
FUSING MICROWAVE RADAR AND MICROWAVE-INDUCED THERMOACOUS TICS FOR
BREAST CANCER DETECTION

Evgeny Kirshin Borislav Oreshkin Kevin Guangran Zhu MilicaPopovíc Mark Coates

Department of Electrical and Computer Engineering, McGillUniversity, H3A 2A7, Montreal, QC, Canada

ABSTRACT

Microwave-based techniques for breast tumour detection rely on
the inherent electrical difference between malign and healthy tissue
in the microwave range. Microwave-radar and microwave-induced
thermoacoustic methods both struggle when the dielectric contrast
between the tumorous and background tissues is relatively small. In
this work, we propose a detection technique that uses a hypothesis
testing framework to fuse the information provided by thesetwo
sensor modalities and hence provide more reliable detection results
in low-contrast, high-clutter environments when comparedto the
results that either of the techniques would provide alone.

Index Terms— Microwave imaging, UWB, breast cancer de-
tection, hypotheses testing, sensor fusion

1. INTRODUCTION

Early detection of breast cancer leads to a much higher recovery rate.
The X-ray mammography and Magnetic Resonance Imaging (MRI)
screening techniques require expensive equipment and involve sig-
nificant patient discomfort; X-ray mammography involves undesir-
able exposure to ionizing radiation. Microwave-based techniques
have some promise as complementary modalities [1].Microwave-
radar (MR) methods measure and analyze the backscatter signal
when the breast is illuminated by microwaves.Microwave-induced
thermoacoustic(MIT) methods measure and process the acoustic
signals induced by differential microwave heating. Both techniques
rely on the difference in the dielectric properties of malign and
healthy tissue and their individual performance can sufferwhen the
dielectric contrast is low. Since the techniques rely on different
physical processes (wave reflection versus heating) and measure
different types of signals (microwave versus acoustic), the fusion of
the information provided by the two modalities has the potential to
provide significantly better detection performance.

The primary contribution of this paper is the proposal of a
new microwave-based method for breast cancer detection based
on jointly processing MR and MIT signals in a hypothesis-testing
framework. We identify a test statistic and explain how to derive
its null-hypothesis distribution for the purpose of setting a thresh-
old. We conduct numerical simulations using structurally-realistic
breast models (derived from MRI scans). These simulations explore
multiple settings of the dielectric parameters and tissue properties to
examine the impact of low contrast and high clutter. The simulations
indicate that the proposed fusion approach can provide important
improvement.

2. PROBLEM STATEMENT

We address the detection problem of a tumour inside a breast consist-
ing of heterogeneous tissue (glandular, fatty, etc.). The measurement

Fig. 1: A 2-D system model for the joint MR and MIT simulations.

system, depicted for a 2-D setting in Figure 1, operates in two modes.
In the MR mode, a wideband microwave pulse is radiated and the
respective backscattered signal is recorded sequentiallyat M1 dif-
ferent locations (channels). In the MIT mode, modulated pulses are
radiated fromM2 locations, and transducers on the opposite side of
the breast measure the induced acoustic signals.

After pre-processing (see Section 4), the signals from the
MR and MIT modalities form a set of column-vectorsxi =
[xi,1, . . . , xi,N1 ]

T for i = 1 . . .M1 andyj = [yj,1, . . . , yj,N2 ]
T

for j = 1 . . .M2 of lengthN1 andN2 respectively (we focus on
the caseN1 = N2 = N andM1 = M2 = M ). Taking into
account the inherent limitations of the antenna array resolution, we
model the location of the tumour as taking one of a finite set of
locations{rℓ}, ℓ = 1, . . . , L. The parametersθℓ capture the tissue
and geometry properties that affect the propagation and shape of
the received signals (see Section 2.1 for a concrete examplefor the
2-dimensional setting). The indexℓ0 denotes the “true” location, if
the tumour exists. Signalsxi andyi can then be modeled as:

xi = βℓ0si(θℓ0) + ξi, i = 1, . . . ,M (1)

yj = ηℓ0dj(θℓ0) + ζj , j = 1, . . . ,M (2)

These expressions modelxi and yj as a combination of scaled
signalssi(θℓ0) (scattered microwave signal) anddj(θℓ0) (induced
pressure signal) and the corresponding noise componentsξi andζj .
These latter components are comprised of clutter (microwave scat-
tering or acoustic signals generated by the normal tissue variation in
the breast), as well as receiver noise and digital quantization noise.

