process the actual completion times. If we wanted to identify

the top-10 finishers, the order-dependent algorithm would suffice; if our goal were to identify a group

of racers who all finished within 2 minutes of each other, a time-dependent algorithm is required.

1.3. Inference

Although topic models are well-matched to many data sets, and the prior is constructed so that

there is conjugacy with the commonly-assumed likelihood function for the data, exact inference is

in general infeasible. We must therefore turn our attention to approximate Bayesian inference ap-

proaches; the main candidates are Markov chain Monte Carlo (MCMC) [5], variational inference [6]

and Sequential Monte Carlo (SMC) samplers [7].

One of the main challenges of a data stream setting is to keep the computational resources bounded

as the number of processed items increases. For online clustering, we generally do not know the number

of data items we will need to process ahead of time. Section 4 reviews methods that can be used

to perform online posterior inference for the dynamic topic models. We focus on sequential Monte

Carlo samplers, because they are naturally suited to online processing. We also highlight some of the

recent work in streaming variational Bayes [8], which adapts variational approximation methods to

make them more amenable to the online dynamic clustering task.

1.4. Example Application

Privacy concerns have always existed for popular social networks such as Facebook, Twitter or

Google+, due to their reliance on targeted advertising. These concerns led to the creation of several

privacy-focused social networks such as Diaspora [9] and Friendica [10]. These alternative social

networks are peer-to-peer networks of servers that distribute data throughout the network in an

attempt to maintain a high level of privacy. Each user can remain in control of his/her data by

selecting which server stores it. Although this distributed architecture protects the users’ privacy,

it generates several problems that centralized social networks do not face. Control of the network

is more limited and performance problems can arise (primarily slow response time), because nodes

of the network can be self-hosted web servers with limited computational resources. Search is more

challenging, because each node has access only to a limited portion of the network.
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Often users want to search for other users that share a similar interest, usually by providing a set

of keywords related to that interest. Centralized networks have direct access to all users’ data and

hence can directly determine the users whose interests match the query. On the other hand, nodes

in a distributed network have only access to the data corresponding to their own users and they only

know a subset of entire network, composed of their neighbors in the peer-to-peer graph. To find users

on other nodes, they need to forward the query in an efficient way.

One way we can improve the efficiency of the search is for nodes to maintain a forwarding table,

indicating to which neighbour they should forward a query to improve the chance of success. It is

impossible for nodes to maintain a forwarding table for every possible keyword (or group of keywords).

An alternative is to dynamically cluster previous queries; each cluster identified by the algorithm can

be considered as an “interest”. Each interest is defined by a distribution over the keywords that have

been seen by the server. With this process we can learn the current search trends in real-time. When

a server receives a query, it maps the query to one or more interests, and uses its forwarding table

that maps interests to neighbouring nodes.

1.5. Outline

The rest of the paper is organized as follows. In Section 2, we introduce the necessary background

material that is required to understand and employ probabilistic topic models. In Section 3, we sur-

vey dynamic, topic-model clustering algorithms that have been proposed in the literature. Section 4

describes approximate Bayesian inference techniques that can be employed for the dynamic topic

models, focusing on sequential Monte Carlo samplers. Section 5 introduces a novel time-dependent

algorithm that employs a sequential Monte Carlo (SMC) sampler to perform online Bayesian infer-

ence; and Section 6 presents examples of applying the algorithms to analyze synthetic and real-world

datasets. Finally, we conclude and suggest possible future research directions in Section 7.

2. Background

In this section, we present relevant background material and provide an introduction to static

probabilistic topic models. Numerous clustering algorithms use Dirichlet processes [11] for static and

dynamic clustering [12, 13, 14, 15, 16, 17]. These nonparametric processes are very useful for clustering

because they eliminate the need for an assumption and specification of a fixed number of clusters. A

good introduction to these processes in particular and on Bayesian nonparametric models in general

can be found in [18]. In this section, we review the Dirichlet distribution, the Dirichlet process, and

Dirichlet process mixture models that can be used for clustering.

2.1. Dirichlet distributions

The Dirichlet distribution is a distribution over probability mass functions (PMFs) of finite length.

Let us consider a PMF with k components. This PMF lies in the k− 1 simplex defined by ∆k = {q ∈

Rk|
∑k
i=1 qi = 1 and ∀i, qi ≥ 0}.
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Let Q = [Q1, . . . , Qk] be a random PMF and let α = [α1, . . . , αk] be a k-dimensional vector with

∀i, αi ≥ 0. Q is said to be generated from a Dirichlet distribution with parameter α if its density

satisfies f(q|α) = 0 if q 6∈ ∆k and

f(q|α) =
Γ(α0)∏k
i=1 Γ(αi)

k∏
i=1

qαi−1
i (1)

if q ∈ ∆k, where α0 =
∑k
i=1 αi and Γ denotes the Gamma function. This distribution is denoted by

Q ∼ Dir(α). The mean of this Dirichlet distribution is the vector m = α/α0.

In Bayesian probability theory, the prior distribution p(Θ) is called a conjugate prior to the

likelihood p(x|Θ) if the prior distribution is of the same family of distributions as the posterior

distribution p(Θ|x). Conjugate priors are of interest because their adoption makes it possible, in some

cases, to derive analytical expressions for the posterior distribution, hence simplifying computation.

