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ABSTRACT

We introduce a sparse multivariate regression algorithm which si-
multaneously performs dimensionality reduction and parameter es-
timation. We decompose the coefficient matrix into two sparse ma-
trices: a long matrix mapping the predictors to a set of factors and
a wide matrix estimating the responses from the factors. We impose
an elastic net penalty on the former and an �1 penalty on the latter.
Our algorithm simultaneously performs dimension reduction and co-
efficient estimation and automatically estimates the number of latent
factors from the data. Our formulation results in a non-convex op-
timization problem, which despite its flexibility to impose effective
low-dimensional structure, is difficult, or even impossible, to solve
exactly in a reasonable time. We specify a greedy optimization al-
gorithm based on alternating minimization to solve this non-convex
problem and provide theoretical results on its convergence and op-
timality. Finally, we demonstrate the effectiveness of our algorithm
via experiments on simulated and real data.

Index Terms— Sparse Multivariate Regression, Factor Regres-
sion, Low Rank, Sparse Principal Component Analysis

1. INTRODUCTION

Multivariate Regression. We study the problem of linear mul-
tivariate regression where we have a set of p-dimensional predic-
tors, xi = (xi1, . . . , xip)

T ∈ R
p, and q-dimensional responses,

yi = (yi1, . . . , yiq)
T ∈ R

q , which are related as:

yi = DTxi + εi, i = 1, . . . , n, (1)

where Dp×q is the regression coefficient matrix and εi = (εi1, . . . , εiq)
is the vector of errors for the i-th sample. We assume that the er-
ror vectors for N samples are i.i.d. Gaussian random vectors with
zero mean and covariance Σ, i.e. εi ∼ N (0,Σ), i = 1, . . . , N .
Rewriting (1) in matrix format, we have:

Y = XD+E, (2)

where X denotes the n× p matrix of predictors with xi
T as its i-th

row, Y denotes the n × q matrix of responses with yi
T as its i-th

row, and E denotes the n × q matrix of errors with εi
T as its i-th

row. In this paper, it is assumed that the columns of X and Y are
centred and thus, the intercept term is removed. In this paper, we
are interested in multivariate regression tasks where it is reasonable
to believe that the responses are related to factors, each of which
is a sparse linear combination of the predictors. Our model further
assumes that the relationships between the factors and the responses
are sparse. This type of structure occurs in a number of applications
and we provide two examples later.

Regularization. Standard regression techniques, such as least-
squares or principal component regression, are not consistent unless

p/n → 0. Therefore, it is necessary to impose structural con-
straints on the coefficient matrix in high-dimensional settings. The
most common constraint is the �1 penalty (LASSO) which imposes
element-wise sparsity on the coefficient matrix [1, 2]. For the mul-
tivariate regression problem in (2), �1 regularization reduces the
problem to q separate multiple regression problems being solved in-
dependently. This is not desirable since the correlation between the
tasks is not used. Another way to introduce sparsity is to consider
the mixed �1/�γ norms (γ > 1). This regularization (sometimes
called group LASSO), imposes a block-sparse structure where each
row is either all zero or mostly zeros. Particular examples, among
many other works, include results using the �1/�∞ norm [3, 4],
and the �1/�2 norm [5–7]. Peng et al. proposed a method, called
RemMap [8], which imposes both element-wise and row-wise spar-
sity and solves the:

min
D
‖Y −XD‖2F + λ1‖D‖1,1 + λ2‖D‖1,2.

In an alternative approach, [9] extended the partial least squares
(PLS) framework by imposing an additional sparsity constraint and
proposed Sparse PLS (SPLS).

Factor Regression. Instead of directly regularizing the regression
coefficients, one can impose constraints on the rank of the coefficient
matrix, its singular values and/or its singular vectors [9–13]. These
algorithms belong to a broad family of dimension-reduction methods
known as linear factor regression, where the responses are regressed
on a set of factors achieved by a linear transformation of the predic-
tors. Thus, in factor regression, the coefficient matrix is decomposed
into two matrices D = Ap×mBm×q , where A transforms the pre-
dictors into m latent factors, and B determines the factor loadings.