We model the random noise vectorsξi andζj as jointly Gaus-



sian with zero means and covariancesσ2
ξRξ andσ2

ζRζ , where the
unit-norm matricesRξ andRζ capture the structural properties of
the covariance, and the scalarsσ2

ξ andσ2
ζ specify the noise pow-

ers. We model the noise signals as independent among the channels
and between the MR and MIT methods. We assume thatRξ and
Rζ can be estimated using a training data set containing responses
from a number of healthy breasts. The signal amplitudesβℓ andηℓ
are treated as unknown deterministic parameters and signals si(θℓ),
dj(θℓ) as deterministic and dependent on a set of parametersθℓ.
In addition, tissue parameters, included inθ, can be also estimated.
Thus, for any given locationrℓ we considers andd as known and
refer to them as “signal templates”.

We consider the binary hypothesis testing framework for the
joint MR/MIT breast tumour detection formulated on the finite set
of scan-locations{rℓ}Lℓ=1:

H
(0)
ℓ : βℓ, ηℓ = 0 vs. H

(1)
ℓ : βℓ, ηℓ 6= 0. (3)

The hypothesisH(1)
ℓ denotes the scenario with tumour present while

H
(0)
ℓ is the null hypothesis. To discern between these hypotheses

and to address the issue of unknown parameters in (1) and (2) we
adopt a generalized likelihood ratio test (GLRT) approach [2].

2.1. 2D Signal Templates

For the 2-dimensional experiments described in this paper,we con-
struct signal templates as follows. In the discussed model the set of
parametersθℓ includes average Debye tissue properties [3] (relative
permittivity at the infinite frequencyǫ∞, difference in the relative
permittivity at DC and the infinite frequency∆ǫ, static conductivity
σs and relaxation time constantτ ) and tumour locationrℓ. The 2-D
signal template for the MR process models the effect of the delay and
attenuation in the matching medium, skin and tissue. Its frequency
domain representation for channeli is:

Si(θℓ) = G(jω)e−j2kb|ri−rb,i|e−j2ks|rb,i−rs,i|

· e−j2kn(θℓ)|rs,i−rℓ| , (4)

whererℓ denotes the location of the tumour,ri denotes the location
of thei-th antenna;rb,i andrs,i lie on the line betweenri andrℓ at
the transition points of the background-skin interface andthe skin-
tissue interface respectively.kb andks denote the known wave num-
bers of the matching medium and skin.kn(θℓ) is the wave number
from the estimated Debye parameters.G(jω) denotes the Gaussian
modulated pulse reflected at the interface between the tissue and the
tumor.

The 2-D signal template for the acoustic wave generated by the
heated tumour is [4]

Di(θℓ) = I(jω)

∫

Ω

e−jka|ri−rℓ|

√

|ri − rℓ|
dΩ (5)

whereka denotes the acoustic wave number.I(jω) denotes the
acoustic pulse generated by a point in the tumour regionΩ. Note
that this signal template assumes the tissue and matching medium
have the same acoustic properties.

3. METHODOLOGY

Prior to the application of the GLRT framework, the input signalsx
andy are whitened using the estimated clutter covariance matrices:

x̃ = R̃
−1/2
ξ x; ỹ = R̃

−1/2
ζ y (6)

The clutter covariance matrices are estimated from a training set of
tumour-free breasts, using the procedure described in [5].We set
the regularization parameter to 1e-7, a value that providesgood per-
formance in practice. In order to compensate for the distortion in-
troduced by whitening, we expose the signal templates to thesame
whitening procedure, which producess̃ andd̃ vectors.

