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Abstract—Microwave radar imaging for breast cancer de- transmit and receive antennas in the signals, which was pre-
tection is one promising technique to replace/supplement X vijously neglected. They have shown improved performance,

ray mammography and MRI. Previously developed imaging \hen heing applied to the signals generated from more real-
algorithms have been applied to the signals generated fromrbast . ..
istic breast models based on [1], [2].

models comprising large dielectric contrast and relativey homo- i . .
geneous tissue. This study investigates five imaging algtivins In this paper, we report on the study of applying five
applied to the signals generated from more realistic modelsThe imaging algorithms to the signals from 2-D breast models.
signals were generated from the finite-difference time-domin  They include DAS, DMAS, STB, GLRT and RCB algorithms.
simulations of the microwave interaction with breast mode$. \va find that the DAS and DMAS algorithms exhibit small
We find that, under a good estimate of the average dielectric localizati in th ted i but thev fathi
properties of the tissue and tumor, the generalized likelibod ocalization errorin the generated images, but they 1ahe
ratio test algorithm is capable of detecting tumors, in the snse Scenarios of high breast tissue density. The STB algoritasn h
of a good signal-to-interference-and-noise ratio in the pgsence an improved capability to image breasts due to its rejection
of reduced dielectric contrast and increased tissue hetegeneity. of interference, but is prone to localization errors. Under
This establishes the motivation to estimate the average 88e  ¢,44 estimate of the average dielectric properties of #uaié
properties and extend the algorithm to handle multi-staticsignals ) L . .
for microwave breast imaging. and tumor, the ge_nerallzed I|k_eI|hood ratio test algorltm
capable of detecting tumors, in the sense of a good signal-
|. INTRODUCTION AND BACKGROUND to-interference-and-noise ratio. Since the microwaveastre
Microwave radar imaging was proposed in the late 1990®aging strives to achieve the best signal-to-interfeeeaicd-
as a screening method to complement the conventional gise ratio, the GLRT algorithm holds the promise for thin ai
ray mammography for breast cancer detection. The underlyiAs the current GLRT algorithm handles mono-static signals,
physical principle that enables tumour detection is thetresn this study motivates to extend the GLRT algorithm to handle
in the dielectric properties between healthy and tumorsds tmulti-static signals.
sue. Recent characterization of the dielectric propedfabe This paper is structured as follows. Section Il presents the
breast tissue suggests that high contrast may be obseriyed dime imaging algorithms and Section Il presents the design
between the adipose-dominant and tumorous tissue [1], [8]. numerical simulations. Section IV discusses the imaging
The contrast between the glandular-dominant and tumoraesults based on the common performance metrics. This is
tissue often does not exceed 1.1. This fact complicates fioelowed by Section V to conclude the paper and delineate
breast imaging tasks for tumour detection, especially sesa our future work.
where the tumour is located inside the glandular tissue.
Microwave imaging algorithms have been studied previ- Il. IMAGING ALGORITHMS
ously and have been applied to the signals generated from twoMicrowave radar imaging algorithms exploit the space and
dimensional (2-D) or simple three-dimensional (3-D) bteatime-invariance of the wave equation. They syntheticdilyre
models with large dielectric contrast and relatively homdahe received signals in time, and attempt to draw the saadter
geneous tissues. Mostly known algorithms presented in theperties at the synthetic focal point. This avoids s@vin
literature include the delay-and-sum (DAS) algorithm [4], the ill-posed and computationally-demanding inverse @b
the delay-multiply-and-sum (DMAS) algorithm [5], the menoas in microwave tomography. We consider the scenario that
static space-time beamformer (STB) algorithms [6], [7E thconsists of antennas placed at a distance away from thetpreas
time-reversal algorithm [8], the generalized likelihoacatio both of which are immersed in some coupling medium. This
test (GLRT) algorithm [9] as well as the mono-static robuss shown in Fig. 1.
capon beamformer (RCB) algorithm [10] and the multi-static Five algorithms have been implemented for this study. Their
adaptive microwave imaging (MAMI) algorithm [11], whichproperties are reviewed in the following section.
is a two-stage implementation of the RCB algorithm. )
Currently, the STB algorithm has been extended to handle PAS Algorithm
multi-static signals [12], and the MAMI algorithm has been The signals transmitted from antennas undergo delay and
modified [13] to exploit the one-to-many relation betweea thattenuation as they reach the focal point and are reflected
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Fig. 1. Coronary slice of the permittivity extracted fromeoaf the healthy
breast phantoms. The locations of the current sources areethay x. where the first term in the parenthesis describes the one-way
propagation in the background, the second term denotes the

