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ABSTRACT

In this paper, we consider a generalized multivariate regression prob-
lem where the responses are monotonic functions of linear trans-
formations of predictors. We propose a semi-parametric algorithm
based on the ordering of the responses which is invariant to the func-
tional form of the transformation function. We prove that our algo-
rithm, which maximizes the rank correlation of responses and linear
transformations of predictors, is a consistent estimator of the true co-
efficient matrix. We also identify the rate of convergence and show
that the squared estimation error decays with a rate of o(1/

√
n).

We then propose a greedy algorithm to maximize the highly non-
smooth objective function of our model and examine its performance
through simulations. Finally, we compare our algorithm with tradi-
tional multivariate regression algorithms over synthetic and real data.

Index Terms— Generalized Multivariate Regression, Semi-
parametric, Kendall’s Rank Correlation

1. PROBLEM SETUP

In linear multivariate regression, we have the following model:

yT
i = xT

i B+ ε, i = 1, . . . , n, (1)

where yi ∈ R
q×1 is the response vector (q > 1), xi ∈ R

p×1 is the
predictor vector, B ∈ R

p×q is the coefficient matrix, and εi ∈ R
q×1

represents the noise with i.i.d. elements that are independent of xi.
In this paper, we consider the following extension of this problem:

yT
i = Ui(x

T
i B+ εTi ), i = 1, . . . , n, (2)

where Ui: R→ R is a non-degenerate monotonic function called the
utility or link function. When the input of Ui is a vector or a matrix,
it is implied that Ui is applied separately on each individual element
to give the output, which is a vector or matrix of the same size as the
input. Without loss of generality, we assume that Ui is an increasing
function. We propose a semi-parametric, rank-based approach to
estimate B which is invariant with respect to the functional form of
Ui functions. Our approach only uses the ordering of the elements
of yi, which makes it more robust to outliers and heavy-tailed noise
compared to traditional regression algorithms. This also makes our
approach applicable to cases where the numeric values of yi are not
available, and only their ordering is known.

We show that it is possible to consistently estimate B solely
based on the ordering of the elements of yi. Our approach to es-
timating B is based on maximizing Kendall’s rank correlation of
yT
i and xT

i B. For notational simplicity, we assume that all the link
functions are equal and denote them by U ; however, all the results
presented in this paper hold for the case where there is a separate
link function, Ui, for each observation. Let us rewrite (2) in matrix
form:

Yn×q = U(Xn×pBp×q +En×q), (3)

where p is the number of predictors, q is the number of responses,
and n denotes the number of instances. xT

i , yT
i , and εTi correspond,

respectively, to the i-th rows of X, Y, and E. To find B, we propose
to solve:

B̂n=argmax
B

1

n
(
q
2

)
n∑

i=1

q∑
j=1

q∑
k=1

1(yij>yik)1(x
T
i bj>x

T
i bk)

︸ ︷︷ ︸
Sn(B)

,

(4)
where bj denotes the j-th column of B. The intuition behind this
formulation is that since U is increasing and the error is i.i.d. and
independent of x, when we have xT

i bj > xT
i bk, it is more likely to

have yij >yik than yij <yik. The term in the summation is zero for
j= k. Maximizing Sn(B) is equivalent to maximizing the average
rank correlation of yT

i and xT
i B since 2Sn(B) − 1 corresponds to

the average over the n observations of the Kendall’s rank correlation
between yT

i and xT
i B.

2. MOTIVATING EXAMPLES AND RELATED WORK

2.1. Learning from non-linear measurements

In many practical settings, the measurements or observations are
noisy non-linear functions of a linear transformation of an underly-
ing signal. This could be due to the uncertainties and non-linearities
of the measurement device or arise from the experimental design. In
the statistics and economics literature, this model is known as the
single-index model and it has been studied extensively [1–6]. The
response in the single-index model is univariate and the form of the
link function is sometimes assumed known.

In our model, the response is a vector (multivariate regression)
and we assume that the functional form of the link function is un-
known. Also, our inference approach only uses the ordering of the
elements of the response vector. Recently, it has been shown that
under certain assumptions (e.g., when the predictors are drawn from
a Gaussian distribution), Lasso with non-linear measurements is
equivalent to one with linear measurement with an equivalent input
noise proportional to the non-linearity of the link function [7]. Thus,
it has been suggested to use Lasso in the non-linear case as if the
measurements were linear. Here, and under much more general con-
ditions, we show that our algorithm performs better than a simple
application of Lasso to the non-linear problem.