The multinomial distribution is parameterized by an integer n and a PMF q = [q1, . . . , qk]. If

X ∼ Multinomialk(n, q), then its PMF is given by

f(x1, . . . , xk|n, q) =
n!

x1! . . . xk!

k∏
i=1

qxi
i (2)

The Dirichlet distribution serves as a conjugate prior for the probability parameter q of the multinomial

distribution: if X|q ∼ Multinomialk(n, q) and Q ∼ Dir(α), then Q|(X = x) ∼ Dir(α + x). This

property is one of the reasons why the Dirichlet distribution is often used for clustering text corpora, in

conjunction with the bag-of-words model. This model assumes that texts are represented as unordered

collections of words, disregarding grammar and word order: only the count of each word matters.

Under this assumption, the likelihood of a text is often considered to be a multinomial distribution

on the vocabulary, which is why the Dirichlet distribution becomes an attractive prior distribution.

2.2. Dirichlet processes

A Dirichlet process (DP) is an extension of the Dirichlet distribution that enables us to use infinite

sets of events. It is a stochastic process over a set X such that its sample path is a Dirichlet distribution

over X . Written as DP (H,α), it is characterized by a base measure H and a concentration parameter

α. Let (X ,B) be a measurable space where X is a set and B is a σ-algebra on X . Let H be a

finite probability measure on (X ,B) and α ∈ R∗+ (the strictly positive reals). If P is a random

distribution generated from a DP (H,α) (a sample path), then for any finite measurable partition

{Bi}ki=1 of X , the random vector (P (B1), . . . , P (Bk)) has a Dirichlet distribution with parameters

(α ·H(B1), . . . , α ·H(Bk)).

The stick-breaking process, due to Sethuraman [19], defines the DP constructively as follows. Let
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(β′k)∞k=1 and (βk)∞k=1 be defined as:

β′k ∼ Beta(1, α) (3)

βk = β′k

k−1∏
l=1

(1− β′l) (4)

where Beta(1, α) denotes the beta distribution. Let (ψk)∞k=1 be samples from H. Let δ be the Dirac

delta measure on X , so that δψk
(ψ) = 1 for ψ = ψk and 0 otherwise. The distribution given by the

density

P (ψ) =

∞∑
k=1

βkδψk
(ψ) (5)

is then a sample from the Dirichlet process DP (H,α) . Note that the sequence (βk)∞k=1 satisfies∑∞
k=1 βk = 1 with probability 1. Equations (3)-(5) are referred to as the stick-breaking construction

for Dirichlet processes.

In measure theory, an atom of a measure µ on a σ-algebra S of subsets of a set X is an element

A ∈ S that satisfies [20]:

• µ(A) > 0

• for every B ∈ S such that B ⊂ A, either µ(B) = 0 or µ(B) = µ(A)

µ is an atomic measure if there exists a countable partition of X where each element A is either an

atom or verifies µ(A) = 0. A realization drawn from DP (H,α) is, with probability 1, an atomic

distribution with infinite atoms [11], as can be seen in equation (5).

Of critical importance in the context of clustering is the clustering property of the Dirichlet process:

samples from a DP share repeated values with positive probability. Therefore if we use a DP to

generate parameters of a data item, items with the same value belong to the same cluster.

2.3. Dirichlet process mixtures

Dirichlet process mixtures (DPMs) are generative models that use a Dirichlet process as a non-

parametric prior on the parameters of a mixture. In the context of clustering, they define a procedure

for generating clusters with associated parameters θi, and then associating a cluster label zi with each

data item xi. The cluster parameters θi are drawn from a distribution G, which is generated from a

base Dirichlet process DP(H,α). As such, the model does not require us to specify a fixed number of

clusters ahead of time.

The generative model determines the cluster parameters θi and the observation xi as follows:

G ∼ DP(H,α) (6)

θi ∼ G (7)

xi ∼ F (θi) (8)
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where F (θi) represents the distribution of the observation xi given the parameter θi, and is therefore

problem-dependent. The components of the Dirichlet process, βββ = (βk)∞k=1 and ψψψ = (ψk)∞k=1, are

defined as above. We also introduce a cluster assignment variable zi such that zi ∼ βββ. With these

notations, the DPM model is equivalent θi = ψzi and xi ∼ F (ψzi).

The DPM model can also be explained using the Chinese restaurant process (CRP) metaphor [21]

where we have a restaurant with an infinite number of tables (clusters) with customers (data items)

arriving one-by-one in the restaurant. Each customer chooses to sit at an existing table and share the

dish (cluster parameters) already served at this table with a probability proportional to the number

of customers seated at that table. The customer can also sit at a new table with some probability

and choose a new dish from the menu (the menu being common to all the tables). An important

property of this process is that data items are fully exchangeable; this simplifies inference when using

models based on the process. Exchangeability implies that the probability distribution of the table

(i.e., cluster assignment) is unchanged if the order in which the customers arrive is shuffled. A proof

of this property can be found in [18].

3. Dynamic topic models

In this section, we describe how topic models based on Dirichlet processes have been extended to

address time-varying structure in the data. We divide the discussion into two sections, describing first

the clustering models that group the data into “epochs” or discrete time intervals, and then turning

our attention to those that incorporate dependencies on real-valued time information.

