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ABSTRACT

Microwave-based techniques for breast tumour detectign ae

the inherent electrical difference between malign andthgdissue
in the microwave range. Microwave-radar and microwave:ied
thermoacoustic methods both struggle when the dielecbmtrast
between the tumorous and background tissues is relativedyl.sIn

this work, we propose a detection technique that uses a hggpist
testing framework to fuse the information provided by thése

sensor modalities and hence provide more reliable deteotisults
in low-contrast, high-clutter environments when compatedhe

results that either of the techniques would provide alone.

Index Terms— Microwave imaging, UWB, breast cancer de-
tection, hypotheses testing, sensor fusion

1. INTRODUCTION

Early detection of breast cancer leads to a much higher ezgoate.
The X-ray mammography and Magnetic Resonance Imaging (MRI
screening techniques require expensive equipment ant/@sa-
nificant patient discomfort; X-ray mammography involvesiesir-
able exposure to ionizing radiation. Microwave-based riegples
have some promise as complementary modalities [icrowave-
radar (MR) methods measure and analyze the backscatter sign
when the breast is illuminated by microwavédicrowave-induced
thermoacoustiqMIT) methods measure and process the acousti
signals induced by differential microwave heating. Bottht@éques
rely on the difference in the dielectric properties of malignd
healthy tissue and their individual performance can suffleen the
dielectric contrast is low. Since the techniques rely orfedsnt
physical processes (wave reflection versus heating) andurea
different types of signals (microwave versus acousti@fttsion of
the information provided by the two modalities has the ptééito
provide significantly better detection performance.

The primary contribution of this paper is the proposal of a
new microwave-based method for breast cancer detectioedbas
on jointly processing MR and MIT signals in a hypothesigites
framework. We identify a test statistic and explain how toide
its null-hypothesis distribution for the purpose of segtia thresh-
old. We conduct numerical simulations using structuradigtistic
breast models (derived from MRI scans). These simulatizspbee
multiple settings of the dielectric parameters and tissopgrties to
examine the impact of low contrast and high clutter. The &tons
indicate that the proposed fusion approach can provide ritapob
improvement.

2. PROBLEM STATEMENT

We address the detection problem of a tumour inside a breasist-
ing of heterogeneous tissue (glandular, fatty, etc.). Thasarement
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):ig. 1: A 2-D system model for the joint MR and MIT simulations.

system, depicted for a 2-D setting in Figure 1, operatesdimtwdes.

In the MR mode, a wideband microwave pulse is radiated and the
?éspective backscattered signal is recorded sequendtlly; dif-
ferent locations (channels). In the MIT mode, modulatedesilare

Fadiated fromM, locations, and transducers on the opposite side of

the breast measure the induced acoustic signals.

After pre-processing (see Section 4), the signals from the
MR and MIT modalities form a set of column-vectoss,
[:Ei,l, . ,:Ei,Nl]T for ¢ 1...M; andyj = [yj,1, . ,yijz]T
for j = 1... M- of length N, and N» respectively (we focus on
the caseN; = N, = N andM; = M, = M). Taking into
account the inherent limitations of the antenna array teol, we
model the location of the tumour as taking one of a finite set of
locations{r,},¢ = 1,..., L. The parameter§, capture the tissue
and geometry properties that affect the propagation andesbé
the received signals (see Section 2.1 for a concrete exdmplee
2-dimensional setting). The indés denotes the “true” location, if
the tumour exists. Signals; andy; can then be modeled as:

Xi = Bﬂosi(efo) + £’i7 (1)
Yi = nfodj(olo) + G 2

These expressions modg} andy; as a combination of scaled
signalss;(6,,) (scattered microwave signal) aid (6,,) (induced
pressure signal) and the corresponding noise compogeatsd(;.
These latter components are comprised of clutter (micreveaat-
tering or acoustic signals generated by the normal tisstiatian in
the breast), as well as receiver noise and digital quargizabise.
We model the random noise vect@sand(; as jointly Gaus-

i=1,...,M
ji=1,....M



sian with zero means and covarianeg®Re ando¢R¢, where the  The clutter covariance matrices are estimated from a trgiset of
unit-norm matriceR¢ andR¢ capture the structural properties of tumour-free breasts, using the procedure described in\[#. set
the covariance, and the scalaf?g and ag specify the noise pow- the regularization parameter to 1e-7, a value that proides! per-
ers. We model the noise signals as independent among thaethan formance in practice. In order to compensate for the distofin-
and between the MR and MIT methods. We assumelatind  troduced by whitening, we expose the signal templates teange
R¢ can be estimated using a training data set containing resgon whitening procedure, which produceésndd vectors.

from a number of healthy breasts. The signal amplitugieand,
are treated as unknown deterministic parameters and sigiél),
d;(6,) as deterministic and dependent on a set of paraméiers
In addition, tissue parameters, includedincan be also estimated.
Thus, for any given location, we considers andd as known and
refer to them as “signal templates”.