2.2. Learning from the ordering of responses

Our approach is particularly of interest in applications (e.g., surveys)
where subjects order a set of items based on their preferences, e.g.,
people ranking different types of sushi based on their preference [8].
In these scenarios, the underlying model cannot be learned by tra-
ditional regression techniques, which require a numerical response.
However, our algorithm is directly applicable since it only uses the
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ordering of the elements of the response vector. Even in the sce-
narios where the actual values of responses are available (e.g., nu-
merical ratings), it is often more sensible to focus on the ordering
rather than striving to learn based on the assigned numerical values.
As discussed in [9], there is often no invariant and objective map-
ping between true preference and observed ratings among subjects,
since “each user uses his/her own mapping based on a subjective and
variable criterion in his/her own mind”. Thus, the mappings might
be inconsistent among different subjects. Moreover, the mappings
might be inconsistent for a given subject across different items [10].
By using the ordering in training and prediction, we minimize the
effects of these inconsistencies.

2.3. Collaborative and content-based filtering

Our work is also related to the problem of personalized recommen-
dation systems, but with important differences. Recommendation
systems can be divided into three main categories: content–based fil-
tering, collaborative filtering, and hybrid models [11–13]. Content–
based filtering employs the domain knowledge of users and items to
predict the ratings. Collaborative filtering does not use any user or
item information except a partially observed rating matrix, with rows
and vectors corresponding to users and items and matrix elements
corresponding to ratings. In general, the rating matrix is extremely
sparse, since each user, normally, does not experience and rate all
items. Hybrid systems combine collaborative and content–based fil-
tering, e.g., by averaging separate predictions.

If the regression–based framework described in this paper were
used in a recommendation system, it would predict each user’s or-
dering of a set of items based on a set of features for that user. These
features could include demographic information, user profile data,
or ratings of a fixed set of items. Contrary to content–based filter-
ing, our approach does not need domain-specific knowledge about
the features of items; this is potentially useful in applications where
the items to be ranked are diverse in nature. Also, as opposed to col-
laborative filtering, we can incorporate user profile data and provide
predictions for new users even if they have provided no prior ratings.
Thus, our algorithm is different from the problems of collaborative
and content-based filtering. It is important to stress that we introduce
and study a general semi-parametric multivariate regression method
which can be used in recommendation systems, but this is just one
of multiple potential applications.

2.4. Maximum rank correlation estimation

In [14], Han considered a problem similar to (2) but with an impor-
tant difference. His formulation, called Maximum Rank Correlation
(MRC) estimation, was stated for the multiple regression setting,
where yi is real-valued rather than a q-vector, and his goal was to
maximize the rank correlation across instances. Therefore, the goal
in MRC estimation is to capture the ordering of yi, i = 1, . . . , n
(across instances), whereas in this paper, our goal is to capture the
ordering of yij , j = 1, . . . , q for a fixed i (for a specific instance,
across responses). Considering the ordering across responses en-
ables us to model applications where an instance’s ordering (or rat-
ing) of a set of items depends exclusively on its predictors. Also,
the identifiability and consistency conditions for problem (2) differ
significantly from those of the multiple regression problem. There
are extensions of the MRC approach (e.g., [15, 16]), but they all are
in the multiple regression domain and only differ in how they define
the objective function to solve the same problem. Our work differs
from them for the same reasons mentioned above.

3. STRONG CONSISTENCY

In this section, we show that the solution of (4) is strongly consis-
tent under certain conditions. Sn(B) is invariant to the multiplica-
tion of all elements of B by a positive constant; i.e., for c > 0,
Sn(B) = Sn(cB). The objective function also does not change
if the same vector is added to all of the columns of B; i.e., for
any β ∈ R

p×1, Sn(B) = Sn(B + β11×q), where 1 is a vector
of all ones. These invariances are expected, since to have a semi-
parametric estimate, we target maximizing the rank correlation and
ranks are not affected when all the elements are multiplied by a pos-
itive constant (c), or are increased/decreased by the same amount
(xTβ). In other words, since our estimation is semi-parametric in U
(and thus, must be invariant to strictly monotonic transformations of
observations), B and cB + β11×q are equivalent. So, we assume
that ‖B‖F = 1 (normalization), and that the last column of B is all
zeros (subtracting the last column from all columns). We perform
the optimization in (4) over the set

B � {Bp×q : ‖B‖F = 1 and Bi,q = 0 for i = 1, 2, . . . , p},
where ‖ · ‖F denotes the Frobenius norm.