rward propagation of a plane wave in the tissue, and the

back to antennas. The DAS algorithm proposed in [3], [Zﬁ:ird summation term denotes the scattering by some tumor

assumes the delay and attenuation of the propagation dsanne . . . (2
are modelled in the frequency domain as modelled as a dielectric cylinder [14]. Herd,” denotes

the nt"-order Hankel function of the second kind and the

e—Tkbgdig p—ikusdes 2 coefficienta,, is given by
, 1) : ,
N Vs " o Jn(kisa) Jy (kma) — 2= Jn (kma) J,, (kesa)
where d;, and d;; denote the propagation distances in the" —%Hﬁz)(ktsa)%(kma) + %Jn(ktsa)Hf)/(ktsa)’

background medium and tissue, aky} and k., denote their

wave numbers, respectively. The denominators denote %P{Qerew Is the angular frequency,is the tumor radius anld,.n
s the complex tumor wave numbey.ande,, are the relative

amplitude reduction due to the cylindrical spreading in 23 the com :

dimensional cases, and the numerators denote the delay Bﬁﬁmmvmes of the healthy tissue and tumdj, denotes the
attenuation due to loss in the media. The power of W -order Bessel function, and) den(_)tes the derivative with
corresponds to the forward and backward propagation. Bq. {(fspect to the argument of the function.

assumes operation in the far-field region. The effect of skin RCB Algorithm

is not included due to its small electrical length. The DAS
algorithm assumes the knowledgeigj, andk, at the central
frequency of the microwave pulse, and the knowledgdgf

After the received signals are time aligned and compensated
as in the DAS algorithm, the standard Capon beamformer

dd-. Thus. the effect due 1o th i h | roduces a complex steering vector that minimizes the un-
andds. 1hus, the eliect due 1o the propagation Channe's, gqap|e interference and noise contributions in the gseed
predicted in (1), can be inverted. Then, the processed Isign

. . . . Is. The RCB algorithm [1 h
are time-gated to isolate the reflection at the focal poiheyr anas e RCB algorithm [10] extends the standard Capon

q d th f th i ianal d beamformer by permitting certain relaxation on the reguire
are summec, an € energy ot the resulling signa eNo&&nt of the steering vector up to some user-defined limits Thi
the pixel at the focal point.

algorithm is developed to address the effects of not coralyiet
B. DMAS algorithm known propagation channels and other artifacts such as mis-

The DMAS algorithm [5] is a version of the DAS algorithm,matCheS in antennae characteristics, mutual coupling, etc
which performs c?uplid cros;(s-mllljltiplication onh the ﬁin I1l. EXPERIMENTAL METHODOLOGY
mono-static signals. This artifici incr n

ono-static signals. This artificially increases the numife , o o viodas

input signals.
) In this work, the circular region of the breast tissue in a
C. STB Algorithm magnetic resonance image is extracted and enclosed by a 1.6-
The STB algorithms formulated in the time domain [6] andm thick skin. The circular shape leads to identical skiealst
in the frequency domain [7] assume the same channel modsgifact seen at all antennas, which can be easily removibg wi
of (1). In addition, they invert the effect due to the propéma e.g., average-subtract algorithm. This allows us to focuthe
channels over all frequencies in the band of the tumor signalesults of the imaging algorithms.



TABLE |

TISSUEPROPERTIES FORDATA SERIES

Series Debye model parameters Var (%) | min(erm/erp) | max(erm/ers) | min(om/op) | max(om/op)
€co,b | Ts,p (SIM) | Ae 7 (ps) ’ ’
1 3.1 0.05 1.6 13 7 10.6 11.1 24.8 25.1
2 13.0 0.4 244 | 13 30 14 16 17 18
3 13.0 0.4 244 | 13 70 13 17 17 18
4 13.8 0.7 36| 13 30 11 12 12 12

The dielectric properties of tissue are described by tmeaximum wavelength in the heterogeneous tissue at 3.1 GHz
one-pole Debye model with four parameters: the relative 50.3 mm. We place 12 perfectly-matched layers at a half
permittivity for infinite value of frequency.., the difference of this wavelength away from the sources to truncate the
between the infinite and static relative permittivitye, the computation domain. Prior to the application of the imaging
static conductivityo;, the relaxation time constamt[15]. As algorithms, we apply the average-subtract method to remove
presented in Table I, for each series, the valueAoandr of the skin-breast artifact. Then, the signals are down-sadnpl
the pixels are assigned to some constants. The valueg of from 500 GHz to 64 GHz.
a_ndas_ are a_ts_,signed agcording to the linear mapping from tf& Data Sets
pixel intensities toe, in the range ofe , (1 + 0.01Var/2) ) o o
and too, in the range ob, , (1 4 0.01Var/2), wheree,, , and In order to provide sufficient statistics for the performanc
o, denote the mean values, and Var denotes the percent:gf!lts assessment, we have generated ten different breast
of variation. models containing tumor at different locations and applied