The GLRT performs the comparison of the generalized likeli-
hood ratioL¢ (%, y) against a thresholgl:

)

We consider the binary hypothesis testing framework for the

joint MR/MIT breast tumour detection formulated on the #nget
of scan-locationgr } f;:

H 2 Boyne =0 vs. H : Be,me # 0. 3)

The hypothesigiﬁl) denotes the scenario with tumour present while

The generalized likelihood ratio can be factorized under th
noise independency assumption:

p(ilﬁfl ) 5211 ) Hl) ) p(§’|ﬁ£1 ) &3,21 ) Hl)

La(x,y) = ~A ~A
) = T 62, Ho) - p(F15% ¢y, Ho)

(8)

H." is the null hypothesis. To discemn between these hypotheses Maximum likelihood estimates for the unknown variables are
and to address the issue of unknown parameters in (1) ande(2) Wjiven by [2, Appendix 9A]:

adopt a generalized likelihood ratio test (GLRT) appro&h [

2.1. 2D Signal Templates

For the 2-dimensional experiments described in this papeicon-
struct signal templates as follows. In the discussed mdaesét of

parameter®, includes average Debye tissue properties [3] (relative

permittivity at the infinite frequency.., difference in the relative
permittivity at DC and the infinite frequendye, static conductivity
os and relaxation time constan) and tumour locatiom,. The 2-D

signal template for the MR process models the effect of tieydend

attenuation in the matching medium, skin and tissue. lgueecy

domain representation for chanries:

Si(6,) =

G(jw)e—j%b\ri—rb,i\e—ijs Iry,i—Ts,i

e—j%n(ez)\rs,i—rz\ , (4)
wherer, denotes the location of the tumout,denotes the location
of the:-th antennar; ; andr ; lie on the line between; andr, at
the transition points of the background-skin interface #reskin-
tissue interface respectively, andk, denote the known wave num-
bers of the matching medium and skin, (6,) is the wave number
from the estimated Debye parametef,jw) denotes the Gaussian
modulated pulse reflected at the interface between thestersd the
tumor.

The 2-D signal template for the acoustic wave generated dy th

heated tumour is [4]

e_Jka‘rl_"l‘

Di(6:) = I(jw) ®)

v
where k, denotes the acoustic wave numbef(jw) denotes the
acoustic pulse generated by a point in the tumour re@lorNote
that this signal template assumes the tissue and matchidgume
have the same acoustic properties.

3. METHODOLOGY

Prior to the application of the GLRT framework, the inputrgtsx
andy are whitened using the estimated clutter covariance nestric

X = f{glmx; (6)

y=R;"%y

N —1 ~m~\ —1 o

Br, = (578) 8% i, = (@7d)  d"y ©)
2 1 _r o a2 1 .
0'57@1 = WX (I — Pg)X, £,00 = WX X3 (10)
.2 1 7 ~ 1 7.
5¢0 = Y (I—-P3)¥; 6¢.40 ~aY Y (11)

_ - -\ —1
Inthe expressions abo®s = § (57's) tgT andP; =d (d”d) d”

represent projection matrices that project a vector ongosiggnal
and noise subspaces respectively.

Making use of the MLE expressions in the ratio of Gaussian
PDFs (8) results in:

NM N M
o () ()
La (X y) 6_2’ 2 ) 6'2’ 0
£,01 ¢
Tx NM - NM
_ y ’
“(wa s (FaEe)
- NM
= (Aa(x)- Ag(y)) 2 (12)

Combining this expression with (7) and noting tr(a)¥ is a
monotone increasing function, results in the followingidien rule:

N(x,¥) (13)

y

For a fixed probability of false alarm, the thresheldcan be de-
termined from the inverse cumulative distribution funoti{@€DF) of
the test statistid’ (%, y), which can be acquired by means of numer-
ical simulations or empirically estimated from trainingalabtained
from simulations with healthy cases (distribution only enﬂéo) is
required to perform the test).