3.1. The epoch approach — discrete time intervals

Incorporating unconstrained temporal dynamics directly into DPM models generally leads to in-

ference problems that are very challenging. More tractable inference becomes possible if one focuses

on the setting where time is indexed by a countable data set (e.g., t ∈ N) and the data items are

grouped by epochs (e.g., a year for analyzing scientific articles). The exchangeability property can

then be preserved for each epoch (as opposed to the entire dataset). Since the actual timestamps

of the data items are discarded, the epoch-based models can only support time- or order-dependent

clustering in a limited sense, i.e., at the time-scale of the epochs.

In one of the earlier works adopting this approach [22], Blei and Lafferty extended the topic model

approach introduced in [3], incorporating a state space model to capture time-variation of the topic

mixture weights and the parameters of the multinomial distributions that describe the topics. This

formulation allowed Blei and Lafferty to derive variational methods, based on the Kalman filter or

wavelet regression, to conduct inference using the model.

In [14], Xu et al. consider the task of determining a suitable clustering for each epoch, while

ensuring that the clustering parameters vary smoothly over time. Their approach is to build a time-

varying model by extending the DPM model. For each epoch, they first use the stick-breaking
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construction to generate intermediate mixture weights βββt, and then model the actual weights from

which the topic mixture is drawn as πππt =
∑t
τ=1 exp {−η(t− τ)}βββτ , i.e., an exponentially smoothed

averaging of historical mixture weights, with the constant η controlling the exponential decay.

In [16], Ahmed and Xing present the Temporal Dirichlet process mixture (TDPM) model. Instead

of considering fully exchangeable data items, they assume that the data items are only exchangeable

if they belong to the same epoch. The recurrent Chinese restaurant process (RCRP) metaphor is used

to describe the framework. In this metaphor, customers (data items) enter on a given day (epoch)

and leave the restaurant at the end of this day. When a customer arrives on day t, she joins a table

(cluster) k that already existed on day t − 1 with some probability. If she is the first to sit at that

table on day t, then she chooses the dish (cluster parameters), drawing from a distribution that is

parameterized by the previous day’s parameters for the same table. The distribution is chosen in

order to ensure a smooth evolution of the clusters over time. The customer can also pick a new

empty table, or join an existing table created by a previous customer who arrived in the same epoch

t. For these latter cases, the model behaves in exactly the same way as the DPM model described in

Section 2.3.

In the generalized Polya urn (GPU) scheme introduced in [23], Caron et al. aim to develop a

model which marginally preserves a Dirichlet process for each epoch. The model is built around a

base Dirichlet proces DP (G0, α). A parameter ρ ∈ [0, 1] is introduced to control the “closeness” of the

clusterings at epochs t−1 and t. During epoch t, the new data items are assigned to clusters according

to a DPM, but evolution of the model is achieved by deletion of previous allocations of data items

to clusters. The deletion may be uniform with probability 1− ρ across all data items; or size-biased

(the number of items deleted from each cluster is proportional to the size of the cluster); or based on

a sliding window, such that only the previous r epochs are considered (implying ρ = 1 − 1
1+r ). The

model also introduces evolution of the parameters of any clusters that persist from epoch t− 1 to t.

This is achieved by sampling from a kernel p(ψi,t|ψi,t−1) which has invariant G0, i.e.,∫
G0(ψi,t−1)p(ψi,t|ψi,t−1)dψi,t−1 = G0(ψi,t). (9)

3.2. More general temporal dependence

In one of the earlier works addressing the discovery of the dynamic evolution of latent themes or

topics inside a collection of texts, Mei and Zhai propose a generative model that used a hidden Markov

model to capture the evolution of the topics [24]. In this model, however, the number of topics and their

parameters were assumed known (in [24], they were learned using a separate procedure that divided

the data into subcollections based on timestamps and matched topics across the subcollections).

3.2.1. Dependent Dirichlet processes

A preferable approach is to propose a model that allows one to jointly learn the number of topics,

their evolution over time, and the parameters that describe them. Srebro and Roweis discuss in [25]
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how such topic models can be constructed using dependent Dirichlet processes (DDPs) [26]. A DDP

is a process G(t), defined over a set t ∈ T such that for any t, G(t) is marginally a Dirichlet process.

With such a construction, it is possible to vary the nature of G(t) over time to capture the evolution

of topic distributions. If the Dirichlet process mixture is generated using G(t), as opposed to the

static G in (6), then we can introduce time-variation by evolving the weights in the topic mixture

(to capture topic appearances, disappearances and popularity changes) and the weights in the word

distributions for each topic (to capture evolution of the nature of the topics themselves). Srebro

and Roweis describe how dynamic topic models can be constructed using the order-based dependent

Dirichlet process introduced by Griffin and Steel [27], the stationary autoregressive model of Pitt et

al. [28], and through a transformation of Gaussian processes [25]. In [29], Rao and Teh introduce

a DDP-based model called a spatial normalized Gamma process. The proposed model constructs

dependent Dirichlet processes by marginalizing and normalizing a single Gamma process over an

extended space.