Our contributions. Here, we propose a novel algorithm which
performs sparse multivariate factor regression (SMFR). We jointly
estimate matrices A and B by minimizing the mean-squared error,
‖Y −XAB‖2F , with an elastic net penalty on A (which promotes
grouping of correlated predictors and the interpretability of the fac-
tors) and an �1 penalty on B (which enhances the accuracy and in-
terpretability of the predictions). We provide a formulation to esti-
mate the number of effective latent factors, m. To the best of our
knowledge, our work is the first to strive for low-dimensional struc-
ture by imposing sparsity on both factoring and loading matrices as
well as the grouping of the correlated predictors. This can result in a
set of interpretable factors and loadings with high predictive power;
however, these benefits come at the cost of a non-convex objective
function. Most current approaches for multivariate regression solve
a convex problem (either through direct formulation or by relaxation
of a non-convex problem) to impose low-dimensional structures on
the coefficient matrix. Although non-convex formulations, such as
the one introduced here, can be employed to achieve very effective
representations in the context of multivariate regression, there are
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few theoretical performance guarantees for optimization schemes
solving such problems. We formulate our problem in Section 2. In
Section 3, we propose an alternating minimization scheme to solve
our problem and provide theoretical guarantees for its convergence
and optimality. We show that under mild conditions on the predictor
matrix, every limit point of the minimization algorithm is a station-
ary point of the objective function and if the starting point is close
enough to a local or global minimum, our algorithm converges to
that point. Finally, through analysis of simulations on synthetic and
real datasets in Sections 4 and Section 5, we show that compared
to other multivariate regression algorithms, our proposed algorithm
can provide a more effective representation of the data, resulting in
a higher predictive power.

Related Work. Our algorithm belongs to the class of low-rank
multivariate regression algorithms. A well-known algorithm in this
class is an approach called Reduced Rank Regression (RRR) [13]
where the sum-of-squares error is minimized under the constraint
that rank(D) ≤ m for some m ≤ min{p, q}. Without regular-
ization, RRR has poor predictive performance and is not suitable
for high-dimensional settings. To resolve this, it is common to use
the trace norm as the penalty [12, 14–16]: minD ‖Y − XD‖2F +

λ
∑min{p,q}

j=1 σj(D), where σj(D) denotes the j’th singular value of
D. By imposing sparsity in the singular values of D, trace norm reg-
ularization results in a low-dimensional solution. Another common
formulation is: minD ‖Y−XD‖2F +g(D) s.t. rank(D)≤m, where
g(D) is a regularization function over D. For instance, in [17], a
ridge penalty is proposed with g(D) = λ‖D‖2F . Often, the rank
constraint on D is enforced by assuming that D = Ap×mBm×q and
the problem is formulated in terms of A and B. In [18], g(A,B) =
λ1‖A‖1,1 + λ2‖B‖2F . An algorithm called Sparse Reduced Rank
Regression (SRRR) is proposed in [11], where g(A,B) = λ‖A‖1,2
with an additional constraint that BBT = I. In [14], g(A,B) =
λ‖B‖22,1 with an extra constraint that ATA = I, and it is assumed
that m = p ≤ q. The constraint on B forces many rows to be zero
which cancels the effects of the corresponding columns in A.

Our problem formulation differs in three important ways: (i)
sparsity constraints are imposed on both A and B; (ii) the elastic
net penalty on A provides the grouping of correlated predictors; and
(iii) the number of factors is determined directly, without the need
for cross-validation. We will discuss the second and third aspects in
detail in the next section. The first difference has substantial conse-
quences; when decomposing the coefficient matrix into two matri-
ces, the first matrix has the role of aggregating the input signals to
form the latent factors and the second matrix performs a multivari-
ate regression on these factors. Imposing sparsity on A enhances
the variable selection as well as the interpretability of the achieved
factors. Also, as originally motivated by LASSO, we would like to
impose the sparsity constraint on B in order to improve the inter-
pretability and prediction performance.