Let us denote the true coefficient matrix by B∗ and without loss
of generality assume B∗ ∈ B; otherwise, we can find c > 0 and
β ∈ R

p×1 such that cB∗ + β11×q ∈ B which gives the same
value for objective function as B∗. Also, to have a non-degenerate
problem, we assume that B∗ does not have rank 1, since in that case
there exist two vectors u ∈ R

p×1,v ∈ R
q×1 such that B∗ = uvT ,

and yT = U(xTuvT + ε). Therefore, the ordering of the elements
of y will be either the same as the ordering of the elements of v
(if xTu > 0) or the reverse of it (if xTu < 0) with perturbations
due to the noise. So, different observed orderings of the elements of
y are caused merely by noise which is not of interest. Finally, we
assume that no two columns of B∗ are equal, because in that case
the expected values of the corresponding elements of y will be the
same. Given the model in (3), to prove strong consistency, we need
the following three conditions:

(C1) U is a non-degenerate increasing function and changes value
at least at one non-zero point (i.e., U is not a step function
changing value only at 0).

(C2) The elements of E are i.i.d. random variables.
(C3) The rows of X are i.i.d. random p-vectors independent of the

elements of E and have a distribution function FX such that:
(C3.1) the support of FX is not contained in any proper linear

subspace of Rp, and
(C3.2) for all j ∈ {1, 2, . . . , q} the conditional distribution of

xj given the other components has everywhere positive
Lebesgue density.

(C4) B∗ is an interior point of B. Moreover, B∗ has a rank higher
than one and no two columns of it are equal.

The second part of condition (C1) is needed for the identifiabil-
ity. However, for all practical purposes, the step function at 0 can
be replaced by an approximate function changing value over [−ε, ε]
for some ε > 0, for which our theoretical results hold. Conditions
(C3.1) and (C3.2) are also required for identifiability, and hold in
many settings; e.g., when the rows of X have a multivariate Gaus-
sian distribution. In (C4), B∗ ∈ B implies that its last column is all
zeros, and because no two columns are equal, we can conclude that
every column except the last one has at least one non-zero element.
For some known constant η > 0 which is less than all the absolute
values of these non-zero elements, define

Bη�{B : B ∈ B; ∀j∈{1, . . . , p} ∃i∈{1, . . . , p} s.t. |Bi,j | ≥ η}.
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Denoting the solution of (4) over the set Bη by B̂n, we prove:

limn→∞ B̂n → B∗. We conduct the proof in three steps. In Lem-
mas 1 and 2, we prove the identifiability and the convergence of
Sn(B) to the expected value of the rank correlation. We then prove
the consistency in Theorem 1. The proofs are omitted here but can
be found in the extended version of this paper [17].

Lemma 1 (Identifiability). Given (C1)—(C4), B∗ attains the
unique maximum of E [Sn(B))] over the set B.

Lemma 2 (Convergence). Given (C1)—(C4), and denoting

hi(B) =
1(
q
2

)
q∑

j=1

q∑
k=1

1(yij > yik)1(x
T
i bj > xT

i bk),

we have: Sn(B)
a.s.

−−−→ E [hi(B)] .

Theorem 1. Given (C1)—(C4), the solution of (4) over the set Bη ,
B̂n, is strongly consistent; i.e., B̂n → B∗ almost surely.