3.2.2. Time-sensitive Dirichlet process mixture model

In general, inference for DDPs is significantly more challenging than for classical Dirichlet Process

mixtures, and Markov Chain Monte Carlo methods are the usual approach. This has motivated work

towards models that do not provide all of the desirable theoretical properties encapsulated by DDPs,

but are more amenable for practical, on-line inference. The time-sensitive Dirichlet process mixture

(TS-DPM) model, proposed by Zhu et al. in [12], employs a temporal weight function for each cluster

that depends on the cluster assignment history. Together, the time-varying weights specify a prior

probability on the cluster assignment for each arriving data item and allow evolution of the prevalence

of topics. We provide a more detailed description of the TS-DPM in Section 5, where we explain how it

can be used in conjunction with a sequential Monte Carlo sampler to derive an online, time-dependent

clustering algorithm.

4. Posterior inference

One of the challenges with DP-based generative models is that the computation of the posterior

distribution of the parameters is usually intractable. Inference of the posterior allows us to per-

form clustering (determining the most probable cluster assignment) and prediction (predicting the

attributes of the next data item). Since exact inference is not an option, approximate inference tech-

niques are employed, and there are three main approaches: Markov chain Monte Carlo (MCMC) [5],

variational inference [6] and Sequential Monte Carlo (SMC) samplers [7].

The majority of MCMC inference techniques are not well-suited to the online setting. There has

been more work in adapting variational methods to sequential processing of the data. Several of these

methods target the setting when the full data set is available, but due to its size, processing the entire

data set as a batch is computationally infeasible [30, 31, 32, 33]. These techniques rely on advance
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knowledge of the number of data items and it is challenging to introduce adaptations to make them

suitable for processing data streams.

In [8], Broderick et al. introduce a framework to make streaming Bayesian updates to the estimated

posterior using variational approximation methods. The data is divided into batches C1, . . . , Cb and

the posterior updated in the usual Bayesian way: p(Θ|C1, . . . , Cb) ∝ p(Cb|Θ)p(Θ|C1, . . . , Cb−1). In

the dynamic topic models, the update is not computationally tractable, so Broderick et al. use an

approximating algorithm, A, to propagate an approximate posterior: p(Θ|C1, . . . , Cb) ≈ qb(Θ) ∝

A(Cb, qb−1(Θ)). For the variational approximation approach it is simplest if qb is exponential, i.e.,

qb(Θ) ∝ exp{ζbT (Θ)}, for some parameter ζb and sufficient statistic T (Θ). This methodology is better

suited to order-dependent clustering; the restriction to exponential distributions can limit the types

of data that can be successfully modelled.

4.1. Sequential Monte Carlo methods

Sequential Monte Carlo (SMC) methods, such as the particle filter (PF), can be used to approxi-

mate a sequence of probabilities {πn}n∈T (e.g., T = N) sequentially, i.e., by inferring π1, then π2, and

so on. We assume that πn(Θn) is defined on a measurable space (En, En) for Θn ∈ En.

The main idea behind the SMC methods is to obtain, at each time n, a large collection of N

weighted random particles {Θi
n, w

i
n}Ni=1 with win > 0 and

∑
i w

i
n = 1, whose empirical weighted

distribution converges asymptotically to πn. To achieve this, we represent the target distribution in

the form πn(Θn) = γn(Θn)
Zn

, assuming that γn is known point-wise and Zn is an unknown normalizing

constant. To sample from this distribution, we introduce a known importance distribution ηn(Θn)

whose exact definition is problem-specific. The unnormalized importance weight function w̃n(Θn) is

defined by:

w̃n(Θn) =
γn(Θn)

ηn(Θn)
(10)

We sample N particles {Θi
n} from ηn, calculate the unnormalized weights w̃n, and then normalize.

The weighted particle set {Θi
n, w

i
n}Ni=1 then provides an approximation of the target distribution πn.

In a sequential implementation, we assume that we have N particles at timestep n−1, {Θi
n−1}Ni=1,

distributed according to ηn−1(Θn−1). We then define a kernel function Kn(Θn−1,Θn) that we can use

to move the N particles obtained at time n−1 from {Θi
n−1} to construct an importance distribution at

time n: {Θi
n}. These particles are marginally distributed as ηn(Θn) =

∫
E
ηn−1(Θn−1)Kn(Θn−1,Θn)dΘn−1.

Several strategies exist to select the forward kernel sequence {Kn}; these include MCMC kernels or

approximate Gibbs moves (see [7] for more examples and details).

A significant limitation of the traditional SMC approach is that closed-form expressions for ηn(Θn)

cannot be derived for many kernels of practical interest, and this means that the importance weights

cannot be calculated. Del Moral et al. circumvent this in [7], turning attention to the joint posterior
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π̃n defined on En = E1 × E2 × ...× En. We introduce a distribution γ̃n such that:

π̃n(ΘΘΘ1:n) =
γ̃n(ΘΘΘ1:n)

Zn
, (11)

where

γ̃n(ΘΘΘ1:n) = γn(Θn)

n−1∏
k=1

Lk(Θk+1,Θk) . (12)

Here Lk : Ek×Ek → [0, 1] is an artificial backward Markov kernel. The sequential sampling framework

then conducts importance sampling between the joint importance distribution ηn(ΘΘΘ1:n) and the target

joint posterior π̃n(ΘΘΘ1:n).