2. PROBLEM SETUP

In this work, we introduce a novel low-dimensional structure where
we decompose D into the product of two sparse matrices Ap×m

and Bm×q where m < min(p, q). This decomposition can be in-
terpreted as first identifying a set of m factors which are derived by
some linear transformation of the predictors (through matrix A) and
then identifying the transformed regression coefficient matrix B to
estimate the responses from these m factors. We provide a frame-
work to find m, the number of effective latent factors, as well as

matrices A and B. For a fixed m, define:

Âm, B̂m = argmin
Ap×m,Bm×q

f(A,B), (3)

where

f(A,B)=
1

2
‖Y−XAB‖2F+λ1‖A‖1,1+λ2‖B‖1,1+λ3‖A‖2F . (4)

Then, we solve the following optimization problem:

m̂=max(m) ≤ r s.t. rank(Âm)=rank(B̂m)=m, (5)

where r is a problem-specific bound on the number of factors. We

then choose Âm̂ and B̂m̂ as solutions. Thus, we find the maximum
number of factors such that the solution of (3) has full rank factor and
loading matrices. In other words, we find the maximum m such that
the best possible regularized reconstruction of responses, i.e., the
solution of (3), results in a model where the factors (columns of of
Â) and their contributions to the responses (rows of B̂) are linearly
independent. To achieve this, we initialize A to have r columns, B
to have r rows, and set m = r, solve the problem (3)–(4), check for
the full rank condition; if not satisfied, set m = m − 1, and repeat
the process until we identify an m that satisfies the rank condition.

2.1. Grouping of Correlated Features

In this section, we show the i’th row of a matrix X by Xi· and its j’th
column by X·j . Remember that matrix A has the role of combining
relevant features to form the latent factors which will be used later in
the second layer by matrix B for estimating the outputs. If there are
two highly correlated features we expect them to be grouped together
in forming the factors. In other words, we expect them to be both
present in a factor or both not present. Inspired by Theorem 1 in the
original paper of Zou and Hastie on elastic net [19], we prove in this
section that elastic net penalty enforces the grouping of correlated
features in forming the factors. The columns of X correspond to
different features. We assume that all columns of X are centred
and normalized. Thus, the correlation between the i’th and the j’th
features is ρij � XT

·iX·j .

Lemma 1. Consider solving Â = argminA f(A,B). Then, if
ÂikÂjk > 0, we have:

2λ3

‖Y‖F ‖Bk·‖F |Âik − Âjk| ≤
√

2(1− ρij) (6)

The proof is omitted due to lack of space, but can be found in the
extended version of this paper [20]. This lemma says, for instance,
that if the correlation between features i and j is really high (i.e.,
ρij ≈ 1), then the difference between their corresponding weights

in forming the k’th factor, |Âik− Âjk|, would be very close to 0. If
X·i and X·j are negatively correlated, we can state the same lemma
for X·i and −X·j and use |ρij |.

2.2. Estimating the number of effective factors

In choosing m, we want to avoid both overfitting (large m) and lack
of sufficient learning power (small m). In general, we only require
m ≤ min(p, q); however, in practical settings where p and q are
very large, we impose an upper bound on m to have a reasonable
number of factors and avoid overfitting. This upper bound, denoted
by r, is problem-specific and should be chosen by the programmer.
In order to have the maximum learning power, we find the maximum
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m ≤ r for which the solutions satisfy our rank conditions. This mo-
tivates starting with m = r and decreasing it until the conditions
hold. The full rank conditions are employed to guarantee a good
estimate of the number of “effective” factors. An effective factor ex-
plains some aspect of the response data but cannot be constructed as
a linear combination of other factors. We therefore require the esti-
mated factors to be linearly independent. In addition, we require that
the rows of B, which determine how the factors affect the responses,
are linearly independent. If we do not have this latter independence,
we could reduce the number of factors and still obtain the same re-
lationship matrix D, so at least one of the factors is superfluous. By
enforcing that A and B are full rank, we make sure that the esti-
mated factors are linearly independent in both senses, and thus m̂ is
a good estimate of the number of effective factors.