In our work we also consider an empirical test statistic \hisc
the product of two alternative, zero shifted, test stassti

xTP:x

xTPéi

vy Pay
’ S,TPL o

T(x,y)=T: (%) - T3 (y) = (14)



whereP* = I — P. The statisticI; (x) is derived in [5] for the
microwave radar modality. We are motivated to explore the pe
formance of the statisti@’(x,y) because in our experiments the
A'(x,y) statistic is completely dominated by tfig (x) term. This
occurs because our signal models much more accurate thaty.

It can be shown thal’(x,y) can be represented in terms of
T(%,), T: (%) andT; () as:

NEy)=1+T(&y) +Ts (%) + 15 (7). (15)

This expression provides better form of comparigditx, y) with
T'(x,y). After incorporating the constant “1” into the threshold, i

SINR, dB

4 5
Series #

Fig. 22 SINR for “pos.1” tests. As the dielectric contrast between

can be seen that’ (%, y) consists of the sum of the two separate testmalignant and benign tissues drops (see Table 1), the tetguer-

statistics for MR and MIT and their cross-product term.7¥ (x)

formance (SINR) decreases.

andTjy (y) are of approximately equal power, such a combination

should lead to better performance, in comparisoff’'(&, y), when
one of the two methods fails to detect the tumour or giveefpts-
itives in substantially wrong locations.

4. NUMERICAL SIMULATIONS

The electromagnetic and acoustic signals were simulatied tise
finite-difference time-domain (FDTD) method and two-dirsiemal

test statistic in (13) denoted by “F” and the product-ruké)@enoted
by “FP"). Each pixel of the images represents the value ofsa te
statistic at locationgr,}%_, on the the grid with spatial resolution
of Imm.

For each image we compute the signal to interference-plus-
noise ratio (SINR) as the log-ratio between the maximums of
the tumorous image and the corresponding healthy one: SINR

numerical breast phantoms derived from MRI images. The FDTDL0log,, max (T%, ) / max (T ).

grid (650 X 650 cells) resolves the geometry depicted in FEduto
0.4mm. For the MR technique, we use a pulsed excitation. Heor t
MIT simulation, we use a 3-GHz continuous waveform sourdee T
specific absorption rate is computed and used in the acaigtial
simulation [6].

Nine series of breast tissue models are considered, whdsgDe
properties are represented in TableA., andr have been fixed to
constant values (see the Table) while, andos have been assigned
with values by linearly mapping the variation of the MRI gikgen-
sities into the variation of.. in the range ok (1 £ 0.01Var/2)
and of o, in the range ofo,; (1 £ 0.01Var/2) with the param-
eters e, 05, taken from Table 1. Columnsin(erm/€erp),
max(€r,m /€rp), min(om/oy), max(om/op) represent the mini-
mum and maximum ratios of the resulting dielectric progsrtdf
malignant to benign tissues after mapping. The dielectopgrties
are evaluated using the Debye model at central frequen&y®-&.

For each seriesy,, = 10 different realizations of tissue struc-
ture are generated, nine of which are used as the trainirfgrsiste
whitening procedure. On the basis of the tenth one we buitdttw
morous breast phantoms by placing a circular tumdtir= 3mm)
into two positions relative to the centre of the breast: ‘pbst
[-20mm;8mm]; “pos.2” at [15mm;-15mm)]. Location “pos.2” ha
higher density of tissue, which decreases the dielectrtrast and
makes the detection task more complicated.

Fig. 2 shows the SINR values for the “pos.1” tests. The SINR
level drops as the contrast in dielectric properties desg®and the
heterogeneity level goes up (see Table 1). The FP testt&tatis-
vides a significant improvement in the SINR along the whoteyea
of contrast levels while the performance of F is biased tavMRe

In order to model measurement noise, white Gaussian noise is

added to the signal. Prior to the whitening procedure, tipesds are
pre-processed. A simple calibration procedure is usedtove the
incident pulses from the MR mode signals. Artifacts in thgnais
due to reflections at the skin-breast boundary are removad trse
minimum mean-squared-error algorithm described in [7].