The selection of series properties can be explained tg_@m in the s_imulation procedure described above to obta@in t
follows. Series 1 represents the case of the highest tumdignals received at each of the antennas. The same procedure
tissue contrast in dielectric properties and the loweselleas been applied to exactly the same tissue structuresutitho
of heterogeneity. This corresponds to adipose-dominaaspr tumour inside, which have been used for the assessment
models and is the easiest case for the detection probleimesSepUrPOSes.

2 and 3 are based on the same contrast level, much lower thafio" the GLRT algorithm, in addition to the ten realizations
that for Series 1, and they differ in the level of heterogsnei of tissue structure, thirty more real_lzatlons of heal_thy'dmt _
Series 3 represents a highly heterogeneous case. Serieglqgels have. been prodyced to estimate the covariance matri-
having the contrast ratio close to 1, is considered to be tR@S needed in the algorithm. _ _

most difficult from the detection point of view and is refetre  The same set of tissue structures with the assigned tumour

to as “extremely dense”. Average level of heterogeneity gﬂcations have been used fpr e_ach of t.he four series_. The
30% has been chosen for this series. difference between the series is only in the tumor/tissue

In Table 1, column min(e,,,/erp), max(eym/ens), properties contrast and the level of heterogeneity. Beside
min(oy, /oy), andmax(a,, /o}) represent the minimum andthe decrease in the number of breast phantoms needed for
maximum ratios of the relative permittivity and condudivi the experiments, fixing tissue structures between the sserie
between the tumor and the healthy tissue after the tissue Bgnoves the factor of variability, which is beneficial foreth
signment. The dielectric properties are evaluated at 6185.G Performance comparison.

B. Finite-Difference Time-Domain Smulations IV. RESULTS AND DISCUSSIONS

Fig. 1 shows an example of a breast model and the sif\- Performance metrics
ulation scenario. The breast is placed in an oil-like lossle The performance of the algorithms is evaluated based on
matching medium characterized by (= 4.5,0 = 0). A the following metrics.
tumour with 3-mm radius, characterized by its Debye param-Correct Detection is a binary measure which shows if the
eters €. = 6.75, 0, = 0.79 S/Im, Ae = 48.35, 7 = 10.47 location emphasized by the algorithm (image maximum) is
ps), is placed inside the model. There are 36 equally-spatiibuted to the reflections from tumour rather than from
current sources placed around the breast at a fixed distatie clutter. In order to check this, we subtract the image
( 28 mm away from the skin). Each source sequentialf the healthy breast model from the image of the breast
emits a differentiated Gaussian pulse with a 3-dB bandwidthodel with a tumour inside. If the peak of the resulting
from 3.1 to 10.6 GHz. In this work, the mono-static scenarionage is within the 10-mm radius circle around the one
is considered, which gives 36 recorded signals for a breastected by the algorithm in the tumorous image, we treat the
model. The minimum wavelength determined by the largedétection as correct. Otherwise, we deem that the resulting
permittivity at 10.6 GHz is 3.87 mm. We set the spatidmage provides a misleading detection and is omitted in the
increment to 0.4 mm and the relative Courant number to 0.99@bsequent analysis. Metrics presented further are otily va
to reduce the dispersion error. The time step is 2 ps. Thad computed in the cases of the correct detection.



TABLE Il

NUMBER OF FALSE TUMOUR DETECTIONS The STB algorithm, incorporating the effects of dispersion
exhibits marginal improvement over DAS and DMAS when
Series 1  Series 2 Series 3 Series 4 the complexity of the model increases. The adaptive RCB
DAS 0 0 0 10 algorithm demonstrates a gradual decrease in performance
DMAS 0 0 0 10 while the contrast decreases and heterogeneity grows. It is
STB 0 1 1 9 still capable to detect tumour in four cases out of ten in the
GLRT 0 0 0 2 extremely dense scenario. This is explained by its adaptive
RCB 0 0 3 6 nature to the input data. By comparing Fig. 2 b) and c), it

is seen that the increase in heterogeneity from 30% to 70%
decreases SINR by 2 to 10 dB.