The key advantage of this approach is that there is no longer a need to explicitly evaluate the

importance sampling distribution. At time n, the path of each particle is extended using a Markov

kernel Kn(Θn−1,Θn). The new expression of the unnormalized importance weights is:

w̃n(ΘΘΘ1:n) =
γ̃n(ΘΘΘ1:n)

ηn(ΘΘΘ1:n)
= wn−1(ΘΘΘ1:n−1)vn(Θn−1,Θn) (13)

where the unnormalized incremental weight vn(Θn−1,Θn) is:

vn(Θn−1,Θn) =
γn(Θn)Ln−1(Θn,Θn−1)

γn−1(Θn−1)Kn(Θn−1,Θn)
(14)

The particles weights {w(i)
n } are then obtained by normalization. As we can see from (13) and (14),

the weight update no longer involves direct calculation of ηn.

The performance of this approach depends critically on the choice of the backwards kernel L and

how well it matches the forward kernel K. Del Moral et al. provide guidelines in [7] for identifying suit-

able backward kernels {Ln}. The optimal kernels (those minimizing the variance of the unnormalized

importance weights) are given by [7]:

Lopt
n−1(Θn,Θn−1) =

ηn−1(Θn−1)Kn(Θn−1,Θn)

ηn(Θn)
(15)

and these lead to weights wn(ΘΘΘ1:n) = γn(Θn)/ηn(Θn).

These optimal weights rarely admit a closed-form expression; an alternative sub-optimal approach

is to replace ηn−1 with πn−1. This leads to backwards kernels of the form:

Ln−1(Θn,Θn−1) =
πn−1(Θn−1)Kn(Θn−1,Θn)

πn−1Kn(Θn)
(16)

The unnormalized incremental weights are then:

vn(Θn−1,Θn) =
γn(Θn)∫

En−1
γn−1(Θn−1)Kn(Θn−1,Θn) dΘn−1

(17)

As in conventional particle filtering, the difference between the target posterior and the sam-

pling distribution may increase over time, so resampling is performed if the effective sample size

(ESS), (
∑N
i=1(win)2)−1, is below a pre-defined threshold. The resampling process involves sampling
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N new particles with equal weights from the weighted empirical distribution of π̃n: π̃Nn (dΘΘΘ1:n) =∑N
i=1 w

i
nδΘi

n
(dΘΘΘ1:n).

5. Online Time-Dependent Clustering

In this section, we illustrate how the sequential Monte Carlo sampler can be integrated with the

TS-DPM model to develop a time-dependent, online clustering algorithm. We introduce modifications

to the posterior inference procedure to ensure that memory requirements remain bounded over time

and to improve the efficiency of the sampling process.

5.1. Generative model: TS-DPM

We now provide a more detailed description of the TS-DPM model [12] described in Section 3.2.

Figure 1 provides a pictorial representation of the generative model. Consider a sequence of Nd data

items x1:Nd
, where each item xi, 1 ≤ i ≤ Nd is associated with a time stamp ti ∈ R, and assume

that data items are ordered in chronological order. Denote by zi ∈ N the cluster index of item xi.

The TS-DPM assigns a temporal weight function g(t, k) for each cluster index k that depends on the

current time t and the collection of previous assignments {z1, . . . , zi−1}:

g(t, k) =
∑
j|tj<t

κ(t− tj) · δ(zj , k) . (18)

Here κ is a kernel function (e.g., κ(τ) = exp(−λτ)) and the Kronecker function δ(a, b) = 1 if a = b

and 0 otherwise.

Sample itemBoehner 0.03
Obama 0.03
House 0.02
Fiscal 0.01
...

Fiscal Cliff

Shooting 0.04
School 0.02
Obama 0.01
Gun 0.01
...

Gun Control

Syria 0.04
Russia 0.02
Assad 0.02
Envoy 0.01
...

Syria

Topics 
(Clusters)

Cluster Weights 

Cluster 
Assignment 

Time (Days)

Each cluster corresponds to a 
distribution over elements.

Cluster weights change over time. For each item, first the cluster is sampled.

Once the cluster is sampled, the elements of the data 
item are sampled from its corresponding distribution.

Figure 1: The generative time-sensitive Dirichlet process mixture model [12]. Each cluster is associated with parameters
that specify a probability distribution over the elements of a vocabulary. This distribution determines the probability
of elements appearing in a data item belonging to that cluster. The probability of assigning an item to a specific cluster
(the “weight” of that cluster) evolves over time.
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The prior probability of assigning xi to cluster k given the history {z1, . . . , zi−1} is then defined

as follows:

p(zi = k|z1, . . . , zi−1) = p(zi = k|{w(ti, j)}) (19)

=


g(ti, k)∑

k′ g(ti, k′) + α
if k ∈ {z1, . . . , zi−1}

α∑
k′ g(ti, k′) + α

if k is a new cluster
. (20)

We can observe the obvious link with the DPM model: instead of every past data item having a

weight of 1 in determining the probability of cluster assignment, the weight changes depending on

how long ago the data item arrived. The kernel function κ dictates how the weight is impacted by

the time difference of the data items; a natural choice is a non-negative, decreasing function such that

limτ→∞ κ(τ) = 0. We use κ(τ) = exp(−cτ) in the algorithmic implementations, with the constant c

chosen to reflect how rapidly clusters change over time.