The GLRT performs the comparison of the generalized likeli-
hood ratioLG(x̃, ỹ) against a thresholdγ:

LG(x̃, ỹ)
H

(1)
ℓ

≷
H

(0)
ℓ

γ (7)

The generalized likelihood ratio can be factorized under the
noise independency assumption:

LG(x̃, ỹ) =
p(x̃|β̂ℓ1 , σ̂

2
ξ,ℓ1

,H1) · p(ỹ|η̂ℓ1 , σ̂
2
ζ,ℓ1

,H1)

p(x̃|σ̂2
ξ,ℓ0

,H0) · p(ỹ|σ̂2
ζ,ℓ0

,H0)
(8)

Maximum likelihood estimates for the unknown variables are
given by [2, Appendix 9A]:

β̂ℓ1 =
(

s̃
T
s̃
)−1

s̃
T
x̃; η̂ℓ1 =

(

d̃
T
d̃
)−1

d̃
T
ỹ; (9)

σ̂2
ξ,ℓ1 =

1

NM
x̃
T (I−Ps̃) x̃; σ̂

2
ξ,ℓ0 =

1

NM
x̃
T
x̃; (10)

σ̂2
ζ,ℓ1 =

1

NM
ỹ
T (I−P

d̃
) ỹ; σ̂2

ζ,ℓ0 =
1

NM
ỹ
T
ỹ. (11)

In the expressions abovePs̃ = s̃
(

s̃T s̃
)−1

s̃T andP
d̃
= d̃

(

d̃T d̃
)−1

d̃T

represent projection matrices that project a vector onto the signal
and noise subspaces respectively.

Making use of the MLE expressions in the ratio of Gaussian
PDFs (8) results in:

LG(x̃, ỹ) =

(

σ̂2
ξ,ℓ0

σ̂2
ξ,ℓ1

)NM
2

·

(

σ̂2
ζ,ℓ0

σ̂2
ζ,ℓ1

)NM
2

=

(

x̃T x̃

x̃T (I−Ps̃) x̃

)
NM
2

·

(

ỹT ỹ

ỹT (I−P
d̃
) ỹ

)
NM
2

= (Λx̃(x̃) · Λỹ(ỹ))
NM
2 (12)

Combining this expression with (7) and noting that(·)
NM
2 is a

monotone increasing function, results in the following decision rule:

Λ′(x̃, ỹ) = Λx̃ (x̃) · Λỹ (ỹ)
H

(1)
ℓ

≷
H

(0)
ℓ

γ′, (13)

For a fixed probability of false alarm, the thresholdγ′ can be de-
termined from the inverse cumulative distribution function (CDF) of
the test statisticΛ′(x̃, ỹ), which can be acquired by means of numer-
ical simulations or empirically estimated from training data obtained
from simulations with healthy cases (distribution only underH(0)

ℓ is
required to perform the test).

In our work we also consider an empirical test statistic which is
the product of two alternative, zero shifted, test statistics:

T (x̃, ỹ) = Tx̃ (x̃) · Tỹ (ỹ) =
x̃TPs̃x̃

x̃TP⊥
s̃
x̃
·
ỹTP

d̃
ỹ

ỹTP⊥
d̃
ỹ
. (14)



whereP⊥ = I − P. The statisticTx̃ (x̃) is derived in [5] for the
microwave radar modality. We are motivated to explore the per-
formance of the statisticT (x̃, ỹ) because in our experiments the
Λ′(x̃, ỹ) statistic is completely dominated by theTx̃ (x̃) term. This
occurs because our signal modelsi is much more accurate thandj .