Sgnal-to-interference-and-noise ratio (SINR) - This metric Fig. 3 gives the notion of tumour localization accuracy. It
is defined as is observed that, for the easiest scenario, almost all of the
algorithms localize the tumor up to the image resolution (1-
SINR = 2010g (Jimax,s/ Imax,n) (2 mm grid). DAS/DMAS show equal results and outperform all
where Iyax.s and L.y, correspond to the peak amplitudeé)ther algorithms. The STB algorithm gives lower performanc
of the tumorous and healthy images, respectively. The siNipe to the point scatterer assumption, which favours looati
is another important metric for the detection purpose. dtgh in the deeper areas of the breast. Heterogeneity does ot pla
the capability of the algorithms to discriminate tumorouénportant role for localization (compare Fig. 2, b) and c)).

breasts from healthy breasts. The ability of the algorithms to isolate the tumour response
Localization error (£;) - Shows the distance between théy suppressing the clutter can be estimated from Fig. 4t,Firs
true tumour locatiore and the one estimated by the algorithnjve may emphasize the best performance of the RCB algorithm
c: for the easiest scenario, which illustrates the adaptipaloi
B =c—¢ 3) ity of the algorithm. The good performance of the DMAS
' algorithm can be explained by the signals cross-multiftica
Peak-to-sidelobe ratio (PSLR) - This metric is defined as between channels, which, in this case, acts as an effective
clutter suppression mechanism. Similar to the SINR metric,

the PSLR decreases by several decibels when the heterbgenei

where I; is the most significant sidelobe amplitude of &'Creases.

tumorous image. The contrast in the dielectric propertiesFrom the presented results, it is seen that the performance
between tumorous and healthy tissue is correlated with tbethe algorithms differs with respect to different metrighis
contrast of the breast images. The imaging algorithms dangaggests that certain algorithms should be selected tessidr
completely isolate the reflection due to the synthetic focspecific tasks. As the GLRT algorithm provides reliable dete
point. This leads to the presence of sidelobes in the imaggén in the sense of a good SINR in all series, it is considered
PSLR is a metric to evaluate how well the imaging algorithnfer further extension and improvement.

can preserve the dielectric contrast.

PSLR= 2010g (Imax.s/Ls1) » (4)

B. Discussion

The imaging algorithms descibed above have been appl 109
to each of the data sets to obtain the described performal
metrics. Fig. 2 - 4 summarize the results by organizing the
into groups for each series. Only cases with correct detecti
have been taken into account to compute the average ve CASDMAS STB GLRT RCB ors Dy oL
and standard deviation of the metrics. When the algorithr a) b)
cannot detect the tumour correctly in all ten cases, thisifac
labelled as 'FAILED’ on the figures.

30

20

SINR, dB

50)
10

10)

[aa]
Table 1l contains the number of incorrectly detected tursou g *
for each series. Analyzing the table, it can be seen that m % 10 §
of the algorithms have troubles under the conditions of lo FAILED FAILED
contrast. The only reliable algorithm in such a scenaridés t 0~ DAS DMAS STB GLRT RCB U DAS DMAS STB GLRT RCB
GLRT, which provides model of high complexity capable t ©) d)

describe the effects of scattering from the tumour. In cooju

tion with Fig. 2, one may notice that the simple algorithm&ig. 2. 3Siggac:-)tos-int_erfelrlen'\?e-ang-nOir?e ratitlJ for a);é%ﬂ b) ?aetries 2hC)
1es an eries 4. Note that the scales in the four pletsiot the

such as DA_S and DMA_S are rather stable_ and_successjgine.

under the high and medium tissue/tumor dielectric contrast

levels. However, they fail under the extremely dense séenar
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Fig. 4. Peak signal to sidelobe ratio a) Series 1 b) SeriesSedps 3 and
d) Series 4. Note that the scales in the four plots are notahees
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V. CONCLUSIONS ANDFUTURE WORK

In this paper, we have studied the performance of fil&?]
microwave breast imaging algorithms on the signals geedrat
from the breast models with a reduced dielectric contrggg)
and tissue heterogeneity. The GLRT algorithm is capable
of detecting tumours, in the sense of a good SINR
comparison to DAS, DMAS, STB algorithms, and adaptive
RCB algorithm. In this paper, we have assumed the averdyd
dielectric properties of the tissue and tumor as exactlyno
In the future, we consider investigating how the parameters
mismatch would affect the GLRT algorithm and extending it to
handle multi-static signals for microwave breast imagihige
GLRT algorithm is also capable of handling signals from 3-D
models. The challenge in these scenarios is to create ieultip
healthy breast models, which are needed to estimate therclut
covariance matrix.
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