We now make the model more specific, and assume that each cluster index k is associated with

a multinomial distribution θk over the set of all possible elements in a fixed vocabulary V: p(xi|zi =

k) =
∏
v∈V θk(v)xi(v), where xi(v) is the number of time element v appears in item xi. Assume that for

each cluster k, the prior on θk is a Dirichlet distribution G0 with parameter vector βmmm, where mmm is a

vector of size V representing a base measure on the vocabulary and β ∈ R specifies the concentration.

5.2. Posterior inference

For n ∈ {1, . . . , Nd}, let yn = (xn, tn) be the n-th observation. Let zzzn denote the vector of cluster

assignments at this time, so that zn,j , with n ≥ j, denotes the cluster assignment of item yj after the

n-th item has been seen. Thus zzzn = {zn,1, . . . , zn,n}. Posterior inference in the TS-DPM model aims

at inferring zzzn given xxx1:n and ttt1:n. Let πn(zzzn) = p(zzzn|yyy1:n) denote the posterior distribution.

According to Bayes’ rule, we have:

p(zn,i = k|zzzn,−i,xxx1:n) ∝ p(zn,i = k|zzzn,−i)p(xi|xxx−i:zzzn,−i=k) (21)

where zzzn,−i = {zn,j |j 6= i} and xxx−i:zzzn,−i=k = {xj |j 6= i, zj = k}. The first term of the right side can

be expressed as:

p(zn,i = k|zzzn,−i) ∝ p(zn,i = k|zzzn,1:i−1)

(
n∏

m=i+1

p(zn,m|zzzn,1:m−1)

)

which in turn can be expanded using equation (20).

We can integrate out the cluster parameters {θk} to derive the likelihood as in [12]:

p(xi|xxx−i:zzzn,−i=k) =

∫
p(xi|θ)p(θ|xxx−i:zzzn,−i=k)dθ

=
Γ(
∑
v fv + β)∏

v Γ(fv + βmv)

∏
v Γ(xi(v) + fv + βmv)

Γ(
∑
v xi(v) +

∑
v fv + β)

(22)
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where fv denotes the counts of word with index v ∈ {1, . . . , V } in xxx−i:zzzn,−i=k.

We use an SMC sampler to approximate the posterior distribution. Ülker et al. present an SMC

sampler for static Dirichlet process mixture models in [34, 35], and we build on some of their methods

to construct a sampler suitable for the TS-DPM model. An unnormalized expression of πn(zzzn) can

be obtained using equation (21). Let us denote by γn(zzzn) this unnormalized posterior and let Zn

denote the normalizing constant: πn(zzzn) = γn(zzzn)/Zn. As γn(zzzn) is known point-wise, we can apply

importance sampling and hence we can use the SMC sampler framework introduced in [7].

The sampling procedure needs to update some of the previous cluster assignments to take account

of the new information provided by the data item xn. Following the approach proposed in [34], when

processing the n-th data item, we partition the assignment vector zzzn into three subsets zzzn,r, zzzn,d

and {zn,n}. r is a subset of {1, . . . , n − 1} and is called the active set. It contains the indices of the

previous assignments that we re-evaluate when introducing the new observation yn. In [34], Ülker et

al. initialize r as {1, . . . , Q} and then increase all the indices of r by Q (modulo n) every time step.

In essence, this strategy is a superposition of a particle filter with a Gibbs sampler running in the

background to improve its accuracy. We propose a more effective method to determine r later in this

section.

The proposal distribution that minimizes the variance of the incremental importance weights

in (17) is a Gibbs update [7]:

Kn(zzzn−1, zzzn) = δzzzn−1,d
(zzzn,d)πn(zzzn,r, zn|zzzn,d). (23)

This choice indicates that in transitioning from time n−1 to n, we hold the assignments in the subset

d fixed, and draw a new value zn and update zzzr according to πn (conditioned on these fixed values).

With this choice, using the suboptimal backwards kernel of (16), we have:

Ln(zzzn, zzzn−1) = δzzzn,d
(zzzn−1,d)πn−1(zzzn−1,r|zzzn−1,d) . (24)

With these choices, the incremental importance weights in this model are given by:

vn(zzzn−1, zzzn) =
γn (zzzn,d)

γn−1 (zzzn−1,d)
. (25)

5.3. Algorithmic considerations for online operation

1. Annealing: In some cases, it is sensible to allow greater freedom for discovery of new clusters

when processing data items that arrive earlier in the sequence. We can achieve this through an

annealing process, essentially replacing the novelty parameter α in (20) with a value αn that changes

each time we process an item,

αn = αn−1 + cα(α− αn−1) . (26)

We select the initial value α1, the limit α, and the annealing update parameter cα to achieve a balance
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between giving the algorithm freedom to discover new clusters and providing convergence to the rate

at which we believe new clusters genuinely emerge in the dataset.