3. OPTIMIZATION AND THEORETICAL RESULTS

The optimization problem defined in (3–5) is not a convex problem
and it is difficult, if not impossible, to solve exactly (i.e., to find the
global optimum) in polynomial time. Therefore, we have to employ
heuristic algorithms, which may or may not converge to a stationary
solution [21]. In this section, we propose an alternating minimiza-
tion algorithm and provide some theoretical results.

For a fixed m, the objective function in (3) is biconvex in A and
B; it is not convex in general, but is convex if either A or B is fixed.
Let us define C = (A,B). To solve (3) for a fixed m, we perform
the following alternating updates with an arbitrary, non-zero starting
value C0 = (A0,B0):

Bi+1 ← argmin
B

1

2
‖Y −XAiB‖2F + λ2‖B‖1,1 (7)

Ai+1 ← argmin
A

1

2
‖Y−XABi+1‖2F +λ3‖A‖2F +λ1‖A‖1,1 (8)

The stopping criterion is related to the convergence of the value of
function f , not the convergence of its arguments. In our experiments,
we assume f has converged, if |fi − fi+1|/fi < ε where the default
value of the tolerance parameter, ε, is 1E−5. It is possible to modify
the updates in (7) and (8) to achieve faster convergence; we do not
include these results here due to lack of space. These results as well
as all the proofs for the Theorems in this section can be found in the
extended version of this paper [20].

Definition 1. C∗ = (A∗,B∗) is called a partial optimum of f if

f(A∗,B∗) ≤ f(A∗,B), ∀B ∈ R
m×q (9)

and f(A∗,B∗) ≤ f(A,B∗), ∀A ∈ R
n×m. (10)

Definition 2. A point C∗ is an accumulation point or a limit point
of a sequence {Ci}i∈N, if for any neighbourhood V of C∗, there are
infinitely many j ∈ N such that Cj ∈ V . Equivalently, C∗ is the
limit of a subsequence of {Ci}i∈N.

Proposition 1. The sequence f(Ai,Bi) generated by Algorithm 1
converges monotonically.

The value of f is always positive and is reduced in each of the
two main steps of Algorithm 1. Thus, it is guaranteed that the stop-
ping criterion of Algorithm 1 will be reached.

Theorem 1. If the entries of X ∈ R
n×p are drawn from a contin-

uous probability distribution on R
np, then: (i) The solution of (7) is

unique if Ai is full rank. (ii) The objective of (8) is strongly convex
and its solution, if one exists, is unique.

In classical LASSO, the condition on the entries of X is suf-
ficient to achieve solution uniqueness [22]. For LASSO, the con-
tinuity is used to argue that the columns of X are in general po-
sition with probability 1. The affine span of the columns of X,
{X1, . . . ,Xk+1}, has Lebesgue measure 0 in R

n for a continuous
distribution on R

n, so there is zero probability of drawing Xk+2 in
their span. If we multiply X by a matrix with full column rank, we
retain the same property, and thus the solution of (7) is unique if Ai

is full rank. Since the objective function is strictly convex in A (due
to the elastic net property), if (8) has a solution, its solution is unique.

Next, we study the properties of Ĉ = (Â, B̂) at convergence.