5. RESULTS AND DISCUSSION

Fig. 3: Test statistic maximum values (“pos.1” case) unglgrand

Ho hypotheses for each series: a) MR; b) MIT; c) F; and d) FP.
Thresholdsymin and ymax are shown as the red and green lines.
The image shows improvement in performance for FP tessttati
(d) versus MR (a) and MIT(b). The cases where improvement is
achieved are surrounded by black boxes.

We assess the detection performance for two different lthres

For each seried, ...,9 three cases are considered (two differentolds: ymin, the largest threshold such that all tumours are detected;

tumour locations and the healthy scenario). For each otthases
images of four test statistics are computed: two ('MR’ andTi

corresponding to the individual MR and the MIT decision sjlend
two representing the outputs from the data fusion rulesdéeved

andymax, the smallest threshold such that there are no false alarms.
Figure 3 depicts the maximum values of the test statistitaioéd
for the “pos.1” scenario. Two cases are represented: thertura
(i.e., under hypothesi#(;) and the healthy#X). An improved de-



Table 1: Tissue properties for data series. Tumour is characttbyee., =

6.75, e = 0.79 S/m,Ae = 48.35, 7 = 10.47 ps.

Series # || 2ePye model parameters |y, oo | inie e ) | max(erm fery) | min(om/op) | max(om /op)
€00,b Os.b A 7, PS ) ’ ) ’
) 31 1005 16| 13 7 106 11 248 751
2 40 [ 008 | 35| 13 || 30 6.4 77 115 119
3 40 [ 008 | 35 | 13 || 40 63 8.0 115 12.0
2 130 | 04 | 244 13 || 30 14 16 17 18
5 13.0 0.4 24.4 13 50 1.3 1.7 1.7 1.8
6 13.0 0.4 24.4 13 70 1.3 1.7 1.7 1.8
7 138 | 07 | 356 13 10 11 12 12 12
8 138 | 0.7 | 36| 13 || 30 11 12 12 12
9 142 | 08 | 405 13 10 1.0 11 1.0 10

0.02 b)
0.015
£
- 0.01
N

£, 1

Table 22 Detection performance. False alarms are reported for the
case when thresholg.i, is used. Misses are reported for the case

whenvymax is used. Note that MR, F and FP can all achieve 1 miss
and 0 false-alarms whefax is used.

pos.1 pos.2
False alarms| Misses | False alarms| Misses
MR 4 1 7 1
MIT 2 3 9 6
F 4 1 7 1
FP 1 1 6 1

tic is dominated by the MR signal and the heuristic teststiatper-
forms better. We believe this can be addressed by employingra
accurate MIT signal template. Although the theoreticakyriced
test statistic does not show significant improvement ingrerance
over the separate MR and MIT methods, our study demonsttetes
the data fusion using simple empirically derived produts oan sig-

Fig. 4: Images of the test statistics for a breast model slice: a) MRnificantly improve the overall detection performance.

b) MIT; c) F; d) FP. True tumour location is shown by circle.

tection performance can be observed for FP with respect t@thiR
H, statistics for series 4, 6 and 8 are shifted below-the, thresh-
old) and MIT (theH, statistics for series 2 and 3 go belew;:, and
the?, statistics for series 7 and 8 increase dramatically). Thecde
tion capability for other series is preserved. Fagn thresholding
generates four false-alarms for the MR case and two fatsenralfor
the MIT case, but only one false-alarm for the FP rule.

Table 2 summarizes the detection performance for both 1jjos.

and “pos.2” tests. The product rule FP provides the besbperf
mance. Fig. 4 illustrates example images for the case wherER
test statistic leads to significant improvement (series“#8s.1").
One may notice the difference in the spatial distributiorclotter
between the MR and the MIT test statistics, which is the fpiec
property that the fusion benefits from. Considerable siggioe of
the clutter may be observed for the FP test statistic. Thetstatis-
tic is dominated by the MR signal, i.e. tfg term in (15). We con-
jecture that this is because the MR signal template is a matterb
match to the simulated signal than the acoustic MIT sigmaplate.

6. CONCLUSIONS

The conducted study shows that the fusion of data from miavew
radar and microwave thermoacoustic measurements hastthgipb
to lead to improved breast cancer detection performandéelpre-
sented simulations, the performance of the derived GLRstatis-
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