Proof. Given the results of Lemmas 1 and 2, we are now ready
to prove the consistency of the solution of (4) over Bη . We do
so by showing that any set, B0 ⊂ R

p×q , that contains B∗, also

contains B̂n as n → ∞. Define B1 � Bη − (B0 ∩ Bη) and

h(B) � E [hi(B)]. B1 is compact and there exists ζ = h(B∗) −
maxB∈B1 h(B) which is always greater than 0 (because B∗ at-
tains the unique maximum and B∗ �∈ B1 ). From the result of
Lemma 2, we know that for any ζ, there is an N , such that for
n > N , |Sn(B) − h(B)| < ζ/2 for all B ∈ Bη with probabil-

ity 1. This implies that B̂n cannot be in B1; because otherwise, we

get h(B∗) − Sn(B̂n) > ζ/2 which is in contradiction with almost

sure convergence. Thus, B̂n ∈ B0 with probability 1, and since this

is true for any B0, we have B̂n → B∗ almost surely.

4. RATE OF CONVERGENCE

For ease of notation, let θ ∈ R
p(q−1) be the vectorization of the

matrix B ∈ B, except the last column which is assumed to be all
zero. Thus,

θ � (B1,1, B2,1, . . . , Bp,1, . . . , B1,q−1, . . . , Bp,q−1). (5)

For B ∈ B, the corresponding θ is in Θ, the set of d-dimensional
vectors with norm 1. So, we can denote B and its columns as func-
tions of θ, and write:

h(z,θ) =

q∑
j=1

q∑
k=1

1(yj>yk)1(x
Tbj(θ)>x

Tbk(θ)), (6)

where z = (y,x) ∈ R
p+q is the joint vector of predictors and re-

sponses for an instance, and bj denotes the j’th column of B. Let

θ̂n correspond to B̂n and θ0 correspond to B∗. Based on (C4) we
know that θ0 is an interior point of Θ. In the previous section, we

showed that θ̂n

a.s.

−−−→ θ0. In this section, we study the rate of con-

vergence and show that ‖θ̂n−θ0‖2 ≤ op(1/
√
n), where ‖ · ‖ is the

Euclidean norm.

The following Lemma plays a critical role in establishing the
rate of convergence. Its proof, using results from [18–20], is omitted
here due to lack of space, but can be found in [17].

Lemma 3. For θ in an op(1) neighborhood of θ0, and S(θ) �
Ez [h(z,θ)], we have:

Sn(θ) = S(θ) + Sn(θ0)− S(θ0) + op(1/
√
n). (7)

For the next Theorem we require that there exists an op(1)
neighborhood A of θ0 and a constant κ > 0 for which S(θ) −
S(θ0) ≤ −κ‖θ − θ0‖2 for all θ ∈ A. The existence of A is
guaranteed since θ0 is an interior point of Θ. Also, κ > 0 exists if:

(C5) The matrix∇2S(θ0) is negative definite.

Theorem 2. Assume that there exists an op(1) neighborhood A of
θ0 and a constant κ > 0 for which S(θ)− S(θ0) ≤ −κ‖θ − θ0‖2
for all θ ∈ A. Then, the squared estimation error decays with a rate
faster than 1/

√
n: ‖θ̂n − θ0‖2 ≤ op(1/

√
n).

Proof. By definition of θ̂n we have: 0 ≤ Sn(θ̂n)−Sn(θ0). Rewrit-
ing this inequality using the result of Lemma 3 gives:

0 ≤ S(θ̂n)− S(θ0) + op(1/
√
n) ≤ −κ‖θ̂n − θ0‖2 + op(1/

√
n).
(8)

which gives us ‖θ̂n − θ0‖2 ≤ op(1/
√
n).

Corollary 1. Given (C1)–(C5), we have ‖θ̂n−θ0‖2 ≤ op(1/
√
n).

5. OPTIMIZATION

We have shown that solving (4) provides a consistent estimate of
B∗. However, the objective function is very non-smooth (the sum of

many step functions) and finding B̂n can be challenging. In this sec-
tion, we propose a fast, greedy algorithm to solve (4). First, consider
the following maximization problem:

x̂ = argmax
x∈R

T∑
t=1

1(ut + vtx > 0), (9)

where {ut}Tt=1 and {vt}Tt=1 are given real numbers. We propose
an O(T log T ) algorithm to find x̂. The algorithm works as fol-
lows. First, we sort the sequence {−ut/vt}Tt=1, in O(T log T ).
Then, we start x from a value less than the first sorted point, i.e.,
min{−ut/vt; t = 1, . . . , T}, and at each step, move forward to the
next smallest point. At each step, we cumulatively add or subtract 1
depending on the sign of vt (i.e., depending on whether one of the
step functions went from 0 to 1 or vice-versa) and keep track of the
largest cumulative sum seen so far, and the value of x for which that
maximum happened. After going through all T points, the largest
observed cumulative sum is equal to the maximum value of the ob-
jective function, and the corresponding value of x is x̂. Since the ob-
jective function is piecewise constant, its maximum is attained over
an interval; we set x̂ to the center of this interval. Therefore, we can
solve (4) in O(T log T ).