Theorem 2. Assume that the entries of X ∈ R
n×p are drawn from

a continuous probability distribution on R
np. For a given starting

point A0, let {Ci}i∈N denote the sequence of solutions generated
by Algorithm 1. Then: (i) {Ci}i∈N has at least one accumulation
point. (ii) All the accumulation points of {Ci}i∈N are partial op-
tima and have the same function value. (iii) If B is full rank for all
accumulation points of {Ci}i∈N, then:

lim
i→∞

‖Ci+1 −Ci‖ = 0, (11)

Part (i) follows from the fact that the solutions produced by Al-
gorithm 1 are contained in a bounded, closed (and hence compact)
set. Although Algorithm 1 converges to a specific value of f , this
value can be achieved by different values of C. Thus, the sequence
Ci can have many accumulation points. Part (ii) of Theorem 2 shows
that any accumulation point is a partial optimum. Proposition 1 im-
plies that for any given starting point, all the associated accumulation
points have the same f value. Under the assumption that B is full
rank for all accumulation points of {Ci}i∈N, part (iii) provides a
guarantee that the difference between successive solutions of the al-
gorithm converges to zero, for both the factor and loading matrices.
Although the condition in (11) does not guarantee the convergence
of the sequence {Ci}i∈N, it is close enough for practical purposes.
Also, note that for finding the number of factors, we require that both
A and B to be full rank for the final solution. When B is full rank,
the solutions to both (7) and (8) are unique and thus A and B will
not change in the following iterations, i.e., convergence.

4. SIMULATION STUDY

In this section, we use synthetic data to compare the performance of
our algorithm with several related multivariate regression methods
reviewed in the introduction. We generate the synthetic data in ac-
cordance with the model described in (2), Y = XD + E, where
D = AB. First, we generate an n × p predictor matrix, X, with
rows independently drawn from N (0,ΣX), where the (i, j)-th ele-

ment of ΣX is defined as σX
i,j = 0.7|j−i|. This is a common model

for predictors in the literature [8,12,23]. The rows of the n× q error
matrix are sampled from N (0,ΣN ), where the (i, j)-th element of

ΣN is defined as σX
i,j = σ2

n · 0.4|j−i|. The value of σ2
n is varied to

attain different levels of signal to noise ratio (SNR). Each row of the
p×m matrix A is chosen by first randomly selecting m0 of its ele-
ments and sampling them from N (0, 1) and then setting the rest of
its elements to zero. Finally, we generate the m× q matrix B by the
element-wise product of B = U ◦W, where the elements of U are
drawn independently from N (0, 1) and elements of W are drawn
from Bernoulli distribution with success probability s. We evaluate
the predictive performance over a separate test set (Xtest,Ytest), in

terms of the mean-squared error: MSE = ‖XtestD̂−Ytest‖2F /nq,
where D̂ is the estimated coefficient matrix. In our case, D̂ = ÂB̂.
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Parameters MSE over test set

n p q m m0 σn s SMFR LASSO �1/�2 [6] SRRR [11] RemMap [8] SPLS [9] Trace [15] Ridge

50 150 50 10 1 3 0.2
0.070

(0.004)

0.083

(0.005)

0.090

(0.005)

0.084

(0.005)

0.083

(0.005)

0.091

(0.007)

0.088

(0.004)

0.089

(0.004)

10 1 3 0.4
0.078

(0.007)

0.104

(0.008)

0.105

(0.007)

0.099

(0.007)

0.104

(0.008)

0.110

(0.008)

0.110

(0.007)

0.111

(0.006)

10 1 5 0.2
0.110

(0.004)

0.118

(0.005)

0.133

(0.004)

0.117

(0.005)

0.123

(0.004)

0.122

(0.007)

0.115

(0.005)

0.122

(0.006)

15 2 3 0.2
0.071

(0.003)

0.108

(0.006)

0.112

(0.007)

0.109

(0.008)

0.107

(0.006)

0.114

(0.008)

0.109

(0.006)

0.110

(0.008)

50 100 100 10 1 5 0.1
0.068

(0.001)

0.070

(0.002)

0.092

(0.002)

0.071

(0.002)

0.075

(0.002)

0.073

(0.002)

0.071

(0.002)

0.074

(0.002)

500 150 50 10 1 3 0.2
0.0172

(0.0001)