2. Bounded memory and computation: To reduce memory requirements, we can limit the sampling

set to {xi|t − ti < τlim}, for a constant τlim. The choice of the kernel κ(τ) dictates a suitable value

of τlim; it should be chosen such that an item with timestamp t − τlim has minimal impact on the

cluster assignment of an item with timestamp t. Since we do not allow cluster assignments of the old

items to change, we can delete them from memory as soon as their time of influence expires (i.e., after

a period τlim). This reduces the memory requirements as well as the computation time, because we

need to process fewer elements to evaluate the assignment probabilities for each new item.

If we use an exponential kernel, κ(τ) = exp(−cτ), we can still incorporate the combined effect of the

old items in the assignment probability calculations. For each existing cluster k, we store the quantity

g̃k =
∑
ti<ts|zi=k e

−λ(ts−ti), where ts denotes the timestamp of the last deleted item. Then, we can

compute the weight of cluster k at time t > ts as follows: g(t, k) =
∑
xi|ts<ti<t e

−λ(t−ti)δ(zi, k) +

e−λ(t−ts)g̃k. Note that we only need ts, {g̃k}k, and the count of words in deleted items to compute

the likelihoods, priors and consequently, weight updates. Thus, while preserving the principles of the

SMC sampler, this enhancement reduces the required history size and computation time and keeps

them bounded as new items arrive.

3. Targeted sampling: In [34], the choice of the cluster assignments to sample (the active set) is

determined solely based on the arrival times of the items. The efficiency of the sampler can be improved

if we can target those assignments where the uncertainty is greater. To quantify uncertainty in the

cluster assignment, for each item, we introduce a sample uncertainty metric ρ, defined as ρ(zn−1,j) =

1/
∑Kn−1

k=1 p̂n−1,j(k)
2
, where p̂n−1,j(k) =

∑N
i=1 w

i
n−1δ(z

i
n−1,j = sk) and Kn−1 = {s1, . . . , sKn−1

} is

the set of all cluster labels identified by the particles at time n − 1. We have 1 ≤ ρ ≤ Kn−1; the

lower bound is obtained when one of the probabilities is one and the upper bound is obtained when

all probabilities are equal. A higher value of ρ means more uncertainty in the cluster assignment.

We still identify an active set, but now resample assignment zn−1,j within the set with a probability

proportional to ρn−1,j . As we only resample a fraction of the previous assignments, we are able

to increase the size of the active set. The proposed targeted sampling strategy has similarities with

random scan Gibbs samplers [36] and adaptive Gibbs samplers [37].

6. Application to Synthetic and Real-World Datasets

In this section, we evaluate the performance of the online, time-dependent clustering algorithm

described in Section 5 using synthetic and real-world datasets.

6.1. Synthetic dataset

We build a synthetic dataset, which is a time-dependent extension of the dataset presented in [38].

We consider a fixed vocabulary size, V = 128, with a fixed number of clusters, Nk = 15. Each cluster
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is characterized as a uniform distribution over a set of vocabulary elements (ranging uniformly in size

between 10 and 15). Each data item has between 3 and 7 elements drawn from its associated cluster.

Items arrive according to a Poisson process with rate λ = 30 items per day. Unlike the dataset [38], we

assume that the popularity of each clusters evolves over time and is specified by a weighted Gaussian,

with weight drawn uniformly between 1 and 5, mean drawn uniformly over the time-interval of data

item generation, and standard deviation uniform between 2.5 and 5 days. When an item is generated

in the data set, the probability of its assignment to a given cluster is proportional to the current

popularity of the cluster. We generate a dataset comprised of Nd = 500 elements.

For the simulated dataset, we have access to both the true cluster assignment (determined when we

create the dataset) and the assignment provided by the algorithm. We can therefore employ clustering

evaluation metrics such as the normalized mutual information (NMI) and the f-measure [39]. Let ccc

denote the true clustering with cluster label ci for data item i and let zzz = {zi} denote the label

assigned by the algorithm. The f-measure (in its most common form) is defined as:

F =
2PR

P +R
(27)

where P is the precision and R is the recall, defined in this case as:

P =

∑Nd

i=1

∑Nd

j=1 I(ci = cj)I(zi = zj)∑Nd

i=1

∑Nd

j=1 I(zi = zj)
; R =

∑Nd

i=1

∑Nd

j=1 I(ci = cj)I(zi = zj)∑Nd

i=1

∑Nd

j=1 I(ci = cj)
(28)

where I denotes the indicator function. The normalized mutual information NMI between the true

assignments ccc and the algorithm assignments zzz is defined as follows:

NMI(zzz, ccc) =
2I(zzz, ccc)

H(ccc) +H(zzz)
(29)

where I(zzz, ccc) is the mutual information:

I(zzz, ccc) =

Nd∑
k=1

Nd∑
j=1

|zk ∩ cj |
Nd

log
Nd|zk ∩ cj |
|zk||cj |

(30)

H(ccc) is the entropy of the clustering ccc, defined by:

H(ccc) = −
∑
j

|cj |
Nd

log
|cj |
Nd

(31)

Both the f-measure and the NMI have a value in the range [0, 1], and larger values indicate better

clusterings (closer matches to the ground truth) in both cases.