We use an alternating maximization scheme to solve (4). We ini-
tialize the elements of B randomly (drawn from i.i.d. normal) and
go through all its elements one-by-one and update them to maximize
Sn(B) while the other elements are kept fixed. We can show that
each of these optimization problems are of the form (9) and can be
solved easily. Our algorithm is greedy and it may converge to a local
maximum. We can alleviate this problem to some degree by starting
the algorithm from different random initial points and choosing the
best result. In the next section, we show that our proposed alternat-
ing maximization scheme is successful in providing better predictive
results for both synthetic and real data.

2016 IEEE Statistical Signal Processing Workshop (SSP)



Improvement over LS LTS [21] LASSO [22] SRRR [23] ElasticNet [24] Ridge

E1
median 0.11 0.18 0.09 0.57 0.52 0.50

95% CI [0.02, 0.30] [0.09, 0.51] [0.01, 0.26] [0.16, 1.2] [0.27, 0.86] [0.24, 0.93]

E2
median 0.11 0.16 0.09 0.62 0.54 0.51

95% CI [0.05, 0.41] [0.07, 0.37] [0.04, 0.34] [0.24, 1.2] [0.27, 0.90] [0.24,0.96]

E3
median 0.11 0.17 0.08 0.59 0.48 0.50

95% CI [0.01, 0.32] [0.07, 0.44] [0.00, 0.29] [0.21, 1.22] [0.23, 0.93] [0.19, 0.88]

Table 1: Improvements in test rank correlation achieved by our algorithm over state-of-the-art multivariate regression techniques. We report

the statistics of c1− c2, where c1 and c2 are respectively the test rank correlations of our algorithm and the correlation of the other algorithm.

6. EXPERIMENTS

6.1. Synthetic data

Compared with traditional linear multivariate regression algorithms,
our method has two important differences. First, the objective func-
tion is defined as the Kendall’s rank correlation between responses
and their estimates rather than the sum-of-squares error. The second
difference is in the assumed underlying model. We consider a model
where responses are related to the predictors through an unknown,
potentially non-linear function, U , whereas in the traditional tech-
niques, the relationship is assumed to be linear (or in the generalized
regression setting, a known function, e.g., log, of inputs).

In this section, we compare our algorithm with some state-of-
the-art multivariate regression techniques. We assume a model as
in (3) with 10 predictors and 10 responses. The elements of the
predictor matrix are sampled from a uniform distribution between 0
and 100. Matrix B is sparse with density 60% and its elements are
drawn from a standard uniform distribution. The utility function is
a sigmoid: U(x) = 1/(1 + e−x). We consider three noise settings
where the elements of E are drawn independently from a:

(E1) Gaussian distributionN (0, 1).
(E2) t-student distribution with ν = 1.
(E3) Gaussian mixture model; with probability 0.8 from aN (0, .2)

and with probability .2 from aN (1, .2).

In order to have a consistent signal-to-noise ratio in various scenar-
ios, the elements of E are scaled such that the norm of the noise
matrix is 20% of the norm of the signal matrix. E1 corresponds to
a general setting where the noise is Gaussian; E2 simulates a heavy-
tailed noise which is present in many practical settings; and E3 sim-
ulates a case where 20% of the data points are corrupted with larger
noise (i.e., simulating outliers).

The learning is done over 30 instances and the test is done on a
separate set of 20 instances. We use 10 random initializations for our
algorithm. The algorithms against which we compare our method
are Least Squares (LS), a robust version of LS called Least Trimmed
Squares (LTS) [21], LASSO [22], Sparse Reduced Rank Regression
(SRRR) [23], elastic net [24], and regressions with ridge regulariza-
tion. The regularization parameters are achieved via 5–fold cross-
validation. We run each experiment 100 times and report the median
and 95% confidence intervals of the improvements in the test rank
correlation in Table 1. In essence, we run a paired hypothesis test
comparing our algorithm against each of the algorithms in Table 1,
and report the median, 2.5’th percentile, and 97.5’th percentile of
the test statistic, c1 − c2, where c1 and c2 are respectively the test
rank correlations of our algorithm and of the other algorithm. We
observe that in all cases, our algorithm performs better than other
algorithms.