0.0180

(0.0001)

0.0198

(0.0001)

0.0176

(0.0001)

0.0184

(0.0001)

0.0216

(0.0007)

0.0183

(0.0002)

0.0187

(0.0001)

500 100 100 10 1 5 0.3
0.0202

(0.0001)

0.0209

(0.0002)

0.0222

(0.0001)

0.0204

(0.0001)

0.0214

(0.0001)

0.0222

(0.0003)

0.0208

(0.0001)

0.0213

(0.0002)

Table 1: Comparison of six algorithms for different setups. We report mean and standard deviations of the MSE over the test sets (20 runs).

We compare the performance of our algorithm, SMFR, with
many other algorithms reviewed in Section 1 as well as a baseline
algorithm with a simple ridge penalty. The means and standard
deviations of different algorithms are presented in Table 1. We
use five-fold cross-validation to find the tuning parameters of all
algorithms. We set r, the maximum number of factors, to 20. Our
algorithm outperforms the other algorithms and results in lower
MSE means and standard deviation. On average, our algorithm re-
duces the test error by 13.2% compared with LASSO, 21.4% com-
pared with �1/�2, 12.3% compared with SRRR, 15.2% compared
with RemMap, 19.4% compared with SPLS, 39.1% compared with
Trace, and 16.7% compared with Ridge. See [20] for more results.

5. APPLICATION TO REAL DATA

We consider a dataset of Montreal’s bicycle sharing system called
BIXI. The data contains the number of available bikes in each of the
400 installed stations for every minute. We use the data collected
for the first four weeks of June 2012. We allocate two features to
each station corresponding to the number of arrivals and departures
of bikes to or from that station for every hour. The learning task is to
predict the number of arrivals and departures for all the stations from
the number of arrivals and departures in the last hour (i.e., a vector
autoregressive model). We perform the prediction task on each of
the four weeks. For each week, we take the data for the first 5 days
(Friday to Tuesday) as the training set, and the last two days as the
test set (Wednesday and Thursday). We compare the algorithms per-
forming dimensionality reduction in terms of their predictive perfor-
mance on the test sets in Table 2. We also include LASSO and �1/�2
as baseline algorithms. We observe that our algorithm outperforms
the others in all 4 weeks.

week SMFR SRRR SPLS LASSO �1/�2

1 557.3 570.0 1661 580.4 591.0

2 570.1 602.2 1888 610.9 623.7

3 618.8 641.9 2159 643.4 657.8

4 549.7 594.6 1621 594.9 588.0

Table 2: Total squared error (MSE×nq) for BIXI dataset

We examine one of the factors built by our algorithm in Fig. 1.
With no geographical data provided to the algorithm, this learned
factor shows that the departures from populated residential areas
(The Plateau, Mile End, Outremont) and arrivals at downtown (Ville
Marie) are combined together to form a factor. This agrees with the
intuition that many people are taking bikes to go from their homes to
downtown where universities and businesses are located and shows
the success of our algorithm in discovering the underlying structure
of the data which in turn results in better predictive performance.

−73.65 −73.6 −73.55 −73.5

45.46

45.48

45.5

45.52

45.54

45.56

Longitude

La
tit

ud
e

Fig. 1: One of the factors identified in the BIXI dataset by our al-

gorithm. Green plus signs show the stations, red crosses show the

departure features and blue circles show the arrival features.

6. CONCLUSION

We introduced a sparse multivariate regression algorithm which im-
poses a novel sparse and low-dimensional structure on the coefficient
matrix and promotes grouping of correlated features. We also pro-
vided a formulation to infer the number of latent factors in a more
effective way than current techniques. Although the problem formu-
lation leads to a non-convex optimization problem, we showed that
the proposed alternating minimization scheme converges to a par-
tial optimum. Through experiments on simulated and real datasets,
we demonstrated that the proposed algorithm is able to exploit the
existing structure in the data to improve predictive performance.
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