It can be shown thatΛ′(x̃, ỹ) can be represented in terms of
T (x̃, ỹ), Tx̃ (x̃) andTỹ (ỹ) as:

Λ′(x̃, ỹ) = 1 + T (x̃, ỹ) + Tx̃ (x̃) + Tỹ (ỹ) . (15)

This expression provides better form of comparisonΛ′(x̃, ỹ) with
T (x̃, ỹ). After incorporating the constant “1” into the threshold, it
can be seen thatΛ′(x̃, ỹ) consists of the sum of the two separate test
statistics for MR and MIT and their cross-product term. IfTx̃ (x̃)
andTỹ (ỹ) are of approximately equal power, such a combination
should lead to better performance, in comparison toT (x̃, ỹ), when
one of the two methods fails to detect the tumour or gives false pos-
itives in substantially wrong locations.

4. NUMERICAL SIMULATIONS

The electromagnetic and acoustic signals were simulated using the
finite-difference time-domain (FDTD) method and two-dimensional
numerical breast phantoms derived from MRI images. The FDTD
grid (650 X 650 cells) resolves the geometry depicted in Figure 1 to
0.4mm. For the MR technique, we use a pulsed excitation. For the
MIT simulation, we use a 3-GHz continuous waveform source. The
specific absorption rate is computed and used in the acousticsignal
simulation [6].

Nine series of breast tissue models are considered, whose Debye
properties are represented in Table 1.∆ǫ, andτ have been fixed to
constant values (see the Table) whileǫ∞, andσs have been assigned
with values by linearly mapping the variation of the MRI pixel inten-
sities into the variation ofǫ∞ in the range ofǫ∞,b (1± 0.01Var/2)
and of σs in the range ofσs,b (1± 0.01Var/2) with the param-
eters ǫ∞,b, σs,b taken from Table 1. Columnsmin(ǫr,m/ǫr,b),
max(ǫr,m/ǫr,b), min(σm/σb), max(σm/σb) represent the mini-
mum and maximum ratios of the resulting dielectric properties of
malignant to benign tissues after mapping. The dielectric properties
are evaluated using the Debye model at central frequency 6.85 GHz.

For each series,Nr = 10 different realizations of tissue struc-
ture are generated, nine of which are used as the training setfor the
whitening procedure. On the basis of the tenth one we build two tu-
morous breast phantoms by placing a circular tumour (R = 3mm)
into two positions relative to the centre of the breast: “pos.1” at
[-20mm;8mm]; “pos.2” at [15mm;-15mm]. Location “pos.2” has
higher density of tissue, which decreases the dielectric contrast and
makes the detection task more complicated.

In order to model measurement noise, white Gaussian noise is
added to the signal. Prior to the whitening procedure, the signals are
pre-processed. A simple calibration procedure is used to remove the
incident pulses from the MR mode signals. Artifacts in the signals
due to reflections at the skin-breast boundary are removed using the
minimum mean-squared-error algorithm described in [7].

5. RESULTS AND DISCUSSION

For each series1, . . . , 9 three cases are considered (two different
tumour locations and the healthy scenario). For each of these cases
images of four test statistics are computed: two (’MR’ and ’MIT’)
corresponding to the individual MR and the MIT decision rules, and
two representing the outputs from the data fusion rules (thederived
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Fig. 2: SINR for “pos.1” tests. As the dielectric contrast between
malignant and benign tissues drops (see Table 1), the detection per-
formance (SINR) decreases.

test statistic in (13) denoted by “F” and the product-rule (14) denoted
by “FP”). Each pixel of the images represents the value of a test
statistic at locations{rℓ}Lℓ=1 on the the grid with spatial resolution
of 1mm.

For each image we compute the signal to interference-plus-
noise ratio (SINR) as the log-ratio between the maximums of
the tumorous image and the corresponding healthy one: SINR=
10 log10 max (TH1) /max (TH0).

Fig. 2 shows the SINR values for the “pos.1” tests. The SINR
level drops as the contrast in dielectric properties decreases and the
heterogeneity level goes up (see Table 1). The FP test statistic pro-
vides a significant improvement in the SINR along the whole range
of contrast levels while the performance of F is biased to theMR.
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Fig. 3: Test statistic maximum values (“pos.1” case) underH1 and
H0 hypotheses for each series: a) MR; b) MIT; c) F; and d) FP.
Thresholdsγmin and γmax are shown as the red and green lines.
The image shows improvement in performance for FP test statistic
(d) versus MR (a) and MIT(b). The cases where improvement is
achieved are surrounded by black boxes.