6.2. Real data

We consider the sushi preference dataset [25]. This dataset includes
the preference ordering of 10 sushi types by 5000 subjects and the
demographic information about these subjects. For each subject, the
predictors are: gender (male/female), age group (6 in total), region
lived in for the longest period until 15 years old (11 in total), and
region currently living (11 in total). Features are represented with
a binary indicator vector, e.g., for gender, we use (0, 1) for males
and (1, 0) for females. The goal of our prediction task is to esti-
mate the ordering of the 10 sushi types for a new subject only based
on their demographic information. From the 5000 users, we choose
2500 of them at random as the training set and keep the the rest as
the test set. We take the average Kendall correlation between the
rows of predicted and true orderings for the test set as the perfor-
mance metric. We repeat this random division 100 times to achieve
bootstrapped confidence intervals for the performance metric.

In order to compare our algorithm to other regression–based al-
gorithms, we need to transform the ordering into ratings. We use the
technique described in [9] and assign the ratings 1/11, . . . , 10/11
to the least to most preferred items. Then, for the algorithms that
performed well in the simulation study (see Table 1), we follow the
same training and testing procedure as explained above. We also
compare the results to a K nearest neighbor technique (KNN) where
the feature vector of a new user is compared with the available users
to identify the K most similar users (in terms of the Euclidean dis-
tance), and then its ratings are calculated by averaging the ratings of
those K neighbors. Regularization parameters are found via 5–fold
cross–validation. The results are shown in Table 2. As we observe,
our algorithm outperforms other with high statistical significance.

Order-based LASSO LS SRRR KNN

Median 0.34 0.31 0.31 0.18 0.31

95% CI [0.33, 0.35] [0.30, 0.32] [0.30, 0.32] [0.02, 0.27] [0.31, 0.32]

Table 2: Comparison of performance for the Sushi dataset.

7. CONCLUSION

In this paper, we considered a generalized regression problem where
the responses are monotonic functions of a linear transformation of
the predictors. We proposed a semi-parametric method based on
rank correlation, which is invariant with respect to the functional
form of the underlying monotonic function, to estimate the linear
transformation. We showed that the solution to our formulated prob-
lem is a consistent estimator of the true matrix and identified the con-
vergence rate. To find the solution, we need to maximize a highly
non-smooth function. We proposed a greedy algorithm to solve that
problem, and showed its success over simulated and real data.
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[13] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and
Abraham Gutiérrez, “Recommender systems survey,”
Knowledge-Based Systems, vol. 46, pp. 109–132, 2013.

[14] Aaron K Han, “Non-parametric analysis of a generalized
regression model: the maximum rank correlation estimator,”
Journal of Econometrics, vol. 35, no. 2, pp. 303–316, 1987.

[15] Christopher Cavanagh and Robert P Sherman, “Rank estima-
tors for monotonic index models,” Journal of Econometrics,
vol. 84, no. 2, pp. 351–381, 1998.

[16] Jason Abrevaya, “Pairwise-difference rank estimation of the
transformation model,” Journal of Business & Economic
Statistics, vol. 21, no. 3, pp. 437–447, 2003.

[17] Milad Kharratzadeh and Mark Coates, “Semi-parametric
order-based generalized multivariate regression,” 2016,
Technical Report, McGill University, available at
http://networks.ece.mcgill.ca/pubs.

[18] Ariel Pakes and David Pollard, “Simulation and the asymp-
totics of optimization estimators,” Econometrica, vol. 57, pp.
1027–1057, 1989.

[19] Deborah Nolan and David Pollard, “U-processes: rates of con-
vergence,” The Annals of Statistics, vol. 15, pp. 780–799, 1987.

[20] Robert P Sherman, “Maximal inequalities for degenerate u-
processes with applications to optimization estimators,” The
Annals of Statistics, vol. 22, pp. 439–459, 1994.
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