We compare the results of three algorithms with different generative models (TS-DPM [12], TDPM

[16] and GPU [23]) each paired with a SMC sampler. For the TDPM and GPU models, we use 1

day as the epoch. We also examine the impact of using the targeted sampling procedure. The results

are presented in Table 1, with means and standard deviations evaluated over 5 Monte Carlo runs.
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We see that the TS-DPM framework outperforms the other two generative models. This is probably

due to its ability to take into account the actual time differences between data items, allowing it to

better model the cluster popularity evolution. The proposed targeted sampling scheme improves the

performance of all three algorithms.

Model
Sampling
Scheme

NMI f-measure

TS-DPM
non-targeted 0.81 (0.02) 0.69 (0.04)

targeted 0.90 (0.01) 0.86 (0.02)

TDPM
non-targeted 0.74 (0.01) 0.51 (0.03)

targeted 0.81 (0.01) 0.67 (0.02)

GPU
non-targeted 0.78 (0.01) 0.57 (0.02)

targeted 0.82 (0.02) 0.70 (0.04)

Table 1: Performance comparison for synthetic data

6.2. Real-world dataset

We collected all articles from from the Cable News Network (CNN) and the New York Times

(NYT) over the period from November 13th, 2012 to March 5th, 2013. To retrieve all the articles, we

created a daemon that crawled the RSS feeds every 30 minutes and stored any new additions to the

feed. Data items were created by extracting the titles and removing the stop-words.

We applied the sequential Monte Carlo sampler with the TS-DPM and TDPM generative models

to the datasets. Figure 2 depicts five of the strongest clusters that were identified using the TS-DPM

model, and shows the most common words appearing in the items associated with each cluster. We

have manually assigned labels to the clusters. We indicate in the figure relevant events (e.g. the fiscal

cliff, the Superbowl) that prompted numerous articles to be written about the same topic.

For this real-world dataset, we do not have access to a ground truth to evaluate clustering perfor-

mance. Instead we use the Davies-Bouldin (DB) index [40] to provide a measure of the quality of a

clustering. The index requires specification of a distance between data items that ranges between 0

and 1. We use a distance based on the cosine similarity s(xi, xj), defined as:

d(xi, xj) = 1− s(xi, xj) = 1− xixj
||xi|| ||xj ||

. (32)

Here the data items xi and xj are represented in their vector form, i.e., a vector of length V (the

size of the vocabulary) where the k-th element corresponds to the number of occurrences of the k-th

word. Smaller values of the DB index indicate more coherent or “better” clusterings.

Table 2 presents the average DB index values achieved by the online clustering algorithms, with

and without targeted sampling, on the NYT/CNN dataset. We observe that the TDPM model

performs marginally better than TS-DPM model in this case, perhaps indicating that time scales

and differences smaller than one day are not relevant for this dataset. The targeted sampling scheme
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Dataset Model Sampling Scheme DB Index

NYT/CNN
TS-DPM

non-targeted 1.30
targeted 1.26

TDPM
non-targeted 1.28

targeted 1.15

Synthetic
TS-DPM targeted 1.39
TDPM targeted 1.51

Table 2: Performance comparison for NYT/CNN dataset

improves the performance for both algorithms. For comparison, we also present the values of the DB

index for TS-DPM and TDPM models with targeted sampling on the synthetic dataset. We observe

that the index values for the NYT dataset are smaller than those for the synthetic dataset, indicating

that the algorithm has identified meaningful clustering structure.

7. Conclusion

We have provided a tutorial description and survey of dynamic probabilistic topic models and

indicated how they can be combined with sequential Bayesian inference procedures, particularly se-

quential Monte Carlo samplers, to derive online clustering algorithms. These algorithms are suitable

for data streams and can take into account the order of the data items or their arrival times when

detecting the evolving clusters in the data.

Much research has been dedicated to the development of clustering procedures, but the vast

majority of the algorithms that are capable of processing truly large datasets are heuristic in nature.

There is tremendous value in developing algorithms that are based on generative probabilistic models,

FISCAL CLIFF
Boehner, Obama, 
House, Fiscal, ...

SUPER BOWL
Bowl, Super, XLVII, Ad, 
Injuries, ...

Super bowl XLVII on Feb 3 

Obama nominated Hagel for secretary of defense on Jan 7

CHUCK HAGEL
Hagel, Obama, Defense, 
Chuck, Bill, Party, ... Obama made his state of 

the union speech on Feb 12

STATE OF THE UNION ADDRESS
Obama, State, Address, Cuts, 
Union, Deal, War, ...

Fiscal cliff to happen on Dec 31

Congolese rebel group 
took control of Goma 

on Nov 27

CONGO 
Rebels, Congo, 
Goma, Recognition, 
...

Figure 2: Five sample clusters identified by the algorithm for the NYT/CNN dataset. Yellow bars indicate evolving
cluster weights; we also indicate the most common words and the events that most likely inspired the articles about
these topics.
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which permits application of principled inference techniques. The past decade has seen significant

advances in sequential Monte Carlo sampling techniques and variational inference approaches. These

advances, together with the advent of increasingly powerful probabilistic models that can capture the

dynamic structure of evolving datasets, provide fruitful territory for researchers who are striving to

build algorithms that can scale to process hundreds of millions of data items arriving at very fast rates.

Many research challenges remain, including how to decentralize the algorithms to address scenarios

where data becomes available at distributed computers, and how to parallelize the algorithms to take

advantage of multi-core and cluster computational capabilities.
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