We assess the detection performance for two different thresh-
olds: γmin, the largest threshold such that all tumours are detected;
andγmax, the smallest threshold such that there are no false alarms.
Figure 3 depicts the maximum values of the test statistics obtained
for the “pos.1” scenario. Two cases are represented: the tumorous
(i.e., under hypothesisH1) and the healthy (H0). An improved de-



Table 1: Tissue properties for data series. Tumour is characterized by: ǫ∞ = 6.75, σe = 0.79 S/m,∆ǫ = 48.35, τ = 10.47 ps.

Series #
Debye model parameters

Var, % min(ǫr,m/ǫr,b) max(ǫr,m/ǫr,b) min(σm/σb) max(σm/σb)ǫ∞,b σs,b ∆ǫ τ , ps
1 3.1 0.05 1.6 13 7 10.6 11.1 24.8 25.1
2 4.0 0.08 3.5 13 30 6.4 7.7 11.5 11.9
3 4.0 0.08 3.5 13 40 6.3 8.0 11.5 12.0
4 13.0 0.4 24.4 13 30 1.4 1.6 1.7 1.8
5 13.0 0.4 24.4 13 50 1.3 1.7 1.7 1.8
6 13.0 0.4 24.4 13 70 1.3 1.7 1.7 1.8
7 13.8 0.7 35.6 13 10 1.1 1.2 1.2 1.2
8 13.8 0.7 35.6 13 30 1.1 1.2 1.2 1.2
9 14.2 0.8 40.5 13 10 1.0 1.1 1.0 1.0
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Fig. 4: Images of the test statistics for a breast model slice: a) MR;
b) MIT; c) F; d) FP. True tumour location is shown by circle.

tection performance can be observed for FP with respect to MR(the
H0 statistics for series 4, 6 and 8 are shifted below theγmin thresh-
old) and MIT (theH0 statistics for series 2 and 3 go belowγmin and
theH1 statistics for series 7 and 8 increase dramatically). The detec-
tion capability for other series is preserved. Theγmin thresholding
generates four false-alarms for the MR case and two false-alarms for
the MIT case, but only one false-alarm for the FP rule.

Table 2 summarizes the detection performance for both “pos.1”
and “pos.2” tests. The product rule FP provides the best perfor-
mance. Fig. 4 illustrates example images for the case where the FP
test statistic leads to significant improvement (series #8,“pos.1”).
One may notice the difference in the spatial distribution ofclutter
between the MR and the MIT test statistics, which is the principle
property that the fusion benefits from. Considerable suppression of
the clutter may be observed for the FP test statistic. The F test statis-
tic is dominated by the MR signal, i.e. theTx̃ term in (15). We con-
jecture that this is because the MR signal template is a much better
match to the simulated signal than the acoustic MIT signal template.

6. CONCLUSIONS

The conducted study shows that the fusion of data from microwave
radar and microwave thermoacoustic measurements has the potential
to lead to improved breast cancer detection performance. Inthe pre-
sented simulations, the performance of the derived GLRT test statis-

Table 2: Detection performance. False alarms are reported for the
case when thresholdγmin is used. Misses are reported for the case
whenγmax is used. Note that MR, F and FP can all achieve 1 miss
and 0 false-alarms whenγmax is used.

pos.1 pos.2
False alarms Misses False alarms Misses

MR 4 1 7 1
MIT 2 3 9 6
F 4 1 7 1
FP 1 1 6 1

tic is dominated by the MR signal and the heuristic test statistic per-
forms better. We believe this can be addressed by employing amore
accurate MIT signal template. Although the theoretically derived
test statistic does not show significant improvement in performance
over the separate MR and MIT methods, our study demonstratesthat
the data fusion using simple empirically derived product rule can sig-
nificantly improve the overall detection